Merge remote-tracking branch 'spi/topic/tle62x0' into spi-next
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41
42 static void spidev_release(struct device *dev)
43 {
44 struct spi_device *spi = to_spi_device(dev);
45
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
49
50 spi_master_put(spi->master);
51 kfree(spi);
52 }
53
54 static ssize_t
55 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56 {
57 const struct spi_device *spi = to_spi_device(dev);
58
59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
60 }
61
62 static struct device_attribute spi_dev_attrs[] = {
63 __ATTR_RO(modalias),
64 __ATTR_NULL,
65 };
66
67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68 * and the sysfs version makes coldplug work too.
69 */
70
71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
73 {
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
78 }
79 return NULL;
80 }
81
82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
83 {
84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
85
86 return spi_match_id(sdrv->id_table, sdev);
87 }
88 EXPORT_SYMBOL_GPL(spi_get_device_id);
89
90 static int spi_match_device(struct device *dev, struct device_driver *drv)
91 {
92 const struct spi_device *spi = to_spi_device(dev);
93 const struct spi_driver *sdrv = to_spi_driver(drv);
94
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
98
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
102
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
105
106 return strcmp(spi->modalias, drv->name) == 0;
107 }
108
109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
110 {
111 const struct spi_device *spi = to_spi_device(dev);
112
113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
114 return 0;
115 }
116
117 #ifdef CONFIG_PM_SLEEP
118 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
119 {
120 int value = 0;
121 struct spi_driver *drv = to_spi_driver(dev->driver);
122
123 /* suspend will stop irqs and dma; no more i/o */
124 if (drv) {
125 if (drv->suspend)
126 value = drv->suspend(to_spi_device(dev), message);
127 else
128 dev_dbg(dev, "... can't suspend\n");
129 }
130 return value;
131 }
132
133 static int spi_legacy_resume(struct device *dev)
134 {
135 int value = 0;
136 struct spi_driver *drv = to_spi_driver(dev->driver);
137
138 /* resume may restart the i/o queue */
139 if (drv) {
140 if (drv->resume)
141 value = drv->resume(to_spi_device(dev));
142 else
143 dev_dbg(dev, "... can't resume\n");
144 }
145 return value;
146 }
147
148 static int spi_pm_suspend(struct device *dev)
149 {
150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
151
152 if (pm)
153 return pm_generic_suspend(dev);
154 else
155 return spi_legacy_suspend(dev, PMSG_SUSPEND);
156 }
157
158 static int spi_pm_resume(struct device *dev)
159 {
160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
161
162 if (pm)
163 return pm_generic_resume(dev);
164 else
165 return spi_legacy_resume(dev);
166 }
167
168 static int spi_pm_freeze(struct device *dev)
169 {
170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
171
172 if (pm)
173 return pm_generic_freeze(dev);
174 else
175 return spi_legacy_suspend(dev, PMSG_FREEZE);
176 }
177
178 static int spi_pm_thaw(struct device *dev)
179 {
180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
181
182 if (pm)
183 return pm_generic_thaw(dev);
184 else
185 return spi_legacy_resume(dev);
186 }
187
188 static int spi_pm_poweroff(struct device *dev)
189 {
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191
192 if (pm)
193 return pm_generic_poweroff(dev);
194 else
195 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
196 }
197
198 static int spi_pm_restore(struct device *dev)
199 {
200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
201
202 if (pm)
203 return pm_generic_restore(dev);
204 else
205 return spi_legacy_resume(dev);
206 }
207 #else
208 #define spi_pm_suspend NULL
209 #define spi_pm_resume NULL
210 #define spi_pm_freeze NULL
211 #define spi_pm_thaw NULL
212 #define spi_pm_poweroff NULL
213 #define spi_pm_restore NULL
214 #endif
215
216 static const struct dev_pm_ops spi_pm = {
217 .suspend = spi_pm_suspend,
218 .resume = spi_pm_resume,
219 .freeze = spi_pm_freeze,
220 .thaw = spi_pm_thaw,
221 .poweroff = spi_pm_poweroff,
222 .restore = spi_pm_restore,
223 SET_RUNTIME_PM_OPS(
224 pm_generic_runtime_suspend,
225 pm_generic_runtime_resume,
226 NULL
227 )
228 };
229
230 struct bus_type spi_bus_type = {
231 .name = "spi",
232 .dev_attrs = spi_dev_attrs,
233 .match = spi_match_device,
234 .uevent = spi_uevent,
235 .pm = &spi_pm,
236 };
237 EXPORT_SYMBOL_GPL(spi_bus_type);
238
239
240 static int spi_drv_probe(struct device *dev)
241 {
242 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
243
244 return sdrv->probe(to_spi_device(dev));
245 }
246
247 static int spi_drv_remove(struct device *dev)
248 {
249 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
250
251 return sdrv->remove(to_spi_device(dev));
252 }
253
254 static void spi_drv_shutdown(struct device *dev)
255 {
256 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
257
258 sdrv->shutdown(to_spi_device(dev));
259 }
260
261 /**
262 * spi_register_driver - register a SPI driver
263 * @sdrv: the driver to register
264 * Context: can sleep
265 */
266 int spi_register_driver(struct spi_driver *sdrv)
267 {
268 sdrv->driver.bus = &spi_bus_type;
269 if (sdrv->probe)
270 sdrv->driver.probe = spi_drv_probe;
271 if (sdrv->remove)
272 sdrv->driver.remove = spi_drv_remove;
273 if (sdrv->shutdown)
274 sdrv->driver.shutdown = spi_drv_shutdown;
275 return driver_register(&sdrv->driver);
276 }
277 EXPORT_SYMBOL_GPL(spi_register_driver);
278
279 /*-------------------------------------------------------------------------*/
280
281 /* SPI devices should normally not be created by SPI device drivers; that
282 * would make them board-specific. Similarly with SPI master drivers.
283 * Device registration normally goes into like arch/.../mach.../board-YYY.c
284 * with other readonly (flashable) information about mainboard devices.
285 */
286
287 struct boardinfo {
288 struct list_head list;
289 struct spi_board_info board_info;
290 };
291
292 static LIST_HEAD(board_list);
293 static LIST_HEAD(spi_master_list);
294
295 /*
296 * Used to protect add/del opertion for board_info list and
297 * spi_master list, and their matching process
298 */
299 static DEFINE_MUTEX(board_lock);
300
301 /**
302 * spi_alloc_device - Allocate a new SPI device
303 * @master: Controller to which device is connected
304 * Context: can sleep
305 *
306 * Allows a driver to allocate and initialize a spi_device without
307 * registering it immediately. This allows a driver to directly
308 * fill the spi_device with device parameters before calling
309 * spi_add_device() on it.
310 *
311 * Caller is responsible to call spi_add_device() on the returned
312 * spi_device structure to add it to the SPI master. If the caller
313 * needs to discard the spi_device without adding it, then it should
314 * call spi_dev_put() on it.
315 *
316 * Returns a pointer to the new device, or NULL.
317 */
318 struct spi_device *spi_alloc_device(struct spi_master *master)
319 {
320 struct spi_device *spi;
321 struct device *dev = master->dev.parent;
322
323 if (!spi_master_get(master))
324 return NULL;
325
326 spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 if (!spi) {
328 dev_err(dev, "cannot alloc spi_device\n");
329 spi_master_put(master);
330 return NULL;
331 }
332
333 spi->master = master;
334 spi->dev.parent = &master->dev;
335 spi->dev.bus = &spi_bus_type;
336 spi->dev.release = spidev_release;
337 spi->cs_gpio = -ENOENT;
338 device_initialize(&spi->dev);
339 return spi;
340 }
341 EXPORT_SYMBOL_GPL(spi_alloc_device);
342
343 /**
344 * spi_add_device - Add spi_device allocated with spi_alloc_device
345 * @spi: spi_device to register
346 *
347 * Companion function to spi_alloc_device. Devices allocated with
348 * spi_alloc_device can be added onto the spi bus with this function.
349 *
350 * Returns 0 on success; negative errno on failure
351 */
352 int spi_add_device(struct spi_device *spi)
353 {
354 static DEFINE_MUTEX(spi_add_lock);
355 struct spi_master *master = spi->master;
356 struct device *dev = master->dev.parent;
357 struct device *d;
358 int status;
359
360 /* Chipselects are numbered 0..max; validate. */
361 if (spi->chip_select >= master->num_chipselect) {
362 dev_err(dev, "cs%d >= max %d\n",
363 spi->chip_select,
364 master->num_chipselect);
365 return -EINVAL;
366 }
367
368 /* Set the bus ID string */
369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 spi->chip_select);
371
372
373 /* We need to make sure there's no other device with this
374 * chipselect **BEFORE** we call setup(), else we'll trash
375 * its configuration. Lock against concurrent add() calls.
376 */
377 mutex_lock(&spi_add_lock);
378
379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 if (d != NULL) {
381 dev_err(dev, "chipselect %d already in use\n",
382 spi->chip_select);
383 put_device(d);
384 status = -EBUSY;
385 goto done;
386 }
387
388 if (master->cs_gpios)
389 spi->cs_gpio = master->cs_gpios[spi->chip_select];
390
391 /* Drivers may modify this initial i/o setup, but will
392 * normally rely on the device being setup. Devices
393 * using SPI_CS_HIGH can't coexist well otherwise...
394 */
395 status = spi_setup(spi);
396 if (status < 0) {
397 dev_err(dev, "can't setup %s, status %d\n",
398 dev_name(&spi->dev), status);
399 goto done;
400 }
401
402 /* Device may be bound to an active driver when this returns */
403 status = device_add(&spi->dev);
404 if (status < 0)
405 dev_err(dev, "can't add %s, status %d\n",
406 dev_name(&spi->dev), status);
407 else
408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
409
410 done:
411 mutex_unlock(&spi_add_lock);
412 return status;
413 }
414 EXPORT_SYMBOL_GPL(spi_add_device);
415
416 /**
417 * spi_new_device - instantiate one new SPI device
418 * @master: Controller to which device is connected
419 * @chip: Describes the SPI device
420 * Context: can sleep
421 *
422 * On typical mainboards, this is purely internal; and it's not needed
423 * after board init creates the hard-wired devices. Some development
424 * platforms may not be able to use spi_register_board_info though, and
425 * this is exported so that for example a USB or parport based adapter
426 * driver could add devices (which it would learn about out-of-band).
427 *
428 * Returns the new device, or NULL.
429 */
430 struct spi_device *spi_new_device(struct spi_master *master,
431 struct spi_board_info *chip)
432 {
433 struct spi_device *proxy;
434 int status;
435
436 /* NOTE: caller did any chip->bus_num checks necessary.
437 *
438 * Also, unless we change the return value convention to use
439 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 * suggests syslogged diagnostics are best here (ugh).
441 */
442
443 proxy = spi_alloc_device(master);
444 if (!proxy)
445 return NULL;
446
447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
448
449 proxy->chip_select = chip->chip_select;
450 proxy->max_speed_hz = chip->max_speed_hz;
451 proxy->mode = chip->mode;
452 proxy->irq = chip->irq;
453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
454 proxy->dev.platform_data = (void *) chip->platform_data;
455 proxy->controller_data = chip->controller_data;
456 proxy->controller_state = NULL;
457
458 status = spi_add_device(proxy);
459 if (status < 0) {
460 spi_dev_put(proxy);
461 return NULL;
462 }
463
464 return proxy;
465 }
466 EXPORT_SYMBOL_GPL(spi_new_device);
467
468 static void spi_match_master_to_boardinfo(struct spi_master *master,
469 struct spi_board_info *bi)
470 {
471 struct spi_device *dev;
472
473 if (master->bus_num != bi->bus_num)
474 return;
475
476 dev = spi_new_device(master, bi);
477 if (!dev)
478 dev_err(master->dev.parent, "can't create new device for %s\n",
479 bi->modalias);
480 }
481
482 /**
483 * spi_register_board_info - register SPI devices for a given board
484 * @info: array of chip descriptors
485 * @n: how many descriptors are provided
486 * Context: can sleep
487 *
488 * Board-specific early init code calls this (probably during arch_initcall)
489 * with segments of the SPI device table. Any device nodes are created later,
490 * after the relevant parent SPI controller (bus_num) is defined. We keep
491 * this table of devices forever, so that reloading a controller driver will
492 * not make Linux forget about these hard-wired devices.
493 *
494 * Other code can also call this, e.g. a particular add-on board might provide
495 * SPI devices through its expansion connector, so code initializing that board
496 * would naturally declare its SPI devices.
497 *
498 * The board info passed can safely be __initdata ... but be careful of
499 * any embedded pointers (platform_data, etc), they're copied as-is.
500 */
501 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
502 {
503 struct boardinfo *bi;
504 int i;
505
506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
507 if (!bi)
508 return -ENOMEM;
509
510 for (i = 0; i < n; i++, bi++, info++) {
511 struct spi_master *master;
512
513 memcpy(&bi->board_info, info, sizeof(*info));
514 mutex_lock(&board_lock);
515 list_add_tail(&bi->list, &board_list);
516 list_for_each_entry(master, &spi_master_list, list)
517 spi_match_master_to_boardinfo(master, &bi->board_info);
518 mutex_unlock(&board_lock);
519 }
520
521 return 0;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526 /**
527 * spi_pump_messages - kthread work function which processes spi message queue
528 * @work: pointer to kthread work struct contained in the master struct
529 *
530 * This function checks if there is any spi message in the queue that
531 * needs processing and if so call out to the driver to initialize hardware
532 * and transfer each message.
533 *
534 */
535 static void spi_pump_messages(struct kthread_work *work)
536 {
537 struct spi_master *master =
538 container_of(work, struct spi_master, pump_messages);
539 unsigned long flags;
540 bool was_busy = false;
541 int ret;
542
543 /* Lock queue and check for queue work */
544 spin_lock_irqsave(&master->queue_lock, flags);
545 if (list_empty(&master->queue) || !master->running) {
546 if (!master->busy) {
547 spin_unlock_irqrestore(&master->queue_lock, flags);
548 return;
549 }
550 master->busy = false;
551 spin_unlock_irqrestore(&master->queue_lock, flags);
552 if (master->unprepare_transfer_hardware &&
553 master->unprepare_transfer_hardware(master))
554 dev_err(&master->dev,
555 "failed to unprepare transfer hardware\n");
556 if (master->auto_runtime_pm) {
557 pm_runtime_mark_last_busy(master->dev.parent);
558 pm_runtime_put_autosuspend(master->dev.parent);
559 }
560 return;
561 }
562
563 /* Make sure we are not already running a message */
564 if (master->cur_msg) {
565 spin_unlock_irqrestore(&master->queue_lock, flags);
566 return;
567 }
568 /* Extract head of queue */
569 master->cur_msg =
570 list_entry(master->queue.next, struct spi_message, queue);
571
572 list_del_init(&master->cur_msg->queue);
573 if (master->busy)
574 was_busy = true;
575 else
576 master->busy = true;
577 spin_unlock_irqrestore(&master->queue_lock, flags);
578
579 if (!was_busy && master->auto_runtime_pm) {
580 ret = pm_runtime_get_sync(master->dev.parent);
581 if (ret < 0) {
582 dev_err(&master->dev, "Failed to power device: %d\n",
583 ret);
584 return;
585 }
586 }
587
588 if (!was_busy && master->prepare_transfer_hardware) {
589 ret = master->prepare_transfer_hardware(master);
590 if (ret) {
591 dev_err(&master->dev,
592 "failed to prepare transfer hardware\n");
593
594 if (master->auto_runtime_pm)
595 pm_runtime_put(master->dev.parent);
596 return;
597 }
598 }
599
600 ret = master->transfer_one_message(master, master->cur_msg);
601 if (ret) {
602 dev_err(&master->dev,
603 "failed to transfer one message from queue\n");
604 return;
605 }
606 }
607
608 static int spi_init_queue(struct spi_master *master)
609 {
610 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
611
612 INIT_LIST_HEAD(&master->queue);
613 spin_lock_init(&master->queue_lock);
614
615 master->running = false;
616 master->busy = false;
617
618 init_kthread_worker(&master->kworker);
619 master->kworker_task = kthread_run(kthread_worker_fn,
620 &master->kworker, "%s",
621 dev_name(&master->dev));
622 if (IS_ERR(master->kworker_task)) {
623 dev_err(&master->dev, "failed to create message pump task\n");
624 return -ENOMEM;
625 }
626 init_kthread_work(&master->pump_messages, spi_pump_messages);
627
628 /*
629 * Master config will indicate if this controller should run the
630 * message pump with high (realtime) priority to reduce the transfer
631 * latency on the bus by minimising the delay between a transfer
632 * request and the scheduling of the message pump thread. Without this
633 * setting the message pump thread will remain at default priority.
634 */
635 if (master->rt) {
636 dev_info(&master->dev,
637 "will run message pump with realtime priority\n");
638 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
639 }
640
641 return 0;
642 }
643
644 /**
645 * spi_get_next_queued_message() - called by driver to check for queued
646 * messages
647 * @master: the master to check for queued messages
648 *
649 * If there are more messages in the queue, the next message is returned from
650 * this call.
651 */
652 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
653 {
654 struct spi_message *next;
655 unsigned long flags;
656
657 /* get a pointer to the next message, if any */
658 spin_lock_irqsave(&master->queue_lock, flags);
659 if (list_empty(&master->queue))
660 next = NULL;
661 else
662 next = list_entry(master->queue.next,
663 struct spi_message, queue);
664 spin_unlock_irqrestore(&master->queue_lock, flags);
665
666 return next;
667 }
668 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
669
670 /**
671 * spi_finalize_current_message() - the current message is complete
672 * @master: the master to return the message to
673 *
674 * Called by the driver to notify the core that the message in the front of the
675 * queue is complete and can be removed from the queue.
676 */
677 void spi_finalize_current_message(struct spi_master *master)
678 {
679 struct spi_message *mesg;
680 unsigned long flags;
681
682 spin_lock_irqsave(&master->queue_lock, flags);
683 mesg = master->cur_msg;
684 master->cur_msg = NULL;
685
686 queue_kthread_work(&master->kworker, &master->pump_messages);
687 spin_unlock_irqrestore(&master->queue_lock, flags);
688
689 mesg->state = NULL;
690 if (mesg->complete)
691 mesg->complete(mesg->context);
692 }
693 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
694
695 static int spi_start_queue(struct spi_master *master)
696 {
697 unsigned long flags;
698
699 spin_lock_irqsave(&master->queue_lock, flags);
700
701 if (master->running || master->busy) {
702 spin_unlock_irqrestore(&master->queue_lock, flags);
703 return -EBUSY;
704 }
705
706 master->running = true;
707 master->cur_msg = NULL;
708 spin_unlock_irqrestore(&master->queue_lock, flags);
709
710 queue_kthread_work(&master->kworker, &master->pump_messages);
711
712 return 0;
713 }
714
715 static int spi_stop_queue(struct spi_master *master)
716 {
717 unsigned long flags;
718 unsigned limit = 500;
719 int ret = 0;
720
721 spin_lock_irqsave(&master->queue_lock, flags);
722
723 /*
724 * This is a bit lame, but is optimized for the common execution path.
725 * A wait_queue on the master->busy could be used, but then the common
726 * execution path (pump_messages) would be required to call wake_up or
727 * friends on every SPI message. Do this instead.
728 */
729 while ((!list_empty(&master->queue) || master->busy) && limit--) {
730 spin_unlock_irqrestore(&master->queue_lock, flags);
731 msleep(10);
732 spin_lock_irqsave(&master->queue_lock, flags);
733 }
734
735 if (!list_empty(&master->queue) || master->busy)
736 ret = -EBUSY;
737 else
738 master->running = false;
739
740 spin_unlock_irqrestore(&master->queue_lock, flags);
741
742 if (ret) {
743 dev_warn(&master->dev,
744 "could not stop message queue\n");
745 return ret;
746 }
747 return ret;
748 }
749
750 static int spi_destroy_queue(struct spi_master *master)
751 {
752 int ret;
753
754 ret = spi_stop_queue(master);
755
756 /*
757 * flush_kthread_worker will block until all work is done.
758 * If the reason that stop_queue timed out is that the work will never
759 * finish, then it does no good to call flush/stop thread, so
760 * return anyway.
761 */
762 if (ret) {
763 dev_err(&master->dev, "problem destroying queue\n");
764 return ret;
765 }
766
767 flush_kthread_worker(&master->kworker);
768 kthread_stop(master->kworker_task);
769
770 return 0;
771 }
772
773 /**
774 * spi_queued_transfer - transfer function for queued transfers
775 * @spi: spi device which is requesting transfer
776 * @msg: spi message which is to handled is queued to driver queue
777 */
778 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
779 {
780 struct spi_master *master = spi->master;
781 unsigned long flags;
782
783 spin_lock_irqsave(&master->queue_lock, flags);
784
785 if (!master->running) {
786 spin_unlock_irqrestore(&master->queue_lock, flags);
787 return -ESHUTDOWN;
788 }
789 msg->actual_length = 0;
790 msg->status = -EINPROGRESS;
791
792 list_add_tail(&msg->queue, &master->queue);
793 if (!master->busy)
794 queue_kthread_work(&master->kworker, &master->pump_messages);
795
796 spin_unlock_irqrestore(&master->queue_lock, flags);
797 return 0;
798 }
799
800 static int spi_master_initialize_queue(struct spi_master *master)
801 {
802 int ret;
803
804 master->queued = true;
805 master->transfer = spi_queued_transfer;
806
807 /* Initialize and start queue */
808 ret = spi_init_queue(master);
809 if (ret) {
810 dev_err(&master->dev, "problem initializing queue\n");
811 goto err_init_queue;
812 }
813 ret = spi_start_queue(master);
814 if (ret) {
815 dev_err(&master->dev, "problem starting queue\n");
816 goto err_start_queue;
817 }
818
819 return 0;
820
821 err_start_queue:
822 err_init_queue:
823 spi_destroy_queue(master);
824 return ret;
825 }
826
827 /*-------------------------------------------------------------------------*/
828
829 #if defined(CONFIG_OF)
830 /**
831 * of_register_spi_devices() - Register child devices onto the SPI bus
832 * @master: Pointer to spi_master device
833 *
834 * Registers an spi_device for each child node of master node which has a 'reg'
835 * property.
836 */
837 static void of_register_spi_devices(struct spi_master *master)
838 {
839 struct spi_device *spi;
840 struct device_node *nc;
841 const __be32 *prop;
842 char modalias[SPI_NAME_SIZE + 4];
843 int rc;
844 int len;
845
846 if (!master->dev.of_node)
847 return;
848
849 for_each_available_child_of_node(master->dev.of_node, nc) {
850 /* Alloc an spi_device */
851 spi = spi_alloc_device(master);
852 if (!spi) {
853 dev_err(&master->dev, "spi_device alloc error for %s\n",
854 nc->full_name);
855 spi_dev_put(spi);
856 continue;
857 }
858
859 /* Select device driver */
860 if (of_modalias_node(nc, spi->modalias,
861 sizeof(spi->modalias)) < 0) {
862 dev_err(&master->dev, "cannot find modalias for %s\n",
863 nc->full_name);
864 spi_dev_put(spi);
865 continue;
866 }
867
868 /* Device address */
869 prop = of_get_property(nc, "reg", &len);
870 if (!prop || len < sizeof(*prop)) {
871 dev_err(&master->dev, "%s has no 'reg' property\n",
872 nc->full_name);
873 spi_dev_put(spi);
874 continue;
875 }
876 spi->chip_select = be32_to_cpup(prop);
877
878 /* Mode (clock phase/polarity/etc.) */
879 if (of_find_property(nc, "spi-cpha", NULL))
880 spi->mode |= SPI_CPHA;
881 if (of_find_property(nc, "spi-cpol", NULL))
882 spi->mode |= SPI_CPOL;
883 if (of_find_property(nc, "spi-cs-high", NULL))
884 spi->mode |= SPI_CS_HIGH;
885 if (of_find_property(nc, "spi-3wire", NULL))
886 spi->mode |= SPI_3WIRE;
887
888 /* Device DUAL/QUAD mode */
889 prop = of_get_property(nc, "spi-tx-bus-width", &len);
890 if (prop && len == sizeof(*prop)) {
891 switch (be32_to_cpup(prop)) {
892 case SPI_NBITS_SINGLE:
893 break;
894 case SPI_NBITS_DUAL:
895 spi->mode |= SPI_TX_DUAL;
896 break;
897 case SPI_NBITS_QUAD:
898 spi->mode |= SPI_TX_QUAD;
899 break;
900 default:
901 dev_err(&master->dev,
902 "spi-tx-bus-width %d not supported\n",
903 be32_to_cpup(prop));
904 spi_dev_put(spi);
905 continue;
906 }
907 }
908
909 prop = of_get_property(nc, "spi-rx-bus-width", &len);
910 if (prop && len == sizeof(*prop)) {
911 switch (be32_to_cpup(prop)) {
912 case SPI_NBITS_SINGLE:
913 break;
914 case SPI_NBITS_DUAL:
915 spi->mode |= SPI_RX_DUAL;
916 break;
917 case SPI_NBITS_QUAD:
918 spi->mode |= SPI_RX_QUAD;
919 break;
920 default:
921 dev_err(&master->dev,
922 "spi-rx-bus-width %d not supported\n",
923 be32_to_cpup(prop));
924 spi_dev_put(spi);
925 continue;
926 }
927 }
928
929 /* Device speed */
930 prop = of_get_property(nc, "spi-max-frequency", &len);
931 if (!prop || len < sizeof(*prop)) {
932 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
933 nc->full_name);
934 spi_dev_put(spi);
935 continue;
936 }
937 spi->max_speed_hz = be32_to_cpup(prop);
938
939 /* IRQ */
940 spi->irq = irq_of_parse_and_map(nc, 0);
941
942 /* Store a pointer to the node in the device structure */
943 of_node_get(nc);
944 spi->dev.of_node = nc;
945
946 /* Register the new device */
947 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
948 spi->modalias);
949 request_module(modalias);
950 rc = spi_add_device(spi);
951 if (rc) {
952 dev_err(&master->dev, "spi_device register error %s\n",
953 nc->full_name);
954 spi_dev_put(spi);
955 }
956
957 }
958 }
959 #else
960 static void of_register_spi_devices(struct spi_master *master) { }
961 #endif
962
963 #ifdef CONFIG_ACPI
964 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
965 {
966 struct spi_device *spi = data;
967
968 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
969 struct acpi_resource_spi_serialbus *sb;
970
971 sb = &ares->data.spi_serial_bus;
972 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
973 spi->chip_select = sb->device_selection;
974 spi->max_speed_hz = sb->connection_speed;
975
976 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
977 spi->mode |= SPI_CPHA;
978 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
979 spi->mode |= SPI_CPOL;
980 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
981 spi->mode |= SPI_CS_HIGH;
982 }
983 } else if (spi->irq < 0) {
984 struct resource r;
985
986 if (acpi_dev_resource_interrupt(ares, 0, &r))
987 spi->irq = r.start;
988 }
989
990 /* Always tell the ACPI core to skip this resource */
991 return 1;
992 }
993
994 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
995 void *data, void **return_value)
996 {
997 struct spi_master *master = data;
998 struct list_head resource_list;
999 struct acpi_device *adev;
1000 struct spi_device *spi;
1001 int ret;
1002
1003 if (acpi_bus_get_device(handle, &adev))
1004 return AE_OK;
1005 if (acpi_bus_get_status(adev) || !adev->status.present)
1006 return AE_OK;
1007
1008 spi = spi_alloc_device(master);
1009 if (!spi) {
1010 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1011 dev_name(&adev->dev));
1012 return AE_NO_MEMORY;
1013 }
1014
1015 ACPI_HANDLE_SET(&spi->dev, handle);
1016 spi->irq = -1;
1017
1018 INIT_LIST_HEAD(&resource_list);
1019 ret = acpi_dev_get_resources(adev, &resource_list,
1020 acpi_spi_add_resource, spi);
1021 acpi_dev_free_resource_list(&resource_list);
1022
1023 if (ret < 0 || !spi->max_speed_hz) {
1024 spi_dev_put(spi);
1025 return AE_OK;
1026 }
1027
1028 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
1029 if (spi_add_device(spi)) {
1030 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1031 dev_name(&adev->dev));
1032 spi_dev_put(spi);
1033 }
1034
1035 return AE_OK;
1036 }
1037
1038 static void acpi_register_spi_devices(struct spi_master *master)
1039 {
1040 acpi_status status;
1041 acpi_handle handle;
1042
1043 handle = ACPI_HANDLE(master->dev.parent);
1044 if (!handle)
1045 return;
1046
1047 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1048 acpi_spi_add_device, NULL,
1049 master, NULL);
1050 if (ACPI_FAILURE(status))
1051 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1052 }
1053 #else
1054 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1055 #endif /* CONFIG_ACPI */
1056
1057 static void spi_master_release(struct device *dev)
1058 {
1059 struct spi_master *master;
1060
1061 master = container_of(dev, struct spi_master, dev);
1062 kfree(master);
1063 }
1064
1065 static struct class spi_master_class = {
1066 .name = "spi_master",
1067 .owner = THIS_MODULE,
1068 .dev_release = spi_master_release,
1069 };
1070
1071
1072
1073 /**
1074 * spi_alloc_master - allocate SPI master controller
1075 * @dev: the controller, possibly using the platform_bus
1076 * @size: how much zeroed driver-private data to allocate; the pointer to this
1077 * memory is in the driver_data field of the returned device,
1078 * accessible with spi_master_get_devdata().
1079 * Context: can sleep
1080 *
1081 * This call is used only by SPI master controller drivers, which are the
1082 * only ones directly touching chip registers. It's how they allocate
1083 * an spi_master structure, prior to calling spi_register_master().
1084 *
1085 * This must be called from context that can sleep. It returns the SPI
1086 * master structure on success, else NULL.
1087 *
1088 * The caller is responsible for assigning the bus number and initializing
1089 * the master's methods before calling spi_register_master(); and (after errors
1090 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1091 * leak.
1092 */
1093 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1094 {
1095 struct spi_master *master;
1096
1097 if (!dev)
1098 return NULL;
1099
1100 master = kzalloc(size + sizeof *master, GFP_KERNEL);
1101 if (!master)
1102 return NULL;
1103
1104 device_initialize(&master->dev);
1105 master->bus_num = -1;
1106 master->num_chipselect = 1;
1107 master->dev.class = &spi_master_class;
1108 master->dev.parent = get_device(dev);
1109 spi_master_set_devdata(master, &master[1]);
1110
1111 return master;
1112 }
1113 EXPORT_SYMBOL_GPL(spi_alloc_master);
1114
1115 #ifdef CONFIG_OF
1116 static int of_spi_register_master(struct spi_master *master)
1117 {
1118 int nb, i, *cs;
1119 struct device_node *np = master->dev.of_node;
1120
1121 if (!np)
1122 return 0;
1123
1124 nb = of_gpio_named_count(np, "cs-gpios");
1125 master->num_chipselect = max(nb, (int)master->num_chipselect);
1126
1127 /* Return error only for an incorrectly formed cs-gpios property */
1128 if (nb == 0 || nb == -ENOENT)
1129 return 0;
1130 else if (nb < 0)
1131 return nb;
1132
1133 cs = devm_kzalloc(&master->dev,
1134 sizeof(int) * master->num_chipselect,
1135 GFP_KERNEL);
1136 master->cs_gpios = cs;
1137
1138 if (!master->cs_gpios)
1139 return -ENOMEM;
1140
1141 for (i = 0; i < master->num_chipselect; i++)
1142 cs[i] = -ENOENT;
1143
1144 for (i = 0; i < nb; i++)
1145 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1146
1147 return 0;
1148 }
1149 #else
1150 static int of_spi_register_master(struct spi_master *master)
1151 {
1152 return 0;
1153 }
1154 #endif
1155
1156 /**
1157 * spi_register_master - register SPI master controller
1158 * @master: initialized master, originally from spi_alloc_master()
1159 * Context: can sleep
1160 *
1161 * SPI master controllers connect to their drivers using some non-SPI bus,
1162 * such as the platform bus. The final stage of probe() in that code
1163 * includes calling spi_register_master() to hook up to this SPI bus glue.
1164 *
1165 * SPI controllers use board specific (often SOC specific) bus numbers,
1166 * and board-specific addressing for SPI devices combines those numbers
1167 * with chip select numbers. Since SPI does not directly support dynamic
1168 * device identification, boards need configuration tables telling which
1169 * chip is at which address.
1170 *
1171 * This must be called from context that can sleep. It returns zero on
1172 * success, else a negative error code (dropping the master's refcount).
1173 * After a successful return, the caller is responsible for calling
1174 * spi_unregister_master().
1175 */
1176 int spi_register_master(struct spi_master *master)
1177 {
1178 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1179 struct device *dev = master->dev.parent;
1180 struct boardinfo *bi;
1181 int status = -ENODEV;
1182 int dynamic = 0;
1183
1184 if (!dev)
1185 return -ENODEV;
1186
1187 status = of_spi_register_master(master);
1188 if (status)
1189 return status;
1190
1191 /* even if it's just one always-selected device, there must
1192 * be at least one chipselect
1193 */
1194 if (master->num_chipselect == 0)
1195 return -EINVAL;
1196
1197 if ((master->bus_num < 0) && master->dev.of_node)
1198 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1199
1200 /* convention: dynamically assigned bus IDs count down from the max */
1201 if (master->bus_num < 0) {
1202 /* FIXME switch to an IDR based scheme, something like
1203 * I2C now uses, so we can't run out of "dynamic" IDs
1204 */
1205 master->bus_num = atomic_dec_return(&dyn_bus_id);
1206 dynamic = 1;
1207 }
1208
1209 spin_lock_init(&master->bus_lock_spinlock);
1210 mutex_init(&master->bus_lock_mutex);
1211 master->bus_lock_flag = 0;
1212
1213 /* register the device, then userspace will see it.
1214 * registration fails if the bus ID is in use.
1215 */
1216 dev_set_name(&master->dev, "spi%u", master->bus_num);
1217 status = device_add(&master->dev);
1218 if (status < 0)
1219 goto done;
1220 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1221 dynamic ? " (dynamic)" : "");
1222
1223 /* If we're using a queued driver, start the queue */
1224 if (master->transfer)
1225 dev_info(dev, "master is unqueued, this is deprecated\n");
1226 else {
1227 status = spi_master_initialize_queue(master);
1228 if (status) {
1229 device_del(&master->dev);
1230 goto done;
1231 }
1232 }
1233
1234 mutex_lock(&board_lock);
1235 list_add_tail(&master->list, &spi_master_list);
1236 list_for_each_entry(bi, &board_list, list)
1237 spi_match_master_to_boardinfo(master, &bi->board_info);
1238 mutex_unlock(&board_lock);
1239
1240 /* Register devices from the device tree and ACPI */
1241 of_register_spi_devices(master);
1242 acpi_register_spi_devices(master);
1243 done:
1244 return status;
1245 }
1246 EXPORT_SYMBOL_GPL(spi_register_master);
1247
1248 static int __unregister(struct device *dev, void *null)
1249 {
1250 spi_unregister_device(to_spi_device(dev));
1251 return 0;
1252 }
1253
1254 /**
1255 * spi_unregister_master - unregister SPI master controller
1256 * @master: the master being unregistered
1257 * Context: can sleep
1258 *
1259 * This call is used only by SPI master controller drivers, which are the
1260 * only ones directly touching chip registers.
1261 *
1262 * This must be called from context that can sleep.
1263 */
1264 void spi_unregister_master(struct spi_master *master)
1265 {
1266 int dummy;
1267
1268 if (master->queued) {
1269 if (spi_destroy_queue(master))
1270 dev_err(&master->dev, "queue remove failed\n");
1271 }
1272
1273 mutex_lock(&board_lock);
1274 list_del(&master->list);
1275 mutex_unlock(&board_lock);
1276
1277 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1278 device_unregister(&master->dev);
1279 }
1280 EXPORT_SYMBOL_GPL(spi_unregister_master);
1281
1282 int spi_master_suspend(struct spi_master *master)
1283 {
1284 int ret;
1285
1286 /* Basically no-ops for non-queued masters */
1287 if (!master->queued)
1288 return 0;
1289
1290 ret = spi_stop_queue(master);
1291 if (ret)
1292 dev_err(&master->dev, "queue stop failed\n");
1293
1294 return ret;
1295 }
1296 EXPORT_SYMBOL_GPL(spi_master_suspend);
1297
1298 int spi_master_resume(struct spi_master *master)
1299 {
1300 int ret;
1301
1302 if (!master->queued)
1303 return 0;
1304
1305 ret = spi_start_queue(master);
1306 if (ret)
1307 dev_err(&master->dev, "queue restart failed\n");
1308
1309 return ret;
1310 }
1311 EXPORT_SYMBOL_GPL(spi_master_resume);
1312
1313 static int __spi_master_match(struct device *dev, const void *data)
1314 {
1315 struct spi_master *m;
1316 const u16 *bus_num = data;
1317
1318 m = container_of(dev, struct spi_master, dev);
1319 return m->bus_num == *bus_num;
1320 }
1321
1322 /**
1323 * spi_busnum_to_master - look up master associated with bus_num
1324 * @bus_num: the master's bus number
1325 * Context: can sleep
1326 *
1327 * This call may be used with devices that are registered after
1328 * arch init time. It returns a refcounted pointer to the relevant
1329 * spi_master (which the caller must release), or NULL if there is
1330 * no such master registered.
1331 */
1332 struct spi_master *spi_busnum_to_master(u16 bus_num)
1333 {
1334 struct device *dev;
1335 struct spi_master *master = NULL;
1336
1337 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1338 __spi_master_match);
1339 if (dev)
1340 master = container_of(dev, struct spi_master, dev);
1341 /* reference got in class_find_device */
1342 return master;
1343 }
1344 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1345
1346
1347 /*-------------------------------------------------------------------------*/
1348
1349 /* Core methods for SPI master protocol drivers. Some of the
1350 * other core methods are currently defined as inline functions.
1351 */
1352
1353 /**
1354 * spi_setup - setup SPI mode and clock rate
1355 * @spi: the device whose settings are being modified
1356 * Context: can sleep, and no requests are queued to the device
1357 *
1358 * SPI protocol drivers may need to update the transfer mode if the
1359 * device doesn't work with its default. They may likewise need
1360 * to update clock rates or word sizes from initial values. This function
1361 * changes those settings, and must be called from a context that can sleep.
1362 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1363 * effect the next time the device is selected and data is transferred to
1364 * or from it. When this function returns, the spi device is deselected.
1365 *
1366 * Note that this call will fail if the protocol driver specifies an option
1367 * that the underlying controller or its driver does not support. For
1368 * example, not all hardware supports wire transfers using nine bit words,
1369 * LSB-first wire encoding, or active-high chipselects.
1370 */
1371 int spi_setup(struct spi_device *spi)
1372 {
1373 unsigned bad_bits;
1374 int status = 0;
1375
1376 /* check mode to prevent that DUAL and QUAD set at the same time
1377 */
1378 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1379 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1380 dev_err(&spi->dev,
1381 "setup: can not select dual and quad at the same time\n");
1382 return -EINVAL;
1383 }
1384 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1385 */
1386 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1387 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1388 return -EINVAL;
1389 /* help drivers fail *cleanly* when they need options
1390 * that aren't supported with their current master
1391 */
1392 bad_bits = spi->mode & ~spi->master->mode_bits;
1393 if (bad_bits) {
1394 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1395 bad_bits);
1396 return -EINVAL;
1397 }
1398
1399 if (!spi->bits_per_word)
1400 spi->bits_per_word = 8;
1401
1402 if (spi->master->setup)
1403 status = spi->master->setup(spi);
1404
1405 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1406 "%u bits/w, %u Hz max --> %d\n",
1407 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1408 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1409 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1410 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1411 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1412 spi->bits_per_word, spi->max_speed_hz,
1413 status);
1414
1415 return status;
1416 }
1417 EXPORT_SYMBOL_GPL(spi_setup);
1418
1419 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1420 {
1421 struct spi_master *master = spi->master;
1422 struct spi_transfer *xfer;
1423
1424 if (list_empty(&message->transfers))
1425 return -EINVAL;
1426 if (!message->complete)
1427 return -EINVAL;
1428
1429 /* Half-duplex links include original MicroWire, and ones with
1430 * only one data pin like SPI_3WIRE (switches direction) or where
1431 * either MOSI or MISO is missing. They can also be caused by
1432 * software limitations.
1433 */
1434 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1435 || (spi->mode & SPI_3WIRE)) {
1436 unsigned flags = master->flags;
1437
1438 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1439 if (xfer->rx_buf && xfer->tx_buf)
1440 return -EINVAL;
1441 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1442 return -EINVAL;
1443 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1444 return -EINVAL;
1445 }
1446 }
1447
1448 /**
1449 * Set transfer bits_per_word and max speed as spi device default if
1450 * it is not set for this transfer.
1451 * Set transfer tx_nbits and rx_nbits as single transfer default
1452 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1453 */
1454 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1455 message->frame_length += xfer->len;
1456 if (!xfer->bits_per_word)
1457 xfer->bits_per_word = spi->bits_per_word;
1458 if (!xfer->speed_hz) {
1459 xfer->speed_hz = spi->max_speed_hz;
1460 if (master->max_speed_hz &&
1461 xfer->speed_hz > master->max_speed_hz)
1462 xfer->speed_hz = master->max_speed_hz;
1463 }
1464
1465 if (master->bits_per_word_mask) {
1466 /* Only 32 bits fit in the mask */
1467 if (xfer->bits_per_word > 32)
1468 return -EINVAL;
1469 if (!(master->bits_per_word_mask &
1470 BIT(xfer->bits_per_word - 1)))
1471 return -EINVAL;
1472 }
1473
1474 if (xfer->speed_hz && master->min_speed_hz &&
1475 xfer->speed_hz < master->min_speed_hz)
1476 return -EINVAL;
1477 if (xfer->speed_hz && master->max_speed_hz &&
1478 xfer->speed_hz > master->max_speed_hz)
1479 return -EINVAL;
1480
1481 if (xfer->tx_buf && !xfer->tx_nbits)
1482 xfer->tx_nbits = SPI_NBITS_SINGLE;
1483 if (xfer->rx_buf && !xfer->rx_nbits)
1484 xfer->rx_nbits = SPI_NBITS_SINGLE;
1485 /* check transfer tx/rx_nbits:
1486 * 1. keep the value is not out of single, dual and quad
1487 * 2. keep tx/rx_nbits is contained by mode in spi_device
1488 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
1489 */
1490 if (xfer->tx_buf) {
1491 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1492 xfer->tx_nbits != SPI_NBITS_DUAL &&
1493 xfer->tx_nbits != SPI_NBITS_QUAD)
1494 return -EINVAL;
1495 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1496 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1497 return -EINVAL;
1498 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1499 !(spi->mode & SPI_TX_QUAD))
1500 return -EINVAL;
1501 if ((spi->mode & SPI_3WIRE) &&
1502 (xfer->tx_nbits != SPI_NBITS_SINGLE))
1503 return -EINVAL;
1504 }
1505 /* check transfer rx_nbits */
1506 if (xfer->rx_buf) {
1507 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1508 xfer->rx_nbits != SPI_NBITS_DUAL &&
1509 xfer->rx_nbits != SPI_NBITS_QUAD)
1510 return -EINVAL;
1511 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1512 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1513 return -EINVAL;
1514 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1515 !(spi->mode & SPI_RX_QUAD))
1516 return -EINVAL;
1517 if ((spi->mode & SPI_3WIRE) &&
1518 (xfer->rx_nbits != SPI_NBITS_SINGLE))
1519 return -EINVAL;
1520 }
1521 }
1522
1523 message->spi = spi;
1524 message->status = -EINPROGRESS;
1525 return master->transfer(spi, message);
1526 }
1527
1528 /**
1529 * spi_async - asynchronous SPI transfer
1530 * @spi: device with which data will be exchanged
1531 * @message: describes the data transfers, including completion callback
1532 * Context: any (irqs may be blocked, etc)
1533 *
1534 * This call may be used in_irq and other contexts which can't sleep,
1535 * as well as from task contexts which can sleep.
1536 *
1537 * The completion callback is invoked in a context which can't sleep.
1538 * Before that invocation, the value of message->status is undefined.
1539 * When the callback is issued, message->status holds either zero (to
1540 * indicate complete success) or a negative error code. After that
1541 * callback returns, the driver which issued the transfer request may
1542 * deallocate the associated memory; it's no longer in use by any SPI
1543 * core or controller driver code.
1544 *
1545 * Note that although all messages to a spi_device are handled in
1546 * FIFO order, messages may go to different devices in other orders.
1547 * Some device might be higher priority, or have various "hard" access
1548 * time requirements, for example.
1549 *
1550 * On detection of any fault during the transfer, processing of
1551 * the entire message is aborted, and the device is deselected.
1552 * Until returning from the associated message completion callback,
1553 * no other spi_message queued to that device will be processed.
1554 * (This rule applies equally to all the synchronous transfer calls,
1555 * which are wrappers around this core asynchronous primitive.)
1556 */
1557 int spi_async(struct spi_device *spi, struct spi_message *message)
1558 {
1559 struct spi_master *master = spi->master;
1560 int ret;
1561 unsigned long flags;
1562
1563 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1564
1565 if (master->bus_lock_flag)
1566 ret = -EBUSY;
1567 else
1568 ret = __spi_async(spi, message);
1569
1570 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1571
1572 return ret;
1573 }
1574 EXPORT_SYMBOL_GPL(spi_async);
1575
1576 /**
1577 * spi_async_locked - version of spi_async with exclusive bus usage
1578 * @spi: device with which data will be exchanged
1579 * @message: describes the data transfers, including completion callback
1580 * Context: any (irqs may be blocked, etc)
1581 *
1582 * This call may be used in_irq and other contexts which can't sleep,
1583 * as well as from task contexts which can sleep.
1584 *
1585 * The completion callback is invoked in a context which can't sleep.
1586 * Before that invocation, the value of message->status is undefined.
1587 * When the callback is issued, message->status holds either zero (to
1588 * indicate complete success) or a negative error code. After that
1589 * callback returns, the driver which issued the transfer request may
1590 * deallocate the associated memory; it's no longer in use by any SPI
1591 * core or controller driver code.
1592 *
1593 * Note that although all messages to a spi_device are handled in
1594 * FIFO order, messages may go to different devices in other orders.
1595 * Some device might be higher priority, or have various "hard" access
1596 * time requirements, for example.
1597 *
1598 * On detection of any fault during the transfer, processing of
1599 * the entire message is aborted, and the device is deselected.
1600 * Until returning from the associated message completion callback,
1601 * no other spi_message queued to that device will be processed.
1602 * (This rule applies equally to all the synchronous transfer calls,
1603 * which are wrappers around this core asynchronous primitive.)
1604 */
1605 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1606 {
1607 struct spi_master *master = spi->master;
1608 int ret;
1609 unsigned long flags;
1610
1611 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1612
1613 ret = __spi_async(spi, message);
1614
1615 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1616
1617 return ret;
1618
1619 }
1620 EXPORT_SYMBOL_GPL(spi_async_locked);
1621
1622
1623 /*-------------------------------------------------------------------------*/
1624
1625 /* Utility methods for SPI master protocol drivers, layered on
1626 * top of the core. Some other utility methods are defined as
1627 * inline functions.
1628 */
1629
1630 static void spi_complete(void *arg)
1631 {
1632 complete(arg);
1633 }
1634
1635 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1636 int bus_locked)
1637 {
1638 DECLARE_COMPLETION_ONSTACK(done);
1639 int status;
1640 struct spi_master *master = spi->master;
1641
1642 message->complete = spi_complete;
1643 message->context = &done;
1644
1645 if (!bus_locked)
1646 mutex_lock(&master->bus_lock_mutex);
1647
1648 status = spi_async_locked(spi, message);
1649
1650 if (!bus_locked)
1651 mutex_unlock(&master->bus_lock_mutex);
1652
1653 if (status == 0) {
1654 wait_for_completion(&done);
1655 status = message->status;
1656 }
1657 message->context = NULL;
1658 return status;
1659 }
1660
1661 /**
1662 * spi_sync - blocking/synchronous SPI data transfers
1663 * @spi: device with which data will be exchanged
1664 * @message: describes the data transfers
1665 * Context: can sleep
1666 *
1667 * This call may only be used from a context that may sleep. The sleep
1668 * is non-interruptible, and has no timeout. Low-overhead controller
1669 * drivers may DMA directly into and out of the message buffers.
1670 *
1671 * Note that the SPI device's chip select is active during the message,
1672 * and then is normally disabled between messages. Drivers for some
1673 * frequently-used devices may want to minimize costs of selecting a chip,
1674 * by leaving it selected in anticipation that the next message will go
1675 * to the same chip. (That may increase power usage.)
1676 *
1677 * Also, the caller is guaranteeing that the memory associated with the
1678 * message will not be freed before this call returns.
1679 *
1680 * It returns zero on success, else a negative error code.
1681 */
1682 int spi_sync(struct spi_device *spi, struct spi_message *message)
1683 {
1684 return __spi_sync(spi, message, 0);
1685 }
1686 EXPORT_SYMBOL_GPL(spi_sync);
1687
1688 /**
1689 * spi_sync_locked - version of spi_sync with exclusive bus usage
1690 * @spi: device with which data will be exchanged
1691 * @message: describes the data transfers
1692 * Context: can sleep
1693 *
1694 * This call may only be used from a context that may sleep. The sleep
1695 * is non-interruptible, and has no timeout. Low-overhead controller
1696 * drivers may DMA directly into and out of the message buffers.
1697 *
1698 * This call should be used by drivers that require exclusive access to the
1699 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1700 * be released by a spi_bus_unlock call when the exclusive access is over.
1701 *
1702 * It returns zero on success, else a negative error code.
1703 */
1704 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1705 {
1706 return __spi_sync(spi, message, 1);
1707 }
1708 EXPORT_SYMBOL_GPL(spi_sync_locked);
1709
1710 /**
1711 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1712 * @master: SPI bus master that should be locked for exclusive bus access
1713 * Context: can sleep
1714 *
1715 * This call may only be used from a context that may sleep. The sleep
1716 * is non-interruptible, and has no timeout.
1717 *
1718 * This call should be used by drivers that require exclusive access to the
1719 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1720 * exclusive access is over. Data transfer must be done by spi_sync_locked
1721 * and spi_async_locked calls when the SPI bus lock is held.
1722 *
1723 * It returns zero on success, else a negative error code.
1724 */
1725 int spi_bus_lock(struct spi_master *master)
1726 {
1727 unsigned long flags;
1728
1729 mutex_lock(&master->bus_lock_mutex);
1730
1731 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1732 master->bus_lock_flag = 1;
1733 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1734
1735 /* mutex remains locked until spi_bus_unlock is called */
1736
1737 return 0;
1738 }
1739 EXPORT_SYMBOL_GPL(spi_bus_lock);
1740
1741 /**
1742 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1743 * @master: SPI bus master that was locked for exclusive bus access
1744 * Context: can sleep
1745 *
1746 * This call may only be used from a context that may sleep. The sleep
1747 * is non-interruptible, and has no timeout.
1748 *
1749 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1750 * call.
1751 *
1752 * It returns zero on success, else a negative error code.
1753 */
1754 int spi_bus_unlock(struct spi_master *master)
1755 {
1756 master->bus_lock_flag = 0;
1757
1758 mutex_unlock(&master->bus_lock_mutex);
1759
1760 return 0;
1761 }
1762 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1763
1764 /* portable code must never pass more than 32 bytes */
1765 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1766
1767 static u8 *buf;
1768
1769 /**
1770 * spi_write_then_read - SPI synchronous write followed by read
1771 * @spi: device with which data will be exchanged
1772 * @txbuf: data to be written (need not be dma-safe)
1773 * @n_tx: size of txbuf, in bytes
1774 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1775 * @n_rx: size of rxbuf, in bytes
1776 * Context: can sleep
1777 *
1778 * This performs a half duplex MicroWire style transaction with the
1779 * device, sending txbuf and then reading rxbuf. The return value
1780 * is zero for success, else a negative errno status code.
1781 * This call may only be used from a context that may sleep.
1782 *
1783 * Parameters to this routine are always copied using a small buffer;
1784 * portable code should never use this for more than 32 bytes.
1785 * Performance-sensitive or bulk transfer code should instead use
1786 * spi_{async,sync}() calls with dma-safe buffers.
1787 */
1788 int spi_write_then_read(struct spi_device *spi,
1789 const void *txbuf, unsigned n_tx,
1790 void *rxbuf, unsigned n_rx)
1791 {
1792 static DEFINE_MUTEX(lock);
1793
1794 int status;
1795 struct spi_message message;
1796 struct spi_transfer x[2];
1797 u8 *local_buf;
1798
1799 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1800 * copying here, (as a pure convenience thing), but we can
1801 * keep heap costs out of the hot path unless someone else is
1802 * using the pre-allocated buffer or the transfer is too large.
1803 */
1804 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1805 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1806 GFP_KERNEL | GFP_DMA);
1807 if (!local_buf)
1808 return -ENOMEM;
1809 } else {
1810 local_buf = buf;
1811 }
1812
1813 spi_message_init(&message);
1814 memset(x, 0, sizeof x);
1815 if (n_tx) {
1816 x[0].len = n_tx;
1817 spi_message_add_tail(&x[0], &message);
1818 }
1819 if (n_rx) {
1820 x[1].len = n_rx;
1821 spi_message_add_tail(&x[1], &message);
1822 }
1823
1824 memcpy(local_buf, txbuf, n_tx);
1825 x[0].tx_buf = local_buf;
1826 x[1].rx_buf = local_buf + n_tx;
1827
1828 /* do the i/o */
1829 status = spi_sync(spi, &message);
1830 if (status == 0)
1831 memcpy(rxbuf, x[1].rx_buf, n_rx);
1832
1833 if (x[0].tx_buf == buf)
1834 mutex_unlock(&lock);
1835 else
1836 kfree(local_buf);
1837
1838 return status;
1839 }
1840 EXPORT_SYMBOL_GPL(spi_write_then_read);
1841
1842 /*-------------------------------------------------------------------------*/
1843
1844 static int __init spi_init(void)
1845 {
1846 int status;
1847
1848 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1849 if (!buf) {
1850 status = -ENOMEM;
1851 goto err0;
1852 }
1853
1854 status = bus_register(&spi_bus_type);
1855 if (status < 0)
1856 goto err1;
1857
1858 status = class_register(&spi_master_class);
1859 if (status < 0)
1860 goto err2;
1861 return 0;
1862
1863 err2:
1864 bus_unregister(&spi_bus_type);
1865 err1:
1866 kfree(buf);
1867 buf = NULL;
1868 err0:
1869 return status;
1870 }
1871
1872 /* board_info is normally registered in arch_initcall(),
1873 * but even essential drivers wait till later
1874 *
1875 * REVISIT only boardinfo really needs static linking. the rest (device and
1876 * driver registration) _could_ be dynamically linked (modular) ... costs
1877 * include needing to have boardinfo data structures be much more public.
1878 */
1879 postcore_initcall(spi_init);
1880
This page took 0.068144 seconds and 5 git commands to generate.