spi: meson: Constify struct regmap_config
[deliverable/linux.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
3 *
4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
18 */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR 0x00 /* SPI control register */
36 #define PCH_SPBRR 0x04 /* SPI baud rate register */
37 #define PCH_SPSR 0x08 /* SPI status register */
38 #define PCH_SPDWR 0x0C /* SPI write data register */
39 #define PCH_SPDRR 0x10 /* SPI read data register */
40 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
41 #define PCH_SRST 0x1C /* SPI reset register */
42 #define PCH_ADDRESS_SIZE 0x20
43
44 #define PCH_SPSR_TFD 0x000007C0
45 #define PCH_SPSR_RFD 0x0000F800
46
47 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD 7
51 #define PCH_RX_THOLD_MAX 15
52
53 #define PCH_TX_THOLD 2
54
55 #define PCH_MAX_BAUDRATE 5000000
56 #define PCH_MAX_FIFO_DEPTH 16
57
58 #define STATUS_RUNNING 1
59 #define STATUS_EXITING 2
60 #define PCH_SLEEP_TIME 10
61
62 #define SSN_LOW 0x02U
63 #define SSN_HIGH 0x03U
64 #define SSN_NO_CONTROL 0x00U
65 #define PCH_MAX_CS 0xFF
66 #define PCI_DEVICE_ID_GE_SPI 0x8816
67
68 #define SPCR_SPE_BIT (1 << 0)
69 #define SPCR_MSTR_BIT (1 << 1)
70 #define SPCR_LSBF_BIT (1 << 4)
71 #define SPCR_CPHA_BIT (1 << 5)
72 #define SPCR_CPOL_BIT (1 << 6)
73 #define SPCR_TFIE_BIT (1 << 8)
74 #define SPCR_RFIE_BIT (1 << 9)
75 #define SPCR_FIE_BIT (1 << 10)
76 #define SPCR_ORIE_BIT (1 << 11)
77 #define SPCR_MDFIE_BIT (1 << 12)
78 #define SPCR_FICLR_BIT (1 << 24)
79 #define SPSR_TFI_BIT (1 << 0)
80 #define SPSR_RFI_BIT (1 << 1)
81 #define SPSR_FI_BIT (1 << 2)
82 #define SPSR_ORF_BIT (1 << 3)
83 #define SPBRR_SIZE_BIT (1 << 10)
84
85 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87
88 #define SPCR_RFIC_FIELD 20
89 #define SPCR_TFIC_FIELD 16
90
91 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
94
95 #define PCH_CLOCK_HZ 50000000
96 #define PCH_MAX_SPBR 1023
97
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM 0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI 0x8816
103
104 /*
105 * Set the number of SPI instance max
106 * Intel EG20T PCH : 1ch
107 * LAPIS Semiconductor ML7213 IOH : 2ch
108 * LAPIS Semiconductor ML7223 IOH : 1ch
109 * LAPIS Semiconductor ML7831 IOH : 1ch
110 */
111 #define PCH_SPI_MAX_DEV 2
112
113 #define PCH_BUF_SIZE 4096
114 #define PCH_DMA_TRANS_SIZE 12
115
116 static int use_dma = 1;
117
118 struct pch_spi_dma_ctrl {
119 struct dma_async_tx_descriptor *desc_tx;
120 struct dma_async_tx_descriptor *desc_rx;
121 struct pch_dma_slave param_tx;
122 struct pch_dma_slave param_rx;
123 struct dma_chan *chan_tx;
124 struct dma_chan *chan_rx;
125 struct scatterlist *sg_tx_p;
126 struct scatterlist *sg_rx_p;
127 struct scatterlist sg_tx;
128 struct scatterlist sg_rx;
129 int nent;
130 void *tx_buf_virt;
131 void *rx_buf_virt;
132 dma_addr_t tx_buf_dma;
133 dma_addr_t rx_buf_dma;
134 };
135 /**
136 * struct pch_spi_data - Holds the SPI channel specific details
137 * @io_remap_addr: The remapped PCI base address
138 * @master: Pointer to the SPI master structure
139 * @work: Reference to work queue handler
140 * @wk: Workqueue for carrying out execution of the
141 * requests
142 * @wait: Wait queue for waking up upon receiving an
143 * interrupt.
144 * @transfer_complete: Status of SPI Transfer
145 * @bcurrent_msg_processing: Status flag for message processing
146 * @lock: Lock for protecting this structure
147 * @queue: SPI Message queue
148 * @status: Status of the SPI driver
149 * @bpw_len: Length of data to be transferred in bits per
150 * word
151 * @transfer_active: Flag showing active transfer
152 * @tx_index: Transmit data count; for bookkeeping during
153 * transfer
154 * @rx_index: Receive data count; for bookkeeping during
155 * transfer
156 * @tx_buff: Buffer for data to be transmitted
157 * @rx_index: Buffer for Received data
158 * @n_curnt_chip: The chip number that this SPI driver currently
159 * operates on
160 * @current_chip: Reference to the current chip that this SPI
161 * driver currently operates on
162 * @current_msg: The current message that this SPI driver is
163 * handling
164 * @cur_trans: The current transfer that this SPI driver is
165 * handling
166 * @board_dat: Reference to the SPI device data structure
167 * @plat_dev: platform_device structure
168 * @ch: SPI channel number
169 * @irq_reg_sts: Status of IRQ registration
170 */
171 struct pch_spi_data {
172 void __iomem *io_remap_addr;
173 unsigned long io_base_addr;
174 struct spi_master *master;
175 struct work_struct work;
176 struct workqueue_struct *wk;
177 wait_queue_head_t wait;
178 u8 transfer_complete;
179 u8 bcurrent_msg_processing;
180 spinlock_t lock;
181 struct list_head queue;
182 u8 status;
183 u32 bpw_len;
184 u8 transfer_active;
185 u32 tx_index;
186 u32 rx_index;
187 u16 *pkt_tx_buff;
188 u16 *pkt_rx_buff;
189 u8 n_curnt_chip;
190 struct spi_device *current_chip;
191 struct spi_message *current_msg;
192 struct spi_transfer *cur_trans;
193 struct pch_spi_board_data *board_dat;
194 struct platform_device *plat_dev;
195 int ch;
196 struct pch_spi_dma_ctrl dma;
197 int use_dma;
198 u8 irq_reg_sts;
199 int save_total_len;
200 };
201
202 /**
203 * struct pch_spi_board_data - Holds the SPI device specific details
204 * @pdev: Pointer to the PCI device
205 * @suspend_sts: Status of suspend
206 * @num: The number of SPI device instance
207 */
208 struct pch_spi_board_data {
209 struct pci_dev *pdev;
210 u8 suspend_sts;
211 int num;
212 };
213
214 struct pch_pd_dev_save {
215 int num;
216 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217 struct pch_spi_board_data *board_dat;
218 };
219
220 static const struct pci_device_id pch_spi_pcidev_id[] = {
221 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
222 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
225 { }
226 };
227
228 /**
229 * pch_spi_writereg() - Performs register writes
230 * @master: Pointer to struct spi_master.
231 * @idx: Register offset.
232 * @val: Value to be written to register.
233 */
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 {
236 struct pch_spi_data *data = spi_master_get_devdata(master);
237 iowrite32(val, (data->io_remap_addr + idx));
238 }
239
240 /**
241 * pch_spi_readreg() - Performs register reads
242 * @master: Pointer to struct spi_master.
243 * @idx: Register offset.
244 */
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 {
247 struct pch_spi_data *data = spi_master_get_devdata(master);
248 return ioread32(data->io_remap_addr + idx);
249 }
250
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252 u32 set, u32 clr)
253 {
254 u32 tmp = pch_spi_readreg(master, idx);
255 tmp = (tmp & ~clr) | set;
256 pch_spi_writereg(master, idx, tmp);
257 }
258
259 static void pch_spi_set_master_mode(struct spi_master *master)
260 {
261 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
262 }
263
264 /**
265 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266 * @master: Pointer to struct spi_master.
267 */
268 static void pch_spi_clear_fifo(struct spi_master *master)
269 {
270 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
272 }
273
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275 void __iomem *io_remap_addr)
276 {
277 u32 n_read, tx_index, rx_index, bpw_len;
278 u16 *pkt_rx_buffer, *pkt_tx_buff;
279 int read_cnt;
280 u32 reg_spcr_val;
281 void __iomem *spsr;
282 void __iomem *spdrr;
283 void __iomem *spdwr;
284
285 spsr = io_remap_addr + PCH_SPSR;
286 iowrite32(reg_spsr_val, spsr);
287
288 if (data->transfer_active) {
289 rx_index = data->rx_index;
290 tx_index = data->tx_index;
291 bpw_len = data->bpw_len;
292 pkt_rx_buffer = data->pkt_rx_buff;
293 pkt_tx_buff = data->pkt_tx_buff;
294
295 spdrr = io_remap_addr + PCH_SPDRR;
296 spdwr = io_remap_addr + PCH_SPDWR;
297
298 n_read = PCH_READABLE(reg_spsr_val);
299
300 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302 if (tx_index < bpw_len)
303 iowrite32(pkt_tx_buff[tx_index++], spdwr);
304 }
305
306 /* disable RFI if not needed */
307 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310
311 /* reset rx threshold */
312 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314
315 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
316 }
317
318 /* update counts */
319 data->tx_index = tx_index;
320 data->rx_index = rx_index;
321
322 /* if transfer complete interrupt */
323 if (reg_spsr_val & SPSR_FI_BIT) {
324 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325 /* disable interrupts */
326 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327 PCH_ALL);
328
329 /* transfer is completed;
330 inform pch_spi_process_messages */
331 data->transfer_complete = true;
332 data->transfer_active = false;
333 wake_up(&data->wait);
334 } else {
335 dev_vdbg(&data->master->dev,
336 "%s : Transfer is not completed",
337 __func__);
338 }
339 }
340 }
341 }
342
343 /**
344 * pch_spi_handler() - Interrupt handler
345 * @irq: The interrupt number.
346 * @dev_id: Pointer to struct pch_spi_board_data.
347 */
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
349 {
350 u32 reg_spsr_val;
351 void __iomem *spsr;
352 void __iomem *io_remap_addr;
353 irqreturn_t ret = IRQ_NONE;
354 struct pch_spi_data *data = dev_id;
355 struct pch_spi_board_data *board_dat = data->board_dat;
356
357 if (board_dat->suspend_sts) {
358 dev_dbg(&board_dat->pdev->dev,
359 "%s returning due to suspend\n", __func__);
360 return IRQ_NONE;
361 }
362
363 io_remap_addr = data->io_remap_addr;
364 spsr = io_remap_addr + PCH_SPSR;
365
366 reg_spsr_val = ioread32(spsr);
367
368 if (reg_spsr_val & SPSR_ORF_BIT) {
369 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370 if (data->current_msg->complete) {
371 data->transfer_complete = true;
372 data->current_msg->status = -EIO;
373 data->current_msg->complete(data->current_msg->context);
374 data->bcurrent_msg_processing = false;
375 data->current_msg = NULL;
376 data->cur_trans = NULL;
377 }
378 }
379
380 if (data->use_dma)
381 return IRQ_NONE;
382
383 /* Check if the interrupt is for SPI device */
384 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386 ret = IRQ_HANDLED;
387 }
388
389 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390 __func__, ret);
391
392 return ret;
393 }
394
395 /**
396 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397 * @master: Pointer to struct spi_master.
398 * @speed_hz: Baud rate.
399 */
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
401 {
402 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
403
404 /* if baud rate is less than we can support limit it */
405 if (n_spbr > PCH_MAX_SPBR)
406 n_spbr = PCH_MAX_SPBR;
407
408 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
409 }
410
411 /**
412 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413 * @master: Pointer to struct spi_master.
414 * @bits_per_word: Bits per word for SPI transfer.
415 */
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417 u8 bits_per_word)
418 {
419 if (bits_per_word == 8)
420 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421 else
422 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
423 }
424
425 /**
426 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427 * @spi: Pointer to struct spi_device.
428 */
429 static void pch_spi_setup_transfer(struct spi_device *spi)
430 {
431 u32 flags = 0;
432
433 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435 spi->max_speed_hz);
436 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
437
438 /* set bits per word */
439 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
440
441 if (!(spi->mode & SPI_LSB_FIRST))
442 flags |= SPCR_LSBF_BIT;
443 if (spi->mode & SPI_CPOL)
444 flags |= SPCR_CPOL_BIT;
445 if (spi->mode & SPI_CPHA)
446 flags |= SPCR_CPHA_BIT;
447 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
449
450 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
451 pch_spi_clear_fifo(spi->master);
452 }
453
454 /**
455 * pch_spi_reset() - Clears SPI registers
456 * @master: Pointer to struct spi_master.
457 */
458 static void pch_spi_reset(struct spi_master *master)
459 {
460 /* write 1 to reset SPI */
461 pch_spi_writereg(master, PCH_SRST, 0x1);
462
463 /* clear reset */
464 pch_spi_writereg(master, PCH_SRST, 0x0);
465 }
466
467 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
468 {
469
470 struct spi_transfer *transfer;
471 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
472 int retval;
473 unsigned long flags;
474
475 spin_lock_irqsave(&data->lock, flags);
476 /* validate Tx/Rx buffers and Transfer length */
477 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
478 if (!transfer->tx_buf && !transfer->rx_buf) {
479 dev_err(&pspi->dev,
480 "%s Tx and Rx buffer NULL\n", __func__);
481 retval = -EINVAL;
482 goto err_return_spinlock;
483 }
484
485 if (!transfer->len) {
486 dev_err(&pspi->dev, "%s Transfer length invalid\n",
487 __func__);
488 retval = -EINVAL;
489 goto err_return_spinlock;
490 }
491
492 dev_dbg(&pspi->dev,
493 "%s Tx/Rx buffer valid. Transfer length valid\n",
494 __func__);
495 }
496 spin_unlock_irqrestore(&data->lock, flags);
497
498 /* We won't process any messages if we have been asked to terminate */
499 if (data->status == STATUS_EXITING) {
500 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
501 retval = -ESHUTDOWN;
502 goto err_out;
503 }
504
505 /* If suspended ,return -EINVAL */
506 if (data->board_dat->suspend_sts) {
507 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
508 retval = -EINVAL;
509 goto err_out;
510 }
511
512 /* set status of message */
513 pmsg->actual_length = 0;
514 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
515
516 pmsg->status = -EINPROGRESS;
517 spin_lock_irqsave(&data->lock, flags);
518 /* add message to queue */
519 list_add_tail(&pmsg->queue, &data->queue);
520 spin_unlock_irqrestore(&data->lock, flags);
521
522 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
523
524 /* schedule work queue to run */
525 queue_work(data->wk, &data->work);
526 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
527
528 retval = 0;
529
530 err_out:
531 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
532 return retval;
533 err_return_spinlock:
534 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
535 spin_unlock_irqrestore(&data->lock, flags);
536 return retval;
537 }
538
539 static inline void pch_spi_select_chip(struct pch_spi_data *data,
540 struct spi_device *pspi)
541 {
542 if (data->current_chip != NULL) {
543 if (pspi->chip_select != data->n_curnt_chip) {
544 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
545 data->current_chip = NULL;
546 }
547 }
548
549 data->current_chip = pspi;
550
551 data->n_curnt_chip = data->current_chip->chip_select;
552
553 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
554 pch_spi_setup_transfer(pspi);
555 }
556
557 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
558 {
559 int size;
560 u32 n_writes;
561 int j;
562 struct spi_message *pmsg, *tmp;
563 const u8 *tx_buf;
564 const u16 *tx_sbuf;
565
566 /* set baud rate if needed */
567 if (data->cur_trans->speed_hz) {
568 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
569 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
570 }
571
572 /* set bits per word if needed */
573 if (data->cur_trans->bits_per_word &&
574 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
575 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
576 pch_spi_set_bits_per_word(data->master,
577 data->cur_trans->bits_per_word);
578 *bpw = data->cur_trans->bits_per_word;
579 } else {
580 *bpw = data->current_msg->spi->bits_per_word;
581 }
582
583 /* reset Tx/Rx index */
584 data->tx_index = 0;
585 data->rx_index = 0;
586
587 data->bpw_len = data->cur_trans->len / (*bpw / 8);
588
589 /* find alloc size */
590 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
591
592 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
593 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
594 if (data->pkt_tx_buff != NULL) {
595 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
596 if (!data->pkt_rx_buff)
597 kfree(data->pkt_tx_buff);
598 }
599
600 if (!data->pkt_rx_buff) {
601 /* flush queue and set status of all transfers to -ENOMEM */
602 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
603 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
604 pmsg->status = -ENOMEM;
605
606 if (pmsg->complete)
607 pmsg->complete(pmsg->context);
608
609 /* delete from queue */
610 list_del_init(&pmsg->queue);
611 }
612 return;
613 }
614
615 /* copy Tx Data */
616 if (data->cur_trans->tx_buf != NULL) {
617 if (*bpw == 8) {
618 tx_buf = data->cur_trans->tx_buf;
619 for (j = 0; j < data->bpw_len; j++)
620 data->pkt_tx_buff[j] = *tx_buf++;
621 } else {
622 tx_sbuf = data->cur_trans->tx_buf;
623 for (j = 0; j < data->bpw_len; j++)
624 data->pkt_tx_buff[j] = *tx_sbuf++;
625 }
626 }
627
628 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
629 n_writes = data->bpw_len;
630 if (n_writes > PCH_MAX_FIFO_DEPTH)
631 n_writes = PCH_MAX_FIFO_DEPTH;
632
633 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
634 "0x2 to SSNXCR\n", __func__);
635 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
636
637 for (j = 0; j < n_writes; j++)
638 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
639
640 /* update tx_index */
641 data->tx_index = j;
642
643 /* reset transfer complete flag */
644 data->transfer_complete = false;
645 data->transfer_active = true;
646 }
647
648 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
649 {
650 struct spi_message *pmsg, *tmp;
651 dev_dbg(&data->master->dev, "%s called\n", __func__);
652 /* Invoke complete callback
653 * [To the spi core..indicating end of transfer] */
654 data->current_msg->status = 0;
655
656 if (data->current_msg->complete) {
657 dev_dbg(&data->master->dev,
658 "%s:Invoking callback of SPI core\n", __func__);
659 data->current_msg->complete(data->current_msg->context);
660 }
661
662 /* update status in global variable */
663 data->bcurrent_msg_processing = false;
664
665 dev_dbg(&data->master->dev,
666 "%s:data->bcurrent_msg_processing = false\n", __func__);
667
668 data->current_msg = NULL;
669 data->cur_trans = NULL;
670
671 /* check if we have items in list and not suspending
672 * return 1 if list empty */
673 if ((list_empty(&data->queue) == 0) &&
674 (!data->board_dat->suspend_sts) &&
675 (data->status != STATUS_EXITING)) {
676 /* We have some more work to do (either there is more tranint
677 * bpw;sfer requests in the current message or there are
678 *more messages)
679 */
680 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
681 queue_work(data->wk, &data->work);
682 } else if (data->board_dat->suspend_sts ||
683 data->status == STATUS_EXITING) {
684 dev_dbg(&data->master->dev,
685 "%s suspend/remove initiated, flushing queue\n",
686 __func__);
687 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
688 pmsg->status = -EIO;
689
690 if (pmsg->complete)
691 pmsg->complete(pmsg->context);
692
693 /* delete from queue */
694 list_del_init(&pmsg->queue);
695 }
696 }
697 }
698
699 static void pch_spi_set_ir(struct pch_spi_data *data)
700 {
701 /* enable interrupts, set threshold, enable SPI */
702 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
703 /* set receive threshold to PCH_RX_THOLD */
704 pch_spi_setclr_reg(data->master, PCH_SPCR,
705 PCH_RX_THOLD << SPCR_RFIC_FIELD |
706 SPCR_FIE_BIT | SPCR_RFIE_BIT |
707 SPCR_ORIE_BIT | SPCR_SPE_BIT,
708 MASK_RFIC_SPCR_BITS | PCH_ALL);
709 else
710 /* set receive threshold to maximum */
711 pch_spi_setclr_reg(data->master, PCH_SPCR,
712 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
713 SPCR_FIE_BIT | SPCR_ORIE_BIT |
714 SPCR_SPE_BIT,
715 MASK_RFIC_SPCR_BITS | PCH_ALL);
716
717 /* Wait until the transfer completes; go to sleep after
718 initiating the transfer. */
719 dev_dbg(&data->master->dev,
720 "%s:waiting for transfer to get over\n", __func__);
721
722 wait_event_interruptible(data->wait, data->transfer_complete);
723
724 /* clear all interrupts */
725 pch_spi_writereg(data->master, PCH_SPSR,
726 pch_spi_readreg(data->master, PCH_SPSR));
727 /* Disable interrupts and SPI transfer */
728 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
729 /* clear FIFO */
730 pch_spi_clear_fifo(data->master);
731 }
732
733 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
734 {
735 int j;
736 u8 *rx_buf;
737 u16 *rx_sbuf;
738
739 /* copy Rx Data */
740 if (!data->cur_trans->rx_buf)
741 return;
742
743 if (bpw == 8) {
744 rx_buf = data->cur_trans->rx_buf;
745 for (j = 0; j < data->bpw_len; j++)
746 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
747 } else {
748 rx_sbuf = data->cur_trans->rx_buf;
749 for (j = 0; j < data->bpw_len; j++)
750 *rx_sbuf++ = data->pkt_rx_buff[j];
751 }
752 }
753
754 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
755 {
756 int j;
757 u8 *rx_buf;
758 u16 *rx_sbuf;
759 const u8 *rx_dma_buf;
760 const u16 *rx_dma_sbuf;
761
762 /* copy Rx Data */
763 if (!data->cur_trans->rx_buf)
764 return;
765
766 if (bpw == 8) {
767 rx_buf = data->cur_trans->rx_buf;
768 rx_dma_buf = data->dma.rx_buf_virt;
769 for (j = 0; j < data->bpw_len; j++)
770 *rx_buf++ = *rx_dma_buf++ & 0xFF;
771 data->cur_trans->rx_buf = rx_buf;
772 } else {
773 rx_sbuf = data->cur_trans->rx_buf;
774 rx_dma_sbuf = data->dma.rx_buf_virt;
775 for (j = 0; j < data->bpw_len; j++)
776 *rx_sbuf++ = *rx_dma_sbuf++;
777 data->cur_trans->rx_buf = rx_sbuf;
778 }
779 }
780
781 static int pch_spi_start_transfer(struct pch_spi_data *data)
782 {
783 struct pch_spi_dma_ctrl *dma;
784 unsigned long flags;
785 int rtn;
786
787 dma = &data->dma;
788
789 spin_lock_irqsave(&data->lock, flags);
790
791 /* disable interrupts, SPI set enable */
792 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
793
794 spin_unlock_irqrestore(&data->lock, flags);
795
796 /* Wait until the transfer completes; go to sleep after
797 initiating the transfer. */
798 dev_dbg(&data->master->dev,
799 "%s:waiting for transfer to get over\n", __func__);
800 rtn = wait_event_interruptible_timeout(data->wait,
801 data->transfer_complete,
802 msecs_to_jiffies(2 * HZ));
803 if (!rtn)
804 dev_err(&data->master->dev,
805 "%s wait-event timeout\n", __func__);
806
807 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
808 DMA_FROM_DEVICE);
809
810 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
811 DMA_FROM_DEVICE);
812 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
813
814 async_tx_ack(dma->desc_rx);
815 async_tx_ack(dma->desc_tx);
816 kfree(dma->sg_tx_p);
817 kfree(dma->sg_rx_p);
818
819 spin_lock_irqsave(&data->lock, flags);
820
821 /* clear fifo threshold, disable interrupts, disable SPI transfer */
822 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
823 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
824 SPCR_SPE_BIT);
825 /* clear all interrupts */
826 pch_spi_writereg(data->master, PCH_SPSR,
827 pch_spi_readreg(data->master, PCH_SPSR));
828 /* clear FIFO */
829 pch_spi_clear_fifo(data->master);
830
831 spin_unlock_irqrestore(&data->lock, flags);
832
833 return rtn;
834 }
835
836 static void pch_dma_rx_complete(void *arg)
837 {
838 struct pch_spi_data *data = arg;
839
840 /* transfer is completed;inform pch_spi_process_messages_dma */
841 data->transfer_complete = true;
842 wake_up_interruptible(&data->wait);
843 }
844
845 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
846 {
847 struct pch_dma_slave *param = slave;
848
849 if ((chan->chan_id == param->chan_id) &&
850 (param->dma_dev == chan->device->dev)) {
851 chan->private = param;
852 return true;
853 } else {
854 return false;
855 }
856 }
857
858 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
859 {
860 dma_cap_mask_t mask;
861 struct dma_chan *chan;
862 struct pci_dev *dma_dev;
863 struct pch_dma_slave *param;
864 struct pch_spi_dma_ctrl *dma;
865 unsigned int width;
866
867 if (bpw == 8)
868 width = PCH_DMA_WIDTH_1_BYTE;
869 else
870 width = PCH_DMA_WIDTH_2_BYTES;
871
872 dma = &data->dma;
873 dma_cap_zero(mask);
874 dma_cap_set(DMA_SLAVE, mask);
875
876 /* Get DMA's dev information */
877 dma_dev = pci_get_slot(data->board_dat->pdev->bus,
878 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
879
880 /* Set Tx DMA */
881 param = &dma->param_tx;
882 param->dma_dev = &dma_dev->dev;
883 param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
884 param->tx_reg = data->io_base_addr + PCH_SPDWR;
885 param->width = width;
886 chan = dma_request_channel(mask, pch_spi_filter, param);
887 if (!chan) {
888 dev_err(&data->master->dev,
889 "ERROR: dma_request_channel FAILS(Tx)\n");
890 data->use_dma = 0;
891 return;
892 }
893 dma->chan_tx = chan;
894
895 /* Set Rx DMA */
896 param = &dma->param_rx;
897 param->dma_dev = &dma_dev->dev;
898 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
899 param->rx_reg = data->io_base_addr + PCH_SPDRR;
900 param->width = width;
901 chan = dma_request_channel(mask, pch_spi_filter, param);
902 if (!chan) {
903 dev_err(&data->master->dev,
904 "ERROR: dma_request_channel FAILS(Rx)\n");
905 dma_release_channel(dma->chan_tx);
906 dma->chan_tx = NULL;
907 data->use_dma = 0;
908 return;
909 }
910 dma->chan_rx = chan;
911 }
912
913 static void pch_spi_release_dma(struct pch_spi_data *data)
914 {
915 struct pch_spi_dma_ctrl *dma;
916
917 dma = &data->dma;
918 if (dma->chan_tx) {
919 dma_release_channel(dma->chan_tx);
920 dma->chan_tx = NULL;
921 }
922 if (dma->chan_rx) {
923 dma_release_channel(dma->chan_rx);
924 dma->chan_rx = NULL;
925 }
926 return;
927 }
928
929 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
930 {
931 const u8 *tx_buf;
932 const u16 *tx_sbuf;
933 u8 *tx_dma_buf;
934 u16 *tx_dma_sbuf;
935 struct scatterlist *sg;
936 struct dma_async_tx_descriptor *desc_tx;
937 struct dma_async_tx_descriptor *desc_rx;
938 int num;
939 int i;
940 int size;
941 int rem;
942 int head;
943 unsigned long flags;
944 struct pch_spi_dma_ctrl *dma;
945
946 dma = &data->dma;
947
948 /* set baud rate if needed */
949 if (data->cur_trans->speed_hz) {
950 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
951 spin_lock_irqsave(&data->lock, flags);
952 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
953 spin_unlock_irqrestore(&data->lock, flags);
954 }
955
956 /* set bits per word if needed */
957 if (data->cur_trans->bits_per_word &&
958 (data->current_msg->spi->bits_per_word !=
959 data->cur_trans->bits_per_word)) {
960 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
961 spin_lock_irqsave(&data->lock, flags);
962 pch_spi_set_bits_per_word(data->master,
963 data->cur_trans->bits_per_word);
964 spin_unlock_irqrestore(&data->lock, flags);
965 *bpw = data->cur_trans->bits_per_word;
966 } else {
967 *bpw = data->current_msg->spi->bits_per_word;
968 }
969 data->bpw_len = data->cur_trans->len / (*bpw / 8);
970
971 if (data->bpw_len > PCH_BUF_SIZE) {
972 data->bpw_len = PCH_BUF_SIZE;
973 data->cur_trans->len -= PCH_BUF_SIZE;
974 }
975
976 /* copy Tx Data */
977 if (data->cur_trans->tx_buf != NULL) {
978 if (*bpw == 8) {
979 tx_buf = data->cur_trans->tx_buf;
980 tx_dma_buf = dma->tx_buf_virt;
981 for (i = 0; i < data->bpw_len; i++)
982 *tx_dma_buf++ = *tx_buf++;
983 } else {
984 tx_sbuf = data->cur_trans->tx_buf;
985 tx_dma_sbuf = dma->tx_buf_virt;
986 for (i = 0; i < data->bpw_len; i++)
987 *tx_dma_sbuf++ = *tx_sbuf++;
988 }
989 }
990
991 /* Calculate Rx parameter for DMA transmitting */
992 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
993 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
994 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
995 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
996 } else {
997 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
998 rem = PCH_DMA_TRANS_SIZE;
999 }
1000 size = PCH_DMA_TRANS_SIZE;
1001 } else {
1002 num = 1;
1003 size = data->bpw_len;
1004 rem = data->bpw_len;
1005 }
1006 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1007 __func__, num, size, rem);
1008 spin_lock_irqsave(&data->lock, flags);
1009
1010 /* set receive fifo threshold and transmit fifo threshold */
1011 pch_spi_setclr_reg(data->master, PCH_SPCR,
1012 ((size - 1) << SPCR_RFIC_FIELD) |
1013 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1014 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1015
1016 spin_unlock_irqrestore(&data->lock, flags);
1017
1018 /* RX */
1019 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1020 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1021 /* offset, length setting */
1022 sg = dma->sg_rx_p;
1023 for (i = 0; i < num; i++, sg++) {
1024 if (i == (num - 2)) {
1025 sg->offset = size * i;
1026 sg->offset = sg->offset * (*bpw / 8);
1027 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1028 sg->offset);
1029 sg_dma_len(sg) = rem;
1030 } else if (i == (num - 1)) {
1031 sg->offset = size * (i - 1) + rem;
1032 sg->offset = sg->offset * (*bpw / 8);
1033 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1034 sg->offset);
1035 sg_dma_len(sg) = size;
1036 } else {
1037 sg->offset = size * i;
1038 sg->offset = sg->offset * (*bpw / 8);
1039 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1040 sg->offset);
1041 sg_dma_len(sg) = size;
1042 }
1043 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1044 }
1045 sg = dma->sg_rx_p;
1046 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1047 num, DMA_DEV_TO_MEM,
1048 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1049 if (!desc_rx) {
1050 dev_err(&data->master->dev,
1051 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1052 return;
1053 }
1054 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1055 desc_rx->callback = pch_dma_rx_complete;
1056 desc_rx->callback_param = data;
1057 dma->nent = num;
1058 dma->desc_rx = desc_rx;
1059
1060 /* Calculate Tx parameter for DMA transmitting */
1061 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1062 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1063 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1064 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1065 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1066 } else {
1067 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1068 rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1069 PCH_DMA_TRANS_SIZE - head;
1070 }
1071 size = PCH_DMA_TRANS_SIZE;
1072 } else {
1073 num = 1;
1074 size = data->bpw_len;
1075 rem = data->bpw_len;
1076 head = 0;
1077 }
1078
1079 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1080 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1081 /* offset, length setting */
1082 sg = dma->sg_tx_p;
1083 for (i = 0; i < num; i++, sg++) {
1084 if (i == 0) {
1085 sg->offset = 0;
1086 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1087 sg->offset);
1088 sg_dma_len(sg) = size + head;
1089 } else if (i == (num - 1)) {
1090 sg->offset = head + size * i;
1091 sg->offset = sg->offset * (*bpw / 8);
1092 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1093 sg->offset);
1094 sg_dma_len(sg) = rem;
1095 } else {
1096 sg->offset = head + size * i;
1097 sg->offset = sg->offset * (*bpw / 8);
1098 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1099 sg->offset);
1100 sg_dma_len(sg) = size;
1101 }
1102 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1103 }
1104 sg = dma->sg_tx_p;
1105 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1106 sg, num, DMA_MEM_TO_DEV,
1107 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1108 if (!desc_tx) {
1109 dev_err(&data->master->dev,
1110 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1111 return;
1112 }
1113 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1114 desc_tx->callback = NULL;
1115 desc_tx->callback_param = data;
1116 dma->nent = num;
1117 dma->desc_tx = desc_tx;
1118
1119 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1120
1121 spin_lock_irqsave(&data->lock, flags);
1122 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1123 desc_rx->tx_submit(desc_rx);
1124 desc_tx->tx_submit(desc_tx);
1125 spin_unlock_irqrestore(&data->lock, flags);
1126
1127 /* reset transfer complete flag */
1128 data->transfer_complete = false;
1129 }
1130
1131 static void pch_spi_process_messages(struct work_struct *pwork)
1132 {
1133 struct spi_message *pmsg, *tmp;
1134 struct pch_spi_data *data;
1135 int bpw;
1136
1137 data = container_of(pwork, struct pch_spi_data, work);
1138 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1139
1140 spin_lock(&data->lock);
1141 /* check if suspend has been initiated;if yes flush queue */
1142 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1143 dev_dbg(&data->master->dev,
1144 "%s suspend/remove initiated, flushing queue\n", __func__);
1145 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1146 pmsg->status = -EIO;
1147
1148 if (pmsg->complete) {
1149 spin_unlock(&data->lock);
1150 pmsg->complete(pmsg->context);
1151 spin_lock(&data->lock);
1152 }
1153
1154 /* delete from queue */
1155 list_del_init(&pmsg->queue);
1156 }
1157
1158 spin_unlock(&data->lock);
1159 return;
1160 }
1161
1162 data->bcurrent_msg_processing = true;
1163 dev_dbg(&data->master->dev,
1164 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1165
1166 /* Get the message from the queue and delete it from there. */
1167 data->current_msg = list_entry(data->queue.next, struct spi_message,
1168 queue);
1169
1170 list_del_init(&data->current_msg->queue);
1171
1172 data->current_msg->status = 0;
1173
1174 pch_spi_select_chip(data, data->current_msg->spi);
1175
1176 spin_unlock(&data->lock);
1177
1178 if (data->use_dma)
1179 pch_spi_request_dma(data,
1180 data->current_msg->spi->bits_per_word);
1181 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1182 do {
1183 int cnt;
1184 /* If we are already processing a message get the next
1185 transfer structure from the message otherwise retrieve
1186 the 1st transfer request from the message. */
1187 spin_lock(&data->lock);
1188 if (data->cur_trans == NULL) {
1189 data->cur_trans =
1190 list_entry(data->current_msg->transfers.next,
1191 struct spi_transfer, transfer_list);
1192 dev_dbg(&data->master->dev, "%s "
1193 ":Getting 1st transfer message\n", __func__);
1194 } else {
1195 data->cur_trans =
1196 list_entry(data->cur_trans->transfer_list.next,
1197 struct spi_transfer, transfer_list);
1198 dev_dbg(&data->master->dev, "%s "
1199 ":Getting next transfer message\n", __func__);
1200 }
1201 spin_unlock(&data->lock);
1202
1203 if (!data->cur_trans->len)
1204 goto out;
1205 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1206 data->save_total_len = data->cur_trans->len;
1207 if (data->use_dma) {
1208 int i;
1209 char *save_rx_buf = data->cur_trans->rx_buf;
1210 for (i = 0; i < cnt; i ++) {
1211 pch_spi_handle_dma(data, &bpw);
1212 if (!pch_spi_start_transfer(data)) {
1213 data->transfer_complete = true;
1214 data->current_msg->status = -EIO;
1215 data->current_msg->complete
1216 (data->current_msg->context);
1217 data->bcurrent_msg_processing = false;
1218 data->current_msg = NULL;
1219 data->cur_trans = NULL;
1220 goto out;
1221 }
1222 pch_spi_copy_rx_data_for_dma(data, bpw);
1223 }
1224 data->cur_trans->rx_buf = save_rx_buf;
1225 } else {
1226 pch_spi_set_tx(data, &bpw);
1227 pch_spi_set_ir(data);
1228 pch_spi_copy_rx_data(data, bpw);
1229 kfree(data->pkt_rx_buff);
1230 data->pkt_rx_buff = NULL;
1231 kfree(data->pkt_tx_buff);
1232 data->pkt_tx_buff = NULL;
1233 }
1234 /* increment message count */
1235 data->cur_trans->len = data->save_total_len;
1236 data->current_msg->actual_length += data->cur_trans->len;
1237
1238 dev_dbg(&data->master->dev,
1239 "%s:data->current_msg->actual_length=%d\n",
1240 __func__, data->current_msg->actual_length);
1241
1242 /* check for delay */
1243 if (data->cur_trans->delay_usecs) {
1244 dev_dbg(&data->master->dev, "%s:"
1245 "delay in usec=%d\n", __func__,
1246 data->cur_trans->delay_usecs);
1247 udelay(data->cur_trans->delay_usecs);
1248 }
1249
1250 spin_lock(&data->lock);
1251
1252 /* No more transfer in this message. */
1253 if ((data->cur_trans->transfer_list.next) ==
1254 &(data->current_msg->transfers)) {
1255 pch_spi_nomore_transfer(data);
1256 }
1257
1258 spin_unlock(&data->lock);
1259
1260 } while (data->cur_trans != NULL);
1261
1262 out:
1263 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1264 if (data->use_dma)
1265 pch_spi_release_dma(data);
1266 }
1267
1268 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1269 struct pch_spi_data *data)
1270 {
1271 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1272
1273 /* free workqueue */
1274 if (data->wk != NULL) {
1275 destroy_workqueue(data->wk);
1276 data->wk = NULL;
1277 dev_dbg(&board_dat->pdev->dev,
1278 "%s destroy_workqueue invoked successfully\n",
1279 __func__);
1280 }
1281 }
1282
1283 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1284 struct pch_spi_data *data)
1285 {
1286 int retval = 0;
1287
1288 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1289
1290 /* create workqueue */
1291 data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1292 if (!data->wk) {
1293 dev_err(&board_dat->pdev->dev,
1294 "%s create_singlet hread_workqueue failed\n", __func__);
1295 retval = -EBUSY;
1296 goto err_return;
1297 }
1298
1299 /* reset PCH SPI h/w */
1300 pch_spi_reset(data->master);
1301 dev_dbg(&board_dat->pdev->dev,
1302 "%s pch_spi_reset invoked successfully\n", __func__);
1303
1304 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1305
1306 err_return:
1307 if (retval != 0) {
1308 dev_err(&board_dat->pdev->dev,
1309 "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1310 pch_spi_free_resources(board_dat, data);
1311 }
1312
1313 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1314
1315 return retval;
1316 }
1317
1318 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1319 struct pch_spi_data *data)
1320 {
1321 struct pch_spi_dma_ctrl *dma;
1322
1323 dma = &data->dma;
1324 if (dma->tx_buf_dma)
1325 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1326 dma->tx_buf_virt, dma->tx_buf_dma);
1327 if (dma->rx_buf_dma)
1328 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1329 dma->rx_buf_virt, dma->rx_buf_dma);
1330 return;
1331 }
1332
1333 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1334 struct pch_spi_data *data)
1335 {
1336 struct pch_spi_dma_ctrl *dma;
1337
1338 dma = &data->dma;
1339 /* Get Consistent memory for Tx DMA */
1340 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1341 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1342 /* Get Consistent memory for Rx DMA */
1343 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1344 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1345 }
1346
1347 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1348 {
1349 int ret;
1350 struct spi_master *master;
1351 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1352 struct pch_spi_data *data;
1353
1354 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1355
1356 master = spi_alloc_master(&board_dat->pdev->dev,
1357 sizeof(struct pch_spi_data));
1358 if (!master) {
1359 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1360 plat_dev->id);
1361 return -ENOMEM;
1362 }
1363
1364 data = spi_master_get_devdata(master);
1365 data->master = master;
1366
1367 platform_set_drvdata(plat_dev, data);
1368
1369 /* baseaddress + address offset) */
1370 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1371 PCH_ADDRESS_SIZE * plat_dev->id;
1372 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1373 if (!data->io_remap_addr) {
1374 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1375 ret = -ENOMEM;
1376 goto err_pci_iomap;
1377 }
1378 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1379
1380 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1381 plat_dev->id, data->io_remap_addr);
1382
1383 /* initialize members of SPI master */
1384 master->num_chipselect = PCH_MAX_CS;
1385 master->transfer = pch_spi_transfer;
1386 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1387 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1388 master->max_speed_hz = PCH_MAX_BAUDRATE;
1389
1390 data->board_dat = board_dat;
1391 data->plat_dev = plat_dev;
1392 data->n_curnt_chip = 255;
1393 data->status = STATUS_RUNNING;
1394 data->ch = plat_dev->id;
1395 data->use_dma = use_dma;
1396
1397 INIT_LIST_HEAD(&data->queue);
1398 spin_lock_init(&data->lock);
1399 INIT_WORK(&data->work, pch_spi_process_messages);
1400 init_waitqueue_head(&data->wait);
1401
1402 ret = pch_spi_get_resources(board_dat, data);
1403 if (ret) {
1404 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1405 goto err_spi_get_resources;
1406 }
1407
1408 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1409 IRQF_SHARED, KBUILD_MODNAME, data);
1410 if (ret) {
1411 dev_err(&plat_dev->dev,
1412 "%s request_irq failed\n", __func__);
1413 goto err_request_irq;
1414 }
1415 data->irq_reg_sts = true;
1416
1417 pch_spi_set_master_mode(master);
1418
1419 if (use_dma) {
1420 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1421 pch_alloc_dma_buf(board_dat, data);
1422 }
1423
1424 ret = spi_register_master(master);
1425 if (ret != 0) {
1426 dev_err(&plat_dev->dev,
1427 "%s spi_register_master FAILED\n", __func__);
1428 goto err_spi_register_master;
1429 }
1430
1431 return 0;
1432
1433 err_spi_register_master:
1434 pch_free_dma_buf(board_dat, data);
1435 free_irq(board_dat->pdev->irq, data);
1436 err_request_irq:
1437 pch_spi_free_resources(board_dat, data);
1438 err_spi_get_resources:
1439 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1440 err_pci_iomap:
1441 spi_master_put(master);
1442
1443 return ret;
1444 }
1445
1446 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1447 {
1448 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1449 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1450 int count;
1451 unsigned long flags;
1452
1453 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1454 __func__, plat_dev->id, board_dat->pdev->irq);
1455
1456 if (use_dma)
1457 pch_free_dma_buf(board_dat, data);
1458
1459 /* check for any pending messages; no action is taken if the queue
1460 * is still full; but at least we tried. Unload anyway */
1461 count = 500;
1462 spin_lock_irqsave(&data->lock, flags);
1463 data->status = STATUS_EXITING;
1464 while ((list_empty(&data->queue) == 0) && --count) {
1465 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1466 __func__);
1467 spin_unlock_irqrestore(&data->lock, flags);
1468 msleep(PCH_SLEEP_TIME);
1469 spin_lock_irqsave(&data->lock, flags);
1470 }
1471 spin_unlock_irqrestore(&data->lock, flags);
1472
1473 pch_spi_free_resources(board_dat, data);
1474 /* disable interrupts & free IRQ */
1475 if (data->irq_reg_sts) {
1476 /* disable interrupts */
1477 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1478 data->irq_reg_sts = false;
1479 free_irq(board_dat->pdev->irq, data);
1480 }
1481
1482 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1483 spi_unregister_master(data->master);
1484
1485 return 0;
1486 }
1487 #ifdef CONFIG_PM
1488 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1489 pm_message_t state)
1490 {
1491 u8 count;
1492 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1493 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1494
1495 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1496
1497 if (!board_dat) {
1498 dev_err(&pd_dev->dev,
1499 "%s pci_get_drvdata returned NULL\n", __func__);
1500 return -EFAULT;
1501 }
1502
1503 /* check if the current message is processed:
1504 Only after thats done the transfer will be suspended */
1505 count = 255;
1506 while ((--count) > 0) {
1507 if (!(data->bcurrent_msg_processing))
1508 break;
1509 msleep(PCH_SLEEP_TIME);
1510 }
1511
1512 /* Free IRQ */
1513 if (data->irq_reg_sts) {
1514 /* disable all interrupts */
1515 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1516 pch_spi_reset(data->master);
1517 free_irq(board_dat->pdev->irq, data);
1518
1519 data->irq_reg_sts = false;
1520 dev_dbg(&pd_dev->dev,
1521 "%s free_irq invoked successfully.\n", __func__);
1522 }
1523
1524 return 0;
1525 }
1526
1527 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1528 {
1529 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1530 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1531 int retval;
1532
1533 if (!board_dat) {
1534 dev_err(&pd_dev->dev,
1535 "%s pci_get_drvdata returned NULL\n", __func__);
1536 return -EFAULT;
1537 }
1538
1539 if (!data->irq_reg_sts) {
1540 /* register IRQ */
1541 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1542 IRQF_SHARED, KBUILD_MODNAME, data);
1543 if (retval < 0) {
1544 dev_err(&pd_dev->dev,
1545 "%s request_irq failed\n", __func__);
1546 return retval;
1547 }
1548
1549 /* reset PCH SPI h/w */
1550 pch_spi_reset(data->master);
1551 pch_spi_set_master_mode(data->master);
1552 data->irq_reg_sts = true;
1553 }
1554 return 0;
1555 }
1556 #else
1557 #define pch_spi_pd_suspend NULL
1558 #define pch_spi_pd_resume NULL
1559 #endif
1560
1561 static struct platform_driver pch_spi_pd_driver = {
1562 .driver = {
1563 .name = "pch-spi",
1564 },
1565 .probe = pch_spi_pd_probe,
1566 .remove = pch_spi_pd_remove,
1567 .suspend = pch_spi_pd_suspend,
1568 .resume = pch_spi_pd_resume
1569 };
1570
1571 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1572 {
1573 struct pch_spi_board_data *board_dat;
1574 struct platform_device *pd_dev = NULL;
1575 int retval;
1576 int i;
1577 struct pch_pd_dev_save *pd_dev_save;
1578
1579 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1580 if (!pd_dev_save)
1581 return -ENOMEM;
1582
1583 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1584 if (!board_dat) {
1585 retval = -ENOMEM;
1586 goto err_no_mem;
1587 }
1588
1589 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1590 if (retval) {
1591 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1592 goto pci_request_regions;
1593 }
1594
1595 board_dat->pdev = pdev;
1596 board_dat->num = id->driver_data;
1597 pd_dev_save->num = id->driver_data;
1598 pd_dev_save->board_dat = board_dat;
1599
1600 retval = pci_enable_device(pdev);
1601 if (retval) {
1602 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1603 goto pci_enable_device;
1604 }
1605
1606 for (i = 0; i < board_dat->num; i++) {
1607 pd_dev = platform_device_alloc("pch-spi", i);
1608 if (!pd_dev) {
1609 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1610 retval = -ENOMEM;
1611 goto err_platform_device;
1612 }
1613 pd_dev_save->pd_save[i] = pd_dev;
1614 pd_dev->dev.parent = &pdev->dev;
1615
1616 retval = platform_device_add_data(pd_dev, board_dat,
1617 sizeof(*board_dat));
1618 if (retval) {
1619 dev_err(&pdev->dev,
1620 "platform_device_add_data failed\n");
1621 platform_device_put(pd_dev);
1622 goto err_platform_device;
1623 }
1624
1625 retval = platform_device_add(pd_dev);
1626 if (retval) {
1627 dev_err(&pdev->dev, "platform_device_add failed\n");
1628 platform_device_put(pd_dev);
1629 goto err_platform_device;
1630 }
1631 }
1632
1633 pci_set_drvdata(pdev, pd_dev_save);
1634
1635 return 0;
1636
1637 err_platform_device:
1638 while (--i >= 0)
1639 platform_device_unregister(pd_dev_save->pd_save[i]);
1640 pci_disable_device(pdev);
1641 pci_enable_device:
1642 pci_release_regions(pdev);
1643 pci_request_regions:
1644 kfree(board_dat);
1645 err_no_mem:
1646 kfree(pd_dev_save);
1647
1648 return retval;
1649 }
1650
1651 static void pch_spi_remove(struct pci_dev *pdev)
1652 {
1653 int i;
1654 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1655
1656 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1657
1658 for (i = 0; i < pd_dev_save->num; i++)
1659 platform_device_unregister(pd_dev_save->pd_save[i]);
1660
1661 pci_disable_device(pdev);
1662 pci_release_regions(pdev);
1663 kfree(pd_dev_save->board_dat);
1664 kfree(pd_dev_save);
1665 }
1666
1667 #ifdef CONFIG_PM
1668 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1669 {
1670 int retval;
1671 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1672
1673 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1674
1675 pd_dev_save->board_dat->suspend_sts = true;
1676
1677 /* save config space */
1678 retval = pci_save_state(pdev);
1679 if (retval == 0) {
1680 pci_enable_wake(pdev, PCI_D3hot, 0);
1681 pci_disable_device(pdev);
1682 pci_set_power_state(pdev, PCI_D3hot);
1683 } else {
1684 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1685 }
1686
1687 return retval;
1688 }
1689
1690 static int pch_spi_resume(struct pci_dev *pdev)
1691 {
1692 int retval;
1693 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1694 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1695
1696 pci_set_power_state(pdev, PCI_D0);
1697 pci_restore_state(pdev);
1698
1699 retval = pci_enable_device(pdev);
1700 if (retval < 0) {
1701 dev_err(&pdev->dev,
1702 "%s pci_enable_device failed\n", __func__);
1703 } else {
1704 pci_enable_wake(pdev, PCI_D3hot, 0);
1705
1706 /* set suspend status to false */
1707 pd_dev_save->board_dat->suspend_sts = false;
1708 }
1709
1710 return retval;
1711 }
1712 #else
1713 #define pch_spi_suspend NULL
1714 #define pch_spi_resume NULL
1715
1716 #endif
1717
1718 static struct pci_driver pch_spi_pcidev_driver = {
1719 .name = "pch_spi",
1720 .id_table = pch_spi_pcidev_id,
1721 .probe = pch_spi_probe,
1722 .remove = pch_spi_remove,
1723 .suspend = pch_spi_suspend,
1724 .resume = pch_spi_resume,
1725 };
1726
1727 static int __init pch_spi_init(void)
1728 {
1729 int ret;
1730 ret = platform_driver_register(&pch_spi_pd_driver);
1731 if (ret)
1732 return ret;
1733
1734 ret = pci_register_driver(&pch_spi_pcidev_driver);
1735 if (ret) {
1736 platform_driver_unregister(&pch_spi_pd_driver);
1737 return ret;
1738 }
1739
1740 return 0;
1741 }
1742 module_init(pch_spi_init);
1743
1744 static void __exit pch_spi_exit(void)
1745 {
1746 pci_unregister_driver(&pch_spi_pcidev_driver);
1747 platform_driver_unregister(&pch_spi_pd_driver);
1748 }
1749 module_exit(pch_spi_exit);
1750
1751 module_param(use_dma, int, 0644);
1752 MODULE_PARM_DESC(use_dma,
1753 "to use DMA for data transfers pass 1 else 0; default 1");
1754
1755 MODULE_LICENSE("GPL");
1756 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1757 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1758
This page took 0.069504 seconds and 5 git commands to generate.