staging: android: persistent_ram: Make it possible to use memory outside of bootmem
[deliverable/linux.git] / drivers / staging / android / persistent_ram.c
1 /*
2 * Copyright (C) 2012 Google, Inc.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 */
14
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/list.h>
22 #include <linux/memblock.h>
23 #include <linux/rslib.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <asm/page.h>
27 #include "persistent_ram.h"
28
29 struct persistent_ram_buffer {
30 uint32_t sig;
31 atomic_t start;
32 atomic_t size;
33 uint8_t data[0];
34 };
35
36 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
37
38 static __initdata LIST_HEAD(persistent_ram_list);
39
40 static inline size_t buffer_size(struct persistent_ram_zone *prz)
41 {
42 return atomic_read(&prz->buffer->size);
43 }
44
45 static inline size_t buffer_start(struct persistent_ram_zone *prz)
46 {
47 return atomic_read(&prz->buffer->start);
48 }
49
50 /* increase and wrap the start pointer, returning the old value */
51 static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
52 {
53 int old;
54 int new;
55
56 do {
57 old = atomic_read(&prz->buffer->start);
58 new = old + a;
59 while (unlikely(new > prz->buffer_size))
60 new -= prz->buffer_size;
61 } while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
62
63 return old;
64 }
65
66 /* increase the size counter until it hits the max size */
67 static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
68 {
69 size_t old;
70 size_t new;
71
72 if (atomic_read(&prz->buffer->size) == prz->buffer_size)
73 return;
74
75 do {
76 old = atomic_read(&prz->buffer->size);
77 new = old + a;
78 if (new > prz->buffer_size)
79 new = prz->buffer_size;
80 } while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
81 }
82
83 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
84 uint8_t *data, size_t len, uint8_t *ecc)
85 {
86 int i;
87 uint16_t par[prz->ecc_size];
88
89 /* Initialize the parity buffer */
90 memset(par, 0, sizeof(par));
91 encode_rs8(prz->rs_decoder, data, len, par, 0);
92 for (i = 0; i < prz->ecc_size; i++)
93 ecc[i] = par[i];
94 }
95
96 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
97 void *data, size_t len, uint8_t *ecc)
98 {
99 int i;
100 uint16_t par[prz->ecc_size];
101
102 for (i = 0; i < prz->ecc_size; i++)
103 par[i] = ecc[i];
104 return decode_rs8(prz->rs_decoder, data, par, len,
105 NULL, 0, NULL, 0, NULL);
106 }
107
108 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
109 unsigned int start, unsigned int count)
110 {
111 struct persistent_ram_buffer *buffer = prz->buffer;
112 uint8_t *buffer_end = buffer->data + prz->buffer_size;
113 uint8_t *block;
114 uint8_t *par;
115 int ecc_block_size = prz->ecc_block_size;
116 int ecc_size = prz->ecc_size;
117 int size = prz->ecc_block_size;
118
119 if (!prz->ecc)
120 return;
121
122 block = buffer->data + (start & ~(ecc_block_size - 1));
123 par = prz->par_buffer + (start / ecc_block_size) * prz->ecc_size;
124
125 do {
126 if (block + ecc_block_size > buffer_end)
127 size = buffer_end - block;
128 persistent_ram_encode_rs8(prz, block, size, par);
129 block += ecc_block_size;
130 par += ecc_size;
131 } while (block < buffer->data + start + count);
132 }
133
134 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
135 {
136 struct persistent_ram_buffer *buffer = prz->buffer;
137
138 if (!prz->ecc)
139 return;
140
141 persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
142 prz->par_header);
143 }
144
145 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
146 {
147 struct persistent_ram_buffer *buffer = prz->buffer;
148 uint8_t *block;
149 uint8_t *par;
150
151 if (!prz->ecc)
152 return;
153
154 block = buffer->data;
155 par = prz->par_buffer;
156 while (block < buffer->data + buffer_size(prz)) {
157 int numerr;
158 int size = prz->ecc_block_size;
159 if (block + size > buffer->data + prz->buffer_size)
160 size = buffer->data + prz->buffer_size - block;
161 numerr = persistent_ram_decode_rs8(prz, block, size, par);
162 if (numerr > 0) {
163 pr_devel("persistent_ram: error in block %p, %d\n",
164 block, numerr);
165 prz->corrected_bytes += numerr;
166 } else if (numerr < 0) {
167 pr_devel("persistent_ram: uncorrectable error in block %p\n",
168 block);
169 prz->bad_blocks++;
170 }
171 block += prz->ecc_block_size;
172 par += prz->ecc_size;
173 }
174 }
175
176 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
177 size_t buffer_size)
178 {
179 int numerr;
180 struct persistent_ram_buffer *buffer = prz->buffer;
181 int ecc_blocks;
182
183 if (!prz->ecc)
184 return 0;
185
186 prz->ecc_block_size = 128;
187 prz->ecc_size = 16;
188 prz->ecc_symsize = 8;
189 prz->ecc_poly = 0x11d;
190
191 ecc_blocks = DIV_ROUND_UP(prz->buffer_size, prz->ecc_block_size);
192 prz->buffer_size -= (ecc_blocks + 1) * prz->ecc_size;
193
194 if (prz->buffer_size > buffer_size) {
195 pr_err("persistent_ram: invalid size %zu, non-ecc datasize %zu\n",
196 buffer_size, prz->buffer_size);
197 return -EINVAL;
198 }
199
200 prz->par_buffer = buffer->data + prz->buffer_size;
201 prz->par_header = prz->par_buffer + ecc_blocks * prz->ecc_size;
202
203 /*
204 * first consecutive root is 0
205 * primitive element to generate roots = 1
206 */
207 prz->rs_decoder = init_rs(prz->ecc_symsize, prz->ecc_poly, 0, 1,
208 prz->ecc_size);
209 if (prz->rs_decoder == NULL) {
210 pr_info("persistent_ram: init_rs failed\n");
211 return -EINVAL;
212 }
213
214 prz->corrected_bytes = 0;
215 prz->bad_blocks = 0;
216
217 numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
218 prz->par_header);
219 if (numerr > 0) {
220 pr_info("persistent_ram: error in header, %d\n", numerr);
221 prz->corrected_bytes += numerr;
222 } else if (numerr < 0) {
223 pr_info("persistent_ram: uncorrectable error in header\n");
224 prz->bad_blocks++;
225 }
226
227 return 0;
228 }
229
230 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
231 char *str, size_t len)
232 {
233 ssize_t ret;
234
235 if (prz->corrected_bytes || prz->bad_blocks)
236 ret = snprintf(str, len, ""
237 "\n%d Corrected bytes, %d unrecoverable blocks\n",
238 prz->corrected_bytes, prz->bad_blocks);
239 else
240 ret = snprintf(str, len, "\nNo errors detected\n");
241
242 return ret;
243 }
244
245 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
246 const void *s, unsigned int start, unsigned int count)
247 {
248 struct persistent_ram_buffer *buffer = prz->buffer;
249 memcpy(buffer->data + start, s, count);
250 persistent_ram_update_ecc(prz, start, count);
251 }
252
253 static void __init
254 persistent_ram_save_old(struct persistent_ram_zone *prz)
255 {
256 struct persistent_ram_buffer *buffer = prz->buffer;
257 size_t size = buffer_size(prz);
258 size_t start = buffer_start(prz);
259 char *dest;
260
261 persistent_ram_ecc_old(prz);
262
263 dest = kmalloc(size, GFP_KERNEL);
264 if (dest == NULL) {
265 pr_err("persistent_ram: failed to allocate buffer\n");
266 return;
267 }
268
269 prz->old_log = dest;
270 prz->old_log_size = size;
271 memcpy(prz->old_log, &buffer->data[start], size - start);
272 memcpy(prz->old_log + size - start, &buffer->data[0], start);
273 }
274
275 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
276 const void *s, unsigned int count)
277 {
278 int rem;
279 int c = count;
280 size_t start;
281
282 if (unlikely(c > prz->buffer_size)) {
283 s += c - prz->buffer_size;
284 c = prz->buffer_size;
285 }
286
287 buffer_size_add(prz, c);
288
289 start = buffer_start_add(prz, c);
290
291 rem = prz->buffer_size - start;
292 if (unlikely(rem < c)) {
293 persistent_ram_update(prz, s, start, rem);
294 s += rem;
295 c -= rem;
296 start = 0;
297 }
298 persistent_ram_update(prz, s, start, c);
299
300 persistent_ram_update_header_ecc(prz);
301
302 return count;
303 }
304
305 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
306 {
307 return prz->old_log_size;
308 }
309
310 void *persistent_ram_old(struct persistent_ram_zone *prz)
311 {
312 return prz->old_log;
313 }
314
315 void persistent_ram_free_old(struct persistent_ram_zone *prz)
316 {
317 kfree(prz->old_log);
318 prz->old_log = NULL;
319 prz->old_log_size = 0;
320 }
321
322 static void *persistent_ram_vmap(phys_addr_t start, size_t size)
323 {
324 struct page **pages;
325 phys_addr_t page_start;
326 unsigned int page_count;
327 pgprot_t prot;
328 unsigned int i;
329 void *vaddr;
330
331 page_start = start - offset_in_page(start);
332 page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
333
334 prot = pgprot_noncached(PAGE_KERNEL);
335
336 pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
337 if (!pages) {
338 pr_err("%s: Failed to allocate array for %u pages\n", __func__,
339 page_count);
340 return NULL;
341 }
342
343 for (i = 0; i < page_count; i++) {
344 phys_addr_t addr = page_start + i * PAGE_SIZE;
345 pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
346 }
347 vaddr = vmap(pages, page_count, VM_MAP, prot);
348 kfree(pages);
349
350 return vaddr;
351 }
352
353 static void *persistent_ram_iomap(phys_addr_t start, size_t size)
354 {
355 if (!request_mem_region(start, size, "persistent_ram")) {
356 pr_err("request mem region (0x%llx@0x%llx) failed\n",
357 (unsigned long long)size, (unsigned long long)start);
358 return NULL;
359 }
360
361 return ioremap(start, size);
362 }
363
364 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
365 struct persistent_ram_zone *prz)
366 {
367 if (pfn_valid(start >> PAGE_SHIFT))
368 prz->vaddr = persistent_ram_vmap(start, size);
369 else
370 prz->vaddr = persistent_ram_iomap(start, size);
371
372 if (!prz->vaddr) {
373 pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
374 (unsigned long long)size, (unsigned long long)start);
375 return -ENOMEM;
376 }
377
378 prz->buffer = prz->vaddr + offset_in_page(start);
379 prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
380
381 return 0;
382 }
383
384 static int __init persistent_ram_buffer_init(const char *name,
385 struct persistent_ram_zone *prz)
386 {
387 int i;
388 struct persistent_ram *ram;
389 struct persistent_ram_descriptor *desc;
390 phys_addr_t start;
391
392 list_for_each_entry(ram, &persistent_ram_list, node) {
393 start = ram->start;
394 for (i = 0; i < ram->num_descs; i++) {
395 desc = &ram->descs[i];
396 if (!strcmp(desc->name, name))
397 return persistent_ram_buffer_map(start,
398 desc->size, prz);
399 start += desc->size;
400 }
401 }
402
403 return -EINVAL;
404 }
405
406 static int __init persistent_ram_post_init(struct persistent_ram_zone *prz, bool ecc)
407 {
408 int ret;
409
410 prz->ecc = ecc;
411
412 ret = persistent_ram_init_ecc(prz, prz->buffer_size);
413 if (ret)
414 return ret;
415
416 if (prz->buffer->sig == PERSISTENT_RAM_SIG) {
417 if (buffer_size(prz) > prz->buffer_size ||
418 buffer_start(prz) > buffer_size(prz))
419 pr_info("persistent_ram: found existing invalid buffer,"
420 " size %zu, start %zu\n",
421 buffer_size(prz), buffer_start(prz));
422 else {
423 pr_info("persistent_ram: found existing buffer,"
424 " size %zu, start %zu\n",
425 buffer_size(prz), buffer_start(prz));
426 persistent_ram_save_old(prz);
427 }
428 } else {
429 pr_info("persistent_ram: no valid data in buffer"
430 " (sig = 0x%08x)\n", prz->buffer->sig);
431 }
432
433 prz->buffer->sig = PERSISTENT_RAM_SIG;
434 atomic_set(&prz->buffer->start, 0);
435 atomic_set(&prz->buffer->size, 0);
436
437 return 0;
438 }
439
440 struct persistent_ram_zone * __init persistent_ram_new(phys_addr_t start,
441 size_t size,
442 bool ecc)
443 {
444 struct persistent_ram_zone *prz;
445 int ret = -ENOMEM;
446
447 prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
448 if (!prz) {
449 pr_err("persistent_ram: failed to allocate persistent ram zone\n");
450 goto err;
451 }
452
453 ret = persistent_ram_buffer_map(start, size, prz);
454 if (ret)
455 goto err;
456
457 persistent_ram_post_init(prz, ecc);
458 persistent_ram_update_header_ecc(prz);
459
460 return prz;
461 err:
462 kfree(prz);
463 return ERR_PTR(ret);
464 }
465
466 static __init
467 struct persistent_ram_zone *__persistent_ram_init(struct device *dev, bool ecc)
468 {
469 struct persistent_ram_zone *prz;
470 int ret = -ENOMEM;
471
472 prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
473 if (!prz) {
474 pr_err("persistent_ram: failed to allocate persistent ram zone\n");
475 goto err;
476 }
477
478 ret = persistent_ram_buffer_init(dev_name(dev), prz);
479 if (ret) {
480 pr_err("persistent_ram: failed to initialize buffer\n");
481 goto err;
482 }
483
484 persistent_ram_post_init(prz, ecc);
485
486 return prz;
487 err:
488 kfree(prz);
489 return ERR_PTR(ret);
490 }
491
492 struct persistent_ram_zone * __init
493 persistent_ram_init_ringbuffer(struct device *dev, bool ecc)
494 {
495 return __persistent_ram_init(dev, ecc);
496 }
497
498 int __init persistent_ram_early_init(struct persistent_ram *ram)
499 {
500 int ret;
501
502 ret = memblock_reserve(ram->start, ram->size);
503 if (ret) {
504 pr_err("Failed to reserve persistent memory from %08lx-%08lx\n",
505 (long)ram->start, (long)(ram->start + ram->size - 1));
506 return ret;
507 }
508
509 list_add_tail(&ram->node, &persistent_ram_list);
510
511 pr_info("Initialized persistent memory from %08lx-%08lx\n",
512 (long)ram->start, (long)(ram->start + ram->size - 1));
513
514 return 0;
515 }
This page took 0.040893 seconds and 6 git commands to generate.