Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / spi / spi-s3c64xx.c
1 /*
2 * Copyright (C) 2009 Samsung Electronics Ltd.
3 * Jaswinder Singh <jassi.brar@samsung.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/workqueue.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/clk.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/spi/spi.h>
30 #include <linux/gpio.h>
31 #include <linux/of.h>
32 #include <linux/of_gpio.h>
33
34 #include <mach/dma.h>
35 #include <linux/platform_data/spi-s3c64xx.h>
36
37 #define MAX_SPI_PORTS 3
38
39 /* Registers and bit-fields */
40
41 #define S3C64XX_SPI_CH_CFG 0x00
42 #define S3C64XX_SPI_CLK_CFG 0x04
43 #define S3C64XX_SPI_MODE_CFG 0x08
44 #define S3C64XX_SPI_SLAVE_SEL 0x0C
45 #define S3C64XX_SPI_INT_EN 0x10
46 #define S3C64XX_SPI_STATUS 0x14
47 #define S3C64XX_SPI_TX_DATA 0x18
48 #define S3C64XX_SPI_RX_DATA 0x1C
49 #define S3C64XX_SPI_PACKET_CNT 0x20
50 #define S3C64XX_SPI_PENDING_CLR 0x24
51 #define S3C64XX_SPI_SWAP_CFG 0x28
52 #define S3C64XX_SPI_FB_CLK 0x2C
53
54 #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
55 #define S3C64XX_SPI_CH_SW_RST (1<<5)
56 #define S3C64XX_SPI_CH_SLAVE (1<<4)
57 #define S3C64XX_SPI_CPOL_L (1<<3)
58 #define S3C64XX_SPI_CPHA_B (1<<2)
59 #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
60 #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
61
62 #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
63 #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
64 #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
65 #define S3C64XX_SPI_PSR_MASK 0xff
66
67 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
68 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
69 #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
70 #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
71 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
72 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
73 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
74 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
75 #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
76 #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
77 #define S3C64XX_SPI_MODE_4BURST (1<<0)
78
79 #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
80 #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
81
82 #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
83 #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
84 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
85 #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
86 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
87 #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
88 #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
89
90 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
91 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
92 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
93 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
94 #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
95 #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
96
97 #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
98
99 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
100 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
101 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
102 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
103 #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
104
105 #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
106 #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
107 #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
108 #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
109 #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
110 #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
111 #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
112 #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
113
114 #define S3C64XX_SPI_FBCLK_MSK (3<<0)
115
116 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
117 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
118 (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
119 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
120 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
121 FIFO_LVL_MASK(i))
122
123 #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
124 #define S3C64XX_SPI_TRAILCNT_OFF 19
125
126 #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
127
128 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
129
130 #define RXBUSY (1<<2)
131 #define TXBUSY (1<<3)
132
133 struct s3c64xx_spi_dma_data {
134 unsigned ch;
135 enum dma_transfer_direction direction;
136 enum dma_ch dmach;
137 };
138
139 /**
140 * struct s3c64xx_spi_info - SPI Controller hardware info
141 * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
142 * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
143 * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
144 * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
145 * @clk_from_cmu: True, if the controller does not include a clock mux and
146 * prescaler unit.
147 *
148 * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
149 * differ in some aspects such as the size of the fifo and spi bus clock
150 * setup. Such differences are specified to the driver using this structure
151 * which is provided as driver data to the driver.
152 */
153 struct s3c64xx_spi_port_config {
154 int fifo_lvl_mask[MAX_SPI_PORTS];
155 int rx_lvl_offset;
156 int tx_st_done;
157 bool high_speed;
158 bool clk_from_cmu;
159 };
160
161 /**
162 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
163 * @clk: Pointer to the spi clock.
164 * @src_clk: Pointer to the clock used to generate SPI signals.
165 * @master: Pointer to the SPI Protocol master.
166 * @cntrlr_info: Platform specific data for the controller this driver manages.
167 * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
168 * @queue: To log SPI xfer requests.
169 * @lock: Controller specific lock.
170 * @state: Set of FLAGS to indicate status.
171 * @rx_dmach: Controller's DMA channel for Rx.
172 * @tx_dmach: Controller's DMA channel for Tx.
173 * @sfr_start: BUS address of SPI controller regs.
174 * @regs: Pointer to ioremap'ed controller registers.
175 * @irq: interrupt
176 * @xfer_completion: To indicate completion of xfer task.
177 * @cur_mode: Stores the active configuration of the controller.
178 * @cur_bpw: Stores the active bits per word settings.
179 * @cur_speed: Stores the active xfer clock speed.
180 */
181 struct s3c64xx_spi_driver_data {
182 void __iomem *regs;
183 struct clk *clk;
184 struct clk *src_clk;
185 struct platform_device *pdev;
186 struct spi_master *master;
187 struct s3c64xx_spi_info *cntrlr_info;
188 struct spi_device *tgl_spi;
189 struct list_head queue;
190 spinlock_t lock;
191 unsigned long sfr_start;
192 struct completion xfer_completion;
193 unsigned state;
194 unsigned cur_mode, cur_bpw;
195 unsigned cur_speed;
196 struct s3c64xx_spi_dma_data rx_dma;
197 struct s3c64xx_spi_dma_data tx_dma;
198 struct samsung_dma_ops *ops;
199 struct s3c64xx_spi_port_config *port_conf;
200 unsigned int port_id;
201 unsigned long gpios[4];
202 };
203
204 static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
205 .name = "samsung-spi-dma",
206 };
207
208 static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
209 {
210 void __iomem *regs = sdd->regs;
211 unsigned long loops;
212 u32 val;
213
214 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
215
216 val = readl(regs + S3C64XX_SPI_CH_CFG);
217 val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
218 writel(val, regs + S3C64XX_SPI_CH_CFG);
219
220 val = readl(regs + S3C64XX_SPI_CH_CFG);
221 val |= S3C64XX_SPI_CH_SW_RST;
222 val &= ~S3C64XX_SPI_CH_HS_EN;
223 writel(val, regs + S3C64XX_SPI_CH_CFG);
224
225 /* Flush TxFIFO*/
226 loops = msecs_to_loops(1);
227 do {
228 val = readl(regs + S3C64XX_SPI_STATUS);
229 } while (TX_FIFO_LVL(val, sdd) && loops--);
230
231 if (loops == 0)
232 dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
233
234 /* Flush RxFIFO*/
235 loops = msecs_to_loops(1);
236 do {
237 val = readl(regs + S3C64XX_SPI_STATUS);
238 if (RX_FIFO_LVL(val, sdd))
239 readl(regs + S3C64XX_SPI_RX_DATA);
240 else
241 break;
242 } while (loops--);
243
244 if (loops == 0)
245 dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
246
247 val = readl(regs + S3C64XX_SPI_CH_CFG);
248 val &= ~S3C64XX_SPI_CH_SW_RST;
249 writel(val, regs + S3C64XX_SPI_CH_CFG);
250
251 val = readl(regs + S3C64XX_SPI_MODE_CFG);
252 val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
253 writel(val, regs + S3C64XX_SPI_MODE_CFG);
254 }
255
256 static void s3c64xx_spi_dmacb(void *data)
257 {
258 struct s3c64xx_spi_driver_data *sdd;
259 struct s3c64xx_spi_dma_data *dma = data;
260 unsigned long flags;
261
262 if (dma->direction == DMA_DEV_TO_MEM)
263 sdd = container_of(data,
264 struct s3c64xx_spi_driver_data, rx_dma);
265 else
266 sdd = container_of(data,
267 struct s3c64xx_spi_driver_data, tx_dma);
268
269 spin_lock_irqsave(&sdd->lock, flags);
270
271 if (dma->direction == DMA_DEV_TO_MEM) {
272 sdd->state &= ~RXBUSY;
273 if (!(sdd->state & TXBUSY))
274 complete(&sdd->xfer_completion);
275 } else {
276 sdd->state &= ~TXBUSY;
277 if (!(sdd->state & RXBUSY))
278 complete(&sdd->xfer_completion);
279 }
280
281 spin_unlock_irqrestore(&sdd->lock, flags);
282 }
283
284 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
285 unsigned len, dma_addr_t buf)
286 {
287 struct s3c64xx_spi_driver_data *sdd;
288 struct samsung_dma_prep info;
289 struct samsung_dma_config config;
290
291 if (dma->direction == DMA_DEV_TO_MEM) {
292 sdd = container_of((void *)dma,
293 struct s3c64xx_spi_driver_data, rx_dma);
294 config.direction = sdd->rx_dma.direction;
295 config.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
296 config.width = sdd->cur_bpw / 8;
297 sdd->ops->config(sdd->rx_dma.ch, &config);
298 } else {
299 sdd = container_of((void *)dma,
300 struct s3c64xx_spi_driver_data, tx_dma);
301 config.direction = sdd->tx_dma.direction;
302 config.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
303 config.width = sdd->cur_bpw / 8;
304 sdd->ops->config(sdd->tx_dma.ch, &config);
305 }
306
307 info.cap = DMA_SLAVE;
308 info.len = len;
309 info.fp = s3c64xx_spi_dmacb;
310 info.fp_param = dma;
311 info.direction = dma->direction;
312 info.buf = buf;
313
314 sdd->ops->prepare(dma->ch, &info);
315 sdd->ops->trigger(dma->ch);
316 }
317
318 static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
319 {
320 struct samsung_dma_req req;
321 struct device *dev = &sdd->pdev->dev;
322
323 sdd->ops = samsung_dma_get_ops();
324
325 req.cap = DMA_SLAVE;
326 req.client = &s3c64xx_spi_dma_client;
327
328 sdd->rx_dma.ch = sdd->ops->request(sdd->rx_dma.dmach, &req, dev, "rx");
329 sdd->tx_dma.ch = sdd->ops->request(sdd->tx_dma.dmach, &req, dev, "tx");
330
331 return 1;
332 }
333
334 static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
335 struct spi_device *spi,
336 struct spi_transfer *xfer, int dma_mode)
337 {
338 void __iomem *regs = sdd->regs;
339 u32 modecfg, chcfg;
340
341 modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
342 modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
343
344 chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
345 chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
346
347 if (dma_mode) {
348 chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
349 } else {
350 /* Always shift in data in FIFO, even if xfer is Tx only,
351 * this helps setting PCKT_CNT value for generating clocks
352 * as exactly needed.
353 */
354 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
355 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
356 | S3C64XX_SPI_PACKET_CNT_EN,
357 regs + S3C64XX_SPI_PACKET_CNT);
358 }
359
360 if (xfer->tx_buf != NULL) {
361 sdd->state |= TXBUSY;
362 chcfg |= S3C64XX_SPI_CH_TXCH_ON;
363 if (dma_mode) {
364 modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
365 prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
366 } else {
367 switch (sdd->cur_bpw) {
368 case 32:
369 iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
370 xfer->tx_buf, xfer->len / 4);
371 break;
372 case 16:
373 iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
374 xfer->tx_buf, xfer->len / 2);
375 break;
376 default:
377 iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
378 xfer->tx_buf, xfer->len);
379 break;
380 }
381 }
382 }
383
384 if (xfer->rx_buf != NULL) {
385 sdd->state |= RXBUSY;
386
387 if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
388 && !(sdd->cur_mode & SPI_CPHA))
389 chcfg |= S3C64XX_SPI_CH_HS_EN;
390
391 if (dma_mode) {
392 modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
393 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
394 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
395 | S3C64XX_SPI_PACKET_CNT_EN,
396 regs + S3C64XX_SPI_PACKET_CNT);
397 prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
398 }
399 }
400
401 writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
402 writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
403 }
404
405 static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
406 struct spi_device *spi)
407 {
408 struct s3c64xx_spi_csinfo *cs;
409
410 if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
411 if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
412 /* Deselect the last toggled device */
413 cs = sdd->tgl_spi->controller_data;
414 gpio_set_value(cs->line,
415 spi->mode & SPI_CS_HIGH ? 0 : 1);
416 }
417 sdd->tgl_spi = NULL;
418 }
419
420 cs = spi->controller_data;
421 gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
422 }
423
424 static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
425 struct spi_transfer *xfer, int dma_mode)
426 {
427 void __iomem *regs = sdd->regs;
428 unsigned long val;
429 int ms;
430
431 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
432 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
433 ms += 10; /* some tolerance */
434
435 if (dma_mode) {
436 val = msecs_to_jiffies(ms) + 10;
437 val = wait_for_completion_timeout(&sdd->xfer_completion, val);
438 } else {
439 u32 status;
440 val = msecs_to_loops(ms);
441 do {
442 status = readl(regs + S3C64XX_SPI_STATUS);
443 } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
444 }
445
446 if (!val)
447 return -EIO;
448
449 if (dma_mode) {
450 u32 status;
451
452 /*
453 * DmaTx returns after simply writing data in the FIFO,
454 * w/o waiting for real transmission on the bus to finish.
455 * DmaRx returns only after Dma read data from FIFO which
456 * needs bus transmission to finish, so we don't worry if
457 * Xfer involved Rx(with or without Tx).
458 */
459 if (xfer->rx_buf == NULL) {
460 val = msecs_to_loops(10);
461 status = readl(regs + S3C64XX_SPI_STATUS);
462 while ((TX_FIFO_LVL(status, sdd)
463 || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
464 && --val) {
465 cpu_relax();
466 status = readl(regs + S3C64XX_SPI_STATUS);
467 }
468
469 if (!val)
470 return -EIO;
471 }
472 } else {
473 /* If it was only Tx */
474 if (xfer->rx_buf == NULL) {
475 sdd->state &= ~TXBUSY;
476 return 0;
477 }
478
479 switch (sdd->cur_bpw) {
480 case 32:
481 ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
482 xfer->rx_buf, xfer->len / 4);
483 break;
484 case 16:
485 ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
486 xfer->rx_buf, xfer->len / 2);
487 break;
488 default:
489 ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
490 xfer->rx_buf, xfer->len);
491 break;
492 }
493 sdd->state &= ~RXBUSY;
494 }
495
496 return 0;
497 }
498
499 static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
500 struct spi_device *spi)
501 {
502 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
503
504 if (sdd->tgl_spi == spi)
505 sdd->tgl_spi = NULL;
506
507 gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
508 }
509
510 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
511 {
512 void __iomem *regs = sdd->regs;
513 u32 val;
514
515 /* Disable Clock */
516 if (sdd->port_conf->clk_from_cmu) {
517 clk_disable_unprepare(sdd->src_clk);
518 } else {
519 val = readl(regs + S3C64XX_SPI_CLK_CFG);
520 val &= ~S3C64XX_SPI_ENCLK_ENABLE;
521 writel(val, regs + S3C64XX_SPI_CLK_CFG);
522 }
523
524 /* Set Polarity and Phase */
525 val = readl(regs + S3C64XX_SPI_CH_CFG);
526 val &= ~(S3C64XX_SPI_CH_SLAVE |
527 S3C64XX_SPI_CPOL_L |
528 S3C64XX_SPI_CPHA_B);
529
530 if (sdd->cur_mode & SPI_CPOL)
531 val |= S3C64XX_SPI_CPOL_L;
532
533 if (sdd->cur_mode & SPI_CPHA)
534 val |= S3C64XX_SPI_CPHA_B;
535
536 writel(val, regs + S3C64XX_SPI_CH_CFG);
537
538 /* Set Channel & DMA Mode */
539 val = readl(regs + S3C64XX_SPI_MODE_CFG);
540 val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
541 | S3C64XX_SPI_MODE_CH_TSZ_MASK);
542
543 switch (sdd->cur_bpw) {
544 case 32:
545 val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
546 val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
547 break;
548 case 16:
549 val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
550 val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
551 break;
552 default:
553 val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
554 val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
555 break;
556 }
557
558 writel(val, regs + S3C64XX_SPI_MODE_CFG);
559
560 if (sdd->port_conf->clk_from_cmu) {
561 /* Configure Clock */
562 /* There is half-multiplier before the SPI */
563 clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
564 /* Enable Clock */
565 clk_prepare_enable(sdd->src_clk);
566 } else {
567 /* Configure Clock */
568 val = readl(regs + S3C64XX_SPI_CLK_CFG);
569 val &= ~S3C64XX_SPI_PSR_MASK;
570 val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
571 & S3C64XX_SPI_PSR_MASK);
572 writel(val, regs + S3C64XX_SPI_CLK_CFG);
573
574 /* Enable Clock */
575 val = readl(regs + S3C64XX_SPI_CLK_CFG);
576 val |= S3C64XX_SPI_ENCLK_ENABLE;
577 writel(val, regs + S3C64XX_SPI_CLK_CFG);
578 }
579 }
580
581 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
582
583 static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
584 struct spi_message *msg)
585 {
586 struct device *dev = &sdd->pdev->dev;
587 struct spi_transfer *xfer;
588
589 if (msg->is_dma_mapped)
590 return 0;
591
592 /* First mark all xfer unmapped */
593 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
594 xfer->rx_dma = XFER_DMAADDR_INVALID;
595 xfer->tx_dma = XFER_DMAADDR_INVALID;
596 }
597
598 /* Map until end or first fail */
599 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
600
601 if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
602 continue;
603
604 if (xfer->tx_buf != NULL) {
605 xfer->tx_dma = dma_map_single(dev,
606 (void *)xfer->tx_buf, xfer->len,
607 DMA_TO_DEVICE);
608 if (dma_mapping_error(dev, xfer->tx_dma)) {
609 dev_err(dev, "dma_map_single Tx failed\n");
610 xfer->tx_dma = XFER_DMAADDR_INVALID;
611 return -ENOMEM;
612 }
613 }
614
615 if (xfer->rx_buf != NULL) {
616 xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
617 xfer->len, DMA_FROM_DEVICE);
618 if (dma_mapping_error(dev, xfer->rx_dma)) {
619 dev_err(dev, "dma_map_single Rx failed\n");
620 dma_unmap_single(dev, xfer->tx_dma,
621 xfer->len, DMA_TO_DEVICE);
622 xfer->tx_dma = XFER_DMAADDR_INVALID;
623 xfer->rx_dma = XFER_DMAADDR_INVALID;
624 return -ENOMEM;
625 }
626 }
627 }
628
629 return 0;
630 }
631
632 static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
633 struct spi_message *msg)
634 {
635 struct device *dev = &sdd->pdev->dev;
636 struct spi_transfer *xfer;
637
638 if (msg->is_dma_mapped)
639 return;
640
641 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
642
643 if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
644 continue;
645
646 if (xfer->rx_buf != NULL
647 && xfer->rx_dma != XFER_DMAADDR_INVALID)
648 dma_unmap_single(dev, xfer->rx_dma,
649 xfer->len, DMA_FROM_DEVICE);
650
651 if (xfer->tx_buf != NULL
652 && xfer->tx_dma != XFER_DMAADDR_INVALID)
653 dma_unmap_single(dev, xfer->tx_dma,
654 xfer->len, DMA_TO_DEVICE);
655 }
656 }
657
658 static int s3c64xx_spi_transfer_one_message(struct spi_master *master,
659 struct spi_message *msg)
660 {
661 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
662 struct spi_device *spi = msg->spi;
663 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
664 struct spi_transfer *xfer;
665 int status = 0, cs_toggle = 0;
666 u32 speed;
667 u8 bpw;
668
669 /* If Master's(controller) state differs from that needed by Slave */
670 if (sdd->cur_speed != spi->max_speed_hz
671 || sdd->cur_mode != spi->mode
672 || sdd->cur_bpw != spi->bits_per_word) {
673 sdd->cur_bpw = spi->bits_per_word;
674 sdd->cur_speed = spi->max_speed_hz;
675 sdd->cur_mode = spi->mode;
676 s3c64xx_spi_config(sdd);
677 }
678
679 /* Map all the transfers if needed */
680 if (s3c64xx_spi_map_mssg(sdd, msg)) {
681 dev_err(&spi->dev,
682 "Xfer: Unable to map message buffers!\n");
683 status = -ENOMEM;
684 goto out;
685 }
686
687 /* Configure feedback delay */
688 writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
689
690 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
691
692 unsigned long flags;
693 int use_dma;
694
695 INIT_COMPLETION(sdd->xfer_completion);
696
697 /* Only BPW and Speed may change across transfers */
698 bpw = xfer->bits_per_word;
699 speed = xfer->speed_hz ? : spi->max_speed_hz;
700
701 if (xfer->len % (bpw / 8)) {
702 dev_err(&spi->dev,
703 "Xfer length(%u) not a multiple of word size(%u)\n",
704 xfer->len, bpw / 8);
705 status = -EIO;
706 goto out;
707 }
708
709 if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
710 sdd->cur_bpw = bpw;
711 sdd->cur_speed = speed;
712 s3c64xx_spi_config(sdd);
713 }
714
715 /* Polling method for xfers not bigger than FIFO capacity */
716 if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
717 use_dma = 0;
718 else
719 use_dma = 1;
720
721 spin_lock_irqsave(&sdd->lock, flags);
722
723 /* Pending only which is to be done */
724 sdd->state &= ~RXBUSY;
725 sdd->state &= ~TXBUSY;
726
727 enable_datapath(sdd, spi, xfer, use_dma);
728
729 /* Slave Select */
730 enable_cs(sdd, spi);
731
732 /* Start the signals */
733 writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
734
735 spin_unlock_irqrestore(&sdd->lock, flags);
736
737 status = wait_for_xfer(sdd, xfer, use_dma);
738
739 /* Quiese the signals */
740 writel(S3C64XX_SPI_SLAVE_SIG_INACT,
741 sdd->regs + S3C64XX_SPI_SLAVE_SEL);
742
743 if (status) {
744 dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
745 xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
746 (sdd->state & RXBUSY) ? 'f' : 'p',
747 (sdd->state & TXBUSY) ? 'f' : 'p',
748 xfer->len);
749
750 if (use_dma) {
751 if (xfer->tx_buf != NULL
752 && (sdd->state & TXBUSY))
753 sdd->ops->stop(sdd->tx_dma.ch);
754 if (xfer->rx_buf != NULL
755 && (sdd->state & RXBUSY))
756 sdd->ops->stop(sdd->rx_dma.ch);
757 }
758
759 goto out;
760 }
761
762 if (xfer->delay_usecs)
763 udelay(xfer->delay_usecs);
764
765 if (xfer->cs_change) {
766 /* Hint that the next mssg is gonna be
767 for the same device */
768 if (list_is_last(&xfer->transfer_list,
769 &msg->transfers))
770 cs_toggle = 1;
771 }
772
773 msg->actual_length += xfer->len;
774
775 flush_fifo(sdd);
776 }
777
778 out:
779 if (!cs_toggle || status)
780 disable_cs(sdd, spi);
781 else
782 sdd->tgl_spi = spi;
783
784 s3c64xx_spi_unmap_mssg(sdd, msg);
785
786 msg->status = status;
787
788 spi_finalize_current_message(master);
789
790 return 0;
791 }
792
793 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
794 {
795 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
796
797 /* Acquire DMA channels */
798 while (!acquire_dma(sdd))
799 usleep_range(10000, 11000);
800
801 pm_runtime_get_sync(&sdd->pdev->dev);
802
803 return 0;
804 }
805
806 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
807 {
808 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
809
810 /* Free DMA channels */
811 sdd->ops->release(sdd->rx_dma.ch, &s3c64xx_spi_dma_client);
812 sdd->ops->release(sdd->tx_dma.ch, &s3c64xx_spi_dma_client);
813
814 pm_runtime_put(&sdd->pdev->dev);
815
816 return 0;
817 }
818
819 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
820 struct s3c64xx_spi_driver_data *sdd,
821 struct spi_device *spi)
822 {
823 struct s3c64xx_spi_csinfo *cs;
824 struct device_node *slave_np, *data_np = NULL;
825 u32 fb_delay = 0;
826
827 slave_np = spi->dev.of_node;
828 if (!slave_np) {
829 dev_err(&spi->dev, "device node not found\n");
830 return ERR_PTR(-EINVAL);
831 }
832
833 data_np = of_get_child_by_name(slave_np, "controller-data");
834 if (!data_np) {
835 dev_err(&spi->dev, "child node 'controller-data' not found\n");
836 return ERR_PTR(-EINVAL);
837 }
838
839 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
840 if (!cs) {
841 dev_err(&spi->dev, "could not allocate memory for controller data\n");
842 of_node_put(data_np);
843 return ERR_PTR(-ENOMEM);
844 }
845
846 cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
847 if (!gpio_is_valid(cs->line)) {
848 dev_err(&spi->dev, "chip select gpio is not specified or invalid\n");
849 kfree(cs);
850 of_node_put(data_np);
851 return ERR_PTR(-EINVAL);
852 }
853
854 of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
855 cs->fb_delay = fb_delay;
856 of_node_put(data_np);
857 return cs;
858 }
859
860 /*
861 * Here we only check the validity of requested configuration
862 * and save the configuration in a local data-structure.
863 * The controller is actually configured only just before we
864 * get a message to transfer.
865 */
866 static int s3c64xx_spi_setup(struct spi_device *spi)
867 {
868 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
869 struct s3c64xx_spi_driver_data *sdd;
870 struct s3c64xx_spi_info *sci;
871 struct spi_message *msg;
872 unsigned long flags;
873 int err;
874
875 sdd = spi_master_get_devdata(spi->master);
876 if (!cs && spi->dev.of_node) {
877 cs = s3c64xx_get_slave_ctrldata(sdd, spi);
878 spi->controller_data = cs;
879 }
880
881 if (IS_ERR_OR_NULL(cs)) {
882 dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
883 return -ENODEV;
884 }
885
886 if (!spi_get_ctldata(spi)) {
887 err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
888 dev_name(&spi->dev));
889 if (err) {
890 dev_err(&spi->dev,
891 "Failed to get /CS gpio [%d]: %d\n",
892 cs->line, err);
893 goto err_gpio_req;
894 }
895 spi_set_ctldata(spi, cs);
896 }
897
898 sci = sdd->cntrlr_info;
899
900 spin_lock_irqsave(&sdd->lock, flags);
901
902 list_for_each_entry(msg, &sdd->queue, queue) {
903 /* Is some mssg is already queued for this device */
904 if (msg->spi == spi) {
905 dev_err(&spi->dev,
906 "setup: attempt while mssg in queue!\n");
907 spin_unlock_irqrestore(&sdd->lock, flags);
908 err = -EBUSY;
909 goto err_msgq;
910 }
911 }
912
913 spin_unlock_irqrestore(&sdd->lock, flags);
914
915 if (spi->bits_per_word != 8
916 && spi->bits_per_word != 16
917 && spi->bits_per_word != 32) {
918 dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
919 spi->bits_per_word);
920 err = -EINVAL;
921 goto setup_exit;
922 }
923
924 pm_runtime_get_sync(&sdd->pdev->dev);
925
926 /* Check if we can provide the requested rate */
927 if (!sdd->port_conf->clk_from_cmu) {
928 u32 psr, speed;
929
930 /* Max possible */
931 speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
932
933 if (spi->max_speed_hz > speed)
934 spi->max_speed_hz = speed;
935
936 psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
937 psr &= S3C64XX_SPI_PSR_MASK;
938 if (psr == S3C64XX_SPI_PSR_MASK)
939 psr--;
940
941 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
942 if (spi->max_speed_hz < speed) {
943 if (psr+1 < S3C64XX_SPI_PSR_MASK) {
944 psr++;
945 } else {
946 err = -EINVAL;
947 goto setup_exit;
948 }
949 }
950
951 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
952 if (spi->max_speed_hz >= speed) {
953 spi->max_speed_hz = speed;
954 } else {
955 dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
956 spi->max_speed_hz);
957 err = -EINVAL;
958 goto setup_exit;
959 }
960 }
961
962 pm_runtime_put(&sdd->pdev->dev);
963 disable_cs(sdd, spi);
964 return 0;
965
966 setup_exit:
967 /* setup() returns with device de-selected */
968 disable_cs(sdd, spi);
969
970 err_msgq:
971 gpio_free(cs->line);
972 spi_set_ctldata(spi, NULL);
973
974 err_gpio_req:
975 if (spi->dev.of_node)
976 kfree(cs);
977
978 return err;
979 }
980
981 static void s3c64xx_spi_cleanup(struct spi_device *spi)
982 {
983 struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
984
985 if (cs) {
986 gpio_free(cs->line);
987 if (spi->dev.of_node)
988 kfree(cs);
989 }
990 spi_set_ctldata(spi, NULL);
991 }
992
993 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
994 {
995 struct s3c64xx_spi_driver_data *sdd = data;
996 struct spi_master *spi = sdd->master;
997 unsigned int val;
998
999 val = readl(sdd->regs + S3C64XX_SPI_PENDING_CLR);
1000
1001 val &= S3C64XX_SPI_PND_RX_OVERRUN_CLR |
1002 S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
1003 S3C64XX_SPI_PND_TX_OVERRUN_CLR |
1004 S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1005
1006 writel(val, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1007
1008 if (val & S3C64XX_SPI_PND_RX_OVERRUN_CLR)
1009 dev_err(&spi->dev, "RX overrun\n");
1010 if (val & S3C64XX_SPI_PND_RX_UNDERRUN_CLR)
1011 dev_err(&spi->dev, "RX underrun\n");
1012 if (val & S3C64XX_SPI_PND_TX_OVERRUN_CLR)
1013 dev_err(&spi->dev, "TX overrun\n");
1014 if (val & S3C64XX_SPI_PND_TX_UNDERRUN_CLR)
1015 dev_err(&spi->dev, "TX underrun\n");
1016
1017 return IRQ_HANDLED;
1018 }
1019
1020 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
1021 {
1022 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1023 void __iomem *regs = sdd->regs;
1024 unsigned int val;
1025
1026 sdd->cur_speed = 0;
1027
1028 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
1029
1030 /* Disable Interrupts - we use Polling if not DMA mode */
1031 writel(0, regs + S3C64XX_SPI_INT_EN);
1032
1033 if (!sdd->port_conf->clk_from_cmu)
1034 writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
1035 regs + S3C64XX_SPI_CLK_CFG);
1036 writel(0, regs + S3C64XX_SPI_MODE_CFG);
1037 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
1038
1039 /* Clear any irq pending bits */
1040 writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
1041 regs + S3C64XX_SPI_PENDING_CLR);
1042
1043 writel(0, regs + S3C64XX_SPI_SWAP_CFG);
1044
1045 val = readl(regs + S3C64XX_SPI_MODE_CFG);
1046 val &= ~S3C64XX_SPI_MODE_4BURST;
1047 val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1048 val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1049 writel(val, regs + S3C64XX_SPI_MODE_CFG);
1050
1051 flush_fifo(sdd);
1052 }
1053
1054 #ifdef CONFIG_OF
1055 static int s3c64xx_spi_parse_dt_gpio(struct s3c64xx_spi_driver_data *sdd)
1056 {
1057 struct device *dev = &sdd->pdev->dev;
1058 int idx, gpio, ret;
1059
1060 /* find gpios for mosi, miso and clock lines */
1061 for (idx = 0; idx < 3; idx++) {
1062 gpio = of_get_gpio(dev->of_node, idx);
1063 if (!gpio_is_valid(gpio)) {
1064 dev_err(dev, "invalid gpio[%d]: %d\n", idx, gpio);
1065 goto free_gpio;
1066 }
1067 sdd->gpios[idx] = gpio;
1068 ret = gpio_request(gpio, "spi-bus");
1069 if (ret) {
1070 dev_err(dev, "gpio [%d] request failed: %d\n",
1071 gpio, ret);
1072 goto free_gpio;
1073 }
1074 }
1075 return 0;
1076
1077 free_gpio:
1078 while (--idx >= 0)
1079 gpio_free(sdd->gpios[idx]);
1080 return -EINVAL;
1081 }
1082
1083 static void s3c64xx_spi_dt_gpio_free(struct s3c64xx_spi_driver_data *sdd)
1084 {
1085 unsigned int idx;
1086 for (idx = 0; idx < 3; idx++)
1087 gpio_free(sdd->gpios[idx]);
1088 }
1089
1090 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1091 {
1092 struct s3c64xx_spi_info *sci;
1093 u32 temp;
1094
1095 sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
1096 if (!sci) {
1097 dev_err(dev, "memory allocation for spi_info failed\n");
1098 return ERR_PTR(-ENOMEM);
1099 }
1100
1101 if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
1102 dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
1103 sci->src_clk_nr = 0;
1104 } else {
1105 sci->src_clk_nr = temp;
1106 }
1107
1108 if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
1109 dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1110 sci->num_cs = 1;
1111 } else {
1112 sci->num_cs = temp;
1113 }
1114
1115 return sci;
1116 }
1117 #else
1118 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1119 {
1120 return dev->platform_data;
1121 }
1122
1123 static int s3c64xx_spi_parse_dt_gpio(struct s3c64xx_spi_driver_data *sdd)
1124 {
1125 return -EINVAL;
1126 }
1127
1128 static void s3c64xx_spi_dt_gpio_free(struct s3c64xx_spi_driver_data *sdd)
1129 {
1130 }
1131 #endif
1132
1133 static const struct of_device_id s3c64xx_spi_dt_match[];
1134
1135 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1136 struct platform_device *pdev)
1137 {
1138 #ifdef CONFIG_OF
1139 if (pdev->dev.of_node) {
1140 const struct of_device_id *match;
1141 match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1142 return (struct s3c64xx_spi_port_config *)match->data;
1143 }
1144 #endif
1145 return (struct s3c64xx_spi_port_config *)
1146 platform_get_device_id(pdev)->driver_data;
1147 }
1148
1149 static int s3c64xx_spi_probe(struct platform_device *pdev)
1150 {
1151 struct resource *mem_res;
1152 struct resource *res;
1153 struct s3c64xx_spi_driver_data *sdd;
1154 struct s3c64xx_spi_info *sci = pdev->dev.platform_data;
1155 struct spi_master *master;
1156 int ret, irq;
1157 char clk_name[16];
1158
1159 if (!sci && pdev->dev.of_node) {
1160 sci = s3c64xx_spi_parse_dt(&pdev->dev);
1161 if (IS_ERR(sci))
1162 return PTR_ERR(sci);
1163 }
1164
1165 if (!sci) {
1166 dev_err(&pdev->dev, "platform_data missing!\n");
1167 return -ENODEV;
1168 }
1169
1170 mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1171 if (mem_res == NULL) {
1172 dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1173 return -ENXIO;
1174 }
1175
1176 irq = platform_get_irq(pdev, 0);
1177 if (irq < 0) {
1178 dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1179 return irq;
1180 }
1181
1182 master = spi_alloc_master(&pdev->dev,
1183 sizeof(struct s3c64xx_spi_driver_data));
1184 if (master == NULL) {
1185 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1186 return -ENOMEM;
1187 }
1188
1189 platform_set_drvdata(pdev, master);
1190
1191 sdd = spi_master_get_devdata(master);
1192 sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1193 sdd->master = master;
1194 sdd->cntrlr_info = sci;
1195 sdd->pdev = pdev;
1196 sdd->sfr_start = mem_res->start;
1197 if (pdev->dev.of_node) {
1198 ret = of_alias_get_id(pdev->dev.of_node, "spi");
1199 if (ret < 0) {
1200 dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1201 ret);
1202 goto err0;
1203 }
1204 sdd->port_id = ret;
1205 } else {
1206 sdd->port_id = pdev->id;
1207 }
1208
1209 sdd->cur_bpw = 8;
1210
1211 if (!sdd->pdev->dev.of_node) {
1212 res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1213 if (!res) {
1214 dev_err(&pdev->dev, "Unable to get SPI tx dma "
1215 "resource\n");
1216 return -ENXIO;
1217 }
1218 sdd->tx_dma.dmach = res->start;
1219
1220 res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1221 if (!res) {
1222 dev_err(&pdev->dev, "Unable to get SPI rx dma "
1223 "resource\n");
1224 return -ENXIO;
1225 }
1226 sdd->rx_dma.dmach = res->start;
1227 }
1228
1229 sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1230 sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1231
1232 master->dev.of_node = pdev->dev.of_node;
1233 master->bus_num = sdd->port_id;
1234 master->setup = s3c64xx_spi_setup;
1235 master->cleanup = s3c64xx_spi_cleanup;
1236 master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1237 master->transfer_one_message = s3c64xx_spi_transfer_one_message;
1238 master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1239 master->num_chipselect = sci->num_cs;
1240 master->dma_alignment = 8;
1241 /* the spi->mode bits understood by this driver: */
1242 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1243
1244 sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1245 if (IS_ERR(sdd->regs)) {
1246 ret = PTR_ERR(sdd->regs);
1247 goto err0;
1248 }
1249
1250 if (!sci->cfg_gpio && pdev->dev.of_node) {
1251 if (s3c64xx_spi_parse_dt_gpio(sdd))
1252 return -EBUSY;
1253 } else if (sci->cfg_gpio == NULL || sci->cfg_gpio()) {
1254 dev_err(&pdev->dev, "Unable to config gpio\n");
1255 ret = -EBUSY;
1256 goto err0;
1257 }
1258
1259 /* Setup clocks */
1260 sdd->clk = devm_clk_get(&pdev->dev, "spi");
1261 if (IS_ERR(sdd->clk)) {
1262 dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1263 ret = PTR_ERR(sdd->clk);
1264 goto err1;
1265 }
1266
1267 if (clk_prepare_enable(sdd->clk)) {
1268 dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1269 ret = -EBUSY;
1270 goto err1;
1271 }
1272
1273 sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1274 sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1275 if (IS_ERR(sdd->src_clk)) {
1276 dev_err(&pdev->dev,
1277 "Unable to acquire clock '%s'\n", clk_name);
1278 ret = PTR_ERR(sdd->src_clk);
1279 goto err2;
1280 }
1281
1282 if (clk_prepare_enable(sdd->src_clk)) {
1283 dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1284 ret = -EBUSY;
1285 goto err2;
1286 }
1287
1288 /* Setup Deufult Mode */
1289 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1290
1291 spin_lock_init(&sdd->lock);
1292 init_completion(&sdd->xfer_completion);
1293 INIT_LIST_HEAD(&sdd->queue);
1294
1295 ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1296 "spi-s3c64xx", sdd);
1297 if (ret != 0) {
1298 dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1299 irq, ret);
1300 goto err3;
1301 }
1302
1303 writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1304 S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1305 sdd->regs + S3C64XX_SPI_INT_EN);
1306
1307 if (spi_register_master(master)) {
1308 dev_err(&pdev->dev, "cannot register SPI master\n");
1309 ret = -EBUSY;
1310 goto err3;
1311 }
1312
1313 dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1314 sdd->port_id, master->num_chipselect);
1315 dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
1316 mem_res->end, mem_res->start,
1317 sdd->rx_dma.dmach, sdd->tx_dma.dmach);
1318
1319 pm_runtime_enable(&pdev->dev);
1320
1321 return 0;
1322
1323 err3:
1324 clk_disable_unprepare(sdd->src_clk);
1325 err2:
1326 clk_disable_unprepare(sdd->clk);
1327 err1:
1328 if (!sdd->cntrlr_info->cfg_gpio && pdev->dev.of_node)
1329 s3c64xx_spi_dt_gpio_free(sdd);
1330 err0:
1331 platform_set_drvdata(pdev, NULL);
1332 spi_master_put(master);
1333
1334 return ret;
1335 }
1336
1337 static int s3c64xx_spi_remove(struct platform_device *pdev)
1338 {
1339 struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
1340 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1341
1342 pm_runtime_disable(&pdev->dev);
1343
1344 spi_unregister_master(master);
1345
1346 writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1347
1348 clk_disable_unprepare(sdd->src_clk);
1349
1350 clk_disable_unprepare(sdd->clk);
1351
1352 if (!sdd->cntrlr_info->cfg_gpio && pdev->dev.of_node)
1353 s3c64xx_spi_dt_gpio_free(sdd);
1354
1355 platform_set_drvdata(pdev, NULL);
1356 spi_master_put(master);
1357
1358 return 0;
1359 }
1360
1361 #ifdef CONFIG_PM
1362 static int s3c64xx_spi_suspend(struct device *dev)
1363 {
1364 struct spi_master *master = dev_get_drvdata(dev);
1365 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1366
1367 spi_master_suspend(master);
1368
1369 /* Disable the clock */
1370 clk_disable_unprepare(sdd->src_clk);
1371 clk_disable_unprepare(sdd->clk);
1372
1373 if (!sdd->cntrlr_info->cfg_gpio && dev->of_node)
1374 s3c64xx_spi_dt_gpio_free(sdd);
1375
1376 sdd->cur_speed = 0; /* Output Clock is stopped */
1377
1378 return 0;
1379 }
1380
1381 static int s3c64xx_spi_resume(struct device *dev)
1382 {
1383 struct spi_master *master = dev_get_drvdata(dev);
1384 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1385 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1386
1387 if (!sci->cfg_gpio && dev->of_node)
1388 s3c64xx_spi_parse_dt_gpio(sdd);
1389 else
1390 sci->cfg_gpio();
1391
1392 /* Enable the clock */
1393 clk_prepare_enable(sdd->src_clk);
1394 clk_prepare_enable(sdd->clk);
1395
1396 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1397
1398 spi_master_resume(master);
1399
1400 return 0;
1401 }
1402 #endif /* CONFIG_PM */
1403
1404 #ifdef CONFIG_PM_RUNTIME
1405 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1406 {
1407 struct spi_master *master = dev_get_drvdata(dev);
1408 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1409
1410 clk_disable_unprepare(sdd->clk);
1411 clk_disable_unprepare(sdd->src_clk);
1412
1413 return 0;
1414 }
1415
1416 static int s3c64xx_spi_runtime_resume(struct device *dev)
1417 {
1418 struct spi_master *master = dev_get_drvdata(dev);
1419 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1420
1421 clk_prepare_enable(sdd->src_clk);
1422 clk_prepare_enable(sdd->clk);
1423
1424 return 0;
1425 }
1426 #endif /* CONFIG_PM_RUNTIME */
1427
1428 static const struct dev_pm_ops s3c64xx_spi_pm = {
1429 SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1430 SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1431 s3c64xx_spi_runtime_resume, NULL)
1432 };
1433
1434 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1435 .fifo_lvl_mask = { 0x7f },
1436 .rx_lvl_offset = 13,
1437 .tx_st_done = 21,
1438 .high_speed = true,
1439 };
1440
1441 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1442 .fifo_lvl_mask = { 0x7f, 0x7F },
1443 .rx_lvl_offset = 13,
1444 .tx_st_done = 21,
1445 };
1446
1447 static struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
1448 .fifo_lvl_mask = { 0x1ff, 0x7F },
1449 .rx_lvl_offset = 15,
1450 .tx_st_done = 25,
1451 };
1452
1453 static struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
1454 .fifo_lvl_mask = { 0x7f, 0x7F },
1455 .rx_lvl_offset = 13,
1456 .tx_st_done = 21,
1457 .high_speed = true,
1458 };
1459
1460 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1461 .fifo_lvl_mask = { 0x1ff, 0x7F },
1462 .rx_lvl_offset = 15,
1463 .tx_st_done = 25,
1464 .high_speed = true,
1465 };
1466
1467 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1468 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
1469 .rx_lvl_offset = 15,
1470 .tx_st_done = 25,
1471 .high_speed = true,
1472 .clk_from_cmu = true,
1473 };
1474
1475 static struct platform_device_id s3c64xx_spi_driver_ids[] = {
1476 {
1477 .name = "s3c2443-spi",
1478 .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
1479 }, {
1480 .name = "s3c6410-spi",
1481 .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
1482 }, {
1483 .name = "s5p64x0-spi",
1484 .driver_data = (kernel_ulong_t)&s5p64x0_spi_port_config,
1485 }, {
1486 .name = "s5pc100-spi",
1487 .driver_data = (kernel_ulong_t)&s5pc100_spi_port_config,
1488 }, {
1489 .name = "s5pv210-spi",
1490 .driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
1491 }, {
1492 .name = "exynos4210-spi",
1493 .driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
1494 },
1495 { },
1496 };
1497
1498 #ifdef CONFIG_OF
1499 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1500 { .compatible = "samsung,exynos4210-spi",
1501 .data = (void *)&exynos4_spi_port_config,
1502 },
1503 { },
1504 };
1505 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1506 #endif /* CONFIG_OF */
1507
1508 static struct platform_driver s3c64xx_spi_driver = {
1509 .driver = {
1510 .name = "s3c64xx-spi",
1511 .owner = THIS_MODULE,
1512 .pm = &s3c64xx_spi_pm,
1513 .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1514 },
1515 .remove = s3c64xx_spi_remove,
1516 .id_table = s3c64xx_spi_driver_ids,
1517 };
1518 MODULE_ALIAS("platform:s3c64xx-spi");
1519
1520 static int __init s3c64xx_spi_init(void)
1521 {
1522 return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
1523 }
1524 subsys_initcall(s3c64xx_spi_init);
1525
1526 static void __exit s3c64xx_spi_exit(void)
1527 {
1528 platform_driver_unregister(&s3c64xx_spi_driver);
1529 }
1530 module_exit(s3c64xx_spi_exit);
1531
1532 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1533 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1534 MODULE_LICENSE("GPL");
This page took 0.065398 seconds and 5 git commands to generate.