Pull osi into release branch
[deliverable/linux.git] / drivers / spi / spi.c
1 /*
2 * spi.c - SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/autoconf.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/mutex.h>
27 #include <linux/spi/spi.h>
28
29
30 /* SPI bustype and spi_master class are registered after board init code
31 * provides the SPI device tables, ensuring that both are present by the
32 * time controller driver registration causes spi_devices to "enumerate".
33 */
34 static void spidev_release(struct device *dev)
35 {
36 struct spi_device *spi = to_spi_device(dev);
37
38 /* spi masters may cleanup for released devices */
39 if (spi->master->cleanup)
40 spi->master->cleanup(spi);
41
42 spi_master_put(spi->master);
43 kfree(dev);
44 }
45
46 static ssize_t
47 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
48 {
49 const struct spi_device *spi = to_spi_device(dev);
50
51 return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
52 }
53
54 static struct device_attribute spi_dev_attrs[] = {
55 __ATTR_RO(modalias),
56 __ATTR_NULL,
57 };
58
59 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
60 * and the sysfs version makes coldplug work too.
61 */
62
63 static int spi_match_device(struct device *dev, struct device_driver *drv)
64 {
65 const struct spi_device *spi = to_spi_device(dev);
66
67 return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
68 }
69
70 static int spi_uevent(struct device *dev, char **envp, int num_envp,
71 char *buffer, int buffer_size)
72 {
73 const struct spi_device *spi = to_spi_device(dev);
74
75 envp[0] = buffer;
76 snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias);
77 envp[1] = NULL;
78 return 0;
79 }
80
81 #ifdef CONFIG_PM
82
83 /*
84 * NOTE: the suspend() method for an spi_master controller driver
85 * should verify that all its child devices are marked as suspended;
86 * suspend requests delivered through sysfs power/state files don't
87 * enforce such constraints.
88 */
89 static int spi_suspend(struct device *dev, pm_message_t message)
90 {
91 int value;
92 struct spi_driver *drv = to_spi_driver(dev->driver);
93
94 if (!drv || !drv->suspend)
95 return 0;
96
97 /* suspend will stop irqs and dma; no more i/o */
98 value = drv->suspend(to_spi_device(dev), message);
99 if (value == 0)
100 dev->power.power_state = message;
101 return value;
102 }
103
104 static int spi_resume(struct device *dev)
105 {
106 int value;
107 struct spi_driver *drv = to_spi_driver(dev->driver);
108
109 if (!drv || !drv->resume)
110 return 0;
111
112 /* resume may restart the i/o queue */
113 value = drv->resume(to_spi_device(dev));
114 if (value == 0)
115 dev->power.power_state = PMSG_ON;
116 return value;
117 }
118
119 #else
120 #define spi_suspend NULL
121 #define spi_resume NULL
122 #endif
123
124 struct bus_type spi_bus_type = {
125 .name = "spi",
126 .dev_attrs = spi_dev_attrs,
127 .match = spi_match_device,
128 .uevent = spi_uevent,
129 .suspend = spi_suspend,
130 .resume = spi_resume,
131 };
132 EXPORT_SYMBOL_GPL(spi_bus_type);
133
134
135 static int spi_drv_probe(struct device *dev)
136 {
137 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
138
139 return sdrv->probe(to_spi_device(dev));
140 }
141
142 static int spi_drv_remove(struct device *dev)
143 {
144 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
145
146 return sdrv->remove(to_spi_device(dev));
147 }
148
149 static void spi_drv_shutdown(struct device *dev)
150 {
151 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
152
153 sdrv->shutdown(to_spi_device(dev));
154 }
155
156 /**
157 * spi_register_driver - register a SPI driver
158 * @sdrv: the driver to register
159 * Context: can sleep
160 */
161 int spi_register_driver(struct spi_driver *sdrv)
162 {
163 sdrv->driver.bus = &spi_bus_type;
164 if (sdrv->probe)
165 sdrv->driver.probe = spi_drv_probe;
166 if (sdrv->remove)
167 sdrv->driver.remove = spi_drv_remove;
168 if (sdrv->shutdown)
169 sdrv->driver.shutdown = spi_drv_shutdown;
170 return driver_register(&sdrv->driver);
171 }
172 EXPORT_SYMBOL_GPL(spi_register_driver);
173
174 /*-------------------------------------------------------------------------*/
175
176 /* SPI devices should normally not be created by SPI device drivers; that
177 * would make them board-specific. Similarly with SPI master drivers.
178 * Device registration normally goes into like arch/.../mach.../board-YYY.c
179 * with other readonly (flashable) information about mainboard devices.
180 */
181
182 struct boardinfo {
183 struct list_head list;
184 unsigned n_board_info;
185 struct spi_board_info board_info[0];
186 };
187
188 static LIST_HEAD(board_list);
189 static DEFINE_MUTEX(board_lock);
190
191
192 /**
193 * spi_new_device - instantiate one new SPI device
194 * @master: Controller to which device is connected
195 * @chip: Describes the SPI device
196 * Context: can sleep
197 *
198 * On typical mainboards, this is purely internal; and it's not needed
199 * after board init creates the hard-wired devices. Some development
200 * platforms may not be able to use spi_register_board_info though, and
201 * this is exported so that for example a USB or parport based adapter
202 * driver could add devices (which it would learn about out-of-band).
203 */
204 struct spi_device *spi_new_device(struct spi_master *master,
205 struct spi_board_info *chip)
206 {
207 struct spi_device *proxy;
208 struct device *dev = master->cdev.dev;
209 int status;
210
211 /* NOTE: caller did any chip->bus_num checks necessary */
212
213 if (!spi_master_get(master))
214 return NULL;
215
216 proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
217 if (!proxy) {
218 dev_err(dev, "can't alloc dev for cs%d\n",
219 chip->chip_select);
220 goto fail;
221 }
222 proxy->master = master;
223 proxy->chip_select = chip->chip_select;
224 proxy->max_speed_hz = chip->max_speed_hz;
225 proxy->mode = chip->mode;
226 proxy->irq = chip->irq;
227 proxy->modalias = chip->modalias;
228
229 snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
230 "%s.%u", master->cdev.class_id,
231 chip->chip_select);
232 proxy->dev.parent = dev;
233 proxy->dev.bus = &spi_bus_type;
234 proxy->dev.platform_data = (void *) chip->platform_data;
235 proxy->controller_data = chip->controller_data;
236 proxy->controller_state = NULL;
237 proxy->dev.release = spidev_release;
238
239 /* drivers may modify this default i/o setup */
240 status = master->setup(proxy);
241 if (status < 0) {
242 dev_dbg(dev, "can't %s %s, status %d\n",
243 "setup", proxy->dev.bus_id, status);
244 goto fail;
245 }
246
247 /* driver core catches callers that misbehave by defining
248 * devices that already exist.
249 */
250 status = device_register(&proxy->dev);
251 if (status < 0) {
252 dev_dbg(dev, "can't %s %s, status %d\n",
253 "add", proxy->dev.bus_id, status);
254 goto fail;
255 }
256 dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
257 return proxy;
258
259 fail:
260 spi_master_put(master);
261 kfree(proxy);
262 return NULL;
263 }
264 EXPORT_SYMBOL_GPL(spi_new_device);
265
266 /**
267 * spi_register_board_info - register SPI devices for a given board
268 * @info: array of chip descriptors
269 * @n: how many descriptors are provided
270 * Context: can sleep
271 *
272 * Board-specific early init code calls this (probably during arch_initcall)
273 * with segments of the SPI device table. Any device nodes are created later,
274 * after the relevant parent SPI controller (bus_num) is defined. We keep
275 * this table of devices forever, so that reloading a controller driver will
276 * not make Linux forget about these hard-wired devices.
277 *
278 * Other code can also call this, e.g. a particular add-on board might provide
279 * SPI devices through its expansion connector, so code initializing that board
280 * would naturally declare its SPI devices.
281 *
282 * The board info passed can safely be __initdata ... but be careful of
283 * any embedded pointers (platform_data, etc), they're copied as-is.
284 */
285 int __init
286 spi_register_board_info(struct spi_board_info const *info, unsigned n)
287 {
288 struct boardinfo *bi;
289
290 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
291 if (!bi)
292 return -ENOMEM;
293 bi->n_board_info = n;
294 memcpy(bi->board_info, info, n * sizeof *info);
295
296 mutex_lock(&board_lock);
297 list_add_tail(&bi->list, &board_list);
298 mutex_unlock(&board_lock);
299 return 0;
300 }
301
302 /* FIXME someone should add support for a __setup("spi", ...) that
303 * creates board info from kernel command lines
304 */
305
306 static void scan_boardinfo(struct spi_master *master)
307 {
308 struct boardinfo *bi;
309 struct device *dev = master->cdev.dev;
310
311 mutex_lock(&board_lock);
312 list_for_each_entry(bi, &board_list, list) {
313 struct spi_board_info *chip = bi->board_info;
314 unsigned n;
315
316 for (n = bi->n_board_info; n > 0; n--, chip++) {
317 if (chip->bus_num != master->bus_num)
318 continue;
319 /* some controllers only have one chip, so they
320 * might not use chipselects. otherwise, the
321 * chipselects are numbered 0..max.
322 */
323 if (chip->chip_select >= master->num_chipselect
324 && master->num_chipselect) {
325 dev_dbg(dev, "cs%d > max %d\n",
326 chip->chip_select,
327 master->num_chipselect);
328 continue;
329 }
330 (void) spi_new_device(master, chip);
331 }
332 }
333 mutex_unlock(&board_lock);
334 }
335
336 /*-------------------------------------------------------------------------*/
337
338 static void spi_master_release(struct class_device *cdev)
339 {
340 struct spi_master *master;
341
342 master = container_of(cdev, struct spi_master, cdev);
343 kfree(master);
344 }
345
346 static struct class spi_master_class = {
347 .name = "spi_master",
348 .owner = THIS_MODULE,
349 .release = spi_master_release,
350 };
351
352
353 /**
354 * spi_alloc_master - allocate SPI master controller
355 * @dev: the controller, possibly using the platform_bus
356 * @size: how much zeroed driver-private data to allocate; the pointer to this
357 * memory is in the class_data field of the returned class_device,
358 * accessible with spi_master_get_devdata().
359 * Context: can sleep
360 *
361 * This call is used only by SPI master controller drivers, which are the
362 * only ones directly touching chip registers. It's how they allocate
363 * an spi_master structure, prior to calling spi_register_master().
364 *
365 * This must be called from context that can sleep. It returns the SPI
366 * master structure on success, else NULL.
367 *
368 * The caller is responsible for assigning the bus number and initializing
369 * the master's methods before calling spi_register_master(); and (after errors
370 * adding the device) calling spi_master_put() to prevent a memory leak.
371 */
372 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
373 {
374 struct spi_master *master;
375
376 if (!dev)
377 return NULL;
378
379 master = kzalloc(size + sizeof *master, GFP_KERNEL);
380 if (!master)
381 return NULL;
382
383 class_device_initialize(&master->cdev);
384 master->cdev.class = &spi_master_class;
385 master->cdev.dev = get_device(dev);
386 spi_master_set_devdata(master, &master[1]);
387
388 return master;
389 }
390 EXPORT_SYMBOL_GPL(spi_alloc_master);
391
392 /**
393 * spi_register_master - register SPI master controller
394 * @master: initialized master, originally from spi_alloc_master()
395 * Context: can sleep
396 *
397 * SPI master controllers connect to their drivers using some non-SPI bus,
398 * such as the platform bus. The final stage of probe() in that code
399 * includes calling spi_register_master() to hook up to this SPI bus glue.
400 *
401 * SPI controllers use board specific (often SOC specific) bus numbers,
402 * and board-specific addressing for SPI devices combines those numbers
403 * with chip select numbers. Since SPI does not directly support dynamic
404 * device identification, boards need configuration tables telling which
405 * chip is at which address.
406 *
407 * This must be called from context that can sleep. It returns zero on
408 * success, else a negative error code (dropping the master's refcount).
409 * After a successful return, the caller is responsible for calling
410 * spi_unregister_master().
411 */
412 int spi_register_master(struct spi_master *master)
413 {
414 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
415 struct device *dev = master->cdev.dev;
416 int status = -ENODEV;
417 int dynamic = 0;
418
419 if (!dev)
420 return -ENODEV;
421
422 /* convention: dynamically assigned bus IDs count down from the max */
423 if (master->bus_num < 0) {
424 master->bus_num = atomic_dec_return(&dyn_bus_id);
425 dynamic = 1;
426 }
427
428 /* register the device, then userspace will see it.
429 * registration fails if the bus ID is in use.
430 */
431 snprintf(master->cdev.class_id, sizeof master->cdev.class_id,
432 "spi%u", master->bus_num);
433 status = class_device_add(&master->cdev);
434 if (status < 0)
435 goto done;
436 dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id,
437 dynamic ? " (dynamic)" : "");
438
439 /* populate children from any spi device tables */
440 scan_boardinfo(master);
441 status = 0;
442 done:
443 return status;
444 }
445 EXPORT_SYMBOL_GPL(spi_register_master);
446
447
448 static int __unregister(struct device *dev, void *unused)
449 {
450 /* note: before about 2.6.14-rc1 this would corrupt memory: */
451 spi_unregister_device(to_spi_device(dev));
452 return 0;
453 }
454
455 /**
456 * spi_unregister_master - unregister SPI master controller
457 * @master: the master being unregistered
458 * Context: can sleep
459 *
460 * This call is used only by SPI master controller drivers, which are the
461 * only ones directly touching chip registers.
462 *
463 * This must be called from context that can sleep.
464 */
465 void spi_unregister_master(struct spi_master *master)
466 {
467 int dummy;
468
469 dummy = device_for_each_child(master->cdev.dev, NULL, __unregister);
470 class_device_unregister(&master->cdev);
471 }
472 EXPORT_SYMBOL_GPL(spi_unregister_master);
473
474 /**
475 * spi_busnum_to_master - look up master associated with bus_num
476 * @bus_num: the master's bus number
477 * Context: can sleep
478 *
479 * This call may be used with devices that are registered after
480 * arch init time. It returns a refcounted pointer to the relevant
481 * spi_master (which the caller must release), or NULL if there is
482 * no such master registered.
483 */
484 struct spi_master *spi_busnum_to_master(u16 bus_num)
485 {
486 struct class_device *cdev;
487 struct spi_master *master = NULL;
488 struct spi_master *m;
489
490 down(&spi_master_class.sem);
491 list_for_each_entry(cdev, &spi_master_class.children, node) {
492 m = container_of(cdev, struct spi_master, cdev);
493 if (m->bus_num == bus_num) {
494 master = spi_master_get(m);
495 break;
496 }
497 }
498 up(&spi_master_class.sem);
499 return master;
500 }
501 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
502
503
504 /*-------------------------------------------------------------------------*/
505
506 static void spi_complete(void *arg)
507 {
508 complete(arg);
509 }
510
511 /**
512 * spi_sync - blocking/synchronous SPI data transfers
513 * @spi: device with which data will be exchanged
514 * @message: describes the data transfers
515 * Context: can sleep
516 *
517 * This call may only be used from a context that may sleep. The sleep
518 * is non-interruptible, and has no timeout. Low-overhead controller
519 * drivers may DMA directly into and out of the message buffers.
520 *
521 * Note that the SPI device's chip select is active during the message,
522 * and then is normally disabled between messages. Drivers for some
523 * frequently-used devices may want to minimize costs of selecting a chip,
524 * by leaving it selected in anticipation that the next message will go
525 * to the same chip. (That may increase power usage.)
526 *
527 * Also, the caller is guaranteeing that the memory associated with the
528 * message will not be freed before this call returns.
529 *
530 * The return value is a negative error code if the message could not be
531 * submitted, else zero. When the value is zero, then message->status is
532 * also defined; it's the completion code for the transfer, either zero
533 * or a negative error code from the controller driver.
534 */
535 int spi_sync(struct spi_device *spi, struct spi_message *message)
536 {
537 DECLARE_COMPLETION_ONSTACK(done);
538 int status;
539
540 message->complete = spi_complete;
541 message->context = &done;
542 status = spi_async(spi, message);
543 if (status == 0)
544 wait_for_completion(&done);
545 message->context = NULL;
546 return status;
547 }
548 EXPORT_SYMBOL_GPL(spi_sync);
549
550 /* portable code must never pass more than 32 bytes */
551 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
552
553 static u8 *buf;
554
555 /**
556 * spi_write_then_read - SPI synchronous write followed by read
557 * @spi: device with which data will be exchanged
558 * @txbuf: data to be written (need not be dma-safe)
559 * @n_tx: size of txbuf, in bytes
560 * @rxbuf: buffer into which data will be read
561 * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
562 * Context: can sleep
563 *
564 * This performs a half duplex MicroWire style transaction with the
565 * device, sending txbuf and then reading rxbuf. The return value
566 * is zero for success, else a negative errno status code.
567 * This call may only be used from a context that may sleep.
568 *
569 * Parameters to this routine are always copied using a small buffer;
570 * portable code should never use this for more than 32 bytes.
571 * Performance-sensitive or bulk transfer code should instead use
572 * spi_{async,sync}() calls with dma-safe buffers.
573 */
574 int spi_write_then_read(struct spi_device *spi,
575 const u8 *txbuf, unsigned n_tx,
576 u8 *rxbuf, unsigned n_rx)
577 {
578 static DECLARE_MUTEX(lock);
579
580 int status;
581 struct spi_message message;
582 struct spi_transfer x[2];
583 u8 *local_buf;
584
585 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
586 * (as a pure convenience thing), but we can keep heap costs
587 * out of the hot path ...
588 */
589 if ((n_tx + n_rx) > SPI_BUFSIZ)
590 return -EINVAL;
591
592 spi_message_init(&message);
593 memset(x, 0, sizeof x);
594 if (n_tx) {
595 x[0].len = n_tx;
596 spi_message_add_tail(&x[0], &message);
597 }
598 if (n_rx) {
599 x[1].len = n_rx;
600 spi_message_add_tail(&x[1], &message);
601 }
602
603 /* ... unless someone else is using the pre-allocated buffer */
604 if (down_trylock(&lock)) {
605 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
606 if (!local_buf)
607 return -ENOMEM;
608 } else
609 local_buf = buf;
610
611 memcpy(local_buf, txbuf, n_tx);
612 x[0].tx_buf = local_buf;
613 x[1].rx_buf = local_buf + n_tx;
614
615 /* do the i/o */
616 status = spi_sync(spi, &message);
617 if (status == 0) {
618 memcpy(rxbuf, x[1].rx_buf, n_rx);
619 status = message.status;
620 }
621
622 if (x[0].tx_buf == buf)
623 up(&lock);
624 else
625 kfree(local_buf);
626
627 return status;
628 }
629 EXPORT_SYMBOL_GPL(spi_write_then_read);
630
631 /*-------------------------------------------------------------------------*/
632
633 static int __init spi_init(void)
634 {
635 int status;
636
637 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
638 if (!buf) {
639 status = -ENOMEM;
640 goto err0;
641 }
642
643 status = bus_register(&spi_bus_type);
644 if (status < 0)
645 goto err1;
646
647 status = class_register(&spi_master_class);
648 if (status < 0)
649 goto err2;
650 return 0;
651
652 err2:
653 bus_unregister(&spi_bus_type);
654 err1:
655 kfree(buf);
656 buf = NULL;
657 err0:
658 return status;
659 }
660
661 /* board_info is normally registered in arch_initcall(),
662 * but even essential drivers wait till later
663 *
664 * REVISIT only boardinfo really needs static linking. the rest (device and
665 * driver registration) _could_ be dynamically linked (modular) ... costs
666 * include needing to have boardinfo data structures be much more public.
667 */
668 subsys_initcall(spi_init);
669
This page took 0.051735 seconds and 6 git commands to generate.