Merge tag 'pm+acpi-3.16-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafae...
[deliverable/linux.git] / drivers / spi / spi-pxa2xx-dma.c
1 /*
2 * PXA2xx SPI DMA engine support.
3 *
4 * Copyright (C) 2013, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20
21 #include "spi-pxa2xx.h"
22
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24 enum dma_data_direction dir)
25 {
26 int i, nents, len = drv_data->len;
27 struct scatterlist *sg;
28 struct device *dmadev;
29 struct sg_table *sgt;
30 void *buf, *pbuf;
31
32 if (dir == DMA_TO_DEVICE) {
33 dmadev = drv_data->tx_chan->device->dev;
34 sgt = &drv_data->tx_sgt;
35 buf = drv_data->tx;
36 drv_data->tx_map_len = len;
37 } else {
38 dmadev = drv_data->rx_chan->device->dev;
39 sgt = &drv_data->rx_sgt;
40 buf = drv_data->rx;
41 drv_data->rx_map_len = len;
42 }
43
44 nents = DIV_ROUND_UP(len, SZ_2K);
45 if (nents != sgt->nents) {
46 int ret;
47
48 sg_free_table(sgt);
49 ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
50 if (ret)
51 return ret;
52 }
53
54 pbuf = buf;
55 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
56 size_t bytes = min_t(size_t, len, SZ_2K);
57
58 if (buf)
59 sg_set_buf(sg, pbuf, bytes);
60 else
61 sg_set_buf(sg, drv_data->dummy, bytes);
62
63 pbuf += bytes;
64 len -= bytes;
65 }
66
67 nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
68 if (!nents)
69 return -ENOMEM;
70
71 return nents;
72 }
73
74 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
75 enum dma_data_direction dir)
76 {
77 struct device *dmadev;
78 struct sg_table *sgt;
79
80 if (dir == DMA_TO_DEVICE) {
81 dmadev = drv_data->tx_chan->device->dev;
82 sgt = &drv_data->tx_sgt;
83 } else {
84 dmadev = drv_data->rx_chan->device->dev;
85 sgt = &drv_data->rx_sgt;
86 }
87
88 dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
89 }
90
91 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
92 {
93 if (!drv_data->dma_mapped)
94 return;
95
96 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
97 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
98
99 drv_data->dma_mapped = 0;
100 }
101
102 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
103 bool error)
104 {
105 struct spi_message *msg = drv_data->cur_msg;
106
107 /*
108 * It is possible that one CPU is handling ROR interrupt and other
109 * just gets DMA completion. Calling pump_transfers() twice for the
110 * same transfer leads to problems thus we prevent concurrent calls
111 * by using ->dma_running.
112 */
113 if (atomic_dec_and_test(&drv_data->dma_running)) {
114 void __iomem *reg = drv_data->ioaddr;
115
116 /*
117 * If the other CPU is still handling the ROR interrupt we
118 * might not know about the error yet. So we re-check the
119 * ROR bit here before we clear the status register.
120 */
121 if (!error) {
122 u32 status = read_SSSR(reg) & drv_data->mask_sr;
123 error = status & SSSR_ROR;
124 }
125
126 /* Clear status & disable interrupts */
127 write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
128 write_SSSR_CS(drv_data, drv_data->clear_sr);
129 if (!pxa25x_ssp_comp(drv_data))
130 write_SSTO(0, reg);
131
132 if (!error) {
133 pxa2xx_spi_unmap_dma_buffers(drv_data);
134
135 drv_data->tx += drv_data->tx_map_len;
136 drv_data->rx += drv_data->rx_map_len;
137
138 msg->actual_length += drv_data->len;
139 msg->state = pxa2xx_spi_next_transfer(drv_data);
140 } else {
141 /* In case we got an error we disable the SSP now */
142 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
143
144 msg->state = ERROR_STATE;
145 }
146
147 tasklet_schedule(&drv_data->pump_transfers);
148 }
149 }
150
151 static void pxa2xx_spi_dma_callback(void *data)
152 {
153 pxa2xx_spi_dma_transfer_complete(data, false);
154 }
155
156 static struct dma_async_tx_descriptor *
157 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
158 enum dma_transfer_direction dir)
159 {
160 struct pxa2xx_spi_master *pdata = drv_data->master_info;
161 struct chip_data *chip = drv_data->cur_chip;
162 enum dma_slave_buswidth width;
163 struct dma_slave_config cfg;
164 struct dma_chan *chan;
165 struct sg_table *sgt;
166 int nents, ret;
167
168 switch (drv_data->n_bytes) {
169 case 1:
170 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
171 break;
172 case 2:
173 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
174 break;
175 default:
176 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
177 break;
178 }
179
180 memset(&cfg, 0, sizeof(cfg));
181 cfg.direction = dir;
182
183 if (dir == DMA_MEM_TO_DEV) {
184 cfg.dst_addr = drv_data->ssdr_physical;
185 cfg.dst_addr_width = width;
186 cfg.dst_maxburst = chip->dma_burst_size;
187 cfg.slave_id = pdata->tx_slave_id;
188
189 sgt = &drv_data->tx_sgt;
190 nents = drv_data->tx_nents;
191 chan = drv_data->tx_chan;
192 } else {
193 cfg.src_addr = drv_data->ssdr_physical;
194 cfg.src_addr_width = width;
195 cfg.src_maxburst = chip->dma_burst_size;
196 cfg.slave_id = pdata->rx_slave_id;
197
198 sgt = &drv_data->rx_sgt;
199 nents = drv_data->rx_nents;
200 chan = drv_data->rx_chan;
201 }
202
203 ret = dmaengine_slave_config(chan, &cfg);
204 if (ret) {
205 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
206 return NULL;
207 }
208
209 return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
210 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
211 }
212
213 static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
214 {
215 const struct pxa2xx_spi_master *pdata = param;
216
217 return chan->chan_id == pdata->tx_chan_id ||
218 chan->chan_id == pdata->rx_chan_id;
219 }
220
221 bool pxa2xx_spi_dma_is_possible(size_t len)
222 {
223 return len <= MAX_DMA_LEN;
224 }
225
226 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
227 {
228 const struct chip_data *chip = drv_data->cur_chip;
229 int ret;
230
231 if (!chip->enable_dma)
232 return 0;
233
234 /* Don't bother with DMA if we can't do even a single burst */
235 if (drv_data->len < chip->dma_burst_size)
236 return 0;
237
238 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
239 if (ret <= 0) {
240 dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
241 return 0;
242 }
243
244 drv_data->tx_nents = ret;
245
246 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
247 if (ret <= 0) {
248 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
249 dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
250 return 0;
251 }
252
253 drv_data->rx_nents = ret;
254 return 1;
255 }
256
257 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
258 {
259 u32 status;
260
261 status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
262 if (status & SSSR_ROR) {
263 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
264
265 dmaengine_terminate_all(drv_data->rx_chan);
266 dmaengine_terminate_all(drv_data->tx_chan);
267
268 pxa2xx_spi_dma_transfer_complete(drv_data, true);
269 return IRQ_HANDLED;
270 }
271
272 return IRQ_NONE;
273 }
274
275 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
276 {
277 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
278
279 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
280 if (!tx_desc) {
281 dev_err(&drv_data->pdev->dev,
282 "failed to get DMA TX descriptor\n");
283 return -EBUSY;
284 }
285
286 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
287 if (!rx_desc) {
288 dev_err(&drv_data->pdev->dev,
289 "failed to get DMA RX descriptor\n");
290 return -EBUSY;
291 }
292
293 /* We are ready when RX completes */
294 rx_desc->callback = pxa2xx_spi_dma_callback;
295 rx_desc->callback_param = drv_data;
296
297 dmaengine_submit(rx_desc);
298 dmaengine_submit(tx_desc);
299 return 0;
300 }
301
302 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
303 {
304 dma_async_issue_pending(drv_data->rx_chan);
305 dma_async_issue_pending(drv_data->tx_chan);
306
307 atomic_set(&drv_data->dma_running, 1);
308 }
309
310 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
311 {
312 struct pxa2xx_spi_master *pdata = drv_data->master_info;
313 struct device *dev = &drv_data->pdev->dev;
314 dma_cap_mask_t mask;
315
316 dma_cap_zero(mask);
317 dma_cap_set(DMA_SLAVE, mask);
318
319 drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
320 if (!drv_data->dummy)
321 return -ENOMEM;
322
323 drv_data->tx_chan = dma_request_slave_channel_compat(mask,
324 pxa2xx_spi_dma_filter, pdata, dev, "tx");
325 if (!drv_data->tx_chan)
326 return -ENODEV;
327
328 drv_data->rx_chan = dma_request_slave_channel_compat(mask,
329 pxa2xx_spi_dma_filter, pdata, dev, "rx");
330 if (!drv_data->rx_chan) {
331 dma_release_channel(drv_data->tx_chan);
332 drv_data->tx_chan = NULL;
333 return -ENODEV;
334 }
335
336 return 0;
337 }
338
339 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
340 {
341 if (drv_data->rx_chan) {
342 dmaengine_terminate_all(drv_data->rx_chan);
343 dma_release_channel(drv_data->rx_chan);
344 sg_free_table(&drv_data->rx_sgt);
345 drv_data->rx_chan = NULL;
346 }
347 if (drv_data->tx_chan) {
348 dmaengine_terminate_all(drv_data->tx_chan);
349 dma_release_channel(drv_data->tx_chan);
350 sg_free_table(&drv_data->tx_sgt);
351 drv_data->tx_chan = NULL;
352 }
353 }
354
355 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
356 {
357 }
358
359 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
360 struct spi_device *spi,
361 u8 bits_per_word, u32 *burst_code,
362 u32 *threshold)
363 {
364 struct pxa2xx_spi_chip *chip_info = spi->controller_data;
365
366 /*
367 * If the DMA burst size is given in chip_info we use that,
368 * otherwise we use the default. Also we use the default FIFO
369 * thresholds for now.
370 */
371 *burst_code = chip_info ? chip_info->dma_burst_size : 16;
372 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
373 | SSCR1_TxTresh(TX_THRESH_DFLT);
374
375 return 0;
376 }
This page took 0.037415 seconds and 5 git commands to generate.