Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / spi / spi-s3c64xx.c
1 /*
2 * Copyright (C) 2009 Samsung Electronics Ltd.
3 * Jaswinder Singh <jassi.brar@samsung.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/spi/spi.h>
30 #include <linux/gpio.h>
31 #include <linux/of.h>
32 #include <linux/of_gpio.h>
33
34 #include <linux/platform_data/spi-s3c64xx.h>
35
36 #define MAX_SPI_PORTS 3
37 #define S3C64XX_SPI_QUIRK_POLL (1 << 0)
38
39 /* Registers and bit-fields */
40
41 #define S3C64XX_SPI_CH_CFG 0x00
42 #define S3C64XX_SPI_CLK_CFG 0x04
43 #define S3C64XX_SPI_MODE_CFG 0x08
44 #define S3C64XX_SPI_SLAVE_SEL 0x0C
45 #define S3C64XX_SPI_INT_EN 0x10
46 #define S3C64XX_SPI_STATUS 0x14
47 #define S3C64XX_SPI_TX_DATA 0x18
48 #define S3C64XX_SPI_RX_DATA 0x1C
49 #define S3C64XX_SPI_PACKET_CNT 0x20
50 #define S3C64XX_SPI_PENDING_CLR 0x24
51 #define S3C64XX_SPI_SWAP_CFG 0x28
52 #define S3C64XX_SPI_FB_CLK 0x2C
53
54 #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
55 #define S3C64XX_SPI_CH_SW_RST (1<<5)
56 #define S3C64XX_SPI_CH_SLAVE (1<<4)
57 #define S3C64XX_SPI_CPOL_L (1<<3)
58 #define S3C64XX_SPI_CPHA_B (1<<2)
59 #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
60 #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
61
62 #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
63 #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
64 #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
65 #define S3C64XX_SPI_PSR_MASK 0xff
66
67 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
68 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
69 #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
70 #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
71 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
72 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
73 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
74 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
75 #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
76 #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
77 #define S3C64XX_SPI_MODE_4BURST (1<<0)
78
79 #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
80 #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
81
82 #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
83 #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
84 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
85 #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
86 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
87 #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
88 #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
89
90 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
91 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
92 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
93 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
94 #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
95 #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
96
97 #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
98
99 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
100 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
101 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
102 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
103 #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
104
105 #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
106 #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
107 #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
108 #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
109 #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
110 #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
111 #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
112 #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
113
114 #define S3C64XX_SPI_FBCLK_MSK (3<<0)
115
116 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
117 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
118 (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
119 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
120 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
121 FIFO_LVL_MASK(i))
122
123 #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
124 #define S3C64XX_SPI_TRAILCNT_OFF 19
125
126 #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
127
128 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
129 #define is_polling(x) (x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
130
131 #define RXBUSY (1<<2)
132 #define TXBUSY (1<<3)
133
134 struct s3c64xx_spi_dma_data {
135 struct dma_chan *ch;
136 enum dma_transfer_direction direction;
137 unsigned int dmach;
138 };
139
140 /**
141 * struct s3c64xx_spi_info - SPI Controller hardware info
142 * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
143 * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
144 * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
145 * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
146 * @clk_from_cmu: True, if the controller does not include a clock mux and
147 * prescaler unit.
148 *
149 * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
150 * differ in some aspects such as the size of the fifo and spi bus clock
151 * setup. Such differences are specified to the driver using this structure
152 * which is provided as driver data to the driver.
153 */
154 struct s3c64xx_spi_port_config {
155 int fifo_lvl_mask[MAX_SPI_PORTS];
156 int rx_lvl_offset;
157 int tx_st_done;
158 int quirks;
159 bool high_speed;
160 bool clk_from_cmu;
161 };
162
163 /**
164 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
165 * @clk: Pointer to the spi clock.
166 * @src_clk: Pointer to the clock used to generate SPI signals.
167 * @master: Pointer to the SPI Protocol master.
168 * @cntrlr_info: Platform specific data for the controller this driver manages.
169 * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
170 * @lock: Controller specific lock.
171 * @state: Set of FLAGS to indicate status.
172 * @rx_dmach: Controller's DMA channel for Rx.
173 * @tx_dmach: Controller's DMA channel for Tx.
174 * @sfr_start: BUS address of SPI controller regs.
175 * @regs: Pointer to ioremap'ed controller registers.
176 * @irq: interrupt
177 * @xfer_completion: To indicate completion of xfer task.
178 * @cur_mode: Stores the active configuration of the controller.
179 * @cur_bpw: Stores the active bits per word settings.
180 * @cur_speed: Stores the active xfer clock speed.
181 */
182 struct s3c64xx_spi_driver_data {
183 void __iomem *regs;
184 struct clk *clk;
185 struct clk *src_clk;
186 struct platform_device *pdev;
187 struct spi_master *master;
188 struct s3c64xx_spi_info *cntrlr_info;
189 struct spi_device *tgl_spi;
190 spinlock_t lock;
191 unsigned long sfr_start;
192 struct completion xfer_completion;
193 unsigned state;
194 unsigned cur_mode, cur_bpw;
195 unsigned cur_speed;
196 struct s3c64xx_spi_dma_data rx_dma;
197 struct s3c64xx_spi_dma_data tx_dma;
198 struct s3c64xx_spi_port_config *port_conf;
199 unsigned int port_id;
200 };
201
202 static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
203 {
204 void __iomem *regs = sdd->regs;
205 unsigned long loops;
206 u32 val;
207
208 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
209
210 val = readl(regs + S3C64XX_SPI_CH_CFG);
211 val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
212 writel(val, regs + S3C64XX_SPI_CH_CFG);
213
214 val = readl(regs + S3C64XX_SPI_CH_CFG);
215 val |= S3C64XX_SPI_CH_SW_RST;
216 val &= ~S3C64XX_SPI_CH_HS_EN;
217 writel(val, regs + S3C64XX_SPI_CH_CFG);
218
219 /* Flush TxFIFO*/
220 loops = msecs_to_loops(1);
221 do {
222 val = readl(regs + S3C64XX_SPI_STATUS);
223 } while (TX_FIFO_LVL(val, sdd) && loops--);
224
225 if (loops == 0)
226 dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
227
228 /* Flush RxFIFO*/
229 loops = msecs_to_loops(1);
230 do {
231 val = readl(regs + S3C64XX_SPI_STATUS);
232 if (RX_FIFO_LVL(val, sdd))
233 readl(regs + S3C64XX_SPI_RX_DATA);
234 else
235 break;
236 } while (loops--);
237
238 if (loops == 0)
239 dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
240
241 val = readl(regs + S3C64XX_SPI_CH_CFG);
242 val &= ~S3C64XX_SPI_CH_SW_RST;
243 writel(val, regs + S3C64XX_SPI_CH_CFG);
244
245 val = readl(regs + S3C64XX_SPI_MODE_CFG);
246 val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
247 writel(val, regs + S3C64XX_SPI_MODE_CFG);
248 }
249
250 static void s3c64xx_spi_dmacb(void *data)
251 {
252 struct s3c64xx_spi_driver_data *sdd;
253 struct s3c64xx_spi_dma_data *dma = data;
254 unsigned long flags;
255
256 if (dma->direction == DMA_DEV_TO_MEM)
257 sdd = container_of(data,
258 struct s3c64xx_spi_driver_data, rx_dma);
259 else
260 sdd = container_of(data,
261 struct s3c64xx_spi_driver_data, tx_dma);
262
263 spin_lock_irqsave(&sdd->lock, flags);
264
265 if (dma->direction == DMA_DEV_TO_MEM) {
266 sdd->state &= ~RXBUSY;
267 if (!(sdd->state & TXBUSY))
268 complete(&sdd->xfer_completion);
269 } else {
270 sdd->state &= ~TXBUSY;
271 if (!(sdd->state & RXBUSY))
272 complete(&sdd->xfer_completion);
273 }
274
275 spin_unlock_irqrestore(&sdd->lock, flags);
276 }
277
278 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
279 struct sg_table *sgt)
280 {
281 struct s3c64xx_spi_driver_data *sdd;
282 struct dma_slave_config config;
283 struct dma_async_tx_descriptor *desc;
284
285 memset(&config, 0, sizeof(config));
286
287 if (dma->direction == DMA_DEV_TO_MEM) {
288 sdd = container_of((void *)dma,
289 struct s3c64xx_spi_driver_data, rx_dma);
290 config.direction = dma->direction;
291 config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
292 config.src_addr_width = sdd->cur_bpw / 8;
293 config.src_maxburst = 1;
294 dmaengine_slave_config(dma->ch, &config);
295 } else {
296 sdd = container_of((void *)dma,
297 struct s3c64xx_spi_driver_data, tx_dma);
298 config.direction = dma->direction;
299 config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
300 config.dst_addr_width = sdd->cur_bpw / 8;
301 config.dst_maxburst = 1;
302 dmaengine_slave_config(dma->ch, &config);
303 }
304
305 desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
306 dma->direction, DMA_PREP_INTERRUPT);
307
308 desc->callback = s3c64xx_spi_dmacb;
309 desc->callback_param = dma;
310
311 dmaengine_submit(desc);
312 dma_async_issue_pending(dma->ch);
313 }
314
315 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
316 {
317 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
318 dma_filter_fn filter = sdd->cntrlr_info->filter;
319 struct device *dev = &sdd->pdev->dev;
320 dma_cap_mask_t mask;
321 int ret;
322
323 if (!is_polling(sdd)) {
324 dma_cap_zero(mask);
325 dma_cap_set(DMA_SLAVE, mask);
326
327 /* Acquire DMA channels */
328 sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
329 (void *)sdd->rx_dma.dmach, dev, "rx");
330 if (!sdd->rx_dma.ch) {
331 dev_err(dev, "Failed to get RX DMA channel\n");
332 ret = -EBUSY;
333 goto out;
334 }
335 spi->dma_rx = sdd->rx_dma.ch;
336
337 sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
338 (void *)sdd->tx_dma.dmach, dev, "tx");
339 if (!sdd->tx_dma.ch) {
340 dev_err(dev, "Failed to get TX DMA channel\n");
341 ret = -EBUSY;
342 goto out_rx;
343 }
344 spi->dma_tx = sdd->tx_dma.ch;
345 }
346
347 ret = pm_runtime_get_sync(&sdd->pdev->dev);
348 if (ret < 0) {
349 dev_err(dev, "Failed to enable device: %d\n", ret);
350 goto out_tx;
351 }
352
353 return 0;
354
355 out_tx:
356 dma_release_channel(sdd->tx_dma.ch);
357 out_rx:
358 dma_release_channel(sdd->rx_dma.ch);
359 out:
360 return ret;
361 }
362
363 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
364 {
365 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
366
367 /* Free DMA channels */
368 if (!is_polling(sdd)) {
369 dma_release_channel(sdd->rx_dma.ch);
370 dma_release_channel(sdd->tx_dma.ch);
371 }
372
373 pm_runtime_put(&sdd->pdev->dev);
374 return 0;
375 }
376
377 static bool s3c64xx_spi_can_dma(struct spi_master *master,
378 struct spi_device *spi,
379 struct spi_transfer *xfer)
380 {
381 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
382
383 return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
384 }
385
386 static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
387 struct spi_device *spi,
388 struct spi_transfer *xfer, int dma_mode)
389 {
390 void __iomem *regs = sdd->regs;
391 u32 modecfg, chcfg;
392
393 modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
394 modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
395
396 chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
397 chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
398
399 if (dma_mode) {
400 chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
401 } else {
402 /* Always shift in data in FIFO, even if xfer is Tx only,
403 * this helps setting PCKT_CNT value for generating clocks
404 * as exactly needed.
405 */
406 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
407 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
408 | S3C64XX_SPI_PACKET_CNT_EN,
409 regs + S3C64XX_SPI_PACKET_CNT);
410 }
411
412 if (xfer->tx_buf != NULL) {
413 sdd->state |= TXBUSY;
414 chcfg |= S3C64XX_SPI_CH_TXCH_ON;
415 if (dma_mode) {
416 modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
417 prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
418 } else {
419 switch (sdd->cur_bpw) {
420 case 32:
421 iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
422 xfer->tx_buf, xfer->len / 4);
423 break;
424 case 16:
425 iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
426 xfer->tx_buf, xfer->len / 2);
427 break;
428 default:
429 iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
430 xfer->tx_buf, xfer->len);
431 break;
432 }
433 }
434 }
435
436 if (xfer->rx_buf != NULL) {
437 sdd->state |= RXBUSY;
438
439 if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
440 && !(sdd->cur_mode & SPI_CPHA))
441 chcfg |= S3C64XX_SPI_CH_HS_EN;
442
443 if (dma_mode) {
444 modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
445 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
446 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
447 | S3C64XX_SPI_PACKET_CNT_EN,
448 regs + S3C64XX_SPI_PACKET_CNT);
449 prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
450 }
451 }
452
453 writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
454 writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
455 }
456
457 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
458 int timeout_ms)
459 {
460 void __iomem *regs = sdd->regs;
461 unsigned long val = 1;
462 u32 status;
463
464 /* max fifo depth available */
465 u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
466
467 if (timeout_ms)
468 val = msecs_to_loops(timeout_ms);
469
470 do {
471 status = readl(regs + S3C64XX_SPI_STATUS);
472 } while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
473
474 /* return the actual received data length */
475 return RX_FIFO_LVL(status, sdd);
476 }
477
478 static int wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
479 struct spi_transfer *xfer)
480 {
481 void __iomem *regs = sdd->regs;
482 unsigned long val;
483 u32 status;
484 int ms;
485
486 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
487 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
488 ms += 10; /* some tolerance */
489
490 val = msecs_to_jiffies(ms) + 10;
491 val = wait_for_completion_timeout(&sdd->xfer_completion, val);
492
493 /*
494 * If the previous xfer was completed within timeout, then
495 * proceed further else return -EIO.
496 * DmaTx returns after simply writing data in the FIFO,
497 * w/o waiting for real transmission on the bus to finish.
498 * DmaRx returns only after Dma read data from FIFO which
499 * needs bus transmission to finish, so we don't worry if
500 * Xfer involved Rx(with or without Tx).
501 */
502 if (val && !xfer->rx_buf) {
503 val = msecs_to_loops(10);
504 status = readl(regs + S3C64XX_SPI_STATUS);
505 while ((TX_FIFO_LVL(status, sdd)
506 || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
507 && --val) {
508 cpu_relax();
509 status = readl(regs + S3C64XX_SPI_STATUS);
510 }
511
512 }
513
514 /* If timed out while checking rx/tx status return error */
515 if (!val)
516 return -EIO;
517
518 return 0;
519 }
520
521 static int wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
522 struct spi_transfer *xfer)
523 {
524 void __iomem *regs = sdd->regs;
525 unsigned long val;
526 u32 status;
527 int loops;
528 u32 cpy_len;
529 u8 *buf;
530 int ms;
531
532 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
533 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
534 ms += 10; /* some tolerance */
535
536 val = msecs_to_loops(ms);
537 do {
538 status = readl(regs + S3C64XX_SPI_STATUS);
539 } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
540
541
542 /* If it was only Tx */
543 if (!xfer->rx_buf) {
544 sdd->state &= ~TXBUSY;
545 return 0;
546 }
547
548 /*
549 * If the receive length is bigger than the controller fifo
550 * size, calculate the loops and read the fifo as many times.
551 * loops = length / max fifo size (calculated by using the
552 * fifo mask).
553 * For any size less than the fifo size the below code is
554 * executed atleast once.
555 */
556 loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
557 buf = xfer->rx_buf;
558 do {
559 /* wait for data to be received in the fifo */
560 cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
561 (loops ? ms : 0));
562
563 switch (sdd->cur_bpw) {
564 case 32:
565 ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
566 buf, cpy_len / 4);
567 break;
568 case 16:
569 ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
570 buf, cpy_len / 2);
571 break;
572 default:
573 ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
574 buf, cpy_len);
575 break;
576 }
577
578 buf = buf + cpy_len;
579 } while (loops--);
580 sdd->state &= ~RXBUSY;
581
582 return 0;
583 }
584
585 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
586 {
587 void __iomem *regs = sdd->regs;
588 u32 val;
589
590 /* Disable Clock */
591 if (sdd->port_conf->clk_from_cmu) {
592 clk_disable_unprepare(sdd->src_clk);
593 } else {
594 val = readl(regs + S3C64XX_SPI_CLK_CFG);
595 val &= ~S3C64XX_SPI_ENCLK_ENABLE;
596 writel(val, regs + S3C64XX_SPI_CLK_CFG);
597 }
598
599 /* Set Polarity and Phase */
600 val = readl(regs + S3C64XX_SPI_CH_CFG);
601 val &= ~(S3C64XX_SPI_CH_SLAVE |
602 S3C64XX_SPI_CPOL_L |
603 S3C64XX_SPI_CPHA_B);
604
605 if (sdd->cur_mode & SPI_CPOL)
606 val |= S3C64XX_SPI_CPOL_L;
607
608 if (sdd->cur_mode & SPI_CPHA)
609 val |= S3C64XX_SPI_CPHA_B;
610
611 writel(val, regs + S3C64XX_SPI_CH_CFG);
612
613 /* Set Channel & DMA Mode */
614 val = readl(regs + S3C64XX_SPI_MODE_CFG);
615 val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
616 | S3C64XX_SPI_MODE_CH_TSZ_MASK);
617
618 switch (sdd->cur_bpw) {
619 case 32:
620 val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
621 val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
622 break;
623 case 16:
624 val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
625 val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
626 break;
627 default:
628 val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
629 val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
630 break;
631 }
632
633 writel(val, regs + S3C64XX_SPI_MODE_CFG);
634
635 if (sdd->port_conf->clk_from_cmu) {
636 /* Configure Clock */
637 /* There is half-multiplier before the SPI */
638 clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
639 /* Enable Clock */
640 clk_prepare_enable(sdd->src_clk);
641 } else {
642 /* Configure Clock */
643 val = readl(regs + S3C64XX_SPI_CLK_CFG);
644 val &= ~S3C64XX_SPI_PSR_MASK;
645 val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
646 & S3C64XX_SPI_PSR_MASK);
647 writel(val, regs + S3C64XX_SPI_CLK_CFG);
648
649 /* Enable Clock */
650 val = readl(regs + S3C64XX_SPI_CLK_CFG);
651 val |= S3C64XX_SPI_ENCLK_ENABLE;
652 writel(val, regs + S3C64XX_SPI_CLK_CFG);
653 }
654 }
655
656 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
657
658 static int s3c64xx_spi_prepare_message(struct spi_master *master,
659 struct spi_message *msg)
660 {
661 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
662 struct spi_device *spi = msg->spi;
663 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
664
665 /* If Master's(controller) state differs from that needed by Slave */
666 if (sdd->cur_speed != spi->max_speed_hz
667 || sdd->cur_mode != spi->mode
668 || sdd->cur_bpw != spi->bits_per_word) {
669 sdd->cur_bpw = spi->bits_per_word;
670 sdd->cur_speed = spi->max_speed_hz;
671 sdd->cur_mode = spi->mode;
672 s3c64xx_spi_config(sdd);
673 }
674
675 /* Configure feedback delay */
676 writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
677
678 return 0;
679 }
680
681 static int s3c64xx_spi_transfer_one(struct spi_master *master,
682 struct spi_device *spi,
683 struct spi_transfer *xfer)
684 {
685 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
686 int status;
687 u32 speed;
688 u8 bpw;
689 unsigned long flags;
690 int use_dma;
691
692 reinit_completion(&sdd->xfer_completion);
693
694 /* Only BPW and Speed may change across transfers */
695 bpw = xfer->bits_per_word;
696 speed = xfer->speed_hz ? : spi->max_speed_hz;
697
698 if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
699 sdd->cur_bpw = bpw;
700 sdd->cur_speed = speed;
701 s3c64xx_spi_config(sdd);
702 }
703
704 /* Polling method for xfers not bigger than FIFO capacity */
705 use_dma = 0;
706 if (!is_polling(sdd) &&
707 (sdd->rx_dma.ch && sdd->tx_dma.ch &&
708 (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
709 use_dma = 1;
710
711 spin_lock_irqsave(&sdd->lock, flags);
712
713 /* Pending only which is to be done */
714 sdd->state &= ~RXBUSY;
715 sdd->state &= ~TXBUSY;
716
717 enable_datapath(sdd, spi, xfer, use_dma);
718
719 /* Start the signals */
720 writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
721
722 spin_unlock_irqrestore(&sdd->lock, flags);
723
724 if (use_dma)
725 status = wait_for_dma(sdd, xfer);
726 else
727 status = wait_for_pio(sdd, xfer);
728
729 if (status) {
730 dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
731 xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
732 (sdd->state & RXBUSY) ? 'f' : 'p',
733 (sdd->state & TXBUSY) ? 'f' : 'p',
734 xfer->len);
735
736 if (use_dma) {
737 if (xfer->tx_buf != NULL
738 && (sdd->state & TXBUSY))
739 dmaengine_terminate_all(sdd->tx_dma.ch);
740 if (xfer->rx_buf != NULL
741 && (sdd->state & RXBUSY))
742 dmaengine_terminate_all(sdd->rx_dma.ch);
743 }
744 } else {
745 flush_fifo(sdd);
746 }
747
748 return status;
749 }
750
751 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
752 struct spi_device *spi)
753 {
754 struct s3c64xx_spi_csinfo *cs;
755 struct device_node *slave_np, *data_np = NULL;
756 u32 fb_delay = 0;
757
758 slave_np = spi->dev.of_node;
759 if (!slave_np) {
760 dev_err(&spi->dev, "device node not found\n");
761 return ERR_PTR(-EINVAL);
762 }
763
764 data_np = of_get_child_by_name(slave_np, "controller-data");
765 if (!data_np) {
766 dev_err(&spi->dev, "child node 'controller-data' not found\n");
767 return ERR_PTR(-EINVAL);
768 }
769
770 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
771 if (!cs) {
772 of_node_put(data_np);
773 return ERR_PTR(-ENOMEM);
774 }
775
776 of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
777 cs->fb_delay = fb_delay;
778 of_node_put(data_np);
779 return cs;
780 }
781
782 /*
783 * Here we only check the validity of requested configuration
784 * and save the configuration in a local data-structure.
785 * The controller is actually configured only just before we
786 * get a message to transfer.
787 */
788 static int s3c64xx_spi_setup(struct spi_device *spi)
789 {
790 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
791 struct s3c64xx_spi_driver_data *sdd;
792 struct s3c64xx_spi_info *sci;
793 int err;
794
795 sdd = spi_master_get_devdata(spi->master);
796 if (spi->dev.of_node) {
797 cs = s3c64xx_get_slave_ctrldata(spi);
798 spi->controller_data = cs;
799 } else if (cs) {
800 /* On non-DT platforms the SPI core will set spi->cs_gpio
801 * to -ENOENT. The GPIO pin used to drive the chip select
802 * is defined by using platform data so spi->cs_gpio value
803 * has to be override to have the proper GPIO pin number.
804 */
805 spi->cs_gpio = cs->line;
806 }
807
808 if (IS_ERR_OR_NULL(cs)) {
809 dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
810 return -ENODEV;
811 }
812
813 if (!spi_get_ctldata(spi)) {
814 if (gpio_is_valid(spi->cs_gpio)) {
815 err = gpio_request_one(spi->cs_gpio, GPIOF_OUT_INIT_HIGH,
816 dev_name(&spi->dev));
817 if (err) {
818 dev_err(&spi->dev,
819 "Failed to get /CS gpio [%d]: %d\n",
820 spi->cs_gpio, err);
821 goto err_gpio_req;
822 }
823 }
824
825 spi_set_ctldata(spi, cs);
826 }
827
828 sci = sdd->cntrlr_info;
829
830 pm_runtime_get_sync(&sdd->pdev->dev);
831
832 /* Check if we can provide the requested rate */
833 if (!sdd->port_conf->clk_from_cmu) {
834 u32 psr, speed;
835
836 /* Max possible */
837 speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
838
839 if (spi->max_speed_hz > speed)
840 spi->max_speed_hz = speed;
841
842 psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
843 psr &= S3C64XX_SPI_PSR_MASK;
844 if (psr == S3C64XX_SPI_PSR_MASK)
845 psr--;
846
847 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
848 if (spi->max_speed_hz < speed) {
849 if (psr+1 < S3C64XX_SPI_PSR_MASK) {
850 psr++;
851 } else {
852 err = -EINVAL;
853 goto setup_exit;
854 }
855 }
856
857 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
858 if (spi->max_speed_hz >= speed) {
859 spi->max_speed_hz = speed;
860 } else {
861 dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
862 spi->max_speed_hz);
863 err = -EINVAL;
864 goto setup_exit;
865 }
866 }
867
868 pm_runtime_put(&sdd->pdev->dev);
869 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
870 return 0;
871
872 setup_exit:
873 pm_runtime_put(&sdd->pdev->dev);
874 /* setup() returns with device de-selected */
875 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
876
877 if (gpio_is_valid(spi->cs_gpio))
878 gpio_free(spi->cs_gpio);
879 spi_set_ctldata(spi, NULL);
880
881 err_gpio_req:
882 if (spi->dev.of_node)
883 kfree(cs);
884
885 return err;
886 }
887
888 static void s3c64xx_spi_cleanup(struct spi_device *spi)
889 {
890 struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
891
892 if (gpio_is_valid(spi->cs_gpio)) {
893 gpio_free(spi->cs_gpio);
894 if (spi->dev.of_node)
895 kfree(cs);
896 else {
897 /* On non-DT platforms, the SPI core sets
898 * spi->cs_gpio to -ENOENT and .setup()
899 * overrides it with the GPIO pin value
900 * passed using platform data.
901 */
902 spi->cs_gpio = -ENOENT;
903 }
904 }
905
906 spi_set_ctldata(spi, NULL);
907 }
908
909 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
910 {
911 struct s3c64xx_spi_driver_data *sdd = data;
912 struct spi_master *spi = sdd->master;
913 unsigned int val, clr = 0;
914
915 val = readl(sdd->regs + S3C64XX_SPI_STATUS);
916
917 if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
918 clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
919 dev_err(&spi->dev, "RX overrun\n");
920 }
921 if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
922 clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
923 dev_err(&spi->dev, "RX underrun\n");
924 }
925 if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
926 clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
927 dev_err(&spi->dev, "TX overrun\n");
928 }
929 if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
930 clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
931 dev_err(&spi->dev, "TX underrun\n");
932 }
933
934 /* Clear the pending irq by setting and then clearing it */
935 writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
936 writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
937
938 return IRQ_HANDLED;
939 }
940
941 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
942 {
943 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
944 void __iomem *regs = sdd->regs;
945 unsigned int val;
946
947 sdd->cur_speed = 0;
948
949 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
950
951 /* Disable Interrupts - we use Polling if not DMA mode */
952 writel(0, regs + S3C64XX_SPI_INT_EN);
953
954 if (!sdd->port_conf->clk_from_cmu)
955 writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
956 regs + S3C64XX_SPI_CLK_CFG);
957 writel(0, regs + S3C64XX_SPI_MODE_CFG);
958 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
959
960 /* Clear any irq pending bits, should set and clear the bits */
961 val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
962 S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
963 S3C64XX_SPI_PND_TX_OVERRUN_CLR |
964 S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
965 writel(val, regs + S3C64XX_SPI_PENDING_CLR);
966 writel(0, regs + S3C64XX_SPI_PENDING_CLR);
967
968 writel(0, regs + S3C64XX_SPI_SWAP_CFG);
969
970 val = readl(regs + S3C64XX_SPI_MODE_CFG);
971 val &= ~S3C64XX_SPI_MODE_4BURST;
972 val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
973 val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
974 writel(val, regs + S3C64XX_SPI_MODE_CFG);
975
976 flush_fifo(sdd);
977 }
978
979 #ifdef CONFIG_OF
980 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
981 {
982 struct s3c64xx_spi_info *sci;
983 u32 temp;
984
985 sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
986 if (!sci)
987 return ERR_PTR(-ENOMEM);
988
989 if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
990 dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
991 sci->src_clk_nr = 0;
992 } else {
993 sci->src_clk_nr = temp;
994 }
995
996 if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
997 dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
998 sci->num_cs = 1;
999 } else {
1000 sci->num_cs = temp;
1001 }
1002
1003 return sci;
1004 }
1005 #else
1006 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1007 {
1008 return dev_get_platdata(dev);
1009 }
1010 #endif
1011
1012 static const struct of_device_id s3c64xx_spi_dt_match[];
1013
1014 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1015 struct platform_device *pdev)
1016 {
1017 #ifdef CONFIG_OF
1018 if (pdev->dev.of_node) {
1019 const struct of_device_id *match;
1020 match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1021 return (struct s3c64xx_spi_port_config *)match->data;
1022 }
1023 #endif
1024 return (struct s3c64xx_spi_port_config *)
1025 platform_get_device_id(pdev)->driver_data;
1026 }
1027
1028 static int s3c64xx_spi_probe(struct platform_device *pdev)
1029 {
1030 struct resource *mem_res;
1031 struct resource *res;
1032 struct s3c64xx_spi_driver_data *sdd;
1033 struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1034 struct spi_master *master;
1035 int ret, irq;
1036 char clk_name[16];
1037
1038 if (!sci && pdev->dev.of_node) {
1039 sci = s3c64xx_spi_parse_dt(&pdev->dev);
1040 if (IS_ERR(sci))
1041 return PTR_ERR(sci);
1042 }
1043
1044 if (!sci) {
1045 dev_err(&pdev->dev, "platform_data missing!\n");
1046 return -ENODEV;
1047 }
1048
1049 mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1050 if (mem_res == NULL) {
1051 dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1052 return -ENXIO;
1053 }
1054
1055 irq = platform_get_irq(pdev, 0);
1056 if (irq < 0) {
1057 dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1058 return irq;
1059 }
1060
1061 master = spi_alloc_master(&pdev->dev,
1062 sizeof(struct s3c64xx_spi_driver_data));
1063 if (master == NULL) {
1064 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1065 return -ENOMEM;
1066 }
1067
1068 platform_set_drvdata(pdev, master);
1069
1070 sdd = spi_master_get_devdata(master);
1071 sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1072 sdd->master = master;
1073 sdd->cntrlr_info = sci;
1074 sdd->pdev = pdev;
1075 sdd->sfr_start = mem_res->start;
1076 if (pdev->dev.of_node) {
1077 ret = of_alias_get_id(pdev->dev.of_node, "spi");
1078 if (ret < 0) {
1079 dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1080 ret);
1081 goto err0;
1082 }
1083 sdd->port_id = ret;
1084 } else {
1085 sdd->port_id = pdev->id;
1086 }
1087
1088 sdd->cur_bpw = 8;
1089
1090 if (!sdd->pdev->dev.of_node) {
1091 res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1092 if (!res) {
1093 dev_warn(&pdev->dev, "Unable to get SPI tx dma resource. Switching to poll mode\n");
1094 sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1095 } else
1096 sdd->tx_dma.dmach = res->start;
1097
1098 res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1099 if (!res) {
1100 dev_warn(&pdev->dev, "Unable to get SPI rx dma resource. Switching to poll mode\n");
1101 sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1102 } else
1103 sdd->rx_dma.dmach = res->start;
1104 }
1105
1106 sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1107 sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1108
1109 master->dev.of_node = pdev->dev.of_node;
1110 master->bus_num = sdd->port_id;
1111 master->setup = s3c64xx_spi_setup;
1112 master->cleanup = s3c64xx_spi_cleanup;
1113 master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1114 master->prepare_message = s3c64xx_spi_prepare_message;
1115 master->transfer_one = s3c64xx_spi_transfer_one;
1116 master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1117 master->num_chipselect = sci->num_cs;
1118 master->dma_alignment = 8;
1119 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1120 SPI_BPW_MASK(8);
1121 /* the spi->mode bits understood by this driver: */
1122 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1123 master->auto_runtime_pm = true;
1124 if (!is_polling(sdd))
1125 master->can_dma = s3c64xx_spi_can_dma;
1126
1127 sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1128 if (IS_ERR(sdd->regs)) {
1129 ret = PTR_ERR(sdd->regs);
1130 goto err0;
1131 }
1132
1133 if (sci->cfg_gpio && sci->cfg_gpio()) {
1134 dev_err(&pdev->dev, "Unable to config gpio\n");
1135 ret = -EBUSY;
1136 goto err0;
1137 }
1138
1139 /* Setup clocks */
1140 sdd->clk = devm_clk_get(&pdev->dev, "spi");
1141 if (IS_ERR(sdd->clk)) {
1142 dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1143 ret = PTR_ERR(sdd->clk);
1144 goto err0;
1145 }
1146
1147 if (clk_prepare_enable(sdd->clk)) {
1148 dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1149 ret = -EBUSY;
1150 goto err0;
1151 }
1152
1153 sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1154 sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1155 if (IS_ERR(sdd->src_clk)) {
1156 dev_err(&pdev->dev,
1157 "Unable to acquire clock '%s'\n", clk_name);
1158 ret = PTR_ERR(sdd->src_clk);
1159 goto err2;
1160 }
1161
1162 if (clk_prepare_enable(sdd->src_clk)) {
1163 dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1164 ret = -EBUSY;
1165 goto err2;
1166 }
1167
1168 /* Setup Deufult Mode */
1169 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1170
1171 spin_lock_init(&sdd->lock);
1172 init_completion(&sdd->xfer_completion);
1173
1174 ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1175 "spi-s3c64xx", sdd);
1176 if (ret != 0) {
1177 dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1178 irq, ret);
1179 goto err3;
1180 }
1181
1182 writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1183 S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1184 sdd->regs + S3C64XX_SPI_INT_EN);
1185
1186 pm_runtime_set_active(&pdev->dev);
1187 pm_runtime_enable(&pdev->dev);
1188
1189 ret = devm_spi_register_master(&pdev->dev, master);
1190 if (ret != 0) {
1191 dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
1192 goto err3;
1193 }
1194
1195 dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1196 sdd->port_id, master->num_chipselect);
1197 dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tDMA=[Rx-%d, Tx-%d]\n",
1198 mem_res,
1199 sdd->rx_dma.dmach, sdd->tx_dma.dmach);
1200
1201 return 0;
1202
1203 err3:
1204 clk_disable_unprepare(sdd->src_clk);
1205 err2:
1206 clk_disable_unprepare(sdd->clk);
1207 err0:
1208 spi_master_put(master);
1209
1210 return ret;
1211 }
1212
1213 static int s3c64xx_spi_remove(struct platform_device *pdev)
1214 {
1215 struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
1216 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1217
1218 pm_runtime_disable(&pdev->dev);
1219
1220 writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1221
1222 clk_disable_unprepare(sdd->src_clk);
1223
1224 clk_disable_unprepare(sdd->clk);
1225
1226 return 0;
1227 }
1228
1229 #ifdef CONFIG_PM_SLEEP
1230 static int s3c64xx_spi_suspend(struct device *dev)
1231 {
1232 struct spi_master *master = dev_get_drvdata(dev);
1233 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1234
1235 int ret = spi_master_suspend(master);
1236 if (ret)
1237 return ret;
1238
1239 if (!pm_runtime_suspended(dev)) {
1240 clk_disable_unprepare(sdd->clk);
1241 clk_disable_unprepare(sdd->src_clk);
1242 }
1243
1244 sdd->cur_speed = 0; /* Output Clock is stopped */
1245
1246 return 0;
1247 }
1248
1249 static int s3c64xx_spi_resume(struct device *dev)
1250 {
1251 struct spi_master *master = dev_get_drvdata(dev);
1252 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1253 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1254
1255 if (sci->cfg_gpio)
1256 sci->cfg_gpio();
1257
1258 if (!pm_runtime_suspended(dev)) {
1259 clk_prepare_enable(sdd->src_clk);
1260 clk_prepare_enable(sdd->clk);
1261 }
1262
1263 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1264
1265 return spi_master_resume(master);
1266 }
1267 #endif /* CONFIG_PM_SLEEP */
1268
1269 #ifdef CONFIG_PM_RUNTIME
1270 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1271 {
1272 struct spi_master *master = dev_get_drvdata(dev);
1273 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1274
1275 clk_disable_unprepare(sdd->clk);
1276 clk_disable_unprepare(sdd->src_clk);
1277
1278 return 0;
1279 }
1280
1281 static int s3c64xx_spi_runtime_resume(struct device *dev)
1282 {
1283 struct spi_master *master = dev_get_drvdata(dev);
1284 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1285 int ret;
1286
1287 ret = clk_prepare_enable(sdd->src_clk);
1288 if (ret != 0)
1289 return ret;
1290
1291 ret = clk_prepare_enable(sdd->clk);
1292 if (ret != 0) {
1293 clk_disable_unprepare(sdd->src_clk);
1294 return ret;
1295 }
1296
1297 return 0;
1298 }
1299 #endif /* CONFIG_PM_RUNTIME */
1300
1301 static const struct dev_pm_ops s3c64xx_spi_pm = {
1302 SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1303 SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1304 s3c64xx_spi_runtime_resume, NULL)
1305 };
1306
1307 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1308 .fifo_lvl_mask = { 0x7f },
1309 .rx_lvl_offset = 13,
1310 .tx_st_done = 21,
1311 .high_speed = true,
1312 };
1313
1314 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1315 .fifo_lvl_mask = { 0x7f, 0x7F },
1316 .rx_lvl_offset = 13,
1317 .tx_st_done = 21,
1318 };
1319
1320 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1321 .fifo_lvl_mask = { 0x1ff, 0x7F },
1322 .rx_lvl_offset = 15,
1323 .tx_st_done = 25,
1324 .high_speed = true,
1325 };
1326
1327 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1328 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
1329 .rx_lvl_offset = 15,
1330 .tx_st_done = 25,
1331 .high_speed = true,
1332 .clk_from_cmu = true,
1333 };
1334
1335 static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
1336 .fifo_lvl_mask = { 0x1ff },
1337 .rx_lvl_offset = 15,
1338 .tx_st_done = 25,
1339 .high_speed = true,
1340 .clk_from_cmu = true,
1341 .quirks = S3C64XX_SPI_QUIRK_POLL,
1342 };
1343
1344 static struct platform_device_id s3c64xx_spi_driver_ids[] = {
1345 {
1346 .name = "s3c2443-spi",
1347 .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
1348 }, {
1349 .name = "s3c6410-spi",
1350 .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
1351 }, {
1352 .name = "s5pv210-spi",
1353 .driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
1354 }, {
1355 .name = "exynos4210-spi",
1356 .driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
1357 },
1358 { },
1359 };
1360
1361 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1362 { .compatible = "samsung,s3c2443-spi",
1363 .data = (void *)&s3c2443_spi_port_config,
1364 },
1365 { .compatible = "samsung,s3c6410-spi",
1366 .data = (void *)&s3c6410_spi_port_config,
1367 },
1368 { .compatible = "samsung,s5pv210-spi",
1369 .data = (void *)&s5pv210_spi_port_config,
1370 },
1371 { .compatible = "samsung,exynos4210-spi",
1372 .data = (void *)&exynos4_spi_port_config,
1373 },
1374 { .compatible = "samsung,exynos5440-spi",
1375 .data = (void *)&exynos5440_spi_port_config,
1376 },
1377 { },
1378 };
1379 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1380
1381 static struct platform_driver s3c64xx_spi_driver = {
1382 .driver = {
1383 .name = "s3c64xx-spi",
1384 .owner = THIS_MODULE,
1385 .pm = &s3c64xx_spi_pm,
1386 .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1387 },
1388 .probe = s3c64xx_spi_probe,
1389 .remove = s3c64xx_spi_remove,
1390 .id_table = s3c64xx_spi_driver_ids,
1391 };
1392 MODULE_ALIAS("platform:s3c64xx-spi");
1393
1394 module_platform_driver(s3c64xx_spi_driver);
1395
1396 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1397 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1398 MODULE_LICENSE("GPL");
This page took 0.057456 seconds and 6 git commands to generate.