Merge remote-tracking branch 'asoc/topic/kconfig' into asoc-next
[deliverable/linux.git] / drivers / spi / spi-rspi.c
1 /*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_dma.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/rspi.h>
35
36 #define RSPI_SPCR 0x00 /* Control Register */
37 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
38 #define RSPI_SPPCR 0x02 /* Pin Control Register */
39 #define RSPI_SPSR 0x03 /* Status Register */
40 #define RSPI_SPDR 0x04 /* Data Register */
41 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
42 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
43 #define RSPI_SPBR 0x0a /* Bit Rate Register */
44 #define RSPI_SPDCR 0x0b /* Data Control Register */
45 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
46 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
47 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
48 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
49 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
50 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
51 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
52 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
53 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
54 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
55 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
56 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
57 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
58 #define RSPI_NUM_SPCMD 8
59 #define RSPI_RZ_NUM_SPCMD 4
60 #define QSPI_NUM_SPCMD 4
61
62 /* RSPI on RZ only */
63 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
64 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
65
66 /* QSPI only */
67 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
68 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
69 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
70 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
71 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
72 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
73 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
74
75 /* SPCR - Control Register */
76 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
77 #define SPCR_SPE 0x40 /* Function Enable */
78 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
79 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
80 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
81 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
82 /* RSPI on SH only */
83 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
84 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
85 /* QSPI on R-Car Gen2 only */
86 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
87 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
88
89 /* SSLP - Slave Select Polarity Register */
90 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
91 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
92
93 /* SPPCR - Pin Control Register */
94 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
95 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
96 #define SPPCR_SPOM 0x04
97 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
98 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
99
100 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102
103 /* SPSR - Status Register */
104 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
105 #define SPSR_TEND 0x40 /* Transmit End */
106 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
107 #define SPSR_PERF 0x08 /* Parity Error Flag */
108 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
109 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
110 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
111
112 /* SPSCR - Sequence Control Register */
113 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
114
115 /* SPSSR - Sequence Status Register */
116 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
117 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
118
119 /* SPDCR - Data Control Register */
120 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
121 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
122 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
123 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
124 #define SPDCR_SPLWORD SPDCR_SPLW1
125 #define SPDCR_SPLBYTE SPDCR_SPLW0
126 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
127 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
128 #define SPDCR_SLSEL1 0x08
129 #define SPDCR_SLSEL0 0x04
130 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
131 #define SPDCR_SPFC1 0x02
132 #define SPDCR_SPFC0 0x01
133 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
134
135 /* SPCKD - Clock Delay Register */
136 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
137
138 /* SSLND - Slave Select Negation Delay Register */
139 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
140
141 /* SPND - Next-Access Delay Register */
142 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
143
144 /* SPCR2 - Control Register 2 */
145 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
146 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
147 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
148 #define SPCR2_SPPE 0x01 /* Parity Enable */
149
150 /* SPCMDn - Command Registers */
151 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
152 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
153 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
154 #define SPCMD_LSBF 0x1000 /* LSB First */
155 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
156 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
157 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
158 #define SPCMD_SPB_16BIT 0x0100
159 #define SPCMD_SPB_20BIT 0x0000
160 #define SPCMD_SPB_24BIT 0x0100
161 #define SPCMD_SPB_32BIT 0x0200
162 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
163 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
164 #define SPCMD_SPIMOD1 0x0040
165 #define SPCMD_SPIMOD0 0x0020
166 #define SPCMD_SPIMOD_SINGLE 0
167 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
168 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
169 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
170 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
171 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
172 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
173 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
174
175 /* SPBFCR - Buffer Control Register */
176 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
177 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
178 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
179 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
180 /* QSPI on R-Car Gen2 */
181 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
182 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
183 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
184 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
185
186 #define QSPI_BUFFER_SIZE 32u
187
188 struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
199
200 unsigned dma_callbacked:1;
201 unsigned byte_access:1;
202 };
203
204 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
205 {
206 iowrite8(data, rspi->addr + offset);
207 }
208
209 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
210 {
211 iowrite16(data, rspi->addr + offset);
212 }
213
214 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
215 {
216 iowrite32(data, rspi->addr + offset);
217 }
218
219 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
220 {
221 return ioread8(rspi->addr + offset);
222 }
223
224 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
225 {
226 return ioread16(rspi->addr + offset);
227 }
228
229 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
230 {
231 if (rspi->byte_access)
232 rspi_write8(rspi, data, RSPI_SPDR);
233 else /* 16 bit */
234 rspi_write16(rspi, data, RSPI_SPDR);
235 }
236
237 static u16 rspi_read_data(const struct rspi_data *rspi)
238 {
239 if (rspi->byte_access)
240 return rspi_read8(rspi, RSPI_SPDR);
241 else /* 16 bit */
242 return rspi_read16(rspi, RSPI_SPDR);
243 }
244
245 /* optional functions */
246 struct spi_ops {
247 int (*set_config_register)(struct rspi_data *rspi, int access_size);
248 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249 struct spi_transfer *xfer);
250 u16 mode_bits;
251 u16 flags;
252 u16 fifo_size;
253 };
254
255 /*
256 * functions for RSPI on legacy SH
257 */
258 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
259 {
260 int spbr;
261
262 /* Sets output mode, MOSI signal, and (optionally) loopback */
263 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
264
265 /* Sets transfer bit rate */
266 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267 2 * rspi->max_speed_hz) - 1;
268 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
269
270 /* Disable dummy transmission, set 16-bit word access, 1 frame */
271 rspi_write8(rspi, 0, RSPI_SPDCR);
272 rspi->byte_access = 0;
273
274 /* Sets RSPCK, SSL, next-access delay value */
275 rspi_write8(rspi, 0x00, RSPI_SPCKD);
276 rspi_write8(rspi, 0x00, RSPI_SSLND);
277 rspi_write8(rspi, 0x00, RSPI_SPND);
278
279 /* Sets parity, interrupt mask */
280 rspi_write8(rspi, 0x00, RSPI_SPCR2);
281
282 /* Sets SPCMD */
283 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
285
286 /* Sets RSPI mode */
287 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
288
289 return 0;
290 }
291
292 /*
293 * functions for RSPI on RZ
294 */
295 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
296 {
297 int spbr;
298
299 /* Sets output mode, MOSI signal, and (optionally) loopback */
300 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
301
302 /* Sets transfer bit rate */
303 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
304 2 * rspi->max_speed_hz) - 1;
305 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
306
307 /* Disable dummy transmission, set byte access */
308 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
309 rspi->byte_access = 1;
310
311 /* Sets RSPCK, SSL, next-access delay value */
312 rspi_write8(rspi, 0x00, RSPI_SPCKD);
313 rspi_write8(rspi, 0x00, RSPI_SSLND);
314 rspi_write8(rspi, 0x00, RSPI_SPND);
315
316 /* Sets SPCMD */
317 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
318 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
319
320 /* Sets RSPI mode */
321 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
322
323 return 0;
324 }
325
326 /*
327 * functions for QSPI
328 */
329 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
330 {
331 int spbr;
332
333 /* Sets output mode, MOSI signal, and (optionally) loopback */
334 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
335
336 /* Sets transfer bit rate */
337 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
338 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
339
340 /* Disable dummy transmission, set byte access */
341 rspi_write8(rspi, 0, RSPI_SPDCR);
342 rspi->byte_access = 1;
343
344 /* Sets RSPCK, SSL, next-access delay value */
345 rspi_write8(rspi, 0x00, RSPI_SPCKD);
346 rspi_write8(rspi, 0x00, RSPI_SSLND);
347 rspi_write8(rspi, 0x00, RSPI_SPND);
348
349 /* Data Length Setting */
350 if (access_size == 8)
351 rspi->spcmd |= SPCMD_SPB_8BIT;
352 else if (access_size == 16)
353 rspi->spcmd |= SPCMD_SPB_16BIT;
354 else
355 rspi->spcmd |= SPCMD_SPB_32BIT;
356
357 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
358
359 /* Resets transfer data length */
360 rspi_write32(rspi, 0, QSPI_SPBMUL0);
361
362 /* Resets transmit and receive buffer */
363 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
364 /* Sets buffer to allow normal operation */
365 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
366
367 /* Sets SPCMD */
368 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
369
370 /* Enables SPI function in master mode */
371 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
372
373 return 0;
374 }
375
376 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
377 {
378 u8 data;
379
380 data = rspi_read8(rspi, reg);
381 data &= ~mask;
382 data |= (val & mask);
383 rspi_write8(rspi, data, reg);
384 }
385
386 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
387 unsigned int len)
388 {
389 unsigned int n;
390
391 n = min(len, QSPI_BUFFER_SIZE);
392
393 if (len >= QSPI_BUFFER_SIZE) {
394 /* sets triggering number to 32 bytes */
395 qspi_update(rspi, SPBFCR_TXTRG_MASK,
396 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
397 } else {
398 /* sets triggering number to 1 byte */
399 qspi_update(rspi, SPBFCR_TXTRG_MASK,
400 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
401 }
402
403 return n;
404 }
405
406 static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
407 {
408 unsigned int n;
409
410 n = min(len, QSPI_BUFFER_SIZE);
411
412 if (len >= QSPI_BUFFER_SIZE) {
413 /* sets triggering number to 32 bytes */
414 qspi_update(rspi, SPBFCR_RXTRG_MASK,
415 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
416 } else {
417 /* sets triggering number to 1 byte */
418 qspi_update(rspi, SPBFCR_RXTRG_MASK,
419 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
420 }
421 }
422
423 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
424
425 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
426 {
427 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
428 }
429
430 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
431 {
432 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
433 }
434
435 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
436 u8 enable_bit)
437 {
438 int ret;
439
440 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
441 if (rspi->spsr & wait_mask)
442 return 0;
443
444 rspi_enable_irq(rspi, enable_bit);
445 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
446 if (ret == 0 && !(rspi->spsr & wait_mask))
447 return -ETIMEDOUT;
448
449 return 0;
450 }
451
452 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
453 {
454 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
455 }
456
457 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
458 {
459 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
460 }
461
462 static int rspi_data_out(struct rspi_data *rspi, u8 data)
463 {
464 int error = rspi_wait_for_tx_empty(rspi);
465 if (error < 0) {
466 dev_err(&rspi->master->dev, "transmit timeout\n");
467 return error;
468 }
469 rspi_write_data(rspi, data);
470 return 0;
471 }
472
473 static int rspi_data_in(struct rspi_data *rspi)
474 {
475 int error;
476 u8 data;
477
478 error = rspi_wait_for_rx_full(rspi);
479 if (error < 0) {
480 dev_err(&rspi->master->dev, "receive timeout\n");
481 return error;
482 }
483 data = rspi_read_data(rspi);
484 return data;
485 }
486
487 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
488 unsigned int n)
489 {
490 while (n-- > 0) {
491 if (tx) {
492 int ret = rspi_data_out(rspi, *tx++);
493 if (ret < 0)
494 return ret;
495 }
496 if (rx) {
497 int ret = rspi_data_in(rspi);
498 if (ret < 0)
499 return ret;
500 *rx++ = ret;
501 }
502 }
503
504 return 0;
505 }
506
507 static void rspi_dma_complete(void *arg)
508 {
509 struct rspi_data *rspi = arg;
510
511 rspi->dma_callbacked = 1;
512 wake_up_interruptible(&rspi->wait);
513 }
514
515 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
516 struct sg_table *rx)
517 {
518 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
519 u8 irq_mask = 0;
520 unsigned int other_irq = 0;
521 dma_cookie_t cookie;
522 int ret;
523
524 /* First prepare and submit the DMA request(s), as this may fail */
525 if (rx) {
526 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
527 rx->sgl, rx->nents, DMA_FROM_DEVICE,
528 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
529 if (!desc_rx) {
530 ret = -EAGAIN;
531 goto no_dma_rx;
532 }
533
534 desc_rx->callback = rspi_dma_complete;
535 desc_rx->callback_param = rspi;
536 cookie = dmaengine_submit(desc_rx);
537 if (dma_submit_error(cookie)) {
538 ret = cookie;
539 goto no_dma_rx;
540 }
541
542 irq_mask |= SPCR_SPRIE;
543 }
544
545 if (tx) {
546 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
547 tx->sgl, tx->nents, DMA_TO_DEVICE,
548 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
549 if (!desc_tx) {
550 ret = -EAGAIN;
551 goto no_dma_tx;
552 }
553
554 if (rx) {
555 /* No callback */
556 desc_tx->callback = NULL;
557 } else {
558 desc_tx->callback = rspi_dma_complete;
559 desc_tx->callback_param = rspi;
560 }
561 cookie = dmaengine_submit(desc_tx);
562 if (dma_submit_error(cookie)) {
563 ret = cookie;
564 goto no_dma_tx;
565 }
566
567 irq_mask |= SPCR_SPTIE;
568 }
569
570 /*
571 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
572 * called. So, this driver disables the IRQ while DMA transfer.
573 */
574 if (tx)
575 disable_irq(other_irq = rspi->tx_irq);
576 if (rx && rspi->rx_irq != other_irq)
577 disable_irq(rspi->rx_irq);
578
579 rspi_enable_irq(rspi, irq_mask);
580 rspi->dma_callbacked = 0;
581
582 /* Now start DMA */
583 if (rx)
584 dma_async_issue_pending(rspi->master->dma_rx);
585 if (tx)
586 dma_async_issue_pending(rspi->master->dma_tx);
587
588 ret = wait_event_interruptible_timeout(rspi->wait,
589 rspi->dma_callbacked, HZ);
590 if (ret > 0 && rspi->dma_callbacked)
591 ret = 0;
592 else if (!ret) {
593 dev_err(&rspi->master->dev, "DMA timeout\n");
594 ret = -ETIMEDOUT;
595 if (tx)
596 dmaengine_terminate_all(rspi->master->dma_tx);
597 if (rx)
598 dmaengine_terminate_all(rspi->master->dma_rx);
599 }
600
601 rspi_disable_irq(rspi, irq_mask);
602
603 if (tx)
604 enable_irq(rspi->tx_irq);
605 if (rx && rspi->rx_irq != other_irq)
606 enable_irq(rspi->rx_irq);
607
608 return ret;
609
610 no_dma_tx:
611 if (rx)
612 dmaengine_terminate_all(rspi->master->dma_rx);
613 no_dma_rx:
614 if (ret == -EAGAIN) {
615 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
616 dev_driver_string(&rspi->master->dev),
617 dev_name(&rspi->master->dev));
618 }
619 return ret;
620 }
621
622 static void rspi_receive_init(const struct rspi_data *rspi)
623 {
624 u8 spsr;
625
626 spsr = rspi_read8(rspi, RSPI_SPSR);
627 if (spsr & SPSR_SPRF)
628 rspi_read_data(rspi); /* dummy read */
629 if (spsr & SPSR_OVRF)
630 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
631 RSPI_SPSR);
632 }
633
634 static void rspi_rz_receive_init(const struct rspi_data *rspi)
635 {
636 rspi_receive_init(rspi);
637 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
638 rspi_write8(rspi, 0, RSPI_SPBFCR);
639 }
640
641 static void qspi_receive_init(const struct rspi_data *rspi)
642 {
643 u8 spsr;
644
645 spsr = rspi_read8(rspi, RSPI_SPSR);
646 if (spsr & SPSR_SPRF)
647 rspi_read_data(rspi); /* dummy read */
648 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
649 rspi_write8(rspi, 0, QSPI_SPBFCR);
650 }
651
652 static bool __rspi_can_dma(const struct rspi_data *rspi,
653 const struct spi_transfer *xfer)
654 {
655 return xfer->len > rspi->ops->fifo_size;
656 }
657
658 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
659 struct spi_transfer *xfer)
660 {
661 struct rspi_data *rspi = spi_master_get_devdata(master);
662
663 return __rspi_can_dma(rspi, xfer);
664 }
665
666 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
667 struct spi_transfer *xfer)
668 {
669 if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
670 return -EAGAIN;
671
672 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
673 return rspi_dma_transfer(rspi, &xfer->tx_sg,
674 xfer->rx_buf ? &xfer->rx_sg : NULL);
675 }
676
677 static int rspi_common_transfer(struct rspi_data *rspi,
678 struct spi_transfer *xfer)
679 {
680 int ret;
681
682 ret = rspi_dma_check_then_transfer(rspi, xfer);
683 if (ret != -EAGAIN)
684 return ret;
685
686 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
687 if (ret < 0)
688 return ret;
689
690 /* Wait for the last transmission */
691 rspi_wait_for_tx_empty(rspi);
692
693 return 0;
694 }
695
696 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
697 struct spi_transfer *xfer)
698 {
699 struct rspi_data *rspi = spi_master_get_devdata(master);
700 u8 spcr;
701
702 spcr = rspi_read8(rspi, RSPI_SPCR);
703 if (xfer->rx_buf) {
704 rspi_receive_init(rspi);
705 spcr &= ~SPCR_TXMD;
706 } else {
707 spcr |= SPCR_TXMD;
708 }
709 rspi_write8(rspi, spcr, RSPI_SPCR);
710
711 return rspi_common_transfer(rspi, xfer);
712 }
713
714 static int rspi_rz_transfer_one(struct spi_master *master,
715 struct spi_device *spi,
716 struct spi_transfer *xfer)
717 {
718 struct rspi_data *rspi = spi_master_get_devdata(master);
719
720 rspi_rz_receive_init(rspi);
721
722 return rspi_common_transfer(rspi, xfer);
723 }
724
725 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
726 u8 *rx, unsigned int len)
727 {
728 unsigned int i, n;
729 int ret;
730
731 while (len > 0) {
732 n = qspi_set_send_trigger(rspi, len);
733 qspi_set_receive_trigger(rspi, len);
734 if (n == QSPI_BUFFER_SIZE) {
735 ret = rspi_wait_for_tx_empty(rspi);
736 if (ret < 0) {
737 dev_err(&rspi->master->dev, "transmit timeout\n");
738 return ret;
739 }
740 for (i = 0; i < n; i++)
741 rspi_write_data(rspi, *tx++);
742
743 ret = rspi_wait_for_rx_full(rspi);
744 if (ret < 0) {
745 dev_err(&rspi->master->dev, "receive timeout\n");
746 return ret;
747 }
748 for (i = 0; i < n; i++)
749 *rx++ = rspi_read_data(rspi);
750 } else {
751 ret = rspi_pio_transfer(rspi, tx, rx, n);
752 if (ret < 0)
753 return ret;
754 }
755 len -= n;
756 }
757
758 return 0;
759 }
760
761 static int qspi_transfer_out_in(struct rspi_data *rspi,
762 struct spi_transfer *xfer)
763 {
764 int ret;
765
766 qspi_receive_init(rspi);
767
768 ret = rspi_dma_check_then_transfer(rspi, xfer);
769 if (ret != -EAGAIN)
770 return ret;
771
772 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
773 xfer->rx_buf, xfer->len);
774 }
775
776 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
777 {
778 int ret;
779
780 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
781 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
782 if (ret != -EAGAIN)
783 return ret;
784 }
785
786 ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
787 if (ret < 0)
788 return ret;
789
790 /* Wait for the last transmission */
791 rspi_wait_for_tx_empty(rspi);
792
793 return 0;
794 }
795
796 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
797 {
798 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
799 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
800 if (ret != -EAGAIN)
801 return ret;
802 }
803
804 return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
805 }
806
807 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
808 struct spi_transfer *xfer)
809 {
810 struct rspi_data *rspi = spi_master_get_devdata(master);
811
812 if (spi->mode & SPI_LOOP) {
813 return qspi_transfer_out_in(rspi, xfer);
814 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
815 /* Quad or Dual SPI Write */
816 return qspi_transfer_out(rspi, xfer);
817 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
818 /* Quad or Dual SPI Read */
819 return qspi_transfer_in(rspi, xfer);
820 } else {
821 /* Single SPI Transfer */
822 return qspi_transfer_out_in(rspi, xfer);
823 }
824 }
825
826 static int rspi_setup(struct spi_device *spi)
827 {
828 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
829
830 rspi->max_speed_hz = spi->max_speed_hz;
831
832 rspi->spcmd = SPCMD_SSLKP;
833 if (spi->mode & SPI_CPOL)
834 rspi->spcmd |= SPCMD_CPOL;
835 if (spi->mode & SPI_CPHA)
836 rspi->spcmd |= SPCMD_CPHA;
837
838 /* CMOS output mode and MOSI signal from previous transfer */
839 rspi->sppcr = 0;
840 if (spi->mode & SPI_LOOP)
841 rspi->sppcr |= SPPCR_SPLP;
842
843 set_config_register(rspi, 8);
844
845 return 0;
846 }
847
848 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
849 {
850 if (xfer->tx_buf)
851 switch (xfer->tx_nbits) {
852 case SPI_NBITS_QUAD:
853 return SPCMD_SPIMOD_QUAD;
854 case SPI_NBITS_DUAL:
855 return SPCMD_SPIMOD_DUAL;
856 default:
857 return 0;
858 }
859 if (xfer->rx_buf)
860 switch (xfer->rx_nbits) {
861 case SPI_NBITS_QUAD:
862 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
863 case SPI_NBITS_DUAL:
864 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
865 default:
866 return 0;
867 }
868
869 return 0;
870 }
871
872 static int qspi_setup_sequencer(struct rspi_data *rspi,
873 const struct spi_message *msg)
874 {
875 const struct spi_transfer *xfer;
876 unsigned int i = 0, len = 0;
877 u16 current_mode = 0xffff, mode;
878
879 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
880 mode = qspi_transfer_mode(xfer);
881 if (mode == current_mode) {
882 len += xfer->len;
883 continue;
884 }
885
886 /* Transfer mode change */
887 if (i) {
888 /* Set transfer data length of previous transfer */
889 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
890 }
891
892 if (i >= QSPI_NUM_SPCMD) {
893 dev_err(&msg->spi->dev,
894 "Too many different transfer modes");
895 return -EINVAL;
896 }
897
898 /* Program transfer mode for this transfer */
899 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
900 current_mode = mode;
901 len = xfer->len;
902 i++;
903 }
904 if (i) {
905 /* Set final transfer data length and sequence length */
906 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
907 rspi_write8(rspi, i - 1, RSPI_SPSCR);
908 }
909
910 return 0;
911 }
912
913 static int rspi_prepare_message(struct spi_master *master,
914 struct spi_message *msg)
915 {
916 struct rspi_data *rspi = spi_master_get_devdata(master);
917 int ret;
918
919 if (msg->spi->mode &
920 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
921 /* Setup sequencer for messages with multiple transfer modes */
922 ret = qspi_setup_sequencer(rspi, msg);
923 if (ret < 0)
924 return ret;
925 }
926
927 /* Enable SPI function in master mode */
928 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
929 return 0;
930 }
931
932 static int rspi_unprepare_message(struct spi_master *master,
933 struct spi_message *msg)
934 {
935 struct rspi_data *rspi = spi_master_get_devdata(master);
936
937 /* Disable SPI function */
938 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
939
940 /* Reset sequencer for Single SPI Transfers */
941 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
942 rspi_write8(rspi, 0, RSPI_SPSCR);
943 return 0;
944 }
945
946 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
947 {
948 struct rspi_data *rspi = _sr;
949 u8 spsr;
950 irqreturn_t ret = IRQ_NONE;
951 u8 disable_irq = 0;
952
953 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
954 if (spsr & SPSR_SPRF)
955 disable_irq |= SPCR_SPRIE;
956 if (spsr & SPSR_SPTEF)
957 disable_irq |= SPCR_SPTIE;
958
959 if (disable_irq) {
960 ret = IRQ_HANDLED;
961 rspi_disable_irq(rspi, disable_irq);
962 wake_up(&rspi->wait);
963 }
964
965 return ret;
966 }
967
968 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
969 {
970 struct rspi_data *rspi = _sr;
971 u8 spsr;
972
973 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
974 if (spsr & SPSR_SPRF) {
975 rspi_disable_irq(rspi, SPCR_SPRIE);
976 wake_up(&rspi->wait);
977 return IRQ_HANDLED;
978 }
979
980 return 0;
981 }
982
983 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
984 {
985 struct rspi_data *rspi = _sr;
986 u8 spsr;
987
988 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
989 if (spsr & SPSR_SPTEF) {
990 rspi_disable_irq(rspi, SPCR_SPTIE);
991 wake_up(&rspi->wait);
992 return IRQ_HANDLED;
993 }
994
995 return 0;
996 }
997
998 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
999 enum dma_transfer_direction dir,
1000 unsigned int id,
1001 dma_addr_t port_addr)
1002 {
1003 dma_cap_mask_t mask;
1004 struct dma_chan *chan;
1005 struct dma_slave_config cfg;
1006 int ret;
1007
1008 dma_cap_zero(mask);
1009 dma_cap_set(DMA_SLAVE, mask);
1010
1011 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1012 (void *)(unsigned long)id, dev,
1013 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1014 if (!chan) {
1015 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1016 return NULL;
1017 }
1018
1019 memset(&cfg, 0, sizeof(cfg));
1020 cfg.direction = dir;
1021 if (dir == DMA_MEM_TO_DEV) {
1022 cfg.dst_addr = port_addr;
1023 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1024 } else {
1025 cfg.src_addr = port_addr;
1026 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1027 }
1028
1029 ret = dmaengine_slave_config(chan, &cfg);
1030 if (ret) {
1031 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1032 dma_release_channel(chan);
1033 return NULL;
1034 }
1035
1036 return chan;
1037 }
1038
1039 static int rspi_request_dma(struct device *dev, struct spi_master *master,
1040 const struct resource *res)
1041 {
1042 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1043 unsigned int dma_tx_id, dma_rx_id;
1044
1045 if (dev->of_node) {
1046 /* In the OF case we will get the slave IDs from the DT */
1047 dma_tx_id = 0;
1048 dma_rx_id = 0;
1049 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1050 dma_tx_id = rspi_pd->dma_tx_id;
1051 dma_rx_id = rspi_pd->dma_rx_id;
1052 } else {
1053 /* The driver assumes no error. */
1054 return 0;
1055 }
1056
1057 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1058 res->start + RSPI_SPDR);
1059 if (!master->dma_tx)
1060 return -ENODEV;
1061
1062 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1063 res->start + RSPI_SPDR);
1064 if (!master->dma_rx) {
1065 dma_release_channel(master->dma_tx);
1066 master->dma_tx = NULL;
1067 return -ENODEV;
1068 }
1069
1070 master->can_dma = rspi_can_dma;
1071 dev_info(dev, "DMA available");
1072 return 0;
1073 }
1074
1075 static void rspi_release_dma(struct spi_master *master)
1076 {
1077 if (master->dma_tx)
1078 dma_release_channel(master->dma_tx);
1079 if (master->dma_rx)
1080 dma_release_channel(master->dma_rx);
1081 }
1082
1083 static int rspi_remove(struct platform_device *pdev)
1084 {
1085 struct rspi_data *rspi = platform_get_drvdata(pdev);
1086
1087 rspi_release_dma(rspi->master);
1088 pm_runtime_disable(&pdev->dev);
1089
1090 return 0;
1091 }
1092
1093 static const struct spi_ops rspi_ops = {
1094 .set_config_register = rspi_set_config_register,
1095 .transfer_one = rspi_transfer_one,
1096 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1097 .flags = SPI_MASTER_MUST_TX,
1098 .fifo_size = 8,
1099 };
1100
1101 static const struct spi_ops rspi_rz_ops = {
1102 .set_config_register = rspi_rz_set_config_register,
1103 .transfer_one = rspi_rz_transfer_one,
1104 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1105 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1106 .fifo_size = 8, /* 8 for TX, 32 for RX */
1107 };
1108
1109 static const struct spi_ops qspi_ops = {
1110 .set_config_register = qspi_set_config_register,
1111 .transfer_one = qspi_transfer_one,
1112 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1113 SPI_TX_DUAL | SPI_TX_QUAD |
1114 SPI_RX_DUAL | SPI_RX_QUAD,
1115 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1116 .fifo_size = 32,
1117 };
1118
1119 #ifdef CONFIG_OF
1120 static const struct of_device_id rspi_of_match[] = {
1121 /* RSPI on legacy SH */
1122 { .compatible = "renesas,rspi", .data = &rspi_ops },
1123 /* RSPI on RZ/A1H */
1124 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1125 /* QSPI on R-Car Gen2 */
1126 { .compatible = "renesas,qspi", .data = &qspi_ops },
1127 { /* sentinel */ }
1128 };
1129
1130 MODULE_DEVICE_TABLE(of, rspi_of_match);
1131
1132 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1133 {
1134 u32 num_cs;
1135 int error;
1136
1137 /* Parse DT properties */
1138 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1139 if (error) {
1140 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1141 return error;
1142 }
1143
1144 master->num_chipselect = num_cs;
1145 return 0;
1146 }
1147 #else
1148 #define rspi_of_match NULL
1149 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1150 {
1151 return -EINVAL;
1152 }
1153 #endif /* CONFIG_OF */
1154
1155 static int rspi_request_irq(struct device *dev, unsigned int irq,
1156 irq_handler_t handler, const char *suffix,
1157 void *dev_id)
1158 {
1159 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1160 dev_name(dev), suffix);
1161 if (!name)
1162 return -ENOMEM;
1163
1164 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1165 }
1166
1167 static int rspi_probe(struct platform_device *pdev)
1168 {
1169 struct resource *res;
1170 struct spi_master *master;
1171 struct rspi_data *rspi;
1172 int ret;
1173 const struct of_device_id *of_id;
1174 const struct rspi_plat_data *rspi_pd;
1175 const struct spi_ops *ops;
1176
1177 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1178 if (master == NULL) {
1179 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1180 return -ENOMEM;
1181 }
1182
1183 of_id = of_match_device(rspi_of_match, &pdev->dev);
1184 if (of_id) {
1185 ops = of_id->data;
1186 ret = rspi_parse_dt(&pdev->dev, master);
1187 if (ret)
1188 goto error1;
1189 } else {
1190 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1191 rspi_pd = dev_get_platdata(&pdev->dev);
1192 if (rspi_pd && rspi_pd->num_chipselect)
1193 master->num_chipselect = rspi_pd->num_chipselect;
1194 else
1195 master->num_chipselect = 2; /* default */
1196 }
1197
1198 /* ops parameter check */
1199 if (!ops->set_config_register) {
1200 dev_err(&pdev->dev, "there is no set_config_register\n");
1201 ret = -ENODEV;
1202 goto error1;
1203 }
1204
1205 rspi = spi_master_get_devdata(master);
1206 platform_set_drvdata(pdev, rspi);
1207 rspi->ops = ops;
1208 rspi->master = master;
1209
1210 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1211 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1212 if (IS_ERR(rspi->addr)) {
1213 ret = PTR_ERR(rspi->addr);
1214 goto error1;
1215 }
1216
1217 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1218 if (IS_ERR(rspi->clk)) {
1219 dev_err(&pdev->dev, "cannot get clock\n");
1220 ret = PTR_ERR(rspi->clk);
1221 goto error1;
1222 }
1223
1224 pm_runtime_enable(&pdev->dev);
1225
1226 init_waitqueue_head(&rspi->wait);
1227
1228 master->bus_num = pdev->id;
1229 master->setup = rspi_setup;
1230 master->auto_runtime_pm = true;
1231 master->transfer_one = ops->transfer_one;
1232 master->prepare_message = rspi_prepare_message;
1233 master->unprepare_message = rspi_unprepare_message;
1234 master->mode_bits = ops->mode_bits;
1235 master->flags = ops->flags;
1236 master->dev.of_node = pdev->dev.of_node;
1237
1238 ret = platform_get_irq_byname(pdev, "rx");
1239 if (ret < 0) {
1240 ret = platform_get_irq_byname(pdev, "mux");
1241 if (ret < 0)
1242 ret = platform_get_irq(pdev, 0);
1243 if (ret >= 0)
1244 rspi->rx_irq = rspi->tx_irq = ret;
1245 } else {
1246 rspi->rx_irq = ret;
1247 ret = platform_get_irq_byname(pdev, "tx");
1248 if (ret >= 0)
1249 rspi->tx_irq = ret;
1250 }
1251 if (ret < 0) {
1252 dev_err(&pdev->dev, "platform_get_irq error\n");
1253 goto error2;
1254 }
1255
1256 if (rspi->rx_irq == rspi->tx_irq) {
1257 /* Single multiplexed interrupt */
1258 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1259 "mux", rspi);
1260 } else {
1261 /* Multi-interrupt mode, only SPRI and SPTI are used */
1262 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1263 "rx", rspi);
1264 if (!ret)
1265 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1266 rspi_irq_tx, "tx", rspi);
1267 }
1268 if (ret < 0) {
1269 dev_err(&pdev->dev, "request_irq error\n");
1270 goto error2;
1271 }
1272
1273 ret = rspi_request_dma(&pdev->dev, master, res);
1274 if (ret < 0)
1275 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1276
1277 ret = devm_spi_register_master(&pdev->dev, master);
1278 if (ret < 0) {
1279 dev_err(&pdev->dev, "spi_register_master error.\n");
1280 goto error3;
1281 }
1282
1283 dev_info(&pdev->dev, "probed\n");
1284
1285 return 0;
1286
1287 error3:
1288 rspi_release_dma(master);
1289 error2:
1290 pm_runtime_disable(&pdev->dev);
1291 error1:
1292 spi_master_put(master);
1293
1294 return ret;
1295 }
1296
1297 static const struct platform_device_id spi_driver_ids[] = {
1298 { "rspi", (kernel_ulong_t)&rspi_ops },
1299 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1300 { "qspi", (kernel_ulong_t)&qspi_ops },
1301 {},
1302 };
1303
1304 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1305
1306 static struct platform_driver rspi_driver = {
1307 .probe = rspi_probe,
1308 .remove = rspi_remove,
1309 .id_table = spi_driver_ids,
1310 .driver = {
1311 .name = "renesas_spi",
1312 .of_match_table = of_match_ptr(rspi_of_match),
1313 },
1314 };
1315 module_platform_driver(rspi_driver);
1316
1317 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1318 MODULE_LICENSE("GPL v2");
1319 MODULE_AUTHOR("Yoshihiro Shimoda");
1320 MODULE_ALIAS("platform:rspi");
This page took 0.135968 seconds and 5 git commands to generate.