orangefs: Remove useless xattr prefix arguments
[deliverable/linux.git] / drivers / spi / spi-pxa2xx-dma.c
1 /*
2 * PXA2xx SPI DMA engine support.
3 *
4 * Copyright (C) 2013, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20
21 #include "spi-pxa2xx.h"
22
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24 enum dma_data_direction dir)
25 {
26 int i, nents, len = drv_data->len;
27 struct scatterlist *sg;
28 struct device *dmadev;
29 struct sg_table *sgt;
30 void *buf, *pbuf;
31
32 if (dir == DMA_TO_DEVICE) {
33 dmadev = drv_data->tx_chan->device->dev;
34 sgt = &drv_data->tx_sgt;
35 buf = drv_data->tx;
36 } else {
37 dmadev = drv_data->rx_chan->device->dev;
38 sgt = &drv_data->rx_sgt;
39 buf = drv_data->rx;
40 }
41
42 nents = DIV_ROUND_UP(len, SZ_2K);
43 if (nents != sgt->nents) {
44 int ret;
45
46 sg_free_table(sgt);
47 ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
48 if (ret)
49 return ret;
50 }
51
52 pbuf = buf;
53 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
54 size_t bytes = min_t(size_t, len, SZ_2K);
55
56 sg_set_buf(sg, pbuf, bytes);
57 pbuf += bytes;
58 len -= bytes;
59 }
60
61 nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
62 if (!nents)
63 return -ENOMEM;
64
65 return nents;
66 }
67
68 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
69 enum dma_data_direction dir)
70 {
71 struct device *dmadev;
72 struct sg_table *sgt;
73
74 if (dir == DMA_TO_DEVICE) {
75 dmadev = drv_data->tx_chan->device->dev;
76 sgt = &drv_data->tx_sgt;
77 } else {
78 dmadev = drv_data->rx_chan->device->dev;
79 sgt = &drv_data->rx_sgt;
80 }
81
82 dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
83 }
84
85 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
86 {
87 if (!drv_data->dma_mapped)
88 return;
89
90 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
91 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
92
93 drv_data->dma_mapped = 0;
94 }
95
96 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
97 bool error)
98 {
99 struct spi_message *msg = drv_data->cur_msg;
100
101 /*
102 * It is possible that one CPU is handling ROR interrupt and other
103 * just gets DMA completion. Calling pump_transfers() twice for the
104 * same transfer leads to problems thus we prevent concurrent calls
105 * by using ->dma_running.
106 */
107 if (atomic_dec_and_test(&drv_data->dma_running)) {
108 /*
109 * If the other CPU is still handling the ROR interrupt we
110 * might not know about the error yet. So we re-check the
111 * ROR bit here before we clear the status register.
112 */
113 if (!error) {
114 u32 status = pxa2xx_spi_read(drv_data, SSSR)
115 & drv_data->mask_sr;
116 error = status & SSSR_ROR;
117 }
118
119 /* Clear status & disable interrupts */
120 pxa2xx_spi_write(drv_data, SSCR1,
121 pxa2xx_spi_read(drv_data, SSCR1)
122 & ~drv_data->dma_cr1);
123 write_SSSR_CS(drv_data, drv_data->clear_sr);
124 if (!pxa25x_ssp_comp(drv_data))
125 pxa2xx_spi_write(drv_data, SSTO, 0);
126
127 if (!error) {
128 pxa2xx_spi_unmap_dma_buffers(drv_data);
129
130 msg->actual_length += drv_data->len;
131 msg->state = pxa2xx_spi_next_transfer(drv_data);
132 } else {
133 /* In case we got an error we disable the SSP now */
134 pxa2xx_spi_write(drv_data, SSCR0,
135 pxa2xx_spi_read(drv_data, SSCR0)
136 & ~SSCR0_SSE);
137
138 msg->state = ERROR_STATE;
139 }
140
141 tasklet_schedule(&drv_data->pump_transfers);
142 }
143 }
144
145 static void pxa2xx_spi_dma_callback(void *data)
146 {
147 pxa2xx_spi_dma_transfer_complete(data, false);
148 }
149
150 static struct dma_async_tx_descriptor *
151 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
152 enum dma_transfer_direction dir)
153 {
154 struct chip_data *chip = drv_data->cur_chip;
155 enum dma_slave_buswidth width;
156 struct dma_slave_config cfg;
157 struct dma_chan *chan;
158 struct sg_table *sgt;
159 int nents, ret;
160
161 switch (drv_data->n_bytes) {
162 case 1:
163 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
164 break;
165 case 2:
166 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
167 break;
168 default:
169 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
170 break;
171 }
172
173 memset(&cfg, 0, sizeof(cfg));
174 cfg.direction = dir;
175
176 if (dir == DMA_MEM_TO_DEV) {
177 cfg.dst_addr = drv_data->ssdr_physical;
178 cfg.dst_addr_width = width;
179 cfg.dst_maxburst = chip->dma_burst_size;
180
181 sgt = &drv_data->tx_sgt;
182 nents = drv_data->tx_nents;
183 chan = drv_data->tx_chan;
184 } else {
185 cfg.src_addr = drv_data->ssdr_physical;
186 cfg.src_addr_width = width;
187 cfg.src_maxburst = chip->dma_burst_size;
188
189 sgt = &drv_data->rx_sgt;
190 nents = drv_data->rx_nents;
191 chan = drv_data->rx_chan;
192 }
193
194 ret = dmaengine_slave_config(chan, &cfg);
195 if (ret) {
196 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
197 return NULL;
198 }
199
200 return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
201 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
202 }
203
204 bool pxa2xx_spi_dma_is_possible(size_t len)
205 {
206 return len <= MAX_DMA_LEN;
207 }
208
209 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
210 {
211 const struct chip_data *chip = drv_data->cur_chip;
212 int ret;
213
214 if (!chip->enable_dma)
215 return 0;
216
217 /* Don't bother with DMA if we can't do even a single burst */
218 if (drv_data->len < chip->dma_burst_size)
219 return 0;
220
221 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
222 if (ret <= 0) {
223 dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
224 return 0;
225 }
226
227 drv_data->tx_nents = ret;
228
229 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
230 if (ret <= 0) {
231 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
232 dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
233 return 0;
234 }
235
236 drv_data->rx_nents = ret;
237 return 1;
238 }
239
240 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
241 {
242 u32 status;
243
244 status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
245 if (status & SSSR_ROR) {
246 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
247
248 dmaengine_terminate_async(drv_data->rx_chan);
249 dmaengine_terminate_async(drv_data->tx_chan);
250
251 pxa2xx_spi_dma_transfer_complete(drv_data, true);
252 return IRQ_HANDLED;
253 }
254
255 return IRQ_NONE;
256 }
257
258 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
259 {
260 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
261 int err = 0;
262
263 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
264 if (!tx_desc) {
265 dev_err(&drv_data->pdev->dev,
266 "failed to get DMA TX descriptor\n");
267 err = -EBUSY;
268 goto err_tx;
269 }
270
271 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
272 if (!rx_desc) {
273 dev_err(&drv_data->pdev->dev,
274 "failed to get DMA RX descriptor\n");
275 err = -EBUSY;
276 goto err_rx;
277 }
278
279 /* We are ready when RX completes */
280 rx_desc->callback = pxa2xx_spi_dma_callback;
281 rx_desc->callback_param = drv_data;
282
283 dmaengine_submit(rx_desc);
284 dmaengine_submit(tx_desc);
285 return 0;
286
287 err_rx:
288 dmaengine_terminate_async(drv_data->tx_chan);
289 err_tx:
290 pxa2xx_spi_unmap_dma_buffers(drv_data);
291 return err;
292 }
293
294 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
295 {
296 dma_async_issue_pending(drv_data->rx_chan);
297 dma_async_issue_pending(drv_data->tx_chan);
298
299 atomic_set(&drv_data->dma_running, 1);
300 }
301
302 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
303 {
304 struct pxa2xx_spi_master *pdata = drv_data->master_info;
305 struct device *dev = &drv_data->pdev->dev;
306 dma_cap_mask_t mask;
307
308 dma_cap_zero(mask);
309 dma_cap_set(DMA_SLAVE, mask);
310
311 drv_data->tx_chan = dma_request_slave_channel_compat(mask,
312 pdata->dma_filter, pdata->tx_param, dev, "tx");
313 if (!drv_data->tx_chan)
314 return -ENODEV;
315
316 drv_data->rx_chan = dma_request_slave_channel_compat(mask,
317 pdata->dma_filter, pdata->rx_param, dev, "rx");
318 if (!drv_data->rx_chan) {
319 dma_release_channel(drv_data->tx_chan);
320 drv_data->tx_chan = NULL;
321 return -ENODEV;
322 }
323
324 return 0;
325 }
326
327 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
328 {
329 if (drv_data->rx_chan) {
330 dmaengine_terminate_sync(drv_data->rx_chan);
331 dma_release_channel(drv_data->rx_chan);
332 sg_free_table(&drv_data->rx_sgt);
333 drv_data->rx_chan = NULL;
334 }
335 if (drv_data->tx_chan) {
336 dmaengine_terminate_sync(drv_data->tx_chan);
337 dma_release_channel(drv_data->tx_chan);
338 sg_free_table(&drv_data->tx_sgt);
339 drv_data->tx_chan = NULL;
340 }
341 }
342
343 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
344 struct spi_device *spi,
345 u8 bits_per_word, u32 *burst_code,
346 u32 *threshold)
347 {
348 struct pxa2xx_spi_chip *chip_info = spi->controller_data;
349
350 /*
351 * If the DMA burst size is given in chip_info we use that,
352 * otherwise we use the default. Also we use the default FIFO
353 * thresholds for now.
354 */
355 *burst_code = chip_info ? chip_info->dma_burst_size : 1;
356 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
357 | SSCR1_TxTresh(TX_THRESH_DFLT);
358
359 return 0;
360 }
This page took 0.039465 seconds and 5 git commands to generate.