c64a3e59fce30a7f9658afcca246a6d6872627da
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/kmod.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/cache.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmaengine.h>
25 #include <linux/mutex.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/clk/clk-conf.h>
29 #include <linux/slab.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/spi/spi.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44
45 static void spidev_release(struct device *dev)
46 {
47 struct spi_device *spi = to_spi_device(dev);
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
53 spi_master_put(spi->master);
54 kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static struct attribute *spi_dev_attrs[] = {
72 &dev_attr_modalias.attr,
73 NULL,
74 };
75 ATTRIBUTE_GROUPS(spi_dev);
76
77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78 * and the sysfs version makes coldplug work too.
79 */
80
81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
82 const struct spi_device *sdev)
83 {
84 while (id->name[0]) {
85 if (!strcmp(sdev->modalias, id->name))
86 return id;
87 id++;
88 }
89 return NULL;
90 }
91
92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
93 {
94 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
95
96 return spi_match_id(sdrv->id_table, sdev);
97 }
98 EXPORT_SYMBOL_GPL(spi_get_device_id);
99
100 static int spi_match_device(struct device *dev, struct device_driver *drv)
101 {
102 const struct spi_device *spi = to_spi_device(dev);
103 const struct spi_driver *sdrv = to_spi_driver(drv);
104
105 /* Attempt an OF style match */
106 if (of_driver_match_device(dev, drv))
107 return 1;
108
109 /* Then try ACPI */
110 if (acpi_driver_match_device(dev, drv))
111 return 1;
112
113 if (sdrv->id_table)
114 return !!spi_match_id(sdrv->id_table, spi);
115
116 return strcmp(spi->modalias, drv->name) == 0;
117 }
118
119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
120 {
121 const struct spi_device *spi = to_spi_device(dev);
122 int rc;
123
124 rc = acpi_device_uevent_modalias(dev, env);
125 if (rc != -ENODEV)
126 return rc;
127
128 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
129 return 0;
130 }
131
132 #ifdef CONFIG_PM_SLEEP
133 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
134 {
135 int value = 0;
136 struct spi_driver *drv = to_spi_driver(dev->driver);
137
138 /* suspend will stop irqs and dma; no more i/o */
139 if (drv) {
140 if (drv->suspend)
141 value = drv->suspend(to_spi_device(dev), message);
142 else
143 dev_dbg(dev, "... can't suspend\n");
144 }
145 return value;
146 }
147
148 static int spi_legacy_resume(struct device *dev)
149 {
150 int value = 0;
151 struct spi_driver *drv = to_spi_driver(dev->driver);
152
153 /* resume may restart the i/o queue */
154 if (drv) {
155 if (drv->resume)
156 value = drv->resume(to_spi_device(dev));
157 else
158 dev_dbg(dev, "... can't resume\n");
159 }
160 return value;
161 }
162
163 static int spi_pm_suspend(struct device *dev)
164 {
165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166
167 if (pm)
168 return pm_generic_suspend(dev);
169 else
170 return spi_legacy_suspend(dev, PMSG_SUSPEND);
171 }
172
173 static int spi_pm_resume(struct device *dev)
174 {
175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176
177 if (pm)
178 return pm_generic_resume(dev);
179 else
180 return spi_legacy_resume(dev);
181 }
182
183 static int spi_pm_freeze(struct device *dev)
184 {
185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186
187 if (pm)
188 return pm_generic_freeze(dev);
189 else
190 return spi_legacy_suspend(dev, PMSG_FREEZE);
191 }
192
193 static int spi_pm_thaw(struct device *dev)
194 {
195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196
197 if (pm)
198 return pm_generic_thaw(dev);
199 else
200 return spi_legacy_resume(dev);
201 }
202
203 static int spi_pm_poweroff(struct device *dev)
204 {
205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206
207 if (pm)
208 return pm_generic_poweroff(dev);
209 else
210 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
211 }
212
213 static int spi_pm_restore(struct device *dev)
214 {
215 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
216
217 if (pm)
218 return pm_generic_restore(dev);
219 else
220 return spi_legacy_resume(dev);
221 }
222 #else
223 #define spi_pm_suspend NULL
224 #define spi_pm_resume NULL
225 #define spi_pm_freeze NULL
226 #define spi_pm_thaw NULL
227 #define spi_pm_poweroff NULL
228 #define spi_pm_restore NULL
229 #endif
230
231 static const struct dev_pm_ops spi_pm = {
232 .suspend = spi_pm_suspend,
233 .resume = spi_pm_resume,
234 .freeze = spi_pm_freeze,
235 .thaw = spi_pm_thaw,
236 .poweroff = spi_pm_poweroff,
237 .restore = spi_pm_restore,
238 SET_RUNTIME_PM_OPS(
239 pm_generic_runtime_suspend,
240 pm_generic_runtime_resume,
241 NULL
242 )
243 };
244
245 struct bus_type spi_bus_type = {
246 .name = "spi",
247 .dev_groups = spi_dev_groups,
248 .match = spi_match_device,
249 .uevent = spi_uevent,
250 .pm = &spi_pm,
251 };
252 EXPORT_SYMBOL_GPL(spi_bus_type);
253
254
255 static int spi_drv_probe(struct device *dev)
256 {
257 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
258 int ret;
259
260 ret = of_clk_set_defaults(dev->of_node, false);
261 if (ret)
262 return ret;
263
264 ret = dev_pm_domain_attach(dev, true);
265 if (ret != -EPROBE_DEFER) {
266 ret = sdrv->probe(to_spi_device(dev));
267 if (ret)
268 dev_pm_domain_detach(dev, true);
269 }
270
271 return ret;
272 }
273
274 static int spi_drv_remove(struct device *dev)
275 {
276 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
277 int ret;
278
279 ret = sdrv->remove(to_spi_device(dev));
280 dev_pm_domain_detach(dev, true);
281
282 return ret;
283 }
284
285 static void spi_drv_shutdown(struct device *dev)
286 {
287 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
288
289 sdrv->shutdown(to_spi_device(dev));
290 }
291
292 /**
293 * spi_register_driver - register a SPI driver
294 * @sdrv: the driver to register
295 * Context: can sleep
296 */
297 int spi_register_driver(struct spi_driver *sdrv)
298 {
299 sdrv->driver.bus = &spi_bus_type;
300 if (sdrv->probe)
301 sdrv->driver.probe = spi_drv_probe;
302 if (sdrv->remove)
303 sdrv->driver.remove = spi_drv_remove;
304 if (sdrv->shutdown)
305 sdrv->driver.shutdown = spi_drv_shutdown;
306 return driver_register(&sdrv->driver);
307 }
308 EXPORT_SYMBOL_GPL(spi_register_driver);
309
310 /*-------------------------------------------------------------------------*/
311
312 /* SPI devices should normally not be created by SPI device drivers; that
313 * would make them board-specific. Similarly with SPI master drivers.
314 * Device registration normally goes into like arch/.../mach.../board-YYY.c
315 * with other readonly (flashable) information about mainboard devices.
316 */
317
318 struct boardinfo {
319 struct list_head list;
320 struct spi_board_info board_info;
321 };
322
323 static LIST_HEAD(board_list);
324 static LIST_HEAD(spi_master_list);
325
326 /*
327 * Used to protect add/del opertion for board_info list and
328 * spi_master list, and their matching process
329 */
330 static DEFINE_MUTEX(board_lock);
331
332 /**
333 * spi_alloc_device - Allocate a new SPI device
334 * @master: Controller to which device is connected
335 * Context: can sleep
336 *
337 * Allows a driver to allocate and initialize a spi_device without
338 * registering it immediately. This allows a driver to directly
339 * fill the spi_device with device parameters before calling
340 * spi_add_device() on it.
341 *
342 * Caller is responsible to call spi_add_device() on the returned
343 * spi_device structure to add it to the SPI master. If the caller
344 * needs to discard the spi_device without adding it, then it should
345 * call spi_dev_put() on it.
346 *
347 * Returns a pointer to the new device, or NULL.
348 */
349 struct spi_device *spi_alloc_device(struct spi_master *master)
350 {
351 struct spi_device *spi;
352
353 if (!spi_master_get(master))
354 return NULL;
355
356 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
357 if (!spi) {
358 spi_master_put(master);
359 return NULL;
360 }
361
362 spi->master = master;
363 spi->dev.parent = &master->dev;
364 spi->dev.bus = &spi_bus_type;
365 spi->dev.release = spidev_release;
366 spi->cs_gpio = -ENOENT;
367 device_initialize(&spi->dev);
368 return spi;
369 }
370 EXPORT_SYMBOL_GPL(spi_alloc_device);
371
372 static void spi_dev_set_name(struct spi_device *spi)
373 {
374 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
375
376 if (adev) {
377 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
378 return;
379 }
380
381 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
382 spi->chip_select);
383 }
384
385 static int spi_dev_check(struct device *dev, void *data)
386 {
387 struct spi_device *spi = to_spi_device(dev);
388 struct spi_device *new_spi = data;
389
390 if (spi->master == new_spi->master &&
391 spi->chip_select == new_spi->chip_select)
392 return -EBUSY;
393 return 0;
394 }
395
396 /**
397 * spi_add_device - Add spi_device allocated with spi_alloc_device
398 * @spi: spi_device to register
399 *
400 * Companion function to spi_alloc_device. Devices allocated with
401 * spi_alloc_device can be added onto the spi bus with this function.
402 *
403 * Returns 0 on success; negative errno on failure
404 */
405 int spi_add_device(struct spi_device *spi)
406 {
407 static DEFINE_MUTEX(spi_add_lock);
408 struct spi_master *master = spi->master;
409 struct device *dev = master->dev.parent;
410 int status;
411
412 /* Chipselects are numbered 0..max; validate. */
413 if (spi->chip_select >= master->num_chipselect) {
414 dev_err(dev, "cs%d >= max %d\n",
415 spi->chip_select,
416 master->num_chipselect);
417 return -EINVAL;
418 }
419
420 /* Set the bus ID string */
421 spi_dev_set_name(spi);
422
423 /* We need to make sure there's no other device with this
424 * chipselect **BEFORE** we call setup(), else we'll trash
425 * its configuration. Lock against concurrent add() calls.
426 */
427 mutex_lock(&spi_add_lock);
428
429 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
430 if (status) {
431 dev_err(dev, "chipselect %d already in use\n",
432 spi->chip_select);
433 goto done;
434 }
435
436 if (master->cs_gpios)
437 spi->cs_gpio = master->cs_gpios[spi->chip_select];
438
439 /* Drivers may modify this initial i/o setup, but will
440 * normally rely on the device being setup. Devices
441 * using SPI_CS_HIGH can't coexist well otherwise...
442 */
443 status = spi_setup(spi);
444 if (status < 0) {
445 dev_err(dev, "can't setup %s, status %d\n",
446 dev_name(&spi->dev), status);
447 goto done;
448 }
449
450 /* Device may be bound to an active driver when this returns */
451 status = device_add(&spi->dev);
452 if (status < 0)
453 dev_err(dev, "can't add %s, status %d\n",
454 dev_name(&spi->dev), status);
455 else
456 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
457
458 done:
459 mutex_unlock(&spi_add_lock);
460 return status;
461 }
462 EXPORT_SYMBOL_GPL(spi_add_device);
463
464 /**
465 * spi_new_device - instantiate one new SPI device
466 * @master: Controller to which device is connected
467 * @chip: Describes the SPI device
468 * Context: can sleep
469 *
470 * On typical mainboards, this is purely internal; and it's not needed
471 * after board init creates the hard-wired devices. Some development
472 * platforms may not be able to use spi_register_board_info though, and
473 * this is exported so that for example a USB or parport based adapter
474 * driver could add devices (which it would learn about out-of-band).
475 *
476 * Returns the new device, or NULL.
477 */
478 struct spi_device *spi_new_device(struct spi_master *master,
479 struct spi_board_info *chip)
480 {
481 struct spi_device *proxy;
482 int status;
483
484 /* NOTE: caller did any chip->bus_num checks necessary.
485 *
486 * Also, unless we change the return value convention to use
487 * error-or-pointer (not NULL-or-pointer), troubleshootability
488 * suggests syslogged diagnostics are best here (ugh).
489 */
490
491 proxy = spi_alloc_device(master);
492 if (!proxy)
493 return NULL;
494
495 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
496
497 proxy->chip_select = chip->chip_select;
498 proxy->max_speed_hz = chip->max_speed_hz;
499 proxy->mode = chip->mode;
500 proxy->irq = chip->irq;
501 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
502 proxy->dev.platform_data = (void *) chip->platform_data;
503 proxy->controller_data = chip->controller_data;
504 proxy->controller_state = NULL;
505
506 status = spi_add_device(proxy);
507 if (status < 0) {
508 spi_dev_put(proxy);
509 return NULL;
510 }
511
512 return proxy;
513 }
514 EXPORT_SYMBOL_GPL(spi_new_device);
515
516 static void spi_match_master_to_boardinfo(struct spi_master *master,
517 struct spi_board_info *bi)
518 {
519 struct spi_device *dev;
520
521 if (master->bus_num != bi->bus_num)
522 return;
523
524 dev = spi_new_device(master, bi);
525 if (!dev)
526 dev_err(master->dev.parent, "can't create new device for %s\n",
527 bi->modalias);
528 }
529
530 /**
531 * spi_register_board_info - register SPI devices for a given board
532 * @info: array of chip descriptors
533 * @n: how many descriptors are provided
534 * Context: can sleep
535 *
536 * Board-specific early init code calls this (probably during arch_initcall)
537 * with segments of the SPI device table. Any device nodes are created later,
538 * after the relevant parent SPI controller (bus_num) is defined. We keep
539 * this table of devices forever, so that reloading a controller driver will
540 * not make Linux forget about these hard-wired devices.
541 *
542 * Other code can also call this, e.g. a particular add-on board might provide
543 * SPI devices through its expansion connector, so code initializing that board
544 * would naturally declare its SPI devices.
545 *
546 * The board info passed can safely be __initdata ... but be careful of
547 * any embedded pointers (platform_data, etc), they're copied as-is.
548 */
549 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
550 {
551 struct boardinfo *bi;
552 int i;
553
554 if (!n)
555 return -EINVAL;
556
557 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
558 if (!bi)
559 return -ENOMEM;
560
561 for (i = 0; i < n; i++, bi++, info++) {
562 struct spi_master *master;
563
564 memcpy(&bi->board_info, info, sizeof(*info));
565 mutex_lock(&board_lock);
566 list_add_tail(&bi->list, &board_list);
567 list_for_each_entry(master, &spi_master_list, list)
568 spi_match_master_to_boardinfo(master, &bi->board_info);
569 mutex_unlock(&board_lock);
570 }
571
572 return 0;
573 }
574
575 /*-------------------------------------------------------------------------*/
576
577 static void spi_set_cs(struct spi_device *spi, bool enable)
578 {
579 if (spi->mode & SPI_CS_HIGH)
580 enable = !enable;
581
582 if (spi->cs_gpio >= 0)
583 gpio_set_value(spi->cs_gpio, !enable);
584 else if (spi->master->set_cs)
585 spi->master->set_cs(spi, !enable);
586 }
587
588 #ifdef CONFIG_HAS_DMA
589 static int spi_map_buf(struct spi_master *master, struct device *dev,
590 struct sg_table *sgt, void *buf, size_t len,
591 enum dma_data_direction dir)
592 {
593 const bool vmalloced_buf = is_vmalloc_addr(buf);
594 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
595 const int sgs = DIV_ROUND_UP(len, desc_len);
596 struct page *vm_page;
597 void *sg_buf;
598 size_t min;
599 int i, ret;
600
601 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
602 if (ret != 0)
603 return ret;
604
605 for (i = 0; i < sgs; i++) {
606 min = min_t(size_t, len, desc_len);
607
608 if (vmalloced_buf) {
609 vm_page = vmalloc_to_page(buf);
610 if (!vm_page) {
611 sg_free_table(sgt);
612 return -ENOMEM;
613 }
614 sg_set_page(&sgt->sgl[i], vm_page,
615 min, offset_in_page(buf));
616 } else {
617 sg_buf = buf;
618 sg_set_buf(&sgt->sgl[i], sg_buf, min);
619 }
620
621
622 buf += min;
623 len -= min;
624 }
625
626 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
627 if (!ret)
628 ret = -ENOMEM;
629 if (ret < 0) {
630 sg_free_table(sgt);
631 return ret;
632 }
633
634 sgt->nents = ret;
635
636 return 0;
637 }
638
639 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
640 struct sg_table *sgt, enum dma_data_direction dir)
641 {
642 if (sgt->orig_nents) {
643 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
644 sg_free_table(sgt);
645 }
646 }
647
648 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
649 {
650 struct device *tx_dev, *rx_dev;
651 struct spi_transfer *xfer;
652 int ret;
653
654 if (!master->can_dma)
655 return 0;
656
657 tx_dev = master->dma_tx->device->dev;
658 rx_dev = master->dma_rx->device->dev;
659
660 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
661 if (!master->can_dma(master, msg->spi, xfer))
662 continue;
663
664 if (xfer->tx_buf != NULL) {
665 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
666 (void *)xfer->tx_buf, xfer->len,
667 DMA_TO_DEVICE);
668 if (ret != 0)
669 return ret;
670 }
671
672 if (xfer->rx_buf != NULL) {
673 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
674 xfer->rx_buf, xfer->len,
675 DMA_FROM_DEVICE);
676 if (ret != 0) {
677 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
678 DMA_TO_DEVICE);
679 return ret;
680 }
681 }
682 }
683
684 master->cur_msg_mapped = true;
685
686 return 0;
687 }
688
689 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
690 {
691 struct spi_transfer *xfer;
692 struct device *tx_dev, *rx_dev;
693
694 if (!master->cur_msg_mapped || !master->can_dma)
695 return 0;
696
697 tx_dev = master->dma_tx->device->dev;
698 rx_dev = master->dma_rx->device->dev;
699
700 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
701 if (!master->can_dma(master, msg->spi, xfer))
702 continue;
703
704 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
705 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
706 }
707
708 return 0;
709 }
710 #else /* !CONFIG_HAS_DMA */
711 static inline int __spi_map_msg(struct spi_master *master,
712 struct spi_message *msg)
713 {
714 return 0;
715 }
716
717 static inline int spi_unmap_msg(struct spi_master *master,
718 struct spi_message *msg)
719 {
720 return 0;
721 }
722 #endif /* !CONFIG_HAS_DMA */
723
724 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
725 {
726 struct spi_transfer *xfer;
727 void *tmp;
728 unsigned int max_tx, max_rx;
729
730 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
731 max_tx = 0;
732 max_rx = 0;
733
734 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
735 if ((master->flags & SPI_MASTER_MUST_TX) &&
736 !xfer->tx_buf)
737 max_tx = max(xfer->len, max_tx);
738 if ((master->flags & SPI_MASTER_MUST_RX) &&
739 !xfer->rx_buf)
740 max_rx = max(xfer->len, max_rx);
741 }
742
743 if (max_tx) {
744 tmp = krealloc(master->dummy_tx, max_tx,
745 GFP_KERNEL | GFP_DMA);
746 if (!tmp)
747 return -ENOMEM;
748 master->dummy_tx = tmp;
749 memset(tmp, 0, max_tx);
750 }
751
752 if (max_rx) {
753 tmp = krealloc(master->dummy_rx, max_rx,
754 GFP_KERNEL | GFP_DMA);
755 if (!tmp)
756 return -ENOMEM;
757 master->dummy_rx = tmp;
758 }
759
760 if (max_tx || max_rx) {
761 list_for_each_entry(xfer, &msg->transfers,
762 transfer_list) {
763 if (!xfer->tx_buf)
764 xfer->tx_buf = master->dummy_tx;
765 if (!xfer->rx_buf)
766 xfer->rx_buf = master->dummy_rx;
767 }
768 }
769 }
770
771 return __spi_map_msg(master, msg);
772 }
773
774 /*
775 * spi_transfer_one_message - Default implementation of transfer_one_message()
776 *
777 * This is a standard implementation of transfer_one_message() for
778 * drivers which impelment a transfer_one() operation. It provides
779 * standard handling of delays and chip select management.
780 */
781 static int spi_transfer_one_message(struct spi_master *master,
782 struct spi_message *msg)
783 {
784 struct spi_transfer *xfer;
785 bool keep_cs = false;
786 int ret = 0;
787 unsigned long ms = 1;
788
789 spi_set_cs(msg->spi, true);
790
791 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
792 trace_spi_transfer_start(msg, xfer);
793
794 if (xfer->tx_buf || xfer->rx_buf) {
795 reinit_completion(&master->xfer_completion);
796
797 ret = master->transfer_one(master, msg->spi, xfer);
798 if (ret < 0) {
799 dev_err(&msg->spi->dev,
800 "SPI transfer failed: %d\n", ret);
801 goto out;
802 }
803
804 if (ret > 0) {
805 ret = 0;
806 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
807 ms += ms + 100; /* some tolerance */
808
809 ms = wait_for_completion_timeout(&master->xfer_completion,
810 msecs_to_jiffies(ms));
811 }
812
813 if (ms == 0) {
814 dev_err(&msg->spi->dev,
815 "SPI transfer timed out\n");
816 msg->status = -ETIMEDOUT;
817 }
818 } else {
819 if (xfer->len)
820 dev_err(&msg->spi->dev,
821 "Bufferless transfer has length %u\n",
822 xfer->len);
823 }
824
825 trace_spi_transfer_stop(msg, xfer);
826
827 if (msg->status != -EINPROGRESS)
828 goto out;
829
830 if (xfer->delay_usecs)
831 udelay(xfer->delay_usecs);
832
833 if (xfer->cs_change) {
834 if (list_is_last(&xfer->transfer_list,
835 &msg->transfers)) {
836 keep_cs = true;
837 } else {
838 spi_set_cs(msg->spi, false);
839 udelay(10);
840 spi_set_cs(msg->spi, true);
841 }
842 }
843
844 msg->actual_length += xfer->len;
845 }
846
847 out:
848 if (ret != 0 || !keep_cs)
849 spi_set_cs(msg->spi, false);
850
851 if (msg->status == -EINPROGRESS)
852 msg->status = ret;
853
854 spi_finalize_current_message(master);
855
856 return ret;
857 }
858
859 /**
860 * spi_finalize_current_transfer - report completion of a transfer
861 * @master: the master reporting completion
862 *
863 * Called by SPI drivers using the core transfer_one_message()
864 * implementation to notify it that the current interrupt driven
865 * transfer has finished and the next one may be scheduled.
866 */
867 void spi_finalize_current_transfer(struct spi_master *master)
868 {
869 complete(&master->xfer_completion);
870 }
871 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
872
873 /**
874 * __spi_pump_messages - function which processes spi message queue
875 * @master: master to process queue for
876 * @in_kthread: true if we are in the context of the message pump thread
877 *
878 * This function checks if there is any spi message in the queue that
879 * needs processing and if so call out to the driver to initialize hardware
880 * and transfer each message.
881 *
882 * Note that it is called both from the kthread itself and also from
883 * inside spi_sync(); the queue extraction handling at the top of the
884 * function should deal with this safely.
885 */
886 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
887 {
888 unsigned long flags;
889 bool was_busy = false;
890 int ret;
891
892 /* Lock queue */
893 spin_lock_irqsave(&master->queue_lock, flags);
894
895 /* Make sure we are not already running a message */
896 if (master->cur_msg) {
897 spin_unlock_irqrestore(&master->queue_lock, flags);
898 return;
899 }
900
901 /* If another context is idling the device then defer */
902 if (master->idling) {
903 queue_kthread_work(&master->kworker, &master->pump_messages);
904 spin_unlock_irqrestore(&master->queue_lock, flags);
905 return;
906 }
907
908 /* Check if the queue is idle */
909 if (list_empty(&master->queue) || !master->running) {
910 if (!master->busy) {
911 spin_unlock_irqrestore(&master->queue_lock, flags);
912 return;
913 }
914
915 /* Only do teardown in the thread */
916 if (!in_kthread) {
917 queue_kthread_work(&master->kworker,
918 &master->pump_messages);
919 spin_unlock_irqrestore(&master->queue_lock, flags);
920 return;
921 }
922
923 master->busy = false;
924 master->idling = true;
925 spin_unlock_irqrestore(&master->queue_lock, flags);
926
927 kfree(master->dummy_rx);
928 master->dummy_rx = NULL;
929 kfree(master->dummy_tx);
930 master->dummy_tx = NULL;
931 if (master->unprepare_transfer_hardware &&
932 master->unprepare_transfer_hardware(master))
933 dev_err(&master->dev,
934 "failed to unprepare transfer hardware\n");
935 if (master->auto_runtime_pm) {
936 pm_runtime_mark_last_busy(master->dev.parent);
937 pm_runtime_put_autosuspend(master->dev.parent);
938 }
939 trace_spi_master_idle(master);
940
941 spin_lock_irqsave(&master->queue_lock, flags);
942 master->idling = false;
943 spin_unlock_irqrestore(&master->queue_lock, flags);
944 return;
945 }
946
947 /* Extract head of queue */
948 master->cur_msg =
949 list_first_entry(&master->queue, struct spi_message, queue);
950
951 list_del_init(&master->cur_msg->queue);
952 if (master->busy)
953 was_busy = true;
954 else
955 master->busy = true;
956 spin_unlock_irqrestore(&master->queue_lock, flags);
957
958 if (!was_busy && master->auto_runtime_pm) {
959 ret = pm_runtime_get_sync(master->dev.parent);
960 if (ret < 0) {
961 dev_err(&master->dev, "Failed to power device: %d\n",
962 ret);
963 return;
964 }
965 }
966
967 if (!was_busy)
968 trace_spi_master_busy(master);
969
970 if (!was_busy && master->prepare_transfer_hardware) {
971 ret = master->prepare_transfer_hardware(master);
972 if (ret) {
973 dev_err(&master->dev,
974 "failed to prepare transfer hardware\n");
975
976 if (master->auto_runtime_pm)
977 pm_runtime_put(master->dev.parent);
978 return;
979 }
980 }
981
982 trace_spi_message_start(master->cur_msg);
983
984 if (master->prepare_message) {
985 ret = master->prepare_message(master, master->cur_msg);
986 if (ret) {
987 dev_err(&master->dev,
988 "failed to prepare message: %d\n", ret);
989 master->cur_msg->status = ret;
990 spi_finalize_current_message(master);
991 return;
992 }
993 master->cur_msg_prepared = true;
994 }
995
996 ret = spi_map_msg(master, master->cur_msg);
997 if (ret) {
998 master->cur_msg->status = ret;
999 spi_finalize_current_message(master);
1000 return;
1001 }
1002
1003 ret = master->transfer_one_message(master, master->cur_msg);
1004 if (ret) {
1005 dev_err(&master->dev,
1006 "failed to transfer one message from queue\n");
1007 return;
1008 }
1009 }
1010
1011 /**
1012 * spi_pump_messages - kthread work function which processes spi message queue
1013 * @work: pointer to kthread work struct contained in the master struct
1014 */
1015 static void spi_pump_messages(struct kthread_work *work)
1016 {
1017 struct spi_master *master =
1018 container_of(work, struct spi_master, pump_messages);
1019
1020 __spi_pump_messages(master, true);
1021 }
1022
1023 static int spi_init_queue(struct spi_master *master)
1024 {
1025 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1026
1027 master->running = false;
1028 master->busy = false;
1029
1030 init_kthread_worker(&master->kworker);
1031 master->kworker_task = kthread_run(kthread_worker_fn,
1032 &master->kworker, "%s",
1033 dev_name(&master->dev));
1034 if (IS_ERR(master->kworker_task)) {
1035 dev_err(&master->dev, "failed to create message pump task\n");
1036 return PTR_ERR(master->kworker_task);
1037 }
1038 init_kthread_work(&master->pump_messages, spi_pump_messages);
1039
1040 /*
1041 * Master config will indicate if this controller should run the
1042 * message pump with high (realtime) priority to reduce the transfer
1043 * latency on the bus by minimising the delay between a transfer
1044 * request and the scheduling of the message pump thread. Without this
1045 * setting the message pump thread will remain at default priority.
1046 */
1047 if (master->rt) {
1048 dev_info(&master->dev,
1049 "will run message pump with realtime priority\n");
1050 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1051 }
1052
1053 return 0;
1054 }
1055
1056 /**
1057 * spi_get_next_queued_message() - called by driver to check for queued
1058 * messages
1059 * @master: the master to check for queued messages
1060 *
1061 * If there are more messages in the queue, the next message is returned from
1062 * this call.
1063 */
1064 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1065 {
1066 struct spi_message *next;
1067 unsigned long flags;
1068
1069 /* get a pointer to the next message, if any */
1070 spin_lock_irqsave(&master->queue_lock, flags);
1071 next = list_first_entry_or_null(&master->queue, struct spi_message,
1072 queue);
1073 spin_unlock_irqrestore(&master->queue_lock, flags);
1074
1075 return next;
1076 }
1077 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1078
1079 /**
1080 * spi_finalize_current_message() - the current message is complete
1081 * @master: the master to return the message to
1082 *
1083 * Called by the driver to notify the core that the message in the front of the
1084 * queue is complete and can be removed from the queue.
1085 */
1086 void spi_finalize_current_message(struct spi_master *master)
1087 {
1088 struct spi_message *mesg;
1089 unsigned long flags;
1090 int ret;
1091
1092 spin_lock_irqsave(&master->queue_lock, flags);
1093 mesg = master->cur_msg;
1094 master->cur_msg = NULL;
1095
1096 queue_kthread_work(&master->kworker, &master->pump_messages);
1097 spin_unlock_irqrestore(&master->queue_lock, flags);
1098
1099 spi_unmap_msg(master, mesg);
1100
1101 if (master->cur_msg_prepared && master->unprepare_message) {
1102 ret = master->unprepare_message(master, mesg);
1103 if (ret) {
1104 dev_err(&master->dev,
1105 "failed to unprepare message: %d\n", ret);
1106 }
1107 }
1108 master->cur_msg_prepared = false;
1109
1110 mesg->state = NULL;
1111 if (mesg->complete)
1112 mesg->complete(mesg->context);
1113
1114 trace_spi_message_done(mesg);
1115 }
1116 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1117
1118 static int spi_start_queue(struct spi_master *master)
1119 {
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&master->queue_lock, flags);
1123
1124 if (master->running || master->busy) {
1125 spin_unlock_irqrestore(&master->queue_lock, flags);
1126 return -EBUSY;
1127 }
1128
1129 master->running = true;
1130 master->cur_msg = NULL;
1131 spin_unlock_irqrestore(&master->queue_lock, flags);
1132
1133 queue_kthread_work(&master->kworker, &master->pump_messages);
1134
1135 return 0;
1136 }
1137
1138 static int spi_stop_queue(struct spi_master *master)
1139 {
1140 unsigned long flags;
1141 unsigned limit = 500;
1142 int ret = 0;
1143
1144 spin_lock_irqsave(&master->queue_lock, flags);
1145
1146 /*
1147 * This is a bit lame, but is optimized for the common execution path.
1148 * A wait_queue on the master->busy could be used, but then the common
1149 * execution path (pump_messages) would be required to call wake_up or
1150 * friends on every SPI message. Do this instead.
1151 */
1152 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1153 spin_unlock_irqrestore(&master->queue_lock, flags);
1154 usleep_range(10000, 11000);
1155 spin_lock_irqsave(&master->queue_lock, flags);
1156 }
1157
1158 if (!list_empty(&master->queue) || master->busy)
1159 ret = -EBUSY;
1160 else
1161 master->running = false;
1162
1163 spin_unlock_irqrestore(&master->queue_lock, flags);
1164
1165 if (ret) {
1166 dev_warn(&master->dev,
1167 "could not stop message queue\n");
1168 return ret;
1169 }
1170 return ret;
1171 }
1172
1173 static int spi_destroy_queue(struct spi_master *master)
1174 {
1175 int ret;
1176
1177 ret = spi_stop_queue(master);
1178
1179 /*
1180 * flush_kthread_worker will block until all work is done.
1181 * If the reason that stop_queue timed out is that the work will never
1182 * finish, then it does no good to call flush/stop thread, so
1183 * return anyway.
1184 */
1185 if (ret) {
1186 dev_err(&master->dev, "problem destroying queue\n");
1187 return ret;
1188 }
1189
1190 flush_kthread_worker(&master->kworker);
1191 kthread_stop(master->kworker_task);
1192
1193 return 0;
1194 }
1195
1196 static int __spi_queued_transfer(struct spi_device *spi,
1197 struct spi_message *msg,
1198 bool need_pump)
1199 {
1200 struct spi_master *master = spi->master;
1201 unsigned long flags;
1202
1203 spin_lock_irqsave(&master->queue_lock, flags);
1204
1205 if (!master->running) {
1206 spin_unlock_irqrestore(&master->queue_lock, flags);
1207 return -ESHUTDOWN;
1208 }
1209 msg->actual_length = 0;
1210 msg->status = -EINPROGRESS;
1211
1212 list_add_tail(&msg->queue, &master->queue);
1213 if (!master->busy && need_pump)
1214 queue_kthread_work(&master->kworker, &master->pump_messages);
1215
1216 spin_unlock_irqrestore(&master->queue_lock, flags);
1217 return 0;
1218 }
1219
1220 /**
1221 * spi_queued_transfer - transfer function for queued transfers
1222 * @spi: spi device which is requesting transfer
1223 * @msg: spi message which is to handled is queued to driver queue
1224 */
1225 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1226 {
1227 return __spi_queued_transfer(spi, msg, true);
1228 }
1229
1230 static int spi_master_initialize_queue(struct spi_master *master)
1231 {
1232 int ret;
1233
1234 master->transfer = spi_queued_transfer;
1235 if (!master->transfer_one_message)
1236 master->transfer_one_message = spi_transfer_one_message;
1237
1238 /* Initialize and start queue */
1239 ret = spi_init_queue(master);
1240 if (ret) {
1241 dev_err(&master->dev, "problem initializing queue\n");
1242 goto err_init_queue;
1243 }
1244 master->queued = true;
1245 ret = spi_start_queue(master);
1246 if (ret) {
1247 dev_err(&master->dev, "problem starting queue\n");
1248 goto err_start_queue;
1249 }
1250
1251 return 0;
1252
1253 err_start_queue:
1254 spi_destroy_queue(master);
1255 err_init_queue:
1256 return ret;
1257 }
1258
1259 /*-------------------------------------------------------------------------*/
1260
1261 #if defined(CONFIG_OF)
1262 static struct spi_device *
1263 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1264 {
1265 struct spi_device *spi;
1266 int rc;
1267 u32 value;
1268
1269 /* Alloc an spi_device */
1270 spi = spi_alloc_device(master);
1271 if (!spi) {
1272 dev_err(&master->dev, "spi_device alloc error for %s\n",
1273 nc->full_name);
1274 rc = -ENOMEM;
1275 goto err_out;
1276 }
1277
1278 /* Select device driver */
1279 rc = of_modalias_node(nc, spi->modalias,
1280 sizeof(spi->modalias));
1281 if (rc < 0) {
1282 dev_err(&master->dev, "cannot find modalias for %s\n",
1283 nc->full_name);
1284 goto err_out;
1285 }
1286
1287 /* Device address */
1288 rc = of_property_read_u32(nc, "reg", &value);
1289 if (rc) {
1290 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1291 nc->full_name, rc);
1292 goto err_out;
1293 }
1294 spi->chip_select = value;
1295
1296 /* Mode (clock phase/polarity/etc.) */
1297 if (of_find_property(nc, "spi-cpha", NULL))
1298 spi->mode |= SPI_CPHA;
1299 if (of_find_property(nc, "spi-cpol", NULL))
1300 spi->mode |= SPI_CPOL;
1301 if (of_find_property(nc, "spi-cs-high", NULL))
1302 spi->mode |= SPI_CS_HIGH;
1303 if (of_find_property(nc, "spi-3wire", NULL))
1304 spi->mode |= SPI_3WIRE;
1305 if (of_find_property(nc, "spi-lsb-first", NULL))
1306 spi->mode |= SPI_LSB_FIRST;
1307
1308 /* Device DUAL/QUAD mode */
1309 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1310 switch (value) {
1311 case 1:
1312 break;
1313 case 2:
1314 spi->mode |= SPI_TX_DUAL;
1315 break;
1316 case 4:
1317 spi->mode |= SPI_TX_QUAD;
1318 break;
1319 default:
1320 dev_warn(&master->dev,
1321 "spi-tx-bus-width %d not supported\n",
1322 value);
1323 break;
1324 }
1325 }
1326
1327 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1328 switch (value) {
1329 case 1:
1330 break;
1331 case 2:
1332 spi->mode |= SPI_RX_DUAL;
1333 break;
1334 case 4:
1335 spi->mode |= SPI_RX_QUAD;
1336 break;
1337 default:
1338 dev_warn(&master->dev,
1339 "spi-rx-bus-width %d not supported\n",
1340 value);
1341 break;
1342 }
1343 }
1344
1345 /* Device speed */
1346 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1347 if (rc) {
1348 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1349 nc->full_name, rc);
1350 goto err_out;
1351 }
1352 spi->max_speed_hz = value;
1353
1354 /* IRQ */
1355 spi->irq = irq_of_parse_and_map(nc, 0);
1356
1357 /* Store a pointer to the node in the device structure */
1358 of_node_get(nc);
1359 spi->dev.of_node = nc;
1360
1361 /* Register the new device */
1362 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1363 rc = spi_add_device(spi);
1364 if (rc) {
1365 dev_err(&master->dev, "spi_device register error %s\n",
1366 nc->full_name);
1367 goto err_out;
1368 }
1369
1370 return spi;
1371
1372 err_out:
1373 spi_dev_put(spi);
1374 return ERR_PTR(rc);
1375 }
1376
1377 /**
1378 * of_register_spi_devices() - Register child devices onto the SPI bus
1379 * @master: Pointer to spi_master device
1380 *
1381 * Registers an spi_device for each child node of master node which has a 'reg'
1382 * property.
1383 */
1384 static void of_register_spi_devices(struct spi_master *master)
1385 {
1386 struct spi_device *spi;
1387 struct device_node *nc;
1388
1389 if (!master->dev.of_node)
1390 return;
1391
1392 for_each_available_child_of_node(master->dev.of_node, nc) {
1393 spi = of_register_spi_device(master, nc);
1394 if (IS_ERR(spi))
1395 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1396 nc->full_name);
1397 }
1398 }
1399 #else
1400 static void of_register_spi_devices(struct spi_master *master) { }
1401 #endif
1402
1403 #ifdef CONFIG_ACPI
1404 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1405 {
1406 struct spi_device *spi = data;
1407
1408 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1409 struct acpi_resource_spi_serialbus *sb;
1410
1411 sb = &ares->data.spi_serial_bus;
1412 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1413 spi->chip_select = sb->device_selection;
1414 spi->max_speed_hz = sb->connection_speed;
1415
1416 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1417 spi->mode |= SPI_CPHA;
1418 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1419 spi->mode |= SPI_CPOL;
1420 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1421 spi->mode |= SPI_CS_HIGH;
1422 }
1423 } else if (spi->irq < 0) {
1424 struct resource r;
1425
1426 if (acpi_dev_resource_interrupt(ares, 0, &r))
1427 spi->irq = r.start;
1428 }
1429
1430 /* Always tell the ACPI core to skip this resource */
1431 return 1;
1432 }
1433
1434 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1435 void *data, void **return_value)
1436 {
1437 struct spi_master *master = data;
1438 struct list_head resource_list;
1439 struct acpi_device *adev;
1440 struct spi_device *spi;
1441 int ret;
1442
1443 if (acpi_bus_get_device(handle, &adev))
1444 return AE_OK;
1445 if (acpi_bus_get_status(adev) || !adev->status.present)
1446 return AE_OK;
1447
1448 spi = spi_alloc_device(master);
1449 if (!spi) {
1450 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1451 dev_name(&adev->dev));
1452 return AE_NO_MEMORY;
1453 }
1454
1455 ACPI_COMPANION_SET(&spi->dev, adev);
1456 spi->irq = -1;
1457
1458 INIT_LIST_HEAD(&resource_list);
1459 ret = acpi_dev_get_resources(adev, &resource_list,
1460 acpi_spi_add_resource, spi);
1461 acpi_dev_free_resource_list(&resource_list);
1462
1463 if (ret < 0 || !spi->max_speed_hz) {
1464 spi_dev_put(spi);
1465 return AE_OK;
1466 }
1467
1468 adev->power.flags.ignore_parent = true;
1469 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1470 if (spi_add_device(spi)) {
1471 adev->power.flags.ignore_parent = false;
1472 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1473 dev_name(&adev->dev));
1474 spi_dev_put(spi);
1475 }
1476
1477 return AE_OK;
1478 }
1479
1480 static void acpi_register_spi_devices(struct spi_master *master)
1481 {
1482 acpi_status status;
1483 acpi_handle handle;
1484
1485 handle = ACPI_HANDLE(master->dev.parent);
1486 if (!handle)
1487 return;
1488
1489 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1490 acpi_spi_add_device, NULL,
1491 master, NULL);
1492 if (ACPI_FAILURE(status))
1493 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1494 }
1495 #else
1496 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1497 #endif /* CONFIG_ACPI */
1498
1499 static void spi_master_release(struct device *dev)
1500 {
1501 struct spi_master *master;
1502
1503 master = container_of(dev, struct spi_master, dev);
1504 kfree(master);
1505 }
1506
1507 static struct class spi_master_class = {
1508 .name = "spi_master",
1509 .owner = THIS_MODULE,
1510 .dev_release = spi_master_release,
1511 };
1512
1513
1514
1515 /**
1516 * spi_alloc_master - allocate SPI master controller
1517 * @dev: the controller, possibly using the platform_bus
1518 * @size: how much zeroed driver-private data to allocate; the pointer to this
1519 * memory is in the driver_data field of the returned device,
1520 * accessible with spi_master_get_devdata().
1521 * Context: can sleep
1522 *
1523 * This call is used only by SPI master controller drivers, which are the
1524 * only ones directly touching chip registers. It's how they allocate
1525 * an spi_master structure, prior to calling spi_register_master().
1526 *
1527 * This must be called from context that can sleep. It returns the SPI
1528 * master structure on success, else NULL.
1529 *
1530 * The caller is responsible for assigning the bus number and initializing
1531 * the master's methods before calling spi_register_master(); and (after errors
1532 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1533 * leak.
1534 */
1535 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1536 {
1537 struct spi_master *master;
1538
1539 if (!dev)
1540 return NULL;
1541
1542 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1543 if (!master)
1544 return NULL;
1545
1546 device_initialize(&master->dev);
1547 master->bus_num = -1;
1548 master->num_chipselect = 1;
1549 master->dev.class = &spi_master_class;
1550 master->dev.parent = get_device(dev);
1551 spi_master_set_devdata(master, &master[1]);
1552
1553 return master;
1554 }
1555 EXPORT_SYMBOL_GPL(spi_alloc_master);
1556
1557 #ifdef CONFIG_OF
1558 static int of_spi_register_master(struct spi_master *master)
1559 {
1560 int nb, i, *cs;
1561 struct device_node *np = master->dev.of_node;
1562
1563 if (!np)
1564 return 0;
1565
1566 nb = of_gpio_named_count(np, "cs-gpios");
1567 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1568
1569 /* Return error only for an incorrectly formed cs-gpios property */
1570 if (nb == 0 || nb == -ENOENT)
1571 return 0;
1572 else if (nb < 0)
1573 return nb;
1574
1575 cs = devm_kzalloc(&master->dev,
1576 sizeof(int) * master->num_chipselect,
1577 GFP_KERNEL);
1578 master->cs_gpios = cs;
1579
1580 if (!master->cs_gpios)
1581 return -ENOMEM;
1582
1583 for (i = 0; i < master->num_chipselect; i++)
1584 cs[i] = -ENOENT;
1585
1586 for (i = 0; i < nb; i++)
1587 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1588
1589 return 0;
1590 }
1591 #else
1592 static int of_spi_register_master(struct spi_master *master)
1593 {
1594 return 0;
1595 }
1596 #endif
1597
1598 /**
1599 * spi_register_master - register SPI master controller
1600 * @master: initialized master, originally from spi_alloc_master()
1601 * Context: can sleep
1602 *
1603 * SPI master controllers connect to their drivers using some non-SPI bus,
1604 * such as the platform bus. The final stage of probe() in that code
1605 * includes calling spi_register_master() to hook up to this SPI bus glue.
1606 *
1607 * SPI controllers use board specific (often SOC specific) bus numbers,
1608 * and board-specific addressing for SPI devices combines those numbers
1609 * with chip select numbers. Since SPI does not directly support dynamic
1610 * device identification, boards need configuration tables telling which
1611 * chip is at which address.
1612 *
1613 * This must be called from context that can sleep. It returns zero on
1614 * success, else a negative error code (dropping the master's refcount).
1615 * After a successful return, the caller is responsible for calling
1616 * spi_unregister_master().
1617 */
1618 int spi_register_master(struct spi_master *master)
1619 {
1620 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1621 struct device *dev = master->dev.parent;
1622 struct boardinfo *bi;
1623 int status = -ENODEV;
1624 int dynamic = 0;
1625
1626 if (!dev)
1627 return -ENODEV;
1628
1629 status = of_spi_register_master(master);
1630 if (status)
1631 return status;
1632
1633 /* even if it's just one always-selected device, there must
1634 * be at least one chipselect
1635 */
1636 if (master->num_chipselect == 0)
1637 return -EINVAL;
1638
1639 if ((master->bus_num < 0) && master->dev.of_node)
1640 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1641
1642 /* convention: dynamically assigned bus IDs count down from the max */
1643 if (master->bus_num < 0) {
1644 /* FIXME switch to an IDR based scheme, something like
1645 * I2C now uses, so we can't run out of "dynamic" IDs
1646 */
1647 master->bus_num = atomic_dec_return(&dyn_bus_id);
1648 dynamic = 1;
1649 }
1650
1651 INIT_LIST_HEAD(&master->queue);
1652 spin_lock_init(&master->queue_lock);
1653 spin_lock_init(&master->bus_lock_spinlock);
1654 mutex_init(&master->bus_lock_mutex);
1655 master->bus_lock_flag = 0;
1656 init_completion(&master->xfer_completion);
1657 if (!master->max_dma_len)
1658 master->max_dma_len = INT_MAX;
1659
1660 /* register the device, then userspace will see it.
1661 * registration fails if the bus ID is in use.
1662 */
1663 dev_set_name(&master->dev, "spi%u", master->bus_num);
1664 status = device_add(&master->dev);
1665 if (status < 0)
1666 goto done;
1667 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1668 dynamic ? " (dynamic)" : "");
1669
1670 /* If we're using a queued driver, start the queue */
1671 if (master->transfer)
1672 dev_info(dev, "master is unqueued, this is deprecated\n");
1673 else {
1674 status = spi_master_initialize_queue(master);
1675 if (status) {
1676 device_del(&master->dev);
1677 goto done;
1678 }
1679 }
1680
1681 mutex_lock(&board_lock);
1682 list_add_tail(&master->list, &spi_master_list);
1683 list_for_each_entry(bi, &board_list, list)
1684 spi_match_master_to_boardinfo(master, &bi->board_info);
1685 mutex_unlock(&board_lock);
1686
1687 /* Register devices from the device tree and ACPI */
1688 of_register_spi_devices(master);
1689 acpi_register_spi_devices(master);
1690 done:
1691 return status;
1692 }
1693 EXPORT_SYMBOL_GPL(spi_register_master);
1694
1695 static void devm_spi_unregister(struct device *dev, void *res)
1696 {
1697 spi_unregister_master(*(struct spi_master **)res);
1698 }
1699
1700 /**
1701 * dev_spi_register_master - register managed SPI master controller
1702 * @dev: device managing SPI master
1703 * @master: initialized master, originally from spi_alloc_master()
1704 * Context: can sleep
1705 *
1706 * Register a SPI device as with spi_register_master() which will
1707 * automatically be unregister
1708 */
1709 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1710 {
1711 struct spi_master **ptr;
1712 int ret;
1713
1714 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1715 if (!ptr)
1716 return -ENOMEM;
1717
1718 ret = spi_register_master(master);
1719 if (!ret) {
1720 *ptr = master;
1721 devres_add(dev, ptr);
1722 } else {
1723 devres_free(ptr);
1724 }
1725
1726 return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1729
1730 static int __unregister(struct device *dev, void *null)
1731 {
1732 spi_unregister_device(to_spi_device(dev));
1733 return 0;
1734 }
1735
1736 /**
1737 * spi_unregister_master - unregister SPI master controller
1738 * @master: the master being unregistered
1739 * Context: can sleep
1740 *
1741 * This call is used only by SPI master controller drivers, which are the
1742 * only ones directly touching chip registers.
1743 *
1744 * This must be called from context that can sleep.
1745 */
1746 void spi_unregister_master(struct spi_master *master)
1747 {
1748 int dummy;
1749
1750 if (master->queued) {
1751 if (spi_destroy_queue(master))
1752 dev_err(&master->dev, "queue remove failed\n");
1753 }
1754
1755 mutex_lock(&board_lock);
1756 list_del(&master->list);
1757 mutex_unlock(&board_lock);
1758
1759 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1760 device_unregister(&master->dev);
1761 }
1762 EXPORT_SYMBOL_GPL(spi_unregister_master);
1763
1764 int spi_master_suspend(struct spi_master *master)
1765 {
1766 int ret;
1767
1768 /* Basically no-ops for non-queued masters */
1769 if (!master->queued)
1770 return 0;
1771
1772 ret = spi_stop_queue(master);
1773 if (ret)
1774 dev_err(&master->dev, "queue stop failed\n");
1775
1776 return ret;
1777 }
1778 EXPORT_SYMBOL_GPL(spi_master_suspend);
1779
1780 int spi_master_resume(struct spi_master *master)
1781 {
1782 int ret;
1783
1784 if (!master->queued)
1785 return 0;
1786
1787 ret = spi_start_queue(master);
1788 if (ret)
1789 dev_err(&master->dev, "queue restart failed\n");
1790
1791 return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(spi_master_resume);
1794
1795 static int __spi_master_match(struct device *dev, const void *data)
1796 {
1797 struct spi_master *m;
1798 const u16 *bus_num = data;
1799
1800 m = container_of(dev, struct spi_master, dev);
1801 return m->bus_num == *bus_num;
1802 }
1803
1804 /**
1805 * spi_busnum_to_master - look up master associated with bus_num
1806 * @bus_num: the master's bus number
1807 * Context: can sleep
1808 *
1809 * This call may be used with devices that are registered after
1810 * arch init time. It returns a refcounted pointer to the relevant
1811 * spi_master (which the caller must release), or NULL if there is
1812 * no such master registered.
1813 */
1814 struct spi_master *spi_busnum_to_master(u16 bus_num)
1815 {
1816 struct device *dev;
1817 struct spi_master *master = NULL;
1818
1819 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1820 __spi_master_match);
1821 if (dev)
1822 master = container_of(dev, struct spi_master, dev);
1823 /* reference got in class_find_device */
1824 return master;
1825 }
1826 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1827
1828
1829 /*-------------------------------------------------------------------------*/
1830
1831 /* Core methods for SPI master protocol drivers. Some of the
1832 * other core methods are currently defined as inline functions.
1833 */
1834
1835 /**
1836 * spi_setup - setup SPI mode and clock rate
1837 * @spi: the device whose settings are being modified
1838 * Context: can sleep, and no requests are queued to the device
1839 *
1840 * SPI protocol drivers may need to update the transfer mode if the
1841 * device doesn't work with its default. They may likewise need
1842 * to update clock rates or word sizes from initial values. This function
1843 * changes those settings, and must be called from a context that can sleep.
1844 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1845 * effect the next time the device is selected and data is transferred to
1846 * or from it. When this function returns, the spi device is deselected.
1847 *
1848 * Note that this call will fail if the protocol driver specifies an option
1849 * that the underlying controller or its driver does not support. For
1850 * example, not all hardware supports wire transfers using nine bit words,
1851 * LSB-first wire encoding, or active-high chipselects.
1852 */
1853 int spi_setup(struct spi_device *spi)
1854 {
1855 unsigned bad_bits, ugly_bits;
1856 int status = 0;
1857
1858 /* check mode to prevent that DUAL and QUAD set at the same time
1859 */
1860 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1861 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1862 dev_err(&spi->dev,
1863 "setup: can not select dual and quad at the same time\n");
1864 return -EINVAL;
1865 }
1866 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1867 */
1868 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1869 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1870 return -EINVAL;
1871 /* help drivers fail *cleanly* when they need options
1872 * that aren't supported with their current master
1873 */
1874 bad_bits = spi->mode & ~spi->master->mode_bits;
1875 ugly_bits = bad_bits &
1876 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1877 if (ugly_bits) {
1878 dev_warn(&spi->dev,
1879 "setup: ignoring unsupported mode bits %x\n",
1880 ugly_bits);
1881 spi->mode &= ~ugly_bits;
1882 bad_bits &= ~ugly_bits;
1883 }
1884 if (bad_bits) {
1885 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1886 bad_bits);
1887 return -EINVAL;
1888 }
1889
1890 if (!spi->bits_per_word)
1891 spi->bits_per_word = 8;
1892
1893 if (!spi->max_speed_hz)
1894 spi->max_speed_hz = spi->master->max_speed_hz;
1895
1896 if (spi->master->setup)
1897 status = spi->master->setup(spi);
1898
1899 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1900 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1901 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1902 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1903 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1904 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1905 spi->bits_per_word, spi->max_speed_hz,
1906 status);
1907
1908 return status;
1909 }
1910 EXPORT_SYMBOL_GPL(spi_setup);
1911
1912 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1913 {
1914 struct spi_master *master = spi->master;
1915 struct spi_transfer *xfer;
1916 int w_size;
1917
1918 if (list_empty(&message->transfers))
1919 return -EINVAL;
1920
1921 /* Half-duplex links include original MicroWire, and ones with
1922 * only one data pin like SPI_3WIRE (switches direction) or where
1923 * either MOSI or MISO is missing. They can also be caused by
1924 * software limitations.
1925 */
1926 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1927 || (spi->mode & SPI_3WIRE)) {
1928 unsigned flags = master->flags;
1929
1930 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1931 if (xfer->rx_buf && xfer->tx_buf)
1932 return -EINVAL;
1933 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1934 return -EINVAL;
1935 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1936 return -EINVAL;
1937 }
1938 }
1939
1940 /**
1941 * Set transfer bits_per_word and max speed as spi device default if
1942 * it is not set for this transfer.
1943 * Set transfer tx_nbits and rx_nbits as single transfer default
1944 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1945 */
1946 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1947 message->frame_length += xfer->len;
1948 if (!xfer->bits_per_word)
1949 xfer->bits_per_word = spi->bits_per_word;
1950
1951 if (!xfer->speed_hz)
1952 xfer->speed_hz = spi->max_speed_hz;
1953
1954 if (master->max_speed_hz &&
1955 xfer->speed_hz > master->max_speed_hz)
1956 xfer->speed_hz = master->max_speed_hz;
1957
1958 if (master->bits_per_word_mask) {
1959 /* Only 32 bits fit in the mask */
1960 if (xfer->bits_per_word > 32)
1961 return -EINVAL;
1962 if (!(master->bits_per_word_mask &
1963 BIT(xfer->bits_per_word - 1)))
1964 return -EINVAL;
1965 }
1966
1967 /*
1968 * SPI transfer length should be multiple of SPI word size
1969 * where SPI word size should be power-of-two multiple
1970 */
1971 if (xfer->bits_per_word <= 8)
1972 w_size = 1;
1973 else if (xfer->bits_per_word <= 16)
1974 w_size = 2;
1975 else
1976 w_size = 4;
1977
1978 /* No partial transfers accepted */
1979 if (xfer->len % w_size)
1980 return -EINVAL;
1981
1982 if (xfer->speed_hz && master->min_speed_hz &&
1983 xfer->speed_hz < master->min_speed_hz)
1984 return -EINVAL;
1985
1986 if (xfer->tx_buf && !xfer->tx_nbits)
1987 xfer->tx_nbits = SPI_NBITS_SINGLE;
1988 if (xfer->rx_buf && !xfer->rx_nbits)
1989 xfer->rx_nbits = SPI_NBITS_SINGLE;
1990 /* check transfer tx/rx_nbits:
1991 * 1. check the value matches one of single, dual and quad
1992 * 2. check tx/rx_nbits match the mode in spi_device
1993 */
1994 if (xfer->tx_buf) {
1995 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1996 xfer->tx_nbits != SPI_NBITS_DUAL &&
1997 xfer->tx_nbits != SPI_NBITS_QUAD)
1998 return -EINVAL;
1999 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2000 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2001 return -EINVAL;
2002 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2003 !(spi->mode & SPI_TX_QUAD))
2004 return -EINVAL;
2005 }
2006 /* check transfer rx_nbits */
2007 if (xfer->rx_buf) {
2008 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2009 xfer->rx_nbits != SPI_NBITS_DUAL &&
2010 xfer->rx_nbits != SPI_NBITS_QUAD)
2011 return -EINVAL;
2012 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2013 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2014 return -EINVAL;
2015 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2016 !(spi->mode & SPI_RX_QUAD))
2017 return -EINVAL;
2018 }
2019 }
2020
2021 message->status = -EINPROGRESS;
2022
2023 return 0;
2024 }
2025
2026 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2027 {
2028 struct spi_master *master = spi->master;
2029
2030 message->spi = spi;
2031
2032 trace_spi_message_submit(message);
2033
2034 return master->transfer(spi, message);
2035 }
2036
2037 /**
2038 * spi_async - asynchronous SPI transfer
2039 * @spi: device with which data will be exchanged
2040 * @message: describes the data transfers, including completion callback
2041 * Context: any (irqs may be blocked, etc)
2042 *
2043 * This call may be used in_irq and other contexts which can't sleep,
2044 * as well as from task contexts which can sleep.
2045 *
2046 * The completion callback is invoked in a context which can't sleep.
2047 * Before that invocation, the value of message->status is undefined.
2048 * When the callback is issued, message->status holds either zero (to
2049 * indicate complete success) or a negative error code. After that
2050 * callback returns, the driver which issued the transfer request may
2051 * deallocate the associated memory; it's no longer in use by any SPI
2052 * core or controller driver code.
2053 *
2054 * Note that although all messages to a spi_device are handled in
2055 * FIFO order, messages may go to different devices in other orders.
2056 * Some device might be higher priority, or have various "hard" access
2057 * time requirements, for example.
2058 *
2059 * On detection of any fault during the transfer, processing of
2060 * the entire message is aborted, and the device is deselected.
2061 * Until returning from the associated message completion callback,
2062 * no other spi_message queued to that device will be processed.
2063 * (This rule applies equally to all the synchronous transfer calls,
2064 * which are wrappers around this core asynchronous primitive.)
2065 */
2066 int spi_async(struct spi_device *spi, struct spi_message *message)
2067 {
2068 struct spi_master *master = spi->master;
2069 int ret;
2070 unsigned long flags;
2071
2072 ret = __spi_validate(spi, message);
2073 if (ret != 0)
2074 return ret;
2075
2076 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2077
2078 if (master->bus_lock_flag)
2079 ret = -EBUSY;
2080 else
2081 ret = __spi_async(spi, message);
2082
2083 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2084
2085 return ret;
2086 }
2087 EXPORT_SYMBOL_GPL(spi_async);
2088
2089 /**
2090 * spi_async_locked - version of spi_async with exclusive bus usage
2091 * @spi: device with which data will be exchanged
2092 * @message: describes the data transfers, including completion callback
2093 * Context: any (irqs may be blocked, etc)
2094 *
2095 * This call may be used in_irq and other contexts which can't sleep,
2096 * as well as from task contexts which can sleep.
2097 *
2098 * The completion callback is invoked in a context which can't sleep.
2099 * Before that invocation, the value of message->status is undefined.
2100 * When the callback is issued, message->status holds either zero (to
2101 * indicate complete success) or a negative error code. After that
2102 * callback returns, the driver which issued the transfer request may
2103 * deallocate the associated memory; it's no longer in use by any SPI
2104 * core or controller driver code.
2105 *
2106 * Note that although all messages to a spi_device are handled in
2107 * FIFO order, messages may go to different devices in other orders.
2108 * Some device might be higher priority, or have various "hard" access
2109 * time requirements, for example.
2110 *
2111 * On detection of any fault during the transfer, processing of
2112 * the entire message is aborted, and the device is deselected.
2113 * Until returning from the associated message completion callback,
2114 * no other spi_message queued to that device will be processed.
2115 * (This rule applies equally to all the synchronous transfer calls,
2116 * which are wrappers around this core asynchronous primitive.)
2117 */
2118 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2119 {
2120 struct spi_master *master = spi->master;
2121 int ret;
2122 unsigned long flags;
2123
2124 ret = __spi_validate(spi, message);
2125 if (ret != 0)
2126 return ret;
2127
2128 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2129
2130 ret = __spi_async(spi, message);
2131
2132 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2133
2134 return ret;
2135
2136 }
2137 EXPORT_SYMBOL_GPL(spi_async_locked);
2138
2139
2140 /*-------------------------------------------------------------------------*/
2141
2142 /* Utility methods for SPI master protocol drivers, layered on
2143 * top of the core. Some other utility methods are defined as
2144 * inline functions.
2145 */
2146
2147 static void spi_complete(void *arg)
2148 {
2149 complete(arg);
2150 }
2151
2152 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2153 int bus_locked)
2154 {
2155 DECLARE_COMPLETION_ONSTACK(done);
2156 int status;
2157 struct spi_master *master = spi->master;
2158 unsigned long flags;
2159
2160 status = __spi_validate(spi, message);
2161 if (status != 0)
2162 return status;
2163
2164 message->complete = spi_complete;
2165 message->context = &done;
2166 message->spi = spi;
2167
2168 if (!bus_locked)
2169 mutex_lock(&master->bus_lock_mutex);
2170
2171 /* If we're not using the legacy transfer method then we will
2172 * try to transfer in the calling context so special case.
2173 * This code would be less tricky if we could remove the
2174 * support for driver implemented message queues.
2175 */
2176 if (master->transfer == spi_queued_transfer) {
2177 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2178
2179 trace_spi_message_submit(message);
2180
2181 status = __spi_queued_transfer(spi, message, false);
2182
2183 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2184 } else {
2185 status = spi_async_locked(spi, message);
2186 }
2187
2188 if (!bus_locked)
2189 mutex_unlock(&master->bus_lock_mutex);
2190
2191 if (status == 0) {
2192 /* Push out the messages in the calling context if we
2193 * can.
2194 */
2195 if (master->transfer == spi_queued_transfer)
2196 __spi_pump_messages(master, false);
2197
2198 wait_for_completion(&done);
2199 status = message->status;
2200 }
2201 message->context = NULL;
2202 return status;
2203 }
2204
2205 /**
2206 * spi_sync - blocking/synchronous SPI data transfers
2207 * @spi: device with which data will be exchanged
2208 * @message: describes the data transfers
2209 * Context: can sleep
2210 *
2211 * This call may only be used from a context that may sleep. The sleep
2212 * is non-interruptible, and has no timeout. Low-overhead controller
2213 * drivers may DMA directly into and out of the message buffers.
2214 *
2215 * Note that the SPI device's chip select is active during the message,
2216 * and then is normally disabled between messages. Drivers for some
2217 * frequently-used devices may want to minimize costs of selecting a chip,
2218 * by leaving it selected in anticipation that the next message will go
2219 * to the same chip. (That may increase power usage.)
2220 *
2221 * Also, the caller is guaranteeing that the memory associated with the
2222 * message will not be freed before this call returns.
2223 *
2224 * It returns zero on success, else a negative error code.
2225 */
2226 int spi_sync(struct spi_device *spi, struct spi_message *message)
2227 {
2228 return __spi_sync(spi, message, 0);
2229 }
2230 EXPORT_SYMBOL_GPL(spi_sync);
2231
2232 /**
2233 * spi_sync_locked - version of spi_sync with exclusive bus usage
2234 * @spi: device with which data will be exchanged
2235 * @message: describes the data transfers
2236 * Context: can sleep
2237 *
2238 * This call may only be used from a context that may sleep. The sleep
2239 * is non-interruptible, and has no timeout. Low-overhead controller
2240 * drivers may DMA directly into and out of the message buffers.
2241 *
2242 * This call should be used by drivers that require exclusive access to the
2243 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2244 * be released by a spi_bus_unlock call when the exclusive access is over.
2245 *
2246 * It returns zero on success, else a negative error code.
2247 */
2248 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2249 {
2250 return __spi_sync(spi, message, 1);
2251 }
2252 EXPORT_SYMBOL_GPL(spi_sync_locked);
2253
2254 /**
2255 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2256 * @master: SPI bus master that should be locked for exclusive bus access
2257 * Context: can sleep
2258 *
2259 * This call may only be used from a context that may sleep. The sleep
2260 * is non-interruptible, and has no timeout.
2261 *
2262 * This call should be used by drivers that require exclusive access to the
2263 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2264 * exclusive access is over. Data transfer must be done by spi_sync_locked
2265 * and spi_async_locked calls when the SPI bus lock is held.
2266 *
2267 * It returns zero on success, else a negative error code.
2268 */
2269 int spi_bus_lock(struct spi_master *master)
2270 {
2271 unsigned long flags;
2272
2273 mutex_lock(&master->bus_lock_mutex);
2274
2275 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2276 master->bus_lock_flag = 1;
2277 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2278
2279 /* mutex remains locked until spi_bus_unlock is called */
2280
2281 return 0;
2282 }
2283 EXPORT_SYMBOL_GPL(spi_bus_lock);
2284
2285 /**
2286 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2287 * @master: SPI bus master that was locked for exclusive bus access
2288 * Context: can sleep
2289 *
2290 * This call may only be used from a context that may sleep. The sleep
2291 * is non-interruptible, and has no timeout.
2292 *
2293 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2294 * call.
2295 *
2296 * It returns zero on success, else a negative error code.
2297 */
2298 int spi_bus_unlock(struct spi_master *master)
2299 {
2300 master->bus_lock_flag = 0;
2301
2302 mutex_unlock(&master->bus_lock_mutex);
2303
2304 return 0;
2305 }
2306 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2307
2308 /* portable code must never pass more than 32 bytes */
2309 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2310
2311 static u8 *buf;
2312
2313 /**
2314 * spi_write_then_read - SPI synchronous write followed by read
2315 * @spi: device with which data will be exchanged
2316 * @txbuf: data to be written (need not be dma-safe)
2317 * @n_tx: size of txbuf, in bytes
2318 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2319 * @n_rx: size of rxbuf, in bytes
2320 * Context: can sleep
2321 *
2322 * This performs a half duplex MicroWire style transaction with the
2323 * device, sending txbuf and then reading rxbuf. The return value
2324 * is zero for success, else a negative errno status code.
2325 * This call may only be used from a context that may sleep.
2326 *
2327 * Parameters to this routine are always copied using a small buffer;
2328 * portable code should never use this for more than 32 bytes.
2329 * Performance-sensitive or bulk transfer code should instead use
2330 * spi_{async,sync}() calls with dma-safe buffers.
2331 */
2332 int spi_write_then_read(struct spi_device *spi,
2333 const void *txbuf, unsigned n_tx,
2334 void *rxbuf, unsigned n_rx)
2335 {
2336 static DEFINE_MUTEX(lock);
2337
2338 int status;
2339 struct spi_message message;
2340 struct spi_transfer x[2];
2341 u8 *local_buf;
2342
2343 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2344 * copying here, (as a pure convenience thing), but we can
2345 * keep heap costs out of the hot path unless someone else is
2346 * using the pre-allocated buffer or the transfer is too large.
2347 */
2348 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2349 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2350 GFP_KERNEL | GFP_DMA);
2351 if (!local_buf)
2352 return -ENOMEM;
2353 } else {
2354 local_buf = buf;
2355 }
2356
2357 spi_message_init(&message);
2358 memset(x, 0, sizeof(x));
2359 if (n_tx) {
2360 x[0].len = n_tx;
2361 spi_message_add_tail(&x[0], &message);
2362 }
2363 if (n_rx) {
2364 x[1].len = n_rx;
2365 spi_message_add_tail(&x[1], &message);
2366 }
2367
2368 memcpy(local_buf, txbuf, n_tx);
2369 x[0].tx_buf = local_buf;
2370 x[1].rx_buf = local_buf + n_tx;
2371
2372 /* do the i/o */
2373 status = spi_sync(spi, &message);
2374 if (status == 0)
2375 memcpy(rxbuf, x[1].rx_buf, n_rx);
2376
2377 if (x[0].tx_buf == buf)
2378 mutex_unlock(&lock);
2379 else
2380 kfree(local_buf);
2381
2382 return status;
2383 }
2384 EXPORT_SYMBOL_GPL(spi_write_then_read);
2385
2386 /*-------------------------------------------------------------------------*/
2387
2388 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2389 static int __spi_of_device_match(struct device *dev, void *data)
2390 {
2391 return dev->of_node == data;
2392 }
2393
2394 /* must call put_device() when done with returned spi_device device */
2395 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2396 {
2397 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2398 __spi_of_device_match);
2399 return dev ? to_spi_device(dev) : NULL;
2400 }
2401
2402 static int __spi_of_master_match(struct device *dev, const void *data)
2403 {
2404 return dev->of_node == data;
2405 }
2406
2407 /* the spi masters are not using spi_bus, so we find it with another way */
2408 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2409 {
2410 struct device *dev;
2411
2412 dev = class_find_device(&spi_master_class, NULL, node,
2413 __spi_of_master_match);
2414 if (!dev)
2415 return NULL;
2416
2417 /* reference got in class_find_device */
2418 return container_of(dev, struct spi_master, dev);
2419 }
2420
2421 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2422 void *arg)
2423 {
2424 struct of_reconfig_data *rd = arg;
2425 struct spi_master *master;
2426 struct spi_device *spi;
2427
2428 switch (of_reconfig_get_state_change(action, arg)) {
2429 case OF_RECONFIG_CHANGE_ADD:
2430 master = of_find_spi_master_by_node(rd->dn->parent);
2431 if (master == NULL)
2432 return NOTIFY_OK; /* not for us */
2433
2434 spi = of_register_spi_device(master, rd->dn);
2435 put_device(&master->dev);
2436
2437 if (IS_ERR(spi)) {
2438 pr_err("%s: failed to create for '%s'\n",
2439 __func__, rd->dn->full_name);
2440 return notifier_from_errno(PTR_ERR(spi));
2441 }
2442 break;
2443
2444 case OF_RECONFIG_CHANGE_REMOVE:
2445 /* find our device by node */
2446 spi = of_find_spi_device_by_node(rd->dn);
2447 if (spi == NULL)
2448 return NOTIFY_OK; /* no? not meant for us */
2449
2450 /* unregister takes one ref away */
2451 spi_unregister_device(spi);
2452
2453 /* and put the reference of the find */
2454 put_device(&spi->dev);
2455 break;
2456 }
2457
2458 return NOTIFY_OK;
2459 }
2460
2461 static struct notifier_block spi_of_notifier = {
2462 .notifier_call = of_spi_notify,
2463 };
2464 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2465 extern struct notifier_block spi_of_notifier;
2466 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2467
2468 static int __init spi_init(void)
2469 {
2470 int status;
2471
2472 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2473 if (!buf) {
2474 status = -ENOMEM;
2475 goto err0;
2476 }
2477
2478 status = bus_register(&spi_bus_type);
2479 if (status < 0)
2480 goto err1;
2481
2482 status = class_register(&spi_master_class);
2483 if (status < 0)
2484 goto err2;
2485
2486 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2487 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2488
2489 return 0;
2490
2491 err2:
2492 bus_unregister(&spi_bus_type);
2493 err1:
2494 kfree(buf);
2495 buf = NULL;
2496 err0:
2497 return status;
2498 }
2499
2500 /* board_info is normally registered in arch_initcall(),
2501 * but even essential drivers wait till later
2502 *
2503 * REVISIT only boardinfo really needs static linking. the rest (device and
2504 * driver registration) _could_ be dynamically linked (modular) ... costs
2505 * include needing to have boardinfo data structures be much more public.
2506 */
2507 postcore_initcall(spi_init);
2508
This page took 0.076755 seconds and 4 git commands to generate.