Merge tag 'for-linus-20160801' of git://git.infradead.org/linux-mtd
[deliverable/linux.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
3 *
4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/delay.h>
17 #include <linux/pci.h>
18 #include <linux/wait.h>
19 #include <linux/spi/spi.h>
20 #include <linux/interrupt.h>
21 #include <linux/sched.h>
22 #include <linux/spi/spidev.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/platform_device.h>
26
27 #include <linux/dmaengine.h>
28 #include <linux/pch_dma.h>
29
30 /* Register offsets */
31 #define PCH_SPCR 0x00 /* SPI control register */
32 #define PCH_SPBRR 0x04 /* SPI baud rate register */
33 #define PCH_SPSR 0x08 /* SPI status register */
34 #define PCH_SPDWR 0x0C /* SPI write data register */
35 #define PCH_SPDRR 0x10 /* SPI read data register */
36 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
37 #define PCH_SRST 0x1C /* SPI reset register */
38 #define PCH_ADDRESS_SIZE 0x20
39
40 #define PCH_SPSR_TFD 0x000007C0
41 #define PCH_SPSR_RFD 0x0000F800
42
43 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
44 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
45
46 #define PCH_RX_THOLD 7
47 #define PCH_RX_THOLD_MAX 15
48
49 #define PCH_TX_THOLD 2
50
51 #define PCH_MAX_BAUDRATE 5000000
52 #define PCH_MAX_FIFO_DEPTH 16
53
54 #define STATUS_RUNNING 1
55 #define STATUS_EXITING 2
56 #define PCH_SLEEP_TIME 10
57
58 #define SSN_LOW 0x02U
59 #define SSN_HIGH 0x03U
60 #define SSN_NO_CONTROL 0x00U
61 #define PCH_MAX_CS 0xFF
62 #define PCI_DEVICE_ID_GE_SPI 0x8816
63
64 #define SPCR_SPE_BIT (1 << 0)
65 #define SPCR_MSTR_BIT (1 << 1)
66 #define SPCR_LSBF_BIT (1 << 4)
67 #define SPCR_CPHA_BIT (1 << 5)
68 #define SPCR_CPOL_BIT (1 << 6)
69 #define SPCR_TFIE_BIT (1 << 8)
70 #define SPCR_RFIE_BIT (1 << 9)
71 #define SPCR_FIE_BIT (1 << 10)
72 #define SPCR_ORIE_BIT (1 << 11)
73 #define SPCR_MDFIE_BIT (1 << 12)
74 #define SPCR_FICLR_BIT (1 << 24)
75 #define SPSR_TFI_BIT (1 << 0)
76 #define SPSR_RFI_BIT (1 << 1)
77 #define SPSR_FI_BIT (1 << 2)
78 #define SPSR_ORF_BIT (1 << 3)
79 #define SPBRR_SIZE_BIT (1 << 10)
80
81 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
82 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
83
84 #define SPCR_RFIC_FIELD 20
85 #define SPCR_TFIC_FIELD 16
86
87 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
88 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
89 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
90
91 #define PCH_CLOCK_HZ 50000000
92 #define PCH_MAX_SPBR 1023
93
94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
95 #define PCI_VENDOR_ID_ROHM 0x10DB
96 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
97 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
98 #define PCI_DEVICE_ID_ML7831_SPI 0x8816
99
100 /*
101 * Set the number of SPI instance max
102 * Intel EG20T PCH : 1ch
103 * LAPIS Semiconductor ML7213 IOH : 2ch
104 * LAPIS Semiconductor ML7223 IOH : 1ch
105 * LAPIS Semiconductor ML7831 IOH : 1ch
106 */
107 #define PCH_SPI_MAX_DEV 2
108
109 #define PCH_BUF_SIZE 4096
110 #define PCH_DMA_TRANS_SIZE 12
111
112 static int use_dma = 1;
113
114 struct pch_spi_dma_ctrl {
115 struct dma_async_tx_descriptor *desc_tx;
116 struct dma_async_tx_descriptor *desc_rx;
117 struct pch_dma_slave param_tx;
118 struct pch_dma_slave param_rx;
119 struct dma_chan *chan_tx;
120 struct dma_chan *chan_rx;
121 struct scatterlist *sg_tx_p;
122 struct scatterlist *sg_rx_p;
123 struct scatterlist sg_tx;
124 struct scatterlist sg_rx;
125 int nent;
126 void *tx_buf_virt;
127 void *rx_buf_virt;
128 dma_addr_t tx_buf_dma;
129 dma_addr_t rx_buf_dma;
130 };
131 /**
132 * struct pch_spi_data - Holds the SPI channel specific details
133 * @io_remap_addr: The remapped PCI base address
134 * @master: Pointer to the SPI master structure
135 * @work: Reference to work queue handler
136 * @wait: Wait queue for waking up upon receiving an
137 * interrupt.
138 * @transfer_complete: Status of SPI Transfer
139 * @bcurrent_msg_processing: Status flag for message processing
140 * @lock: Lock for protecting this structure
141 * @queue: SPI Message queue
142 * @status: Status of the SPI driver
143 * @bpw_len: Length of data to be transferred in bits per
144 * word
145 * @transfer_active: Flag showing active transfer
146 * @tx_index: Transmit data count; for bookkeeping during
147 * transfer
148 * @rx_index: Receive data count; for bookkeeping during
149 * transfer
150 * @tx_buff: Buffer for data to be transmitted
151 * @rx_index: Buffer for Received data
152 * @n_curnt_chip: The chip number that this SPI driver currently
153 * operates on
154 * @current_chip: Reference to the current chip that this SPI
155 * driver currently operates on
156 * @current_msg: The current message that this SPI driver is
157 * handling
158 * @cur_trans: The current transfer that this SPI driver is
159 * handling
160 * @board_dat: Reference to the SPI device data structure
161 * @plat_dev: platform_device structure
162 * @ch: SPI channel number
163 * @irq_reg_sts: Status of IRQ registration
164 */
165 struct pch_spi_data {
166 void __iomem *io_remap_addr;
167 unsigned long io_base_addr;
168 struct spi_master *master;
169 struct work_struct work;
170 wait_queue_head_t wait;
171 u8 transfer_complete;
172 u8 bcurrent_msg_processing;
173 spinlock_t lock;
174 struct list_head queue;
175 u8 status;
176 u32 bpw_len;
177 u8 transfer_active;
178 u32 tx_index;
179 u32 rx_index;
180 u16 *pkt_tx_buff;
181 u16 *pkt_rx_buff;
182 u8 n_curnt_chip;
183 struct spi_device *current_chip;
184 struct spi_message *current_msg;
185 struct spi_transfer *cur_trans;
186 struct pch_spi_board_data *board_dat;
187 struct platform_device *plat_dev;
188 int ch;
189 struct pch_spi_dma_ctrl dma;
190 int use_dma;
191 u8 irq_reg_sts;
192 int save_total_len;
193 };
194
195 /**
196 * struct pch_spi_board_data - Holds the SPI device specific details
197 * @pdev: Pointer to the PCI device
198 * @suspend_sts: Status of suspend
199 * @num: The number of SPI device instance
200 */
201 struct pch_spi_board_data {
202 struct pci_dev *pdev;
203 u8 suspend_sts;
204 int num;
205 };
206
207 struct pch_pd_dev_save {
208 int num;
209 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
210 struct pch_spi_board_data *board_dat;
211 };
212
213 static const struct pci_device_id pch_spi_pcidev_id[] = {
214 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
215 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
216 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
217 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
218 { }
219 };
220
221 /**
222 * pch_spi_writereg() - Performs register writes
223 * @master: Pointer to struct spi_master.
224 * @idx: Register offset.
225 * @val: Value to be written to register.
226 */
227 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
228 {
229 struct pch_spi_data *data = spi_master_get_devdata(master);
230 iowrite32(val, (data->io_remap_addr + idx));
231 }
232
233 /**
234 * pch_spi_readreg() - Performs register reads
235 * @master: Pointer to struct spi_master.
236 * @idx: Register offset.
237 */
238 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
239 {
240 struct pch_spi_data *data = spi_master_get_devdata(master);
241 return ioread32(data->io_remap_addr + idx);
242 }
243
244 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
245 u32 set, u32 clr)
246 {
247 u32 tmp = pch_spi_readreg(master, idx);
248 tmp = (tmp & ~clr) | set;
249 pch_spi_writereg(master, idx, tmp);
250 }
251
252 static void pch_spi_set_master_mode(struct spi_master *master)
253 {
254 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
255 }
256
257 /**
258 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
259 * @master: Pointer to struct spi_master.
260 */
261 static void pch_spi_clear_fifo(struct spi_master *master)
262 {
263 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
264 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
265 }
266
267 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
268 void __iomem *io_remap_addr)
269 {
270 u32 n_read, tx_index, rx_index, bpw_len;
271 u16 *pkt_rx_buffer, *pkt_tx_buff;
272 int read_cnt;
273 u32 reg_spcr_val;
274 void __iomem *spsr;
275 void __iomem *spdrr;
276 void __iomem *spdwr;
277
278 spsr = io_remap_addr + PCH_SPSR;
279 iowrite32(reg_spsr_val, spsr);
280
281 if (data->transfer_active) {
282 rx_index = data->rx_index;
283 tx_index = data->tx_index;
284 bpw_len = data->bpw_len;
285 pkt_rx_buffer = data->pkt_rx_buff;
286 pkt_tx_buff = data->pkt_tx_buff;
287
288 spdrr = io_remap_addr + PCH_SPDRR;
289 spdwr = io_remap_addr + PCH_SPDWR;
290
291 n_read = PCH_READABLE(reg_spsr_val);
292
293 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
294 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
295 if (tx_index < bpw_len)
296 iowrite32(pkt_tx_buff[tx_index++], spdwr);
297 }
298
299 /* disable RFI if not needed */
300 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
301 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
302 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
303
304 /* reset rx threshold */
305 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
306 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
307
308 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
309 }
310
311 /* update counts */
312 data->tx_index = tx_index;
313 data->rx_index = rx_index;
314
315 /* if transfer complete interrupt */
316 if (reg_spsr_val & SPSR_FI_BIT) {
317 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
318 /* disable interrupts */
319 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
320 PCH_ALL);
321
322 /* transfer is completed;
323 inform pch_spi_process_messages */
324 data->transfer_complete = true;
325 data->transfer_active = false;
326 wake_up(&data->wait);
327 } else {
328 dev_vdbg(&data->master->dev,
329 "%s : Transfer is not completed",
330 __func__);
331 }
332 }
333 }
334 }
335
336 /**
337 * pch_spi_handler() - Interrupt handler
338 * @irq: The interrupt number.
339 * @dev_id: Pointer to struct pch_spi_board_data.
340 */
341 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
342 {
343 u32 reg_spsr_val;
344 void __iomem *spsr;
345 void __iomem *io_remap_addr;
346 irqreturn_t ret = IRQ_NONE;
347 struct pch_spi_data *data = dev_id;
348 struct pch_spi_board_data *board_dat = data->board_dat;
349
350 if (board_dat->suspend_sts) {
351 dev_dbg(&board_dat->pdev->dev,
352 "%s returning due to suspend\n", __func__);
353 return IRQ_NONE;
354 }
355
356 io_remap_addr = data->io_remap_addr;
357 spsr = io_remap_addr + PCH_SPSR;
358
359 reg_spsr_val = ioread32(spsr);
360
361 if (reg_spsr_val & SPSR_ORF_BIT) {
362 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
363 if (data->current_msg->complete) {
364 data->transfer_complete = true;
365 data->current_msg->status = -EIO;
366 data->current_msg->complete(data->current_msg->context);
367 data->bcurrent_msg_processing = false;
368 data->current_msg = NULL;
369 data->cur_trans = NULL;
370 }
371 }
372
373 if (data->use_dma)
374 return IRQ_NONE;
375
376 /* Check if the interrupt is for SPI device */
377 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
378 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
379 ret = IRQ_HANDLED;
380 }
381
382 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
383 __func__, ret);
384
385 return ret;
386 }
387
388 /**
389 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
390 * @master: Pointer to struct spi_master.
391 * @speed_hz: Baud rate.
392 */
393 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
394 {
395 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
396
397 /* if baud rate is less than we can support limit it */
398 if (n_spbr > PCH_MAX_SPBR)
399 n_spbr = PCH_MAX_SPBR;
400
401 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
402 }
403
404 /**
405 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
406 * @master: Pointer to struct spi_master.
407 * @bits_per_word: Bits per word for SPI transfer.
408 */
409 static void pch_spi_set_bits_per_word(struct spi_master *master,
410 u8 bits_per_word)
411 {
412 if (bits_per_word == 8)
413 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
414 else
415 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
416 }
417
418 /**
419 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
420 * @spi: Pointer to struct spi_device.
421 */
422 static void pch_spi_setup_transfer(struct spi_device *spi)
423 {
424 u32 flags = 0;
425
426 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
427 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
428 spi->max_speed_hz);
429 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
430
431 /* set bits per word */
432 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
433
434 if (!(spi->mode & SPI_LSB_FIRST))
435 flags |= SPCR_LSBF_BIT;
436 if (spi->mode & SPI_CPOL)
437 flags |= SPCR_CPOL_BIT;
438 if (spi->mode & SPI_CPHA)
439 flags |= SPCR_CPHA_BIT;
440 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
441 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
442
443 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
444 pch_spi_clear_fifo(spi->master);
445 }
446
447 /**
448 * pch_spi_reset() - Clears SPI registers
449 * @master: Pointer to struct spi_master.
450 */
451 static void pch_spi_reset(struct spi_master *master)
452 {
453 /* write 1 to reset SPI */
454 pch_spi_writereg(master, PCH_SRST, 0x1);
455
456 /* clear reset */
457 pch_spi_writereg(master, PCH_SRST, 0x0);
458 }
459
460 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
461 {
462
463 struct spi_transfer *transfer;
464 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
465 int retval;
466 unsigned long flags;
467
468 spin_lock_irqsave(&data->lock, flags);
469 /* validate Tx/Rx buffers and Transfer length */
470 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
471 if (!transfer->tx_buf && !transfer->rx_buf) {
472 dev_err(&pspi->dev,
473 "%s Tx and Rx buffer NULL\n", __func__);
474 retval = -EINVAL;
475 goto err_return_spinlock;
476 }
477
478 if (!transfer->len) {
479 dev_err(&pspi->dev, "%s Transfer length invalid\n",
480 __func__);
481 retval = -EINVAL;
482 goto err_return_spinlock;
483 }
484
485 dev_dbg(&pspi->dev,
486 "%s Tx/Rx buffer valid. Transfer length valid\n",
487 __func__);
488 }
489 spin_unlock_irqrestore(&data->lock, flags);
490
491 /* We won't process any messages if we have been asked to terminate */
492 if (data->status == STATUS_EXITING) {
493 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
494 retval = -ESHUTDOWN;
495 goto err_out;
496 }
497
498 /* If suspended ,return -EINVAL */
499 if (data->board_dat->suspend_sts) {
500 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
501 retval = -EINVAL;
502 goto err_out;
503 }
504
505 /* set status of message */
506 pmsg->actual_length = 0;
507 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
508
509 pmsg->status = -EINPROGRESS;
510 spin_lock_irqsave(&data->lock, flags);
511 /* add message to queue */
512 list_add_tail(&pmsg->queue, &data->queue);
513 spin_unlock_irqrestore(&data->lock, flags);
514
515 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
516
517 schedule_work(&data->work);
518 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
519
520 retval = 0;
521
522 err_out:
523 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
524 return retval;
525 err_return_spinlock:
526 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
527 spin_unlock_irqrestore(&data->lock, flags);
528 return retval;
529 }
530
531 static inline void pch_spi_select_chip(struct pch_spi_data *data,
532 struct spi_device *pspi)
533 {
534 if (data->current_chip != NULL) {
535 if (pspi->chip_select != data->n_curnt_chip) {
536 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
537 data->current_chip = NULL;
538 }
539 }
540
541 data->current_chip = pspi;
542
543 data->n_curnt_chip = data->current_chip->chip_select;
544
545 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
546 pch_spi_setup_transfer(pspi);
547 }
548
549 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
550 {
551 int size;
552 u32 n_writes;
553 int j;
554 struct spi_message *pmsg, *tmp;
555 const u8 *tx_buf;
556 const u16 *tx_sbuf;
557
558 /* set baud rate if needed */
559 if (data->cur_trans->speed_hz) {
560 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
561 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
562 }
563
564 /* set bits per word if needed */
565 if (data->cur_trans->bits_per_word &&
566 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
567 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
568 pch_spi_set_bits_per_word(data->master,
569 data->cur_trans->bits_per_word);
570 *bpw = data->cur_trans->bits_per_word;
571 } else {
572 *bpw = data->current_msg->spi->bits_per_word;
573 }
574
575 /* reset Tx/Rx index */
576 data->tx_index = 0;
577 data->rx_index = 0;
578
579 data->bpw_len = data->cur_trans->len / (*bpw / 8);
580
581 /* find alloc size */
582 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
583
584 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
585 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
586 if (data->pkt_tx_buff != NULL) {
587 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
588 if (!data->pkt_rx_buff)
589 kfree(data->pkt_tx_buff);
590 }
591
592 if (!data->pkt_rx_buff) {
593 /* flush queue and set status of all transfers to -ENOMEM */
594 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
595 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
596 pmsg->status = -ENOMEM;
597
598 if (pmsg->complete)
599 pmsg->complete(pmsg->context);
600
601 /* delete from queue */
602 list_del_init(&pmsg->queue);
603 }
604 return;
605 }
606
607 /* copy Tx Data */
608 if (data->cur_trans->tx_buf != NULL) {
609 if (*bpw == 8) {
610 tx_buf = data->cur_trans->tx_buf;
611 for (j = 0; j < data->bpw_len; j++)
612 data->pkt_tx_buff[j] = *tx_buf++;
613 } else {
614 tx_sbuf = data->cur_trans->tx_buf;
615 for (j = 0; j < data->bpw_len; j++)
616 data->pkt_tx_buff[j] = *tx_sbuf++;
617 }
618 }
619
620 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
621 n_writes = data->bpw_len;
622 if (n_writes > PCH_MAX_FIFO_DEPTH)
623 n_writes = PCH_MAX_FIFO_DEPTH;
624
625 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
626 "0x2 to SSNXCR\n", __func__);
627 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
628
629 for (j = 0; j < n_writes; j++)
630 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
631
632 /* update tx_index */
633 data->tx_index = j;
634
635 /* reset transfer complete flag */
636 data->transfer_complete = false;
637 data->transfer_active = true;
638 }
639
640 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
641 {
642 struct spi_message *pmsg, *tmp;
643 dev_dbg(&data->master->dev, "%s called\n", __func__);
644 /* Invoke complete callback
645 * [To the spi core..indicating end of transfer] */
646 data->current_msg->status = 0;
647
648 if (data->current_msg->complete) {
649 dev_dbg(&data->master->dev,
650 "%s:Invoking callback of SPI core\n", __func__);
651 data->current_msg->complete(data->current_msg->context);
652 }
653
654 /* update status in global variable */
655 data->bcurrent_msg_processing = false;
656
657 dev_dbg(&data->master->dev,
658 "%s:data->bcurrent_msg_processing = false\n", __func__);
659
660 data->current_msg = NULL;
661 data->cur_trans = NULL;
662
663 /* check if we have items in list and not suspending
664 * return 1 if list empty */
665 if ((list_empty(&data->queue) == 0) &&
666 (!data->board_dat->suspend_sts) &&
667 (data->status != STATUS_EXITING)) {
668 /* We have some more work to do (either there is more tranint
669 * bpw;sfer requests in the current message or there are
670 *more messages)
671 */
672 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
673 schedule_work(&data->work);
674 } else if (data->board_dat->suspend_sts ||
675 data->status == STATUS_EXITING) {
676 dev_dbg(&data->master->dev,
677 "%s suspend/remove initiated, flushing queue\n",
678 __func__);
679 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
680 pmsg->status = -EIO;
681
682 if (pmsg->complete)
683 pmsg->complete(pmsg->context);
684
685 /* delete from queue */
686 list_del_init(&pmsg->queue);
687 }
688 }
689 }
690
691 static void pch_spi_set_ir(struct pch_spi_data *data)
692 {
693 /* enable interrupts, set threshold, enable SPI */
694 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
695 /* set receive threshold to PCH_RX_THOLD */
696 pch_spi_setclr_reg(data->master, PCH_SPCR,
697 PCH_RX_THOLD << SPCR_RFIC_FIELD |
698 SPCR_FIE_BIT | SPCR_RFIE_BIT |
699 SPCR_ORIE_BIT | SPCR_SPE_BIT,
700 MASK_RFIC_SPCR_BITS | PCH_ALL);
701 else
702 /* set receive threshold to maximum */
703 pch_spi_setclr_reg(data->master, PCH_SPCR,
704 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
705 SPCR_FIE_BIT | SPCR_ORIE_BIT |
706 SPCR_SPE_BIT,
707 MASK_RFIC_SPCR_BITS | PCH_ALL);
708
709 /* Wait until the transfer completes; go to sleep after
710 initiating the transfer. */
711 dev_dbg(&data->master->dev,
712 "%s:waiting for transfer to get over\n", __func__);
713
714 wait_event_interruptible(data->wait, data->transfer_complete);
715
716 /* clear all interrupts */
717 pch_spi_writereg(data->master, PCH_SPSR,
718 pch_spi_readreg(data->master, PCH_SPSR));
719 /* Disable interrupts and SPI transfer */
720 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
721 /* clear FIFO */
722 pch_spi_clear_fifo(data->master);
723 }
724
725 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
726 {
727 int j;
728 u8 *rx_buf;
729 u16 *rx_sbuf;
730
731 /* copy Rx Data */
732 if (!data->cur_trans->rx_buf)
733 return;
734
735 if (bpw == 8) {
736 rx_buf = data->cur_trans->rx_buf;
737 for (j = 0; j < data->bpw_len; j++)
738 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
739 } else {
740 rx_sbuf = data->cur_trans->rx_buf;
741 for (j = 0; j < data->bpw_len; j++)
742 *rx_sbuf++ = data->pkt_rx_buff[j];
743 }
744 }
745
746 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
747 {
748 int j;
749 u8 *rx_buf;
750 u16 *rx_sbuf;
751 const u8 *rx_dma_buf;
752 const u16 *rx_dma_sbuf;
753
754 /* copy Rx Data */
755 if (!data->cur_trans->rx_buf)
756 return;
757
758 if (bpw == 8) {
759 rx_buf = data->cur_trans->rx_buf;
760 rx_dma_buf = data->dma.rx_buf_virt;
761 for (j = 0; j < data->bpw_len; j++)
762 *rx_buf++ = *rx_dma_buf++ & 0xFF;
763 data->cur_trans->rx_buf = rx_buf;
764 } else {
765 rx_sbuf = data->cur_trans->rx_buf;
766 rx_dma_sbuf = data->dma.rx_buf_virt;
767 for (j = 0; j < data->bpw_len; j++)
768 *rx_sbuf++ = *rx_dma_sbuf++;
769 data->cur_trans->rx_buf = rx_sbuf;
770 }
771 }
772
773 static int pch_spi_start_transfer(struct pch_spi_data *data)
774 {
775 struct pch_spi_dma_ctrl *dma;
776 unsigned long flags;
777 int rtn;
778
779 dma = &data->dma;
780
781 spin_lock_irqsave(&data->lock, flags);
782
783 /* disable interrupts, SPI set enable */
784 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
785
786 spin_unlock_irqrestore(&data->lock, flags);
787
788 /* Wait until the transfer completes; go to sleep after
789 initiating the transfer. */
790 dev_dbg(&data->master->dev,
791 "%s:waiting for transfer to get over\n", __func__);
792 rtn = wait_event_interruptible_timeout(data->wait,
793 data->transfer_complete,
794 msecs_to_jiffies(2 * HZ));
795 if (!rtn)
796 dev_err(&data->master->dev,
797 "%s wait-event timeout\n", __func__);
798
799 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
800 DMA_FROM_DEVICE);
801
802 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
803 DMA_FROM_DEVICE);
804 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
805
806 async_tx_ack(dma->desc_rx);
807 async_tx_ack(dma->desc_tx);
808 kfree(dma->sg_tx_p);
809 kfree(dma->sg_rx_p);
810
811 spin_lock_irqsave(&data->lock, flags);
812
813 /* clear fifo threshold, disable interrupts, disable SPI transfer */
814 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
815 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
816 SPCR_SPE_BIT);
817 /* clear all interrupts */
818 pch_spi_writereg(data->master, PCH_SPSR,
819 pch_spi_readreg(data->master, PCH_SPSR));
820 /* clear FIFO */
821 pch_spi_clear_fifo(data->master);
822
823 spin_unlock_irqrestore(&data->lock, flags);
824
825 return rtn;
826 }
827
828 static void pch_dma_rx_complete(void *arg)
829 {
830 struct pch_spi_data *data = arg;
831
832 /* transfer is completed;inform pch_spi_process_messages_dma */
833 data->transfer_complete = true;
834 wake_up_interruptible(&data->wait);
835 }
836
837 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
838 {
839 struct pch_dma_slave *param = slave;
840
841 if ((chan->chan_id == param->chan_id) &&
842 (param->dma_dev == chan->device->dev)) {
843 chan->private = param;
844 return true;
845 } else {
846 return false;
847 }
848 }
849
850 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
851 {
852 dma_cap_mask_t mask;
853 struct dma_chan *chan;
854 struct pci_dev *dma_dev;
855 struct pch_dma_slave *param;
856 struct pch_spi_dma_ctrl *dma;
857 unsigned int width;
858
859 if (bpw == 8)
860 width = PCH_DMA_WIDTH_1_BYTE;
861 else
862 width = PCH_DMA_WIDTH_2_BYTES;
863
864 dma = &data->dma;
865 dma_cap_zero(mask);
866 dma_cap_set(DMA_SLAVE, mask);
867
868 /* Get DMA's dev information */
869 dma_dev = pci_get_slot(data->board_dat->pdev->bus,
870 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
871
872 /* Set Tx DMA */
873 param = &dma->param_tx;
874 param->dma_dev = &dma_dev->dev;
875 param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
876 param->tx_reg = data->io_base_addr + PCH_SPDWR;
877 param->width = width;
878 chan = dma_request_channel(mask, pch_spi_filter, param);
879 if (!chan) {
880 dev_err(&data->master->dev,
881 "ERROR: dma_request_channel FAILS(Tx)\n");
882 data->use_dma = 0;
883 return;
884 }
885 dma->chan_tx = chan;
886
887 /* Set Rx DMA */
888 param = &dma->param_rx;
889 param->dma_dev = &dma_dev->dev;
890 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
891 param->rx_reg = data->io_base_addr + PCH_SPDRR;
892 param->width = width;
893 chan = dma_request_channel(mask, pch_spi_filter, param);
894 if (!chan) {
895 dev_err(&data->master->dev,
896 "ERROR: dma_request_channel FAILS(Rx)\n");
897 dma_release_channel(dma->chan_tx);
898 dma->chan_tx = NULL;
899 data->use_dma = 0;
900 return;
901 }
902 dma->chan_rx = chan;
903 }
904
905 static void pch_spi_release_dma(struct pch_spi_data *data)
906 {
907 struct pch_spi_dma_ctrl *dma;
908
909 dma = &data->dma;
910 if (dma->chan_tx) {
911 dma_release_channel(dma->chan_tx);
912 dma->chan_tx = NULL;
913 }
914 if (dma->chan_rx) {
915 dma_release_channel(dma->chan_rx);
916 dma->chan_rx = NULL;
917 }
918 return;
919 }
920
921 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
922 {
923 const u8 *tx_buf;
924 const u16 *tx_sbuf;
925 u8 *tx_dma_buf;
926 u16 *tx_dma_sbuf;
927 struct scatterlist *sg;
928 struct dma_async_tx_descriptor *desc_tx;
929 struct dma_async_tx_descriptor *desc_rx;
930 int num;
931 int i;
932 int size;
933 int rem;
934 int head;
935 unsigned long flags;
936 struct pch_spi_dma_ctrl *dma;
937
938 dma = &data->dma;
939
940 /* set baud rate if needed */
941 if (data->cur_trans->speed_hz) {
942 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
943 spin_lock_irqsave(&data->lock, flags);
944 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
945 spin_unlock_irqrestore(&data->lock, flags);
946 }
947
948 /* set bits per word if needed */
949 if (data->cur_trans->bits_per_word &&
950 (data->current_msg->spi->bits_per_word !=
951 data->cur_trans->bits_per_word)) {
952 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
953 spin_lock_irqsave(&data->lock, flags);
954 pch_spi_set_bits_per_word(data->master,
955 data->cur_trans->bits_per_word);
956 spin_unlock_irqrestore(&data->lock, flags);
957 *bpw = data->cur_trans->bits_per_word;
958 } else {
959 *bpw = data->current_msg->spi->bits_per_word;
960 }
961 data->bpw_len = data->cur_trans->len / (*bpw / 8);
962
963 if (data->bpw_len > PCH_BUF_SIZE) {
964 data->bpw_len = PCH_BUF_SIZE;
965 data->cur_trans->len -= PCH_BUF_SIZE;
966 }
967
968 /* copy Tx Data */
969 if (data->cur_trans->tx_buf != NULL) {
970 if (*bpw == 8) {
971 tx_buf = data->cur_trans->tx_buf;
972 tx_dma_buf = dma->tx_buf_virt;
973 for (i = 0; i < data->bpw_len; i++)
974 *tx_dma_buf++ = *tx_buf++;
975 } else {
976 tx_sbuf = data->cur_trans->tx_buf;
977 tx_dma_sbuf = dma->tx_buf_virt;
978 for (i = 0; i < data->bpw_len; i++)
979 *tx_dma_sbuf++ = *tx_sbuf++;
980 }
981 }
982
983 /* Calculate Rx parameter for DMA transmitting */
984 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
985 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
986 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
987 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
988 } else {
989 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
990 rem = PCH_DMA_TRANS_SIZE;
991 }
992 size = PCH_DMA_TRANS_SIZE;
993 } else {
994 num = 1;
995 size = data->bpw_len;
996 rem = data->bpw_len;
997 }
998 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
999 __func__, num, size, rem);
1000 spin_lock_irqsave(&data->lock, flags);
1001
1002 /* set receive fifo threshold and transmit fifo threshold */
1003 pch_spi_setclr_reg(data->master, PCH_SPCR,
1004 ((size - 1) << SPCR_RFIC_FIELD) |
1005 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1006 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1007
1008 spin_unlock_irqrestore(&data->lock, flags);
1009
1010 /* RX */
1011 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1012 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1013 /* offset, length setting */
1014 sg = dma->sg_rx_p;
1015 for (i = 0; i < num; i++, sg++) {
1016 if (i == (num - 2)) {
1017 sg->offset = size * i;
1018 sg->offset = sg->offset * (*bpw / 8);
1019 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1020 sg->offset);
1021 sg_dma_len(sg) = rem;
1022 } else if (i == (num - 1)) {
1023 sg->offset = size * (i - 1) + rem;
1024 sg->offset = sg->offset * (*bpw / 8);
1025 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1026 sg->offset);
1027 sg_dma_len(sg) = size;
1028 } else {
1029 sg->offset = size * i;
1030 sg->offset = sg->offset * (*bpw / 8);
1031 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1032 sg->offset);
1033 sg_dma_len(sg) = size;
1034 }
1035 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1036 }
1037 sg = dma->sg_rx_p;
1038 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1039 num, DMA_DEV_TO_MEM,
1040 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1041 if (!desc_rx) {
1042 dev_err(&data->master->dev,
1043 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1044 return;
1045 }
1046 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1047 desc_rx->callback = pch_dma_rx_complete;
1048 desc_rx->callback_param = data;
1049 dma->nent = num;
1050 dma->desc_rx = desc_rx;
1051
1052 /* Calculate Tx parameter for DMA transmitting */
1053 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1054 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1055 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1056 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1057 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1058 } else {
1059 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1060 rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1061 PCH_DMA_TRANS_SIZE - head;
1062 }
1063 size = PCH_DMA_TRANS_SIZE;
1064 } else {
1065 num = 1;
1066 size = data->bpw_len;
1067 rem = data->bpw_len;
1068 head = 0;
1069 }
1070
1071 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1072 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1073 /* offset, length setting */
1074 sg = dma->sg_tx_p;
1075 for (i = 0; i < num; i++, sg++) {
1076 if (i == 0) {
1077 sg->offset = 0;
1078 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1079 sg->offset);
1080 sg_dma_len(sg) = size + head;
1081 } else if (i == (num - 1)) {
1082 sg->offset = head + size * i;
1083 sg->offset = sg->offset * (*bpw / 8);
1084 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1085 sg->offset);
1086 sg_dma_len(sg) = rem;
1087 } else {
1088 sg->offset = head + size * i;
1089 sg->offset = sg->offset * (*bpw / 8);
1090 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1091 sg->offset);
1092 sg_dma_len(sg) = size;
1093 }
1094 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1095 }
1096 sg = dma->sg_tx_p;
1097 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1098 sg, num, DMA_MEM_TO_DEV,
1099 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1100 if (!desc_tx) {
1101 dev_err(&data->master->dev,
1102 "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1103 return;
1104 }
1105 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1106 desc_tx->callback = NULL;
1107 desc_tx->callback_param = data;
1108 dma->nent = num;
1109 dma->desc_tx = desc_tx;
1110
1111 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1112
1113 spin_lock_irqsave(&data->lock, flags);
1114 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1115 desc_rx->tx_submit(desc_rx);
1116 desc_tx->tx_submit(desc_tx);
1117 spin_unlock_irqrestore(&data->lock, flags);
1118
1119 /* reset transfer complete flag */
1120 data->transfer_complete = false;
1121 }
1122
1123 static void pch_spi_process_messages(struct work_struct *pwork)
1124 {
1125 struct spi_message *pmsg, *tmp;
1126 struct pch_spi_data *data;
1127 int bpw;
1128
1129 data = container_of(pwork, struct pch_spi_data, work);
1130 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1131
1132 spin_lock(&data->lock);
1133 /* check if suspend has been initiated;if yes flush queue */
1134 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1135 dev_dbg(&data->master->dev,
1136 "%s suspend/remove initiated, flushing queue\n", __func__);
1137 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1138 pmsg->status = -EIO;
1139
1140 if (pmsg->complete) {
1141 spin_unlock(&data->lock);
1142 pmsg->complete(pmsg->context);
1143 spin_lock(&data->lock);
1144 }
1145
1146 /* delete from queue */
1147 list_del_init(&pmsg->queue);
1148 }
1149
1150 spin_unlock(&data->lock);
1151 return;
1152 }
1153
1154 data->bcurrent_msg_processing = true;
1155 dev_dbg(&data->master->dev,
1156 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1157
1158 /* Get the message from the queue and delete it from there. */
1159 data->current_msg = list_entry(data->queue.next, struct spi_message,
1160 queue);
1161
1162 list_del_init(&data->current_msg->queue);
1163
1164 data->current_msg->status = 0;
1165
1166 pch_spi_select_chip(data, data->current_msg->spi);
1167
1168 spin_unlock(&data->lock);
1169
1170 if (data->use_dma)
1171 pch_spi_request_dma(data,
1172 data->current_msg->spi->bits_per_word);
1173 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1174 do {
1175 int cnt;
1176 /* If we are already processing a message get the next
1177 transfer structure from the message otherwise retrieve
1178 the 1st transfer request from the message. */
1179 spin_lock(&data->lock);
1180 if (data->cur_trans == NULL) {
1181 data->cur_trans =
1182 list_entry(data->current_msg->transfers.next,
1183 struct spi_transfer, transfer_list);
1184 dev_dbg(&data->master->dev, "%s "
1185 ":Getting 1st transfer message\n", __func__);
1186 } else {
1187 data->cur_trans =
1188 list_entry(data->cur_trans->transfer_list.next,
1189 struct spi_transfer, transfer_list);
1190 dev_dbg(&data->master->dev, "%s "
1191 ":Getting next transfer message\n", __func__);
1192 }
1193 spin_unlock(&data->lock);
1194
1195 if (!data->cur_trans->len)
1196 goto out;
1197 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1198 data->save_total_len = data->cur_trans->len;
1199 if (data->use_dma) {
1200 int i;
1201 char *save_rx_buf = data->cur_trans->rx_buf;
1202 for (i = 0; i < cnt; i ++) {
1203 pch_spi_handle_dma(data, &bpw);
1204 if (!pch_spi_start_transfer(data)) {
1205 data->transfer_complete = true;
1206 data->current_msg->status = -EIO;
1207 data->current_msg->complete
1208 (data->current_msg->context);
1209 data->bcurrent_msg_processing = false;
1210 data->current_msg = NULL;
1211 data->cur_trans = NULL;
1212 goto out;
1213 }
1214 pch_spi_copy_rx_data_for_dma(data, bpw);
1215 }
1216 data->cur_trans->rx_buf = save_rx_buf;
1217 } else {
1218 pch_spi_set_tx(data, &bpw);
1219 pch_spi_set_ir(data);
1220 pch_spi_copy_rx_data(data, bpw);
1221 kfree(data->pkt_rx_buff);
1222 data->pkt_rx_buff = NULL;
1223 kfree(data->pkt_tx_buff);
1224 data->pkt_tx_buff = NULL;
1225 }
1226 /* increment message count */
1227 data->cur_trans->len = data->save_total_len;
1228 data->current_msg->actual_length += data->cur_trans->len;
1229
1230 dev_dbg(&data->master->dev,
1231 "%s:data->current_msg->actual_length=%d\n",
1232 __func__, data->current_msg->actual_length);
1233
1234 /* check for delay */
1235 if (data->cur_trans->delay_usecs) {
1236 dev_dbg(&data->master->dev, "%s:"
1237 "delay in usec=%d\n", __func__,
1238 data->cur_trans->delay_usecs);
1239 udelay(data->cur_trans->delay_usecs);
1240 }
1241
1242 spin_lock(&data->lock);
1243
1244 /* No more transfer in this message. */
1245 if ((data->cur_trans->transfer_list.next) ==
1246 &(data->current_msg->transfers)) {
1247 pch_spi_nomore_transfer(data);
1248 }
1249
1250 spin_unlock(&data->lock);
1251
1252 } while (data->cur_trans != NULL);
1253
1254 out:
1255 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1256 if (data->use_dma)
1257 pch_spi_release_dma(data);
1258 }
1259
1260 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1261 struct pch_spi_data *data)
1262 {
1263 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1264
1265 flush_work(&data->work);
1266 }
1267
1268 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1269 struct pch_spi_data *data)
1270 {
1271 int retval = 0;
1272
1273 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1274
1275
1276 /* reset PCH SPI h/w */
1277 pch_spi_reset(data->master);
1278 dev_dbg(&board_dat->pdev->dev,
1279 "%s pch_spi_reset invoked successfully\n", __func__);
1280
1281 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1282
1283 if (retval != 0) {
1284 dev_err(&board_dat->pdev->dev,
1285 "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1286 pch_spi_free_resources(board_dat, data);
1287 }
1288
1289 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1290
1291 return retval;
1292 }
1293
1294 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1295 struct pch_spi_data *data)
1296 {
1297 struct pch_spi_dma_ctrl *dma;
1298
1299 dma = &data->dma;
1300 if (dma->tx_buf_dma)
1301 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1302 dma->tx_buf_virt, dma->tx_buf_dma);
1303 if (dma->rx_buf_dma)
1304 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1305 dma->rx_buf_virt, dma->rx_buf_dma);
1306 return;
1307 }
1308
1309 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1310 struct pch_spi_data *data)
1311 {
1312 struct pch_spi_dma_ctrl *dma;
1313
1314 dma = &data->dma;
1315 /* Get Consistent memory for Tx DMA */
1316 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1317 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1318 /* Get Consistent memory for Rx DMA */
1319 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1320 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1321 }
1322
1323 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1324 {
1325 int ret;
1326 struct spi_master *master;
1327 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1328 struct pch_spi_data *data;
1329
1330 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1331
1332 master = spi_alloc_master(&board_dat->pdev->dev,
1333 sizeof(struct pch_spi_data));
1334 if (!master) {
1335 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1336 plat_dev->id);
1337 return -ENOMEM;
1338 }
1339
1340 data = spi_master_get_devdata(master);
1341 data->master = master;
1342
1343 platform_set_drvdata(plat_dev, data);
1344
1345 /* baseaddress + address offset) */
1346 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1347 PCH_ADDRESS_SIZE * plat_dev->id;
1348 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1349 if (!data->io_remap_addr) {
1350 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1351 ret = -ENOMEM;
1352 goto err_pci_iomap;
1353 }
1354 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1355
1356 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1357 plat_dev->id, data->io_remap_addr);
1358
1359 /* initialize members of SPI master */
1360 master->num_chipselect = PCH_MAX_CS;
1361 master->transfer = pch_spi_transfer;
1362 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1363 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1364 master->max_speed_hz = PCH_MAX_BAUDRATE;
1365
1366 data->board_dat = board_dat;
1367 data->plat_dev = plat_dev;
1368 data->n_curnt_chip = 255;
1369 data->status = STATUS_RUNNING;
1370 data->ch = plat_dev->id;
1371 data->use_dma = use_dma;
1372
1373 INIT_LIST_HEAD(&data->queue);
1374 spin_lock_init(&data->lock);
1375 INIT_WORK(&data->work, pch_spi_process_messages);
1376 init_waitqueue_head(&data->wait);
1377
1378 ret = pch_spi_get_resources(board_dat, data);
1379 if (ret) {
1380 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1381 goto err_spi_get_resources;
1382 }
1383
1384 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1385 IRQF_SHARED, KBUILD_MODNAME, data);
1386 if (ret) {
1387 dev_err(&plat_dev->dev,
1388 "%s request_irq failed\n", __func__);
1389 goto err_request_irq;
1390 }
1391 data->irq_reg_sts = true;
1392
1393 pch_spi_set_master_mode(master);
1394
1395 if (use_dma) {
1396 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1397 pch_alloc_dma_buf(board_dat, data);
1398 }
1399
1400 ret = spi_register_master(master);
1401 if (ret != 0) {
1402 dev_err(&plat_dev->dev,
1403 "%s spi_register_master FAILED\n", __func__);
1404 goto err_spi_register_master;
1405 }
1406
1407 return 0;
1408
1409 err_spi_register_master:
1410 pch_free_dma_buf(board_dat, data);
1411 free_irq(board_dat->pdev->irq, data);
1412 err_request_irq:
1413 pch_spi_free_resources(board_dat, data);
1414 err_spi_get_resources:
1415 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1416 err_pci_iomap:
1417 spi_master_put(master);
1418
1419 return ret;
1420 }
1421
1422 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1423 {
1424 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1425 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1426 int count;
1427 unsigned long flags;
1428
1429 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1430 __func__, plat_dev->id, board_dat->pdev->irq);
1431
1432 if (use_dma)
1433 pch_free_dma_buf(board_dat, data);
1434
1435 /* check for any pending messages; no action is taken if the queue
1436 * is still full; but at least we tried. Unload anyway */
1437 count = 500;
1438 spin_lock_irqsave(&data->lock, flags);
1439 data->status = STATUS_EXITING;
1440 while ((list_empty(&data->queue) == 0) && --count) {
1441 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1442 __func__);
1443 spin_unlock_irqrestore(&data->lock, flags);
1444 msleep(PCH_SLEEP_TIME);
1445 spin_lock_irqsave(&data->lock, flags);
1446 }
1447 spin_unlock_irqrestore(&data->lock, flags);
1448
1449 pch_spi_free_resources(board_dat, data);
1450 /* disable interrupts & free IRQ */
1451 if (data->irq_reg_sts) {
1452 /* disable interrupts */
1453 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1454 data->irq_reg_sts = false;
1455 free_irq(board_dat->pdev->irq, data);
1456 }
1457
1458 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1459 spi_unregister_master(data->master);
1460
1461 return 0;
1462 }
1463 #ifdef CONFIG_PM
1464 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1465 pm_message_t state)
1466 {
1467 u8 count;
1468 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1469 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1470
1471 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1472
1473 if (!board_dat) {
1474 dev_err(&pd_dev->dev,
1475 "%s pci_get_drvdata returned NULL\n", __func__);
1476 return -EFAULT;
1477 }
1478
1479 /* check if the current message is processed:
1480 Only after thats done the transfer will be suspended */
1481 count = 255;
1482 while ((--count) > 0) {
1483 if (!(data->bcurrent_msg_processing))
1484 break;
1485 msleep(PCH_SLEEP_TIME);
1486 }
1487
1488 /* Free IRQ */
1489 if (data->irq_reg_sts) {
1490 /* disable all interrupts */
1491 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1492 pch_spi_reset(data->master);
1493 free_irq(board_dat->pdev->irq, data);
1494
1495 data->irq_reg_sts = false;
1496 dev_dbg(&pd_dev->dev,
1497 "%s free_irq invoked successfully.\n", __func__);
1498 }
1499
1500 return 0;
1501 }
1502
1503 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1504 {
1505 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1506 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1507 int retval;
1508
1509 if (!board_dat) {
1510 dev_err(&pd_dev->dev,
1511 "%s pci_get_drvdata returned NULL\n", __func__);
1512 return -EFAULT;
1513 }
1514
1515 if (!data->irq_reg_sts) {
1516 /* register IRQ */
1517 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1518 IRQF_SHARED, KBUILD_MODNAME, data);
1519 if (retval < 0) {
1520 dev_err(&pd_dev->dev,
1521 "%s request_irq failed\n", __func__);
1522 return retval;
1523 }
1524
1525 /* reset PCH SPI h/w */
1526 pch_spi_reset(data->master);
1527 pch_spi_set_master_mode(data->master);
1528 data->irq_reg_sts = true;
1529 }
1530 return 0;
1531 }
1532 #else
1533 #define pch_spi_pd_suspend NULL
1534 #define pch_spi_pd_resume NULL
1535 #endif
1536
1537 static struct platform_driver pch_spi_pd_driver = {
1538 .driver = {
1539 .name = "pch-spi",
1540 },
1541 .probe = pch_spi_pd_probe,
1542 .remove = pch_spi_pd_remove,
1543 .suspend = pch_spi_pd_suspend,
1544 .resume = pch_spi_pd_resume
1545 };
1546
1547 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1548 {
1549 struct pch_spi_board_data *board_dat;
1550 struct platform_device *pd_dev = NULL;
1551 int retval;
1552 int i;
1553 struct pch_pd_dev_save *pd_dev_save;
1554
1555 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1556 if (!pd_dev_save)
1557 return -ENOMEM;
1558
1559 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1560 if (!board_dat) {
1561 retval = -ENOMEM;
1562 goto err_no_mem;
1563 }
1564
1565 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1566 if (retval) {
1567 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1568 goto pci_request_regions;
1569 }
1570
1571 board_dat->pdev = pdev;
1572 board_dat->num = id->driver_data;
1573 pd_dev_save->num = id->driver_data;
1574 pd_dev_save->board_dat = board_dat;
1575
1576 retval = pci_enable_device(pdev);
1577 if (retval) {
1578 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1579 goto pci_enable_device;
1580 }
1581
1582 for (i = 0; i < board_dat->num; i++) {
1583 pd_dev = platform_device_alloc("pch-spi", i);
1584 if (!pd_dev) {
1585 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1586 retval = -ENOMEM;
1587 goto err_platform_device;
1588 }
1589 pd_dev_save->pd_save[i] = pd_dev;
1590 pd_dev->dev.parent = &pdev->dev;
1591
1592 retval = platform_device_add_data(pd_dev, board_dat,
1593 sizeof(*board_dat));
1594 if (retval) {
1595 dev_err(&pdev->dev,
1596 "platform_device_add_data failed\n");
1597 platform_device_put(pd_dev);
1598 goto err_platform_device;
1599 }
1600
1601 retval = platform_device_add(pd_dev);
1602 if (retval) {
1603 dev_err(&pdev->dev, "platform_device_add failed\n");
1604 platform_device_put(pd_dev);
1605 goto err_platform_device;
1606 }
1607 }
1608
1609 pci_set_drvdata(pdev, pd_dev_save);
1610
1611 return 0;
1612
1613 err_platform_device:
1614 while (--i >= 0)
1615 platform_device_unregister(pd_dev_save->pd_save[i]);
1616 pci_disable_device(pdev);
1617 pci_enable_device:
1618 pci_release_regions(pdev);
1619 pci_request_regions:
1620 kfree(board_dat);
1621 err_no_mem:
1622 kfree(pd_dev_save);
1623
1624 return retval;
1625 }
1626
1627 static void pch_spi_remove(struct pci_dev *pdev)
1628 {
1629 int i;
1630 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1631
1632 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1633
1634 for (i = 0; i < pd_dev_save->num; i++)
1635 platform_device_unregister(pd_dev_save->pd_save[i]);
1636
1637 pci_disable_device(pdev);
1638 pci_release_regions(pdev);
1639 kfree(pd_dev_save->board_dat);
1640 kfree(pd_dev_save);
1641 }
1642
1643 #ifdef CONFIG_PM
1644 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1645 {
1646 int retval;
1647 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1648
1649 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1650
1651 pd_dev_save->board_dat->suspend_sts = true;
1652
1653 /* save config space */
1654 retval = pci_save_state(pdev);
1655 if (retval == 0) {
1656 pci_enable_wake(pdev, PCI_D3hot, 0);
1657 pci_disable_device(pdev);
1658 pci_set_power_state(pdev, PCI_D3hot);
1659 } else {
1660 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1661 }
1662
1663 return retval;
1664 }
1665
1666 static int pch_spi_resume(struct pci_dev *pdev)
1667 {
1668 int retval;
1669 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1670 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1671
1672 pci_set_power_state(pdev, PCI_D0);
1673 pci_restore_state(pdev);
1674
1675 retval = pci_enable_device(pdev);
1676 if (retval < 0) {
1677 dev_err(&pdev->dev,
1678 "%s pci_enable_device failed\n", __func__);
1679 } else {
1680 pci_enable_wake(pdev, PCI_D3hot, 0);
1681
1682 /* set suspend status to false */
1683 pd_dev_save->board_dat->suspend_sts = false;
1684 }
1685
1686 return retval;
1687 }
1688 #else
1689 #define pch_spi_suspend NULL
1690 #define pch_spi_resume NULL
1691
1692 #endif
1693
1694 static struct pci_driver pch_spi_pcidev_driver = {
1695 .name = "pch_spi",
1696 .id_table = pch_spi_pcidev_id,
1697 .probe = pch_spi_probe,
1698 .remove = pch_spi_remove,
1699 .suspend = pch_spi_suspend,
1700 .resume = pch_spi_resume,
1701 };
1702
1703 static int __init pch_spi_init(void)
1704 {
1705 int ret;
1706 ret = platform_driver_register(&pch_spi_pd_driver);
1707 if (ret)
1708 return ret;
1709
1710 ret = pci_register_driver(&pch_spi_pcidev_driver);
1711 if (ret) {
1712 platform_driver_unregister(&pch_spi_pd_driver);
1713 return ret;
1714 }
1715
1716 return 0;
1717 }
1718 module_init(pch_spi_init);
1719
1720 static void __exit pch_spi_exit(void)
1721 {
1722 pci_unregister_driver(&pch_spi_pcidev_driver);
1723 platform_driver_unregister(&pch_spi_pd_driver);
1724 }
1725 module_exit(pch_spi_exit);
1726
1727 module_param(use_dma, int, 0644);
1728 MODULE_PARM_DESC(use_dma,
1729 "to use DMA for data transfers pass 1 else 0; default 1");
1730
1731 MODULE_LICENSE("GPL");
1732 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1733 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1734
This page took 0.068099 seconds and 6 git commands to generate.