Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / spi / spi-sh-msiof.c
1 /*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Glider bvba
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 */
12
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
30
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
33
34 #include <asm/unaligned.h>
35
36
37 struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
40 u16 master_flags;
41 };
42
43 struct sh_msiof_spi_priv {
44 struct spi_master *master;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 const struct sh_msiof_chipdata *chipdata;
49 struct sh_msiof_spi_info *info;
50 struct completion done;
51 unsigned int tx_fifo_size;
52 unsigned int rx_fifo_size;
53 void *tx_dma_page;
54 void *rx_dma_page;
55 dma_addr_t tx_dma_addr;
56 dma_addr_t rx_dma_addr;
57 };
58
59 #define TMDR1 0x00 /* Transmit Mode Register 1 */
60 #define TMDR2 0x04 /* Transmit Mode Register 2 */
61 #define TMDR3 0x08 /* Transmit Mode Register 3 */
62 #define RMDR1 0x10 /* Receive Mode Register 1 */
63 #define RMDR2 0x14 /* Receive Mode Register 2 */
64 #define RMDR3 0x18 /* Receive Mode Register 3 */
65 #define TSCR 0x20 /* Transmit Clock Select Register */
66 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR 0x28 /* Control Register */
68 #define FCTR 0x30 /* FIFO Control Register */
69 #define STR 0x40 /* Status Register */
70 #define IER 0x44 /* Interrupt Enable Register */
71 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR 0x50 /* Transmit FIFO Data Register */
74 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR 0x60 /* Receive FIFO Data Register */
77
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
82 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
83 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
86 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
87 #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
88 #define MDR1_FLD_SHIFT 2
89 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
90 /* TMDR1 */
91 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
92
93 /* TMDR2 and RMDR2 */
94 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
95 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
96 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
97
98 /* TSCR and RSCR */
99 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i) (((i) - 1) << 8)
101 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2 0x0000
103 #define SCR_BRDV_DIV_4 0x0001
104 #define SCR_BRDV_DIV_8 0x0002
105 #define SCR_BRDV_DIV_16 0x0003
106 #define SCR_BRDV_DIV_32 0x0004
107 #define SCR_BRDV_DIV_1 0x0007
108
109 /* CTR */
110 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
120 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
121 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
122 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE 0x00000200 /* Transmit Enable */
125 #define CTR_RXE 0x00000100 /* Receive Enable */
126
127 /* FCTR */
128 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT 20
139 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT 4
151 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
152
153 /* STR */
154 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF 0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF 0x00000080 /* Frame Reception End */
163 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
166
167 /* IER */
168 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
182
183
184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 {
186 switch (reg_offs) {
187 case TSCR:
188 case RSCR:
189 return ioread16(p->mapbase + reg_offs);
190 default:
191 return ioread32(p->mapbase + reg_offs);
192 }
193 }
194
195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196 u32 value)
197 {
198 switch (reg_offs) {
199 case TSCR:
200 case RSCR:
201 iowrite16(value, p->mapbase + reg_offs);
202 break;
203 default:
204 iowrite32(value, p->mapbase + reg_offs);
205 break;
206 }
207 }
208
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210 u32 clr, u32 set)
211 {
212 u32 mask = clr | set;
213 u32 data;
214 int k;
215
216 data = sh_msiof_read(p, CTR);
217 data &= ~clr;
218 data |= set;
219 sh_msiof_write(p, CTR, data);
220
221 for (k = 100; k > 0; k--) {
222 if ((sh_msiof_read(p, CTR) & mask) == set)
223 break;
224
225 udelay(10);
226 }
227
228 return k > 0 ? 0 : -ETIMEDOUT;
229 }
230
231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
232 {
233 struct sh_msiof_spi_priv *p = data;
234
235 /* just disable the interrupt and wake up */
236 sh_msiof_write(p, IER, 0);
237 complete(&p->done);
238
239 return IRQ_HANDLED;
240 }
241
242 static struct {
243 unsigned short div;
244 unsigned short brdv;
245 } const sh_msiof_spi_div_table[] = {
246 { 1, SCR_BRDV_DIV_1 },
247 { 2, SCR_BRDV_DIV_2 },
248 { 4, SCR_BRDV_DIV_4 },
249 { 8, SCR_BRDV_DIV_8 },
250 { 16, SCR_BRDV_DIV_16 },
251 { 32, SCR_BRDV_DIV_32 },
252 };
253
254 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
255 unsigned long parent_rate, u32 spi_hz)
256 {
257 unsigned long div = 1024;
258 u32 brps, scr;
259 size_t k;
260
261 if (!WARN_ON(!spi_hz || !parent_rate))
262 div = DIV_ROUND_UP(parent_rate, spi_hz);
263
264 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
265 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
266 if (brps <= 32) /* max of brdv is 32 */
267 break;
268 }
269
270 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
271
272 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
273 sh_msiof_write(p, TSCR, scr);
274 if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
275 sh_msiof_write(p, RSCR, scr);
276 }
277
278 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
279 {
280 /*
281 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
282 * b'000 : 0
283 * b'001 : 100
284 * b'010 : 200
285 * b'011 (SYNCDL only) : 300
286 * b'101 : 50
287 * b'110 : 150
288 */
289 if (dtdl_or_syncdl % 100)
290 return dtdl_or_syncdl / 100 + 5;
291 else
292 return dtdl_or_syncdl / 100;
293 }
294
295 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
296 {
297 u32 val;
298
299 if (!p->info)
300 return 0;
301
302 /* check if DTDL and SYNCDL is allowed value */
303 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
304 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
305 return 0;
306 }
307
308 /* check if the sum of DTDL and SYNCDL becomes an integer value */
309 if ((p->info->dtdl + p->info->syncdl) % 100) {
310 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
311 return 0;
312 }
313
314 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
315 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
316
317 return val;
318 }
319
320 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
321 u32 cpol, u32 cpha,
322 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
323 {
324 u32 tmp;
325 int edge;
326
327 /*
328 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
329 * 0 0 10 10 1 1
330 * 0 1 10 10 0 0
331 * 1 0 11 11 0 0
332 * 1 1 11 11 1 1
333 */
334 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
335 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
336 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
337 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
338 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
339 if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
340 /* These bits are reserved if RX needs TX */
341 tmp &= ~0x0000ffff;
342 }
343 sh_msiof_write(p, RMDR1, tmp);
344
345 tmp = 0;
346 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
347 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
348
349 edge = cpol ^ !cpha;
350
351 tmp |= edge << CTR_TEDG_SHIFT;
352 tmp |= edge << CTR_REDG_SHIFT;
353 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
354 sh_msiof_write(p, CTR, tmp);
355 }
356
357 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
358 const void *tx_buf, void *rx_buf,
359 u32 bits, u32 words)
360 {
361 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
362
363 if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
364 sh_msiof_write(p, TMDR2, dr2);
365 else
366 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
367
368 if (rx_buf)
369 sh_msiof_write(p, RMDR2, dr2);
370 }
371
372 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
373 {
374 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
375 }
376
377 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
378 const void *tx_buf, int words, int fs)
379 {
380 const u8 *buf_8 = tx_buf;
381 int k;
382
383 for (k = 0; k < words; k++)
384 sh_msiof_write(p, TFDR, buf_8[k] << fs);
385 }
386
387 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
388 const void *tx_buf, int words, int fs)
389 {
390 const u16 *buf_16 = tx_buf;
391 int k;
392
393 for (k = 0; k < words; k++)
394 sh_msiof_write(p, TFDR, buf_16[k] << fs);
395 }
396
397 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
398 const void *tx_buf, int words, int fs)
399 {
400 const u16 *buf_16 = tx_buf;
401 int k;
402
403 for (k = 0; k < words; k++)
404 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
405 }
406
407 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
408 const void *tx_buf, int words, int fs)
409 {
410 const u32 *buf_32 = tx_buf;
411 int k;
412
413 for (k = 0; k < words; k++)
414 sh_msiof_write(p, TFDR, buf_32[k] << fs);
415 }
416
417 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
418 const void *tx_buf, int words, int fs)
419 {
420 const u32 *buf_32 = tx_buf;
421 int k;
422
423 for (k = 0; k < words; k++)
424 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
425 }
426
427 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
428 const void *tx_buf, int words, int fs)
429 {
430 const u32 *buf_32 = tx_buf;
431 int k;
432
433 for (k = 0; k < words; k++)
434 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
435 }
436
437 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
438 const void *tx_buf, int words, int fs)
439 {
440 const u32 *buf_32 = tx_buf;
441 int k;
442
443 for (k = 0; k < words; k++)
444 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
445 }
446
447 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
448 void *rx_buf, int words, int fs)
449 {
450 u8 *buf_8 = rx_buf;
451 int k;
452
453 for (k = 0; k < words; k++)
454 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
455 }
456
457 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
458 void *rx_buf, int words, int fs)
459 {
460 u16 *buf_16 = rx_buf;
461 int k;
462
463 for (k = 0; k < words; k++)
464 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
465 }
466
467 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
468 void *rx_buf, int words, int fs)
469 {
470 u16 *buf_16 = rx_buf;
471 int k;
472
473 for (k = 0; k < words; k++)
474 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
475 }
476
477 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
478 void *rx_buf, int words, int fs)
479 {
480 u32 *buf_32 = rx_buf;
481 int k;
482
483 for (k = 0; k < words; k++)
484 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
485 }
486
487 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
488 void *rx_buf, int words, int fs)
489 {
490 u32 *buf_32 = rx_buf;
491 int k;
492
493 for (k = 0; k < words; k++)
494 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
495 }
496
497 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
498 void *rx_buf, int words, int fs)
499 {
500 u32 *buf_32 = rx_buf;
501 int k;
502
503 for (k = 0; k < words; k++)
504 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
505 }
506
507 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
508 void *rx_buf, int words, int fs)
509 {
510 u32 *buf_32 = rx_buf;
511 int k;
512
513 for (k = 0; k < words; k++)
514 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
515 }
516
517 static int sh_msiof_spi_setup(struct spi_device *spi)
518 {
519 struct device_node *np = spi->master->dev.of_node;
520 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
521
522 pm_runtime_get_sync(&p->pdev->dev);
523
524 if (!np) {
525 /*
526 * Use spi->controller_data for CS (same strategy as spi_gpio),
527 * if any. otherwise let HW control CS
528 */
529 spi->cs_gpio = (uintptr_t)spi->controller_data;
530 }
531
532 /* Configure pins before deasserting CS */
533 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
534 !!(spi->mode & SPI_CPHA),
535 !!(spi->mode & SPI_3WIRE),
536 !!(spi->mode & SPI_LSB_FIRST),
537 !!(spi->mode & SPI_CS_HIGH));
538
539 if (spi->cs_gpio >= 0)
540 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
541
542
543 pm_runtime_put(&p->pdev->dev);
544
545 return 0;
546 }
547
548 static int sh_msiof_prepare_message(struct spi_master *master,
549 struct spi_message *msg)
550 {
551 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
552 const struct spi_device *spi = msg->spi;
553
554 /* Configure pins before asserting CS */
555 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
556 !!(spi->mode & SPI_CPHA),
557 !!(spi->mode & SPI_3WIRE),
558 !!(spi->mode & SPI_LSB_FIRST),
559 !!(spi->mode & SPI_CS_HIGH));
560 return 0;
561 }
562
563 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
564 {
565 int ret;
566
567 /* setup clock and rx/tx signals */
568 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
569 if (rx_buf && !ret)
570 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
571 if (!ret)
572 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
573
574 /* start by setting frame bit */
575 if (!ret)
576 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
577
578 return ret;
579 }
580
581 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
582 {
583 int ret;
584
585 /* shut down frame, rx/tx and clock signals */
586 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
587 if (!ret)
588 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
589 if (rx_buf && !ret)
590 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
591 if (!ret)
592 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
593
594 return ret;
595 }
596
597 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
598 void (*tx_fifo)(struct sh_msiof_spi_priv *,
599 const void *, int, int),
600 void (*rx_fifo)(struct sh_msiof_spi_priv *,
601 void *, int, int),
602 const void *tx_buf, void *rx_buf,
603 int words, int bits)
604 {
605 int fifo_shift;
606 int ret;
607
608 /* limit maximum word transfer to rx/tx fifo size */
609 if (tx_buf)
610 words = min_t(int, words, p->tx_fifo_size);
611 if (rx_buf)
612 words = min_t(int, words, p->rx_fifo_size);
613
614 /* the fifo contents need shifting */
615 fifo_shift = 32 - bits;
616
617 /* default FIFO watermarks for PIO */
618 sh_msiof_write(p, FCTR, 0);
619
620 /* setup msiof transfer mode registers */
621 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
622 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
623
624 /* write tx fifo */
625 if (tx_buf)
626 tx_fifo(p, tx_buf, words, fifo_shift);
627
628 reinit_completion(&p->done);
629
630 ret = sh_msiof_spi_start(p, rx_buf);
631 if (ret) {
632 dev_err(&p->pdev->dev, "failed to start hardware\n");
633 goto stop_ier;
634 }
635
636 /* wait for tx fifo to be emptied / rx fifo to be filled */
637 if (!wait_for_completion_timeout(&p->done, HZ)) {
638 dev_err(&p->pdev->dev, "PIO timeout\n");
639 ret = -ETIMEDOUT;
640 goto stop_reset;
641 }
642
643 /* read rx fifo */
644 if (rx_buf)
645 rx_fifo(p, rx_buf, words, fifo_shift);
646
647 /* clear status bits */
648 sh_msiof_reset_str(p);
649
650 ret = sh_msiof_spi_stop(p, rx_buf);
651 if (ret) {
652 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
653 return ret;
654 }
655
656 return words;
657
658 stop_reset:
659 sh_msiof_reset_str(p);
660 sh_msiof_spi_stop(p, rx_buf);
661 stop_ier:
662 sh_msiof_write(p, IER, 0);
663 return ret;
664 }
665
666 static void sh_msiof_dma_complete(void *arg)
667 {
668 struct sh_msiof_spi_priv *p = arg;
669
670 sh_msiof_write(p, IER, 0);
671 complete(&p->done);
672 }
673
674 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
675 void *rx, unsigned int len)
676 {
677 u32 ier_bits = 0;
678 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
679 dma_cookie_t cookie;
680 int ret;
681
682 /* First prepare and submit the DMA request(s), as this may fail */
683 if (rx) {
684 ier_bits |= IER_RDREQE | IER_RDMAE;
685 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
686 p->rx_dma_addr, len, DMA_FROM_DEVICE,
687 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
688 if (!desc_rx)
689 return -EAGAIN;
690
691 desc_rx->callback = sh_msiof_dma_complete;
692 desc_rx->callback_param = p;
693 cookie = dmaengine_submit(desc_rx);
694 if (dma_submit_error(cookie))
695 return cookie;
696 }
697
698 if (tx) {
699 ier_bits |= IER_TDREQE | IER_TDMAE;
700 dma_sync_single_for_device(p->master->dma_tx->device->dev,
701 p->tx_dma_addr, len, DMA_TO_DEVICE);
702 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
703 p->tx_dma_addr, len, DMA_TO_DEVICE,
704 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
705 if (!desc_tx) {
706 ret = -EAGAIN;
707 goto no_dma_tx;
708 }
709
710 if (rx) {
711 /* No callback */
712 desc_tx->callback = NULL;
713 } else {
714 desc_tx->callback = sh_msiof_dma_complete;
715 desc_tx->callback_param = p;
716 }
717 cookie = dmaengine_submit(desc_tx);
718 if (dma_submit_error(cookie)) {
719 ret = cookie;
720 goto no_dma_tx;
721 }
722 }
723
724 /* 1 stage FIFO watermarks for DMA */
725 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
726
727 /* setup msiof transfer mode registers (32-bit words) */
728 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
729
730 sh_msiof_write(p, IER, ier_bits);
731
732 reinit_completion(&p->done);
733
734 /* Now start DMA */
735 if (rx)
736 dma_async_issue_pending(p->master->dma_rx);
737 if (tx)
738 dma_async_issue_pending(p->master->dma_tx);
739
740 ret = sh_msiof_spi_start(p, rx);
741 if (ret) {
742 dev_err(&p->pdev->dev, "failed to start hardware\n");
743 goto stop_dma;
744 }
745
746 /* wait for tx fifo to be emptied / rx fifo to be filled */
747 if (!wait_for_completion_timeout(&p->done, HZ)) {
748 dev_err(&p->pdev->dev, "DMA timeout\n");
749 ret = -ETIMEDOUT;
750 goto stop_reset;
751 }
752
753 /* clear status bits */
754 sh_msiof_reset_str(p);
755
756 ret = sh_msiof_spi_stop(p, rx);
757 if (ret) {
758 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
759 return ret;
760 }
761
762 if (rx)
763 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
764 p->rx_dma_addr, len,
765 DMA_FROM_DEVICE);
766
767 return 0;
768
769 stop_reset:
770 sh_msiof_reset_str(p);
771 sh_msiof_spi_stop(p, rx);
772 stop_dma:
773 if (tx)
774 dmaengine_terminate_all(p->master->dma_tx);
775 no_dma_tx:
776 if (rx)
777 dmaengine_terminate_all(p->master->dma_rx);
778 sh_msiof_write(p, IER, 0);
779 return ret;
780 }
781
782 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
783 {
784 /* src or dst can be unaligned, but not both */
785 if ((unsigned long)src & 3) {
786 while (words--) {
787 *dst++ = swab32(get_unaligned(src));
788 src++;
789 }
790 } else if ((unsigned long)dst & 3) {
791 while (words--) {
792 put_unaligned(swab32(*src++), dst);
793 dst++;
794 }
795 } else {
796 while (words--)
797 *dst++ = swab32(*src++);
798 }
799 }
800
801 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
802 {
803 /* src or dst can be unaligned, but not both */
804 if ((unsigned long)src & 3) {
805 while (words--) {
806 *dst++ = swahw32(get_unaligned(src));
807 src++;
808 }
809 } else if ((unsigned long)dst & 3) {
810 while (words--) {
811 put_unaligned(swahw32(*src++), dst);
812 dst++;
813 }
814 } else {
815 while (words--)
816 *dst++ = swahw32(*src++);
817 }
818 }
819
820 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
821 {
822 memcpy(dst, src, words * 4);
823 }
824
825 static int sh_msiof_transfer_one(struct spi_master *master,
826 struct spi_device *spi,
827 struct spi_transfer *t)
828 {
829 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
830 void (*copy32)(u32 *, const u32 *, unsigned int);
831 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
832 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
833 const void *tx_buf = t->tx_buf;
834 void *rx_buf = t->rx_buf;
835 unsigned int len = t->len;
836 unsigned int bits = t->bits_per_word;
837 unsigned int bytes_per_word;
838 unsigned int words;
839 int n;
840 bool swab;
841 int ret;
842
843 /* setup clocks (clock already enabled in chipselect()) */
844 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
845
846 while (master->dma_tx && len > 15) {
847 /*
848 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
849 * words, with byte resp. word swapping.
850 */
851 unsigned int l = 0;
852
853 if (tx_buf)
854 l = min(len, p->tx_fifo_size * 4);
855 if (rx_buf)
856 l = min(len, p->rx_fifo_size * 4);
857
858 if (bits <= 8) {
859 if (l & 3)
860 break;
861 copy32 = copy_bswap32;
862 } else if (bits <= 16) {
863 if (l & 1)
864 break;
865 copy32 = copy_wswap32;
866 } else {
867 copy32 = copy_plain32;
868 }
869
870 if (tx_buf)
871 copy32(p->tx_dma_page, tx_buf, l / 4);
872
873 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
874 if (ret == -EAGAIN) {
875 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
876 dev_driver_string(&p->pdev->dev),
877 dev_name(&p->pdev->dev));
878 break;
879 }
880 if (ret)
881 return ret;
882
883 if (rx_buf) {
884 copy32(rx_buf, p->rx_dma_page, l / 4);
885 rx_buf += l;
886 }
887 if (tx_buf)
888 tx_buf += l;
889
890 len -= l;
891 if (!len)
892 return 0;
893 }
894
895 if (bits <= 8 && len > 15 && !(len & 3)) {
896 bits = 32;
897 swab = true;
898 } else {
899 swab = false;
900 }
901
902 /* setup bytes per word and fifo read/write functions */
903 if (bits <= 8) {
904 bytes_per_word = 1;
905 tx_fifo = sh_msiof_spi_write_fifo_8;
906 rx_fifo = sh_msiof_spi_read_fifo_8;
907 } else if (bits <= 16) {
908 bytes_per_word = 2;
909 if ((unsigned long)tx_buf & 0x01)
910 tx_fifo = sh_msiof_spi_write_fifo_16u;
911 else
912 tx_fifo = sh_msiof_spi_write_fifo_16;
913
914 if ((unsigned long)rx_buf & 0x01)
915 rx_fifo = sh_msiof_spi_read_fifo_16u;
916 else
917 rx_fifo = sh_msiof_spi_read_fifo_16;
918 } else if (swab) {
919 bytes_per_word = 4;
920 if ((unsigned long)tx_buf & 0x03)
921 tx_fifo = sh_msiof_spi_write_fifo_s32u;
922 else
923 tx_fifo = sh_msiof_spi_write_fifo_s32;
924
925 if ((unsigned long)rx_buf & 0x03)
926 rx_fifo = sh_msiof_spi_read_fifo_s32u;
927 else
928 rx_fifo = sh_msiof_spi_read_fifo_s32;
929 } else {
930 bytes_per_word = 4;
931 if ((unsigned long)tx_buf & 0x03)
932 tx_fifo = sh_msiof_spi_write_fifo_32u;
933 else
934 tx_fifo = sh_msiof_spi_write_fifo_32;
935
936 if ((unsigned long)rx_buf & 0x03)
937 rx_fifo = sh_msiof_spi_read_fifo_32u;
938 else
939 rx_fifo = sh_msiof_spi_read_fifo_32;
940 }
941
942 /* transfer in fifo sized chunks */
943 words = len / bytes_per_word;
944
945 while (words > 0) {
946 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
947 words, bits);
948 if (n < 0)
949 return n;
950
951 if (tx_buf)
952 tx_buf += n * bytes_per_word;
953 if (rx_buf)
954 rx_buf += n * bytes_per_word;
955 words -= n;
956 }
957
958 return 0;
959 }
960
961 static const struct sh_msiof_chipdata sh_data = {
962 .tx_fifo_size = 64,
963 .rx_fifo_size = 64,
964 .master_flags = 0,
965 };
966
967 static const struct sh_msiof_chipdata r8a779x_data = {
968 .tx_fifo_size = 64,
969 .rx_fifo_size = 64,
970 .master_flags = SPI_MASTER_MUST_TX,
971 };
972
973 static const struct of_device_id sh_msiof_match[] = {
974 { .compatible = "renesas,sh-msiof", .data = &sh_data },
975 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
976 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
977 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
978 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
979 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
980 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
981 {},
982 };
983 MODULE_DEVICE_TABLE(of, sh_msiof_match);
984
985 #ifdef CONFIG_OF
986 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
987 {
988 struct sh_msiof_spi_info *info;
989 struct device_node *np = dev->of_node;
990 u32 num_cs = 1;
991
992 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
993 if (!info)
994 return NULL;
995
996 /* Parse the MSIOF properties */
997 of_property_read_u32(np, "num-cs", &num_cs);
998 of_property_read_u32(np, "renesas,tx-fifo-size",
999 &info->tx_fifo_override);
1000 of_property_read_u32(np, "renesas,rx-fifo-size",
1001 &info->rx_fifo_override);
1002 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1003 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1004
1005 info->num_chipselect = num_cs;
1006
1007 return info;
1008 }
1009 #else
1010 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1011 {
1012 return NULL;
1013 }
1014 #endif
1015
1016 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1017 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1018 {
1019 dma_cap_mask_t mask;
1020 struct dma_chan *chan;
1021 struct dma_slave_config cfg;
1022 int ret;
1023
1024 dma_cap_zero(mask);
1025 dma_cap_set(DMA_SLAVE, mask);
1026
1027 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1028 (void *)(unsigned long)id, dev,
1029 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1030 if (!chan) {
1031 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1032 return NULL;
1033 }
1034
1035 memset(&cfg, 0, sizeof(cfg));
1036 cfg.direction = dir;
1037 if (dir == DMA_MEM_TO_DEV) {
1038 cfg.dst_addr = port_addr;
1039 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1040 } else {
1041 cfg.src_addr = port_addr;
1042 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1043 }
1044
1045 ret = dmaengine_slave_config(chan, &cfg);
1046 if (ret) {
1047 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1048 dma_release_channel(chan);
1049 return NULL;
1050 }
1051
1052 return chan;
1053 }
1054
1055 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1056 {
1057 struct platform_device *pdev = p->pdev;
1058 struct device *dev = &pdev->dev;
1059 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1060 unsigned int dma_tx_id, dma_rx_id;
1061 const struct resource *res;
1062 struct spi_master *master;
1063 struct device *tx_dev, *rx_dev;
1064
1065 if (dev->of_node) {
1066 /* In the OF case we will get the slave IDs from the DT */
1067 dma_tx_id = 0;
1068 dma_rx_id = 0;
1069 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1070 dma_tx_id = info->dma_tx_id;
1071 dma_rx_id = info->dma_rx_id;
1072 } else {
1073 /* The driver assumes no error */
1074 return 0;
1075 }
1076
1077 /* The DMA engine uses the second register set, if present */
1078 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1079 if (!res)
1080 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081
1082 master = p->master;
1083 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1084 dma_tx_id,
1085 res->start + TFDR);
1086 if (!master->dma_tx)
1087 return -ENODEV;
1088
1089 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1090 dma_rx_id,
1091 res->start + RFDR);
1092 if (!master->dma_rx)
1093 goto free_tx_chan;
1094
1095 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1096 if (!p->tx_dma_page)
1097 goto free_rx_chan;
1098
1099 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1100 if (!p->rx_dma_page)
1101 goto free_tx_page;
1102
1103 tx_dev = master->dma_tx->device->dev;
1104 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1105 DMA_TO_DEVICE);
1106 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1107 goto free_rx_page;
1108
1109 rx_dev = master->dma_rx->device->dev;
1110 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1111 DMA_FROM_DEVICE);
1112 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1113 goto unmap_tx_page;
1114
1115 dev_info(dev, "DMA available");
1116 return 0;
1117
1118 unmap_tx_page:
1119 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1120 free_rx_page:
1121 free_page((unsigned long)p->rx_dma_page);
1122 free_tx_page:
1123 free_page((unsigned long)p->tx_dma_page);
1124 free_rx_chan:
1125 dma_release_channel(master->dma_rx);
1126 free_tx_chan:
1127 dma_release_channel(master->dma_tx);
1128 master->dma_tx = NULL;
1129 return -ENODEV;
1130 }
1131
1132 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1133 {
1134 struct spi_master *master = p->master;
1135 struct device *dev;
1136
1137 if (!master->dma_tx)
1138 return;
1139
1140 dev = &p->pdev->dev;
1141 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1142 PAGE_SIZE, DMA_FROM_DEVICE);
1143 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1144 PAGE_SIZE, DMA_TO_DEVICE);
1145 free_page((unsigned long)p->rx_dma_page);
1146 free_page((unsigned long)p->tx_dma_page);
1147 dma_release_channel(master->dma_rx);
1148 dma_release_channel(master->dma_tx);
1149 }
1150
1151 static int sh_msiof_spi_probe(struct platform_device *pdev)
1152 {
1153 struct resource *r;
1154 struct spi_master *master;
1155 const struct of_device_id *of_id;
1156 struct sh_msiof_spi_priv *p;
1157 int i;
1158 int ret;
1159
1160 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1161 if (master == NULL) {
1162 dev_err(&pdev->dev, "failed to allocate spi master\n");
1163 return -ENOMEM;
1164 }
1165
1166 p = spi_master_get_devdata(master);
1167
1168 platform_set_drvdata(pdev, p);
1169 p->master = master;
1170
1171 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1172 if (of_id) {
1173 p->chipdata = of_id->data;
1174 p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1175 } else {
1176 p->chipdata = (const void *)pdev->id_entry->driver_data;
1177 p->info = dev_get_platdata(&pdev->dev);
1178 }
1179
1180 if (!p->info) {
1181 dev_err(&pdev->dev, "failed to obtain device info\n");
1182 ret = -ENXIO;
1183 goto err1;
1184 }
1185
1186 init_completion(&p->done);
1187
1188 p->clk = devm_clk_get(&pdev->dev, NULL);
1189 if (IS_ERR(p->clk)) {
1190 dev_err(&pdev->dev, "cannot get clock\n");
1191 ret = PTR_ERR(p->clk);
1192 goto err1;
1193 }
1194
1195 i = platform_get_irq(pdev, 0);
1196 if (i < 0) {
1197 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1198 ret = -ENOENT;
1199 goto err1;
1200 }
1201
1202 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1203 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1204 if (IS_ERR(p->mapbase)) {
1205 ret = PTR_ERR(p->mapbase);
1206 goto err1;
1207 }
1208
1209 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1210 dev_name(&pdev->dev), p);
1211 if (ret) {
1212 dev_err(&pdev->dev, "unable to request irq\n");
1213 goto err1;
1214 }
1215
1216 p->pdev = pdev;
1217 pm_runtime_enable(&pdev->dev);
1218
1219 /* Platform data may override FIFO sizes */
1220 p->tx_fifo_size = p->chipdata->tx_fifo_size;
1221 p->rx_fifo_size = p->chipdata->rx_fifo_size;
1222 if (p->info->tx_fifo_override)
1223 p->tx_fifo_size = p->info->tx_fifo_override;
1224 if (p->info->rx_fifo_override)
1225 p->rx_fifo_size = p->info->rx_fifo_override;
1226
1227 /* init master code */
1228 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1229 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1230 master->flags = p->chipdata->master_flags;
1231 master->bus_num = pdev->id;
1232 master->dev.of_node = pdev->dev.of_node;
1233 master->num_chipselect = p->info->num_chipselect;
1234 master->setup = sh_msiof_spi_setup;
1235 master->prepare_message = sh_msiof_prepare_message;
1236 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1237 master->auto_runtime_pm = true;
1238 master->transfer_one = sh_msiof_transfer_one;
1239
1240 ret = sh_msiof_request_dma(p);
1241 if (ret < 0)
1242 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1243
1244 ret = devm_spi_register_master(&pdev->dev, master);
1245 if (ret < 0) {
1246 dev_err(&pdev->dev, "spi_register_master error.\n");
1247 goto err2;
1248 }
1249
1250 return 0;
1251
1252 err2:
1253 sh_msiof_release_dma(p);
1254 pm_runtime_disable(&pdev->dev);
1255 err1:
1256 spi_master_put(master);
1257 return ret;
1258 }
1259
1260 static int sh_msiof_spi_remove(struct platform_device *pdev)
1261 {
1262 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1263
1264 sh_msiof_release_dma(p);
1265 pm_runtime_disable(&pdev->dev);
1266 return 0;
1267 }
1268
1269 static const struct platform_device_id spi_driver_ids[] = {
1270 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1271 {},
1272 };
1273 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1274
1275 static struct platform_driver sh_msiof_spi_drv = {
1276 .probe = sh_msiof_spi_probe,
1277 .remove = sh_msiof_spi_remove,
1278 .id_table = spi_driver_ids,
1279 .driver = {
1280 .name = "spi_sh_msiof",
1281 .of_match_table = of_match_ptr(sh_msiof_match),
1282 },
1283 };
1284 module_platform_driver(sh_msiof_spi_drv);
1285
1286 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1287 MODULE_AUTHOR("Magnus Damm");
1288 MODULE_LICENSE("GPL v2");
1289 MODULE_ALIAS("platform:spi_sh_msiof");
This page took 0.180063 seconds and 6 git commands to generate.