Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / staging / comedi / drivers / s626.c
1 /*
2 comedi/drivers/s626.c
3 Sensoray s626 Comedi driver
4
5 COMEDI - Linux Control and Measurement Device Interface
6 Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8 Based on Sensoray Model 626 Linux driver Version 0.2
9 Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25 */
26
27 /*
28 Driver: s626
29 Description: Sensoray 626 driver
30 Devices: [Sensoray] 626 (s626)
31 Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32 Updated: Fri, 15 Feb 2008 10:28:42 +0000
33 Status: experimental
34
35 Configuration options:
36 [0] - PCI bus of device (optional)
37 [1] - PCI slot of device (optional)
38 If bus/slot is not specified, the first supported
39 PCI device found will be used.
40
41 INSN_CONFIG instructions:
42 analog input:
43 none
44
45 analog output:
46 none
47
48 digital channel:
49 s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50 supported configuration options:
51 INSN_CONFIG_DIO_QUERY
52 COMEDI_INPUT
53 COMEDI_OUTPUT
54
55 encoder:
56 Every channel must be configured before reading.
57
58 Example code
59
60 insn.insn=INSN_CONFIG; //configuration instruction
61 insn.n=1; //number of operation (must be 1)
62 insn.data=&initialvalue; //initial value loaded into encoder
63 //during configuration
64 insn.subdev=5; //encoder subdevice
65 insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66 //to configure
67
68 comedi_do_insn(cf,&insn); //executing configuration
69 */
70
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73
74 #include "../comedidev.h"
75
76 #include "comedi_pci.h"
77
78 #include "comedi_fc.h"
79 #include "s626.h"
80
81 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
82 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
83 MODULE_LICENSE("GPL");
84
85 typedef struct s626_board_struct {
86 const char *name;
87 int ai_chans;
88 int ai_bits;
89 int ao_chans;
90 int ao_bits;
91 int dio_chans;
92 int dio_banks;
93 int enc_chans;
94 } s626_board;
95
96 static const s626_board s626_boards[] = {
97 {
98 name: "s626",
99 ai_chans:S626_ADC_CHANNELS,
100 ai_bits: 14,
101 ao_chans:S626_DAC_CHANNELS,
102 ao_bits: 13,
103 dio_chans:S626_DIO_CHANNELS,
104 dio_banks:S626_DIO_BANKS,
105 enc_chans:S626_ENCODER_CHANNELS,
106 }
107 };
108
109 #define thisboard ((const s626_board *)dev->board_ptr)
110 #define PCI_VENDOR_ID_S626 0x1131
111 #define PCI_DEVICE_ID_S626 0x7146
112
113 static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
114 {PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
115 0},
116 {0}
117 };
118
119 MODULE_DEVICE_TABLE(pci, s626_pci_table);
120
121 static int s626_attach(comedi_device * dev, comedi_devconfig * it);
122 static int s626_detach(comedi_device * dev);
123
124 static comedi_driver driver_s626 = {
125 driver_name:"s626",
126 module:THIS_MODULE,
127 attach:s626_attach,
128 detach:s626_detach,
129 };
130
131 typedef struct {
132 struct pci_dev *pdev;
133 void *base_addr;
134 int got_regions;
135 short allocatedBuf;
136 uint8_t ai_cmd_running; // ai_cmd is running
137 uint8_t ai_continous; // continous aquisition
138 int ai_sample_count; // number of samples to aquire
139 unsigned int ai_sample_timer; // time between samples in
140 // units of the timer
141 int ai_convert_count; // conversion counter
142 unsigned int ai_convert_timer; // time between conversion in
143 // units of the timer
144 uint16_t CounterIntEnabs; //Counter interrupt enable
145 //mask for MISC2 register.
146 uint8_t AdcItems; //Number of items in ADC poll
147 //list.
148 DMABUF RPSBuf; //DMA buffer used to hold ADC
149 //(RPS1) program.
150 DMABUF ANABuf; //DMA buffer used to receive
151 //ADC data and hold DAC data.
152 uint32_t *pDacWBuf; //Pointer to logical adrs of
153 //DMA buffer used to hold DAC
154 //data.
155 uint16_t Dacpol; //Image of DAC polarity
156 //register.
157 uint8_t TrimSetpoint[12]; //Images of TrimDAC setpoints.
158 //registers.
159 uint16_t ChargeEnabled; //Image of MISC2 Battery
160 //Charge Enabled (0 or
161 //WRMISC2_CHARGE_ENABLE).
162 uint16_t WDInterval; //Image of MISC2 watchdog
163 //interval control bits.
164 uint32_t I2CAdrs; //I2C device address for
165 //onboard EEPROM (board rev
166 //dependent).
167 // short I2Cards;
168 lsampl_t ao_readback[S626_DAC_CHANNELS];
169 } s626_private;
170
171 typedef struct {
172 uint16_t RDDIn;
173 uint16_t WRDOut;
174 uint16_t RDEdgSel;
175 uint16_t WREdgSel;
176 uint16_t RDCapSel;
177 uint16_t WRCapSel;
178 uint16_t RDCapFlg;
179 uint16_t RDIntSel;
180 uint16_t WRIntSel;
181 } dio_private;
182
183 static dio_private dio_private_A = {
184 RDDIn:LP_RDDINA,
185 WRDOut:LP_WRDOUTA,
186 RDEdgSel:LP_RDEDGSELA,
187 WREdgSel:LP_WREDGSELA,
188 RDCapSel:LP_RDCAPSELA,
189 WRCapSel:LP_WRCAPSELA,
190 RDCapFlg:LP_RDCAPFLGA,
191 RDIntSel:LP_RDINTSELA,
192 WRIntSel:LP_WRINTSELA,
193 };
194
195 static dio_private dio_private_B = {
196 RDDIn:LP_RDDINB,
197 WRDOut:LP_WRDOUTB,
198 RDEdgSel:LP_RDEDGSELB,
199 WREdgSel:LP_WREDGSELB,
200 RDCapSel:LP_RDCAPSELB,
201 WRCapSel:LP_WRCAPSELB,
202 RDCapFlg:LP_RDCAPFLGB,
203 RDIntSel:LP_RDINTSELB,
204 WRIntSel:LP_WRINTSELB,
205 };
206
207 static dio_private dio_private_C = {
208 RDDIn:LP_RDDINC,
209 WRDOut:LP_WRDOUTC,
210 RDEdgSel:LP_RDEDGSELC,
211 WREdgSel:LP_WREDGSELC,
212 RDCapSel:LP_RDCAPSELC,
213 WRCapSel:LP_WRCAPSELC,
214 RDCapFlg:LP_RDCAPFLGC,
215 RDIntSel:LP_RDINTSELC,
216 WRIntSel:LP_WRINTSELC,
217 };
218
219 /* to group dio devices (48 bits mask and data are not allowed ???)
220 static dio_private *dio_private_word[]={
221 &dio_private_A,
222 &dio_private_B,
223 &dio_private_C,
224 };
225 */
226
227 #define devpriv ((s626_private *)dev->private)
228 #define diopriv ((dio_private *)s->private)
229
230 COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
231
232 //ioctl routines
233 static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
234 comedi_insn * insn, lsampl_t * data);
235 /* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */
236 static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
237 comedi_insn * insn, lsampl_t * data);
238 static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s);
239 static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
240 comedi_cmd * cmd);
241 static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s);
242 static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
243 comedi_insn * insn, lsampl_t * data);
244 static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
245 comedi_insn * insn, lsampl_t * data);
246 static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
247 comedi_insn * insn, lsampl_t * data);
248 static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
249 comedi_insn * insn, lsampl_t * data);
250 static int s626_dio_set_irq(comedi_device * dev, unsigned int chan);
251 static int s626_dio_reset_irq(comedi_device * dev, unsigned int gruop,
252 unsigned int mask);
253 static int s626_dio_clear_irq(comedi_device * dev);
254 static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
255 comedi_insn * insn, lsampl_t * data);
256 static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
257 comedi_insn * insn, lsampl_t * data);
258 static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
259 comedi_insn * insn, lsampl_t * data);
260 static int s626_ns_to_timer(int *nanosec, int round_mode);
261 static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd);
262 static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
263 unsigned int trignum);
264 static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
265 static lsampl_t s626_ai_reg_to_uint(int data);
266 /* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */
267
268 //end ioctl routines
269
270 //internal routines
271 static void s626_dio_init(comedi_device * dev);
272 static void ResetADC(comedi_device * dev, uint8_t * ppl);
273 static void LoadTrimDACs(comedi_device * dev);
274 static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
275 uint8_t DacData);
276 static uint8_t I2Cread(comedi_device * dev, uint8_t addr);
277 static uint32_t I2Chandshake(comedi_device * dev, uint32_t val);
278 static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata);
279 static void SendDAC(comedi_device * dev, uint32_t val);
280 static void WriteMISC2(comedi_device * dev, uint16_t NewImage);
281 static void DEBItransfer(comedi_device * dev);
282 static uint16_t DEBIread(comedi_device * dev, uint16_t addr);
283 static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata);
284 static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
285 uint16_t wdata);
286 static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize);
287
288 // COUNTER OBJECT ------------------------------------------------
289 typedef struct enc_private_struct {
290 // Pointers to functions that differ for A and B counters:
291 uint16_t(*GetEnable) (comedi_device * dev, struct enc_private_struct *); //Return clock enable.
292 uint16_t(*GetIntSrc) (comedi_device * dev, struct enc_private_struct *); //Return interrupt source.
293 uint16_t(*GetLoadTrig) (comedi_device * dev, struct enc_private_struct *); //Return preload trigger source.
294 uint16_t(*GetMode) (comedi_device * dev, struct enc_private_struct *); //Return standardized operating mode.
295 void (*PulseIndex) (comedi_device * dev, struct enc_private_struct *); //Generate soft index strobe.
296 void (*SetEnable) (comedi_device * dev, struct enc_private_struct *, uint16_t enab); //Program clock enable.
297 void (*SetIntSrc) (comedi_device * dev, struct enc_private_struct *, uint16_t IntSource); //Program interrupt source.
298 void (*SetLoadTrig) (comedi_device * dev, struct enc_private_struct *, uint16_t Trig); //Program preload trigger source.
299 void (*SetMode) (comedi_device * dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc); //Program standardized operating mode.
300 void (*ResetCapFlags) (comedi_device * dev, struct enc_private_struct *); //Reset event capture flags.
301
302 uint16_t MyCRA; // Address of CRA register.
303 uint16_t MyCRB; // Address of CRB register.
304 uint16_t MyLatchLsw; // Address of Latch least-significant-word
305 // register.
306 uint16_t MyEventBits[4]; // Bit translations for IntSrc -->RDMISC2.
307 } enc_private; //counter object
308
309 #define encpriv ((enc_private *)(dev->subdevices+5)->private)
310
311 //counters routines
312 static void s626_timer_load(comedi_device * dev, enc_private * k, int tick);
313 static uint32_t ReadLatch(comedi_device * dev, enc_private * k);
314 static void ResetCapFlags_A(comedi_device * dev, enc_private * k);
315 static void ResetCapFlags_B(comedi_device * dev, enc_private * k);
316 static uint16_t GetMode_A(comedi_device * dev, enc_private * k);
317 static uint16_t GetMode_B(comedi_device * dev, enc_private * k);
318 static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
319 uint16_t DisableIntSrc);
320 static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
321 uint16_t DisableIntSrc);
322 static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab);
323 static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab);
324 static uint16_t GetEnable_A(comedi_device * dev, enc_private * k);
325 static uint16_t GetEnable_B(comedi_device * dev, enc_private * k);
326 static void SetLatchSource(comedi_device * dev, enc_private * k,
327 uint16_t value);
328 /* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ); */
329 static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig);
330 static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig);
331 static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k);
332 static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k);
333 static void SetIntSrc_B(comedi_device * dev, enc_private * k,
334 uint16_t IntSource);
335 static void SetIntSrc_A(comedi_device * dev, enc_private * k,
336 uint16_t IntSource);
337 static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k);
338 static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k);
339 /* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) ; */
340 /* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) ; */
341 /* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ); */
342 /* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) ; */
343 /* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */
344 /* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ); */
345 /* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */
346 /* static uint16_t GetIndexSrc( comedi_device *dev,enc_private *k ); */
347 static void PulseIndex_A(comedi_device * dev, enc_private * k);
348 static void PulseIndex_B(comedi_device * dev, enc_private * k);
349 static void Preload(comedi_device * dev, enc_private * k, uint32_t value);
350 static void CountersInit(comedi_device * dev);
351 //end internal routines
352
353 /////////////////////////////////////////////////////////////////////////
354 // Counter objects constructor.
355
356 // Counter overflow/index event flag masks for RDMISC2.
357 #define INDXMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 - 1 ) : ( (C) * 2 + 4 ) ) )
358 #define OVERMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 + 5 ) : ( (C) * 2 + 10 ) ) )
359 #define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
360
361 // Translation table to map IntSrc into equivalent RDMISC2 event flag
362 // bits.
363 //static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) };
364
365 /* enc_private; */
366 static enc_private enc_private_data[] = {
367 {
368 GetEnable:GetEnable_A,
369 GetIntSrc:GetIntSrc_A,
370 GetLoadTrig:GetLoadTrig_A,
371 GetMode: GetMode_A,
372 PulseIndex:PulseIndex_A,
373 SetEnable:SetEnable_A,
374 SetIntSrc:SetIntSrc_A,
375 SetLoadTrig:SetLoadTrig_A,
376 SetMode: SetMode_A,
377 ResetCapFlags:ResetCapFlags_A,
378 MyCRA: LP_CR0A,
379 MyCRB: LP_CR0B,
380 MyLatchLsw:LP_CNTR0ALSW,
381 MyEventBits:EVBITS(0),
382 },
383 {
384 GetEnable:GetEnable_A,
385 GetIntSrc:GetIntSrc_A,
386 GetLoadTrig:GetLoadTrig_A,
387 GetMode: GetMode_A,
388 PulseIndex:PulseIndex_A,
389 SetEnable:SetEnable_A,
390 SetIntSrc:SetIntSrc_A,
391 SetLoadTrig:SetLoadTrig_A,
392 SetMode: SetMode_A,
393 ResetCapFlags:ResetCapFlags_A,
394 MyCRA: LP_CR1A,
395 MyCRB: LP_CR1B,
396 MyLatchLsw:LP_CNTR1ALSW,
397 MyEventBits:EVBITS(1),
398 },
399 {
400 GetEnable:GetEnable_A,
401 GetIntSrc:GetIntSrc_A,
402 GetLoadTrig:GetLoadTrig_A,
403 GetMode: GetMode_A,
404 PulseIndex:PulseIndex_A,
405 SetEnable:SetEnable_A,
406 SetIntSrc:SetIntSrc_A,
407 SetLoadTrig:SetLoadTrig_A,
408 SetMode: SetMode_A,
409 ResetCapFlags:ResetCapFlags_A,
410 MyCRA: LP_CR2A,
411 MyCRB: LP_CR2B,
412 MyLatchLsw:LP_CNTR2ALSW,
413 MyEventBits:EVBITS(2),
414 },
415 {
416 GetEnable:GetEnable_B,
417 GetIntSrc:GetIntSrc_B,
418 GetLoadTrig:GetLoadTrig_B,
419 GetMode: GetMode_B,
420 PulseIndex:PulseIndex_B,
421 SetEnable:SetEnable_B,
422 SetIntSrc:SetIntSrc_B,
423 SetLoadTrig:SetLoadTrig_B,
424 SetMode: SetMode_B,
425 ResetCapFlags:ResetCapFlags_B,
426 MyCRA: LP_CR0A,
427 MyCRB: LP_CR0B,
428 MyLatchLsw:LP_CNTR0BLSW,
429 MyEventBits:EVBITS(3),
430 },
431 {
432 GetEnable:GetEnable_B,
433 GetIntSrc:GetIntSrc_B,
434 GetLoadTrig:GetLoadTrig_B,
435 GetMode: GetMode_B,
436 PulseIndex:PulseIndex_B,
437 SetEnable:SetEnable_B,
438 SetIntSrc:SetIntSrc_B,
439 SetLoadTrig:SetLoadTrig_B,
440 SetMode: SetMode_B,
441 ResetCapFlags:ResetCapFlags_B,
442 MyCRA: LP_CR1A,
443 MyCRB: LP_CR1B,
444 MyLatchLsw:LP_CNTR1BLSW,
445 MyEventBits:EVBITS(4),
446 },
447 {
448 GetEnable:GetEnable_B,
449 GetIntSrc:GetIntSrc_B,
450 GetLoadTrig:GetLoadTrig_B,
451 GetMode: GetMode_B,
452 PulseIndex:PulseIndex_B,
453 SetEnable:SetEnable_B,
454 SetIntSrc:SetIntSrc_B,
455 SetLoadTrig:SetLoadTrig_B,
456 SetMode: SetMode_B,
457 ResetCapFlags:ResetCapFlags_B,
458 MyCRA: LP_CR2A,
459 MyCRB: LP_CR2B,
460 MyLatchLsw:LP_CNTR2BLSW,
461 MyEventBits:EVBITS(5),
462 },
463 };
464
465 // enab/disable a function or test status bit(s) that are accessed
466 // through Main Control Registers 1 or 2.
467 #define MC_ENABLE( REGADRS, CTRLWORD ) writel( ( (uint32_t)( CTRLWORD ) << 16 ) | (uint32_t)( CTRLWORD ),devpriv->base_addr+( REGADRS ) )
468
469 #define MC_DISABLE( REGADRS, CTRLWORD ) writel( (uint32_t)( CTRLWORD ) << 16 , devpriv->base_addr+( REGADRS ) )
470
471 #define MC_TEST( REGADRS, CTRLWORD ) ( ( readl(devpriv->base_addr+( REGADRS )) & CTRLWORD ) != 0 )
472
473 /* #define WR7146(REGARDS,CTRLWORD)
474 writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
475 #define WR7146(REGARDS,CTRLWORD) writel(CTRLWORD,devpriv->base_addr+(REGARDS))
476
477 /* #define RR7146(REGARDS)
478 readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
479 #define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
480
481 #define BUGFIX_STREG(REGADRS) ( REGADRS - 4 )
482
483 // Write a time slot control record to TSL2.
484 #define VECTPORT( VECTNUM ) (P_TSL2 + ( (VECTNUM) << 2 ))
485 #define SETVECT( VECTNUM, VECTVAL ) WR7146(VECTPORT( VECTNUM ), (VECTVAL))
486
487 // Code macros used for constructing I2C command bytes.
488 #define I2C_B2(ATTR,VAL) ( ( (ATTR) << 6 ) | ( (VAL) << 24 ) )
489 #define I2C_B1(ATTR,VAL) ( ( (ATTR) << 4 ) | ( (VAL) << 16 ) )
490 #define I2C_B0(ATTR,VAL) ( ( (ATTR) << 2 ) | ( (VAL) << 8 ) )
491
492 static const comedi_lrange s626_range_table = { 2, {
493 RANGE(-5, 5),
494 RANGE(-10, 10),
495 }
496 };
497
498 static int s626_attach(comedi_device * dev, comedi_devconfig * it)
499 {
500 /* uint8_t PollList; */
501 /* uint16_t AdcData; */
502 /* uint16_t StartVal; */
503 /* uint16_t index; */
504 /* unsigned int data[16]; */
505 int result;
506 int i;
507 int ret;
508 resource_size_t resourceStart;
509 dma_addr_t appdma;
510 comedi_subdevice *s;
511 struct pci_dev *pdev;
512
513 if (alloc_private(dev, sizeof(s626_private)) < 0)
514 return -ENOMEM;
515
516 for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
517 NULL); pdev != NULL;
518 pdev = pci_get_device(PCI_VENDOR_ID_S626,
519 PCI_DEVICE_ID_S626, pdev)) {
520 if (it->options[0] || it->options[1]) {
521 if (pdev->bus->number == it->options[0] &&
522 PCI_SLOT(pdev->devfn) == it->options[1]) {
523 /* matches requested bus/slot */
524 break;
525 }
526 } else {
527 /* no bus/slot specified */
528 break;
529 }
530 }
531 devpriv->pdev = pdev;
532
533 if (pdev == NULL) {
534 printk("s626_attach: Board not present!!!\n");
535 return -ENODEV;
536 }
537
538 if ((result = comedi_pci_enable(pdev, "s626")) < 0) {
539 printk("s626_attach: comedi_pci_enable fails\n");
540 return -ENODEV;
541 }
542 devpriv->got_regions = 1;
543
544 resourceStart = pci_resource_start(devpriv->pdev, 0);
545
546 devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
547 if (devpriv->base_addr == NULL) {
548 printk("s626_attach: IOREMAP failed\n");
549 return -ENODEV;
550 }
551
552 if (devpriv->base_addr) {
553 //disable master interrupt
554 writel(0, devpriv->base_addr + P_IER);
555
556 //soft reset
557 writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
558
559 //DMA FIXME DMA//
560 DEBUG("s626_attach: DMA ALLOCATION\n");
561
562 //adc buffer allocation
563 devpriv->allocatedBuf = 0;
564
565 if ((devpriv->ANABuf.LogicalBase =
566 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
567 &appdma)) == NULL) {
568 printk("s626_attach: DMA Memory mapping error\n");
569 return -ENOMEM;
570 }
571
572 devpriv->ANABuf.PhysicalBase = appdma;
573
574 DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
575
576 devpriv->allocatedBuf++;
577
578 if ((devpriv->RPSBuf.LogicalBase =
579 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
580 &appdma)) == NULL) {
581 printk("s626_attach: DMA Memory mapping error\n");
582 return -ENOMEM;
583 }
584
585 devpriv->RPSBuf.PhysicalBase = appdma;
586
587 DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
588
589 devpriv->allocatedBuf++;
590
591 }
592
593 dev->board_ptr = s626_boards;
594 dev->board_name = thisboard->name;
595
596 if (alloc_subdevices(dev, 6) < 0)
597 return -ENOMEM;
598
599 dev->iobase = (unsigned long)devpriv->base_addr;
600 dev->irq = devpriv->pdev->irq;
601
602 //set up interrupt handler
603 if (dev->irq == 0) {
604 printk(" unknown irq (bad)\n");
605 } else {
606 if ((ret = comedi_request_irq(dev->irq, s626_irq_handler,
607 IRQF_SHARED, "s626", dev)) < 0) {
608 printk(" irq not available\n");
609 dev->irq = 0;
610 }
611 }
612
613 DEBUG("s626_attach: -- it opts %d,%d -- \n",
614 it->options[0], it->options[1]);
615
616 s = dev->subdevices + 0;
617 /* analog input subdevice */
618 dev->read_subdev = s;
619 /* we support single-ended (ground) and differential */
620 s->type = COMEDI_SUBD_AI;
621 s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
622 s->n_chan = thisboard->ai_chans;
623 s->maxdata = (0xffff >> 2);
624 s->range_table = &s626_range_table;
625 s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist
626 length that the board can
627 handle */
628 s->insn_config = s626_ai_insn_config;
629 s->insn_read = s626_ai_insn_read;
630 s->do_cmd = s626_ai_cmd;
631 s->do_cmdtest = s626_ai_cmdtest;
632 s->cancel = s626_ai_cancel;
633
634 s = dev->subdevices + 1;
635 /* analog output subdevice */
636 s->type = COMEDI_SUBD_AO;
637 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
638 s->n_chan = thisboard->ao_chans;
639 s->maxdata = (0x3fff);
640 s->range_table = &range_bipolar10;
641 s->insn_write = s626_ao_winsn;
642 s->insn_read = s626_ao_rinsn;
643
644 s = dev->subdevices + 2;
645 /* digital I/O subdevice */
646 s->type = COMEDI_SUBD_DIO;
647 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
648 s->n_chan = S626_DIO_CHANNELS;
649 s->maxdata = 1;
650 s->io_bits = 0xffff;
651 s->private = &dio_private_A;
652 s->range_table = &range_digital;
653 s->insn_config = s626_dio_insn_config;
654 s->insn_bits = s626_dio_insn_bits;
655
656 s = dev->subdevices + 3;
657 /* digital I/O subdevice */
658 s->type = COMEDI_SUBD_DIO;
659 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
660 s->n_chan = 16;
661 s->maxdata = 1;
662 s->io_bits = 0xffff;
663 s->private = &dio_private_B;
664 s->range_table = &range_digital;
665 s->insn_config = s626_dio_insn_config;
666 s->insn_bits = s626_dio_insn_bits;
667
668 s = dev->subdevices + 4;
669 /* digital I/O subdevice */
670 s->type = COMEDI_SUBD_DIO;
671 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
672 s->n_chan = 16;
673 s->maxdata = 1;
674 s->io_bits = 0xffff;
675 s->private = &dio_private_C;
676 s->range_table = &range_digital;
677 s->insn_config = s626_dio_insn_config;
678 s->insn_bits = s626_dio_insn_bits;
679
680 s = dev->subdevices + 5;
681 /* encoder (counter) subdevice */
682 s->type = COMEDI_SUBD_COUNTER;
683 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
684 s->n_chan = thisboard->enc_chans;
685 s->private = enc_private_data;
686 s->insn_config = s626_enc_insn_config;
687 s->insn_read = s626_enc_insn_read;
688 s->insn_write = s626_enc_insn_write;
689 s->maxdata = 0xffffff;
690 s->range_table = &range_unknown;
691
692 //stop ai_command
693 devpriv->ai_cmd_running = 0;
694
695 if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
696 dma_addr_t pPhysBuf;
697 uint16_t chan;
698
699 // enab DEBI and audio pins, enable I2C interface.
700 MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
701 // Configure DEBI operating mode.
702 WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 // Local bus is 16
703 // bits wide.
704 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) // Declare DEBI
705 // transfer timeout
706 // interval.
707 | DEBI_SWAP // Set up byte lane
708 // steering.
709 | DEBI_CFG_INTEL); // Intel-compatible
710 // local bus (DEBI
711 // never times out).
712 DEBUG("s626_attach: %d debi init -- %d\n",
713 DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
714 DEBI_SWAP | DEBI_CFG_INTEL,
715 DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
716 DEBI_CFG_16Q);
717
718 //DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ
719 //| DEBI_CFG_INCQ| DEBI_CFG_16Q); //end
720
721 // Paging is disabled.
722 WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); // Disable MMU paging.
723
724 // Init GPIO so that ADC Start* is negated.
725 WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
726
727 //IsBoardRevA is a boolean that indicates whether the board is
728 //RevA.
729
730 // VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
731 // EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
732 // is used to access the onboard serial EEPROM. The EEPROM's I2C
733 // DeviceAddress is hardwired to a value that is dependent on the
734 // 626 board revision. On all board revisions, the EEPROM stores
735 // TrimDAC calibration constants for analog I/O. On RevB and
736 // higher boards, the DeviceAddress is hardwired to 0 to enable
737 // the EEPROM to also store the PCI SubVendorID and SubDeviceID;
738 // this is the address at which the SAA7146 expects a
739 // configuration EEPROM to reside. On RevA boards, the EEPROM
740 // device address, which is hardwired to 4, prevents the SAA7146
741 // from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
742 // default values, instead.
743
744 // devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM
745 // DeviceType (0xA0)
746 // and DeviceAddress<<1.
747
748 devpriv->I2CAdrs = 0xA0; // I2C device address for onboard
749 // eeprom(revb)
750
751 // Issue an I2C ABORT command to halt any I2C operation in
752 //progress and reset BUSY flag.
753 WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT); // Write I2C control:
754 // abort any I2C
755 // activity.
756 MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command
757 // upload
758 while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ; // and wait for
759 // upload to
760 // complete.
761
762 // Per SAA7146 data sheet, write to STATUS reg twice to reset all
763 // I2C error flags.
764 for (i = 0; i < 2; i++) {
765 WR7146(P_I2CSTAT, I2C_CLKSEL); // Write I2C control: reset
766 // error flags.
767 MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command upload
768 while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; // and wait for
769 // upload to
770 // complete.
771 }
772
773 // Init audio interface functional attributes: set DAC/ADC serial
774 // clock rates, invert DAC serial clock so that DAC data setup
775 // times are satisfied, enable DAC serial clock out.
776 WR7146(P_ACON2, ACON2_INIT);
777
778 // Set up TSL1 slot list, which is used to control the
779 // accumulation of ADC data: RSD1 = shift data in on SD1. SIB_A1
780 // = store data uint8_t at next available location in FB BUFFER1
781 // register.
782 WR7146(P_TSL1, RSD1 | SIB_A1); // Fetch ADC high data
783 // uint8_t.
784 WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS); // Fetch ADC low data
785 // uint8_t; end of
786 // TSL1.
787
788 // enab TSL1 slot list so that it executes all the time.
789 WR7146(P_ACON1, ACON1_ADCSTART);
790
791 // Initialize RPS registers used for ADC.
792
793 //Physical start of RPS program.
794 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
795
796 WR7146(P_RPSPAGE1, 0); // RPS program performs no
797 // explicit mem writes.
798 WR7146(P_RPS1_TOUT, 0); // Disable RPS timeouts.
799
800 // SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface to a
801 // known state by invoking ADCs until FB BUFFER 1 register shows
802 // that it is correctly receiving ADC data. This is necessary
803 // because the SAA7146 ADC interface does not start up in a
804 // defined state after a PCI reset.
805
806 /* PollList = EOPL; // Create a simple polling */
807 /* // list for analog input */
808 /* // channel 0. */
809 /* ResetADC( dev, &PollList ); */
810
811 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
812 /* //Get initial ADC */
813 /* //value. */
814
815 /* StartVal = data[0]; */
816
817 /* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
818 /* // Invoke ADCs until the new ADC value differs from the initial */
819 /* // value or a timeout occurs. The timeout protects against the */
820 /* // possibility that the driver is restarting and the ADC data is a */
821 /* // fixed value resulting from the applied ADC analog input being */
822 /* // unusually quiet or at the rail. */
823
824 /* for ( index = 0; index < 500; index++ ) */
825 /* { */
826 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
827 /* AdcData = data[0]; //ReadADC( &AdcData ); */
828 /* if ( AdcData != StartVal ) */
829 /* break; */
830 /* } */
831
832 // end initADC
833
834 // init the DAC interface
835
836 // Init Audio2's output DMAC attributes: burst length = 1 DWORD,
837 // threshold = 1 DWORD.
838 WR7146(P_PCI_BT_A, 0);
839
840 // Init Audio2's output DMA physical addresses. The protection
841 // address is set to 1 DWORD past the base address so that a
842 // single DWORD will be transferred each time a DMA transfer is
843 // enabled.
844
845 pPhysBuf =
846 devpriv->ANABuf.PhysicalBase +
847 (DAC_WDMABUF_OS * sizeof(uint32_t));
848
849 WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); // Buffer base adrs.
850 WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); // Protection address.
851
852 // Cache Audio2's output DMA buffer logical address. This is
853 // where DAC data is buffered for A2 output DMA transfers.
854 devpriv->pDacWBuf =
855 (uint32_t *) devpriv->ANABuf.LogicalBase +
856 DAC_WDMABUF_OS;
857
858 // Audio2's output channels does not use paging. The protection
859 // violation handling bit is set so that the DMAC will
860 // automatically halt and its PCI address pointer will be reset
861 // when the protection address is reached.
862 WR7146(P_PAGEA2_OUT, 8);
863
864 // Initialize time slot list 2 (TSL2), which is used to control
865 // the clock generation for and serialization of data to be sent
866 // to the DAC devices. Slot 0 is a NOP that is used to trap TSL
867 // execution; this permits other slots to be safely modified
868 // without first turning off the TSL sequencer (which is
869 // apparently impossible to do). Also, SD3 (which is driven by a
870 // pull-up resistor) is shifted in and stored to the MSB of
871 // FB_BUFFER2 to be used as evidence that the slot sequence has
872 // not yet finished executing.
873 SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS); // Slot 0: Trap TSL
874 // execution, shift 0xFF
875 // into FB_BUFFER2.
876
877 // Initialize slot 1, which is constant. Slot 1 causes a DWORD to
878 // be transferred from audio channel 2's output FIFO to the FIFO's
879 // output buffer so that it can be serialized and sent to the DAC
880 // during subsequent slots. All remaining slots are dynamically
881 // populated as required by the target DAC device.
882 SETVECT(1, LF_A2); // Slot 1: Fetch DWORD from Audio2's
883 // output FIFO.
884
885 // Start DAC's audio interface (TSL2) running.
886 WR7146(P_ACON1, ACON1_DACSTART);
887
888 ////////////////////////////////////////////////////////
889
890 // end init DAC interface
891
892 // Init Trim DACs to calibrated values. Do it twice because the
893 // SAA7146 audio channel does not always reset properly and
894 // sometimes causes the first few TrimDAC writes to malfunction.
895
896 LoadTrimDACs(dev);
897 LoadTrimDACs(dev); // Insurance.
898
899 //////////////////////////////////////////////////////////////////
900 // Manually init all gate array hardware in case this is a soft
901 // reset (we have no way of determining whether this is a warm or
902 // cold start). This is necessary because the gate array will
903 // reset only in response to a PCI hard reset; there is no soft
904 // reset function.
905
906 // Init all DAC outputs to 0V and init all DAC setpoint and
907 // polarity images.
908 for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
909 SetDAC(dev, chan, 0);
910
911 // Init image of WRMISC2 Battery Charger Enabled control bit.
912 // This image is used when the state of the charger control bit,
913 // which has no direct hardware readback mechanism, is queried.
914 devpriv->ChargeEnabled = 0;
915
916 // Init image of watchdog timer interval in WRMISC2. This image
917 // maintains the value of the control bits of MISC2 are
918 // continuously reset to zero as long as the WD timer is disabled.
919 devpriv->WDInterval = 0;
920
921 // Init Counter Interrupt enab mask for RDMISC2. This mask is
922 // applied against MISC2 when testing to determine which timer
923 // events are requesting interrupt service.
924 devpriv->CounterIntEnabs = 0;
925
926 // Init counters.
927 CountersInit(dev);
928
929 // Without modifying the state of the Battery Backup enab, disable
930 // the watchdog timer, set DIO channels 0-5 to operate in the
931 // standard DIO (vs. counter overflow) mode, disable the battery
932 // charger, and reset the watchdog interval selector to zero.
933 WriteMISC2(dev, (uint16_t) (DEBIread(dev,
934 LP_RDMISC2) & MISC2_BATT_ENABLE));
935
936 // Initialize the digital I/O subsystem.
937 s626_dio_init(dev);
938
939 //enable interrupt test
940 // writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER);
941 }
942
943 DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
944 (uint32_t) devpriv->base_addr);
945
946 return 1;
947 }
948
949 static lsampl_t s626_ai_reg_to_uint(int data)
950 {
951 lsampl_t tempdata;
952
953 tempdata = (data >> 18);
954 if (tempdata & 0x2000)
955 tempdata &= 0x1fff;
956 else
957 tempdata += (1 << 13);
958
959 return tempdata;
960 }
961
962 /* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data){ */
963 /* return 0; */
964 /* } */
965
966 static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
967 {
968 comedi_device *dev = d;
969 comedi_subdevice *s;
970 comedi_cmd *cmd;
971 enc_private *k;
972 unsigned long flags;
973 int32_t *readaddr;
974 uint32_t irqtype, irqstatus;
975 int i = 0;
976 sampl_t tempdata;
977 uint8_t group;
978 uint16_t irqbit;
979
980 DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
981
982 if (dev->attached == 0)
983 return IRQ_NONE;
984 // lock to avoid race with comedi_poll
985 comedi_spin_lock_irqsave(&dev->spinlock, flags);
986
987 //save interrupt enable register state
988 irqstatus = readl(devpriv->base_addr + P_IER);
989
990 //read interrupt type
991 irqtype = readl(devpriv->base_addr + P_ISR);
992
993 //disable master interrupt
994 writel(0, devpriv->base_addr + P_IER);
995
996 //clear interrupt
997 writel(irqtype, devpriv->base_addr + P_ISR);
998
999 //do somethings
1000 DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1001
1002 switch (irqtype) {
1003 case IRQ_RPS1: // end_of_scan occurs
1004
1005 DEBUG("s626_irq_handler: RPS1 irq detected\n");
1006
1007 // manage ai subdevice
1008 s = dev->subdevices;
1009 cmd = &(s->async->cmd);
1010
1011 // Init ptr to DMA buffer that holds new ADC data. We skip the
1012 // first uint16_t in the buffer because it contains junk data from
1013 // the final ADC of the previous poll list scan.
1014 readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1015
1016 // get the data and hand it over to comedi
1017 for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1018 // Convert ADC data to 16-bit integer values and copy to application
1019 // buffer.
1020 tempdata = s626_ai_reg_to_uint((int)*readaddr);
1021 readaddr++;
1022
1023 //put data into read buffer
1024 // comedi_buf_put(s->async, tempdata);
1025 if (cfc_write_to_buffer(s, tempdata) == 0)
1026 printk("s626_irq_handler: cfc_write_to_buffer error!\n");
1027
1028 DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1029 i, tempdata);
1030 }
1031
1032 //end of scan occurs
1033 s->async->events |= COMEDI_CB_EOS;
1034
1035 if (!(devpriv->ai_continous))
1036 devpriv->ai_sample_count--;
1037 if (devpriv->ai_sample_count <= 0) {
1038 devpriv->ai_cmd_running = 0;
1039
1040 // Stop RPS program.
1041 MC_DISABLE(P_MC1, MC1_ERPS1);
1042
1043 //send end of acquisition
1044 s->async->events |= COMEDI_CB_EOA;
1045
1046 //disable master interrupt
1047 irqstatus = 0;
1048 }
1049
1050 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1051 DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1052
1053 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1054
1055 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1056 }
1057 // tell comedi that data is there
1058 DEBUG("s626_irq_handler: events %d\n", s->async->events);
1059 comedi_event(dev, s);
1060 break;
1061 case IRQ_GPIO3: //check dio and conter interrupt
1062
1063 DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1064
1065 // manage ai subdevice
1066 s = dev->subdevices;
1067 cmd = &(s->async->cmd);
1068
1069 //s626_dio_clear_irq(dev);
1070
1071 for (group = 0; group < S626_DIO_BANKS; group++) {
1072 irqbit = 0;
1073 //read interrupt type
1074 irqbit = DEBIread(dev,
1075 ((dio_private *) (dev->subdevices + 2 +
1076 group)->private)->RDCapFlg);
1077
1078 //check if interrupt is generated from dio channels
1079 if (irqbit) {
1080 s626_dio_reset_irq(dev, group, irqbit);
1081 DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
1082 if (devpriv->ai_cmd_running) {
1083 //check if interrupt is an ai acquisition start trigger
1084 if ((irqbit >> (cmd->start_arg -
1085 (16 * group)))
1086 == 1
1087 && cmd->start_src == TRIG_EXT) {
1088 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
1089
1090 // Start executing the RPS program.
1091 MC_ENABLE(P_MC1, MC1_ERPS1);
1092
1093 DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
1094
1095 if (cmd->scan_begin_src ==
1096 TRIG_EXT) {
1097 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1098
1099 s626_dio_set_irq(dev,
1100 cmd->
1101 scan_begin_arg);
1102
1103 DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
1104 }
1105 }
1106 if ((irqbit >> (cmd->scan_begin_arg -
1107 (16 * group)))
1108 == 1
1109 && cmd->scan_begin_src ==
1110 TRIG_EXT) {
1111 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
1112
1113 // Trigger ADC scan loop start by setting RPS Signal 0.
1114 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1115
1116 DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
1117 if (cmd->convert_src ==
1118 TRIG_EXT) {
1119
1120 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1121
1122 devpriv->
1123 ai_convert_count
1124 =
1125 cmd->
1126 chanlist_len;
1127
1128 s626_dio_set_irq(dev,
1129 cmd->
1130 convert_arg);
1131
1132 DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
1133 }
1134
1135 if (cmd->convert_src ==
1136 TRIG_TIMER) {
1137 k = &encpriv[5];
1138 devpriv->
1139 ai_convert_count
1140 =
1141 cmd->
1142 chanlist_len;
1143 k->SetEnable(dev, k,
1144 CLKENAB_ALWAYS);
1145 }
1146 }
1147 if ((irqbit >> (cmd->convert_arg -
1148 (16 * group)))
1149 == 1
1150 && cmd->convert_src ==
1151 TRIG_EXT) {
1152 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
1153
1154 // Trigger ADC scan loop start by setting RPS Signal 0.
1155 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1156
1157 DEBUG("s626_irq_handler: adc convert triggered!!!\n");
1158
1159 devpriv->ai_convert_count--;
1160
1161 if (devpriv->ai_convert_count >
1162 0) {
1163
1164 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1165
1166 s626_dio_set_irq(dev,
1167 cmd->
1168 convert_arg);
1169
1170 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1171 }
1172 }
1173 }
1174 break;
1175 }
1176 }
1177
1178 //read interrupt type
1179 irqbit = DEBIread(dev, LP_RDMISC2);
1180
1181 //check interrupt on counters
1182 DEBUG("s626_irq_handler: check counters interrupt %d\n",
1183 irqbit);
1184
1185 if (irqbit & IRQ_COINT1A) {
1186 DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
1187 k = &encpriv[0];
1188
1189 //clear interrupt capture flag
1190 k->ResetCapFlags(dev, k);
1191 }
1192 if (irqbit & IRQ_COINT2A) {
1193 DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
1194 k = &encpriv[1];
1195
1196 //clear interrupt capture flag
1197 k->ResetCapFlags(dev, k);
1198 }
1199 if (irqbit & IRQ_COINT3A) {
1200 DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
1201 k = &encpriv[2];
1202
1203 //clear interrupt capture flag
1204 k->ResetCapFlags(dev, k);
1205 }
1206 if (irqbit & IRQ_COINT1B) {
1207 DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
1208 k = &encpriv[3];
1209
1210 //clear interrupt capture flag
1211 k->ResetCapFlags(dev, k);
1212 }
1213 if (irqbit & IRQ_COINT2B) {
1214 DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
1215 k = &encpriv[4];
1216
1217 //clear interrupt capture flag
1218 k->ResetCapFlags(dev, k);
1219
1220 if (devpriv->ai_convert_count > 0) {
1221 devpriv->ai_convert_count--;
1222 if (devpriv->ai_convert_count == 0)
1223 k->SetEnable(dev, k, CLKENAB_INDEX);
1224
1225 if (cmd->convert_src == TRIG_TIMER) {
1226 DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
1227
1228 // Trigger ADC scan loop start by setting RPS Signal 0.
1229 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1230 }
1231 }
1232 }
1233 if (irqbit & IRQ_COINT3B) {
1234 DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
1235 k = &encpriv[5];
1236
1237 //clear interrupt capture flag
1238 k->ResetCapFlags(dev, k);
1239
1240 if (cmd->scan_begin_src == TRIG_TIMER) {
1241 DEBUG("s626_irq_handler: scan timer trigger!!!\n");
1242
1243 // Trigger ADC scan loop start by setting RPS Signal 0.
1244 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1245 }
1246
1247 if (cmd->convert_src == TRIG_TIMER) {
1248 DEBUG("s626_irq_handler: convert timer trigger is set\n");
1249 k = &encpriv[4];
1250 devpriv->ai_convert_count = cmd->chanlist_len;
1251 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1252 }
1253 }
1254 }
1255
1256 //enable interrupt
1257 writel(irqstatus, devpriv->base_addr + P_IER);
1258
1259 DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1260
1261 comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
1262 return IRQ_HANDLED;
1263 }
1264
1265 static int s626_detach(comedi_device * dev)
1266 {
1267 if (devpriv) {
1268 //stop ai_command
1269 devpriv->ai_cmd_running = 0;
1270
1271 if (devpriv->base_addr) {
1272 //interrupt mask
1273 WR7146(P_IER, 0); // Disable master interrupt.
1274 WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); // Clear board's IRQ status flag.
1275
1276 // Disable the watchdog timer and battery charger.
1277 WriteMISC2(dev, 0);
1278
1279 // Close all interfaces on 7146 device.
1280 WR7146(P_MC1, MC1_SHUTDOWN);
1281 WR7146(P_ACON1, ACON1_BASE);
1282
1283 CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1284 CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1285 }
1286
1287 if (dev->irq) {
1288 comedi_free_irq(dev->irq, dev);
1289 }
1290
1291 if (devpriv->base_addr) {
1292 iounmap(devpriv->base_addr);
1293 }
1294
1295 if (devpriv->pdev) {
1296 if (devpriv->got_regions) {
1297 comedi_pci_disable(devpriv->pdev);
1298 }
1299 pci_dev_put(devpriv->pdev);
1300 }
1301 }
1302
1303 DEBUG("s626_detach: S626 detached!\n");
1304
1305 return 0;
1306 }
1307
1308 /*
1309 * this functions build the RPS program for hardware driven acquistion
1310 */
1311 void ResetADC(comedi_device * dev, uint8_t * ppl)
1312 {
1313 register uint32_t *pRPS;
1314 uint32_t JmpAdrs;
1315 uint16_t i;
1316 uint16_t n;
1317 uint32_t LocalPPL;
1318 comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1319
1320 // Stop RPS program in case it is currently running.
1321 MC_DISABLE(P_MC1, MC1_ERPS1);
1322
1323 // Set starting logical address to write RPS commands.
1324 pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1325
1326 // Initialize RPS instruction pointer.
1327 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1328
1329 // Construct RPS program in RPSBuf DMA buffer
1330
1331 if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1332 DEBUG("ResetADC: scan_begin pause inserted\n");
1333 // Wait for Start trigger.
1334 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1335 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1336 }
1337 // SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
1338 // because the first RPS DEBI Write following a non-RPS DEBI write
1339 // seems to always fail. If we don't do this dummy write, the ADC
1340 // gain might not be set to the value required for the first slot in
1341 // the poll list; the ADC gain would instead remain unchanged from
1342 // the previously programmed value.
1343 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI Write command
1344 // and address to shadow RAM.
1345 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1346 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI immediate data
1347 // to shadow RAM:
1348 *pRPS++ = GSEL_BIPOLAR5V; // arbitrary immediate data
1349 // value.
1350 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM
1351 // uploaded" flag.
1352 *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
1353 *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to finish.
1354
1355 // Digitize all slots in the poll list. This is implemented as a
1356 // for loop to limit the slot count to 16 in case the application
1357 // forgot to set the EOPL flag in the final slot.
1358 for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1359 // Convert application's poll list item to private board class
1360 // format. Each app poll list item is an uint8_t with form
1361 // (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1362 // +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1363 LocalPPL =
1364 (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1365 GSEL_BIPOLAR10V);
1366
1367 // Switch ADC analog gain.
1368 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command
1369 // and address to
1370 // shadow RAM.
1371 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1372 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI
1373 // immediate data to
1374 // shadow RAM.
1375 *pRPS++ = LocalPPL;
1376 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded"
1377 // flag.
1378 *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
1379 *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to
1380 // finish.
1381
1382 // Select ADC analog input channel.
1383 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command
1384 // and address to
1385 // shadow RAM.
1386 *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1387 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI
1388 // immediate data to
1389 // shadow RAM.
1390 *pRPS++ = LocalPPL;
1391 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded"
1392 // flag.
1393 *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
1394 *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to
1395 // finish.
1396
1397 // Delay at least 10 microseconds for analog input settling.
1398 // Instead of padding with NOPs, we use RPS_JUMP instructions
1399 // here; this allows us to produce a longer delay than is
1400 // possible with NOPs because each RPS_JUMP flushes the RPS'
1401 // instruction prefetch pipeline.
1402 JmpAdrs =
1403 (uint32_t) devpriv->RPSBuf.PhysicalBase +
1404 (uint32_t) ((unsigned long)pRPS -
1405 (unsigned long)devpriv->RPSBuf.LogicalBase);
1406 for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1407 JmpAdrs += 8; // Repeat to implement time delay:
1408 *pRPS++ = RPS_JUMP; // Jump to next RPS instruction.
1409 *pRPS++ = JmpAdrs;
1410 }
1411
1412 if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1413 DEBUG("ResetADC: convert pause inserted\n");
1414 // Wait for Start trigger.
1415 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1416 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1417 }
1418 // Start ADC by pulsing GPIO1.
1419 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse.
1420 *pRPS++ = GPIO_BASE | GPIO1_LO;
1421 *pRPS++ = RPS_NOP;
1422 // VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
1423 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse.
1424 *pRPS++ = GPIO_BASE | GPIO1_HI;
1425
1426 // Wait for ADC to complete (GPIO2 is asserted high when ADC not
1427 // busy) and for data from previous conversion to shift into FB
1428 // BUFFER 1 register.
1429 *pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done.
1430
1431 // Transfer ADC data from FB BUFFER 1 register to DMA buffer.
1432 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1433 *pRPS++ =
1434 (uint32_t) devpriv->ANABuf.PhysicalBase +
1435 (devpriv->AdcItems << 2);
1436
1437 // If this slot's EndOfPollList flag is set, all channels have
1438 // now been processed.
1439 if (*ppl++ & EOPL) {
1440 devpriv->AdcItems++; // Adjust poll list item count.
1441 break; // Exit poll list processing loop.
1442 }
1443 }
1444 DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1445
1446 // VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1447 // ADC to stabilize for 2 microseconds before starting the final
1448 // (dummy) conversion. This delay is necessary to allow sufficient
1449 // time between last conversion finished and the start of the dummy
1450 // conversion. Without this delay, the last conversion's data value
1451 // is sometimes set to the previous conversion's data value.
1452 for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1453 *pRPS++ = RPS_NOP;
1454
1455 // Start a dummy conversion to cause the data from the last
1456 // conversion of interest to be shifted in.
1457 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse.
1458 *pRPS++ = GPIO_BASE | GPIO1_LO;
1459 *pRPS++ = RPS_NOP;
1460 // VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
1461 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse.
1462 *pRPS++ = GPIO_BASE | GPIO1_HI;
1463
1464 // Wait for the data from the last conversion of interest to arrive
1465 // in FB BUFFER 1 register.
1466 *pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done.
1467
1468 // Transfer final ADC data from FB BUFFER 1 register to DMA buffer.
1469 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); //
1470 *pRPS++ =
1471 (uint32_t) devpriv->ANABuf.PhysicalBase +
1472 (devpriv->AdcItems << 2);
1473
1474 // Indicate ADC scan loop is finished.
1475 // *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done.
1476
1477 //invoke interrupt
1478 if (devpriv->ai_cmd_running == 1) {
1479 DEBUG("ResetADC: insert irq in ADC RPS task\n");
1480 *pRPS++ = RPS_IRQ;
1481 }
1482 // Restart RPS program at its beginning.
1483 *pRPS++ = RPS_JUMP; // Branch to start of RPS program.
1484 *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1485
1486 // End of RPS program build
1487 // ------------------------------------------------------------
1488 }
1489
1490 /* TO COMPLETE, IF NECESSARY */
1491 static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
1492 comedi_insn * insn, lsampl_t * data)
1493 {
1494
1495 return -EINVAL;
1496 }
1497
1498 /* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data) */
1499 /* { */
1500 /* register uint8_t i; */
1501 /* register int32_t *readaddr; */
1502
1503 /* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */
1504
1505 /* // Trigger ADC scan loop start by setting RPS Signal 0. */
1506 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1507
1508 /* // Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1509 /* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1510
1511 /* // Init ptr to DMA buffer that holds new ADC data. We skip the */
1512 /* // first uint16_t in the buffer because it contains junk data from */
1513 /* // the final ADC of the previous poll list scan. */
1514 /* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1515
1516 /* // Convert ADC data to 16-bit integer values and copy to application */
1517 /* // buffer. */
1518 /* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1519 /* *data = s626_ai_reg_to_uint( *readaddr++ ); */
1520 /* DEBUG("s626_ai_rinsn: data %d \n",*data); */
1521 /* data++; */
1522 /* } */
1523
1524 /* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1525 /* return i; */
1526 /* } */
1527
1528 static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
1529 comedi_insn * insn, lsampl_t * data)
1530 {
1531 uint16_t chan = CR_CHAN(insn->chanspec);
1532 uint16_t range = CR_RANGE(insn->chanspec);
1533 uint16_t AdcSpec = 0;
1534 uint32_t GpioImage;
1535 int n;
1536
1537 /* //interrupt call test */
1538 /* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); //Writing a logical 1 */
1539 /* //into any of the RPS_PSR */
1540 /* //bits causes the */
1541 /* //corresponding interrupt */
1542 /* //to be generated if */
1543 /* //enabled */
1544
1545 DEBUG("s626_ai_insn_read: entering\n");
1546
1547 // Convert application's ADC specification into form
1548 // appropriate for register programming.
1549 if (range == 0)
1550 AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1551 else
1552 AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1553
1554 // Switch ADC analog gain.
1555 DEBIwrite(dev, LP_GSEL, AdcSpec); // Set gain.
1556
1557 // Select ADC analog input channel.
1558 DEBIwrite(dev, LP_ISEL, AdcSpec); // Select channel.
1559
1560 for (n = 0; n < insn->n; n++) {
1561
1562 // Delay 10 microseconds for analog input settling.
1563 comedi_udelay(10);
1564
1565 // Start ADC by pulsing GPIO1 low.
1566 GpioImage = RR7146(P_GPIO);
1567 // Assert ADC Start command
1568 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1569 // and stretch it out.
1570 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1571 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1572 // Negate ADC Start command.
1573 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1574
1575 // Wait for ADC to complete (GPIO2 is asserted high when
1576 // ADC not busy) and for data from previous conversion to
1577 // shift into FB BUFFER 1 register.
1578
1579 // Wait for ADC done.
1580 while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1581
1582 // Fetch ADC data.
1583 if (n != 0)
1584 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1585
1586 // Allow the ADC to stabilize for 4 microseconds before
1587 // starting the next (final) conversion. This delay is
1588 // necessary to allow sufficient time between last
1589 // conversion finished and the start of the next
1590 // conversion. Without this delay, the last conversion's
1591 // data value is sometimes set to the previous
1592 // conversion's data value.
1593 comedi_udelay(4);
1594 }
1595
1596 // Start a dummy conversion to cause the data from the
1597 // previous conversion to be shifted in.
1598 GpioImage = RR7146(P_GPIO);
1599
1600 //Assert ADC Start command
1601 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1602 // and stretch it out.
1603 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1604 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1605 // Negate ADC Start command.
1606 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1607
1608 // Wait for the data to arrive in FB BUFFER 1 register.
1609
1610 // Wait for ADC done.
1611 while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1612
1613 // Fetch ADC data from audio interface's input shift
1614 // register.
1615
1616 // Fetch ADC data.
1617 if (n != 0)
1618 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1619
1620 DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1621
1622 return n;
1623 }
1624
1625 static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd)
1626 {
1627
1628 int n;
1629
1630 for (n = 0; n < cmd->chanlist_len; n++) {
1631 if (CR_RANGE((cmd->chanlist)[n]) == 0)
1632 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1633 else
1634 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1635 }
1636 ppl[n - 1] |= EOPL;
1637
1638 return n;
1639 }
1640
1641 static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
1642 unsigned int trignum)
1643 {
1644 if (trignum != 0)
1645 return -EINVAL;
1646
1647 DEBUG("s626_ai_inttrig: trigger adc start...");
1648
1649 // Start executing the RPS program.
1650 MC_ENABLE(P_MC1, MC1_ERPS1);
1651
1652 s->async->inttrig = NULL;
1653
1654 DEBUG(" done\n");
1655
1656 return 1;
1657 }
1658
1659 /* TO COMPLETE */
1660 static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
1661 {
1662
1663 uint8_t ppl[16];
1664 comedi_cmd *cmd = &s->async->cmd;
1665 enc_private *k;
1666 int tick;
1667
1668 DEBUG("s626_ai_cmd: entering command function\n");
1669
1670 if (devpriv->ai_cmd_running) {
1671 printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1672 dev->minor);
1673 return -EBUSY;
1674 }
1675 //disable interrupt
1676 writel(0, devpriv->base_addr + P_IER);
1677
1678 //clear interrupt request
1679 writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1680
1681 //clear any pending interrupt
1682 s626_dio_clear_irq(dev);
1683 // s626_enc_clear_irq(dev);
1684
1685 //reset ai_cmd_running flag
1686 devpriv->ai_cmd_running = 0;
1687
1688 // test if cmd is valid
1689 if (cmd == NULL) {
1690 DEBUG("s626_ai_cmd: NULL command\n");
1691 return -EINVAL;
1692 } else {
1693 DEBUG("s626_ai_cmd: command recieved!!!\n");
1694 }
1695
1696 if (dev->irq == 0) {
1697 comedi_error(dev,
1698 "s626_ai_cmd: cannot run command without an irq");
1699 return -EIO;
1700 }
1701
1702 s626_ai_load_polllist(ppl, cmd);
1703 devpriv->ai_cmd_running = 1;
1704 devpriv->ai_convert_count = 0;
1705
1706 switch (cmd->scan_begin_src) {
1707 case TRIG_FOLLOW:
1708 break;
1709 case TRIG_TIMER:
1710 // set a conter to generate adc trigger at scan_begin_arg interval
1711 k = &encpriv[5];
1712 tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1713 cmd->flags & TRIG_ROUND_MASK);
1714
1715 //load timer value and enable interrupt
1716 s626_timer_load(dev, k, tick);
1717 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1718
1719 DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1720 tick);
1721
1722 break;
1723 case TRIG_EXT:
1724 // set the digital line and interrupt for scan trigger
1725 if (cmd->start_src != TRIG_EXT)
1726 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1727
1728 DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1729
1730 break;
1731 }
1732
1733 switch (cmd->convert_src) {
1734 case TRIG_NOW:
1735 break;
1736 case TRIG_TIMER:
1737 // set a conter to generate adc trigger at convert_arg interval
1738 k = &encpriv[4];
1739 tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1740 cmd->flags & TRIG_ROUND_MASK);
1741
1742 //load timer value and enable interrupt
1743 s626_timer_load(dev, k, tick);
1744 k->SetEnable(dev, k, CLKENAB_INDEX);
1745
1746 DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
1747 break;
1748 case TRIG_EXT:
1749 // set the digital line and interrupt for convert trigger
1750 if (cmd->scan_begin_src != TRIG_EXT
1751 && cmd->start_src == TRIG_EXT)
1752 s626_dio_set_irq(dev, cmd->convert_arg);
1753
1754 DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1755
1756 break;
1757 }
1758
1759 switch (cmd->stop_src) {
1760 case TRIG_COUNT:
1761 // data arrives as one packet
1762 devpriv->ai_sample_count = cmd->stop_arg;
1763 devpriv->ai_continous = 0;
1764 break;
1765 case TRIG_NONE:
1766 // continous aquisition
1767 devpriv->ai_continous = 1;
1768 devpriv->ai_sample_count = 0;
1769 break;
1770 }
1771
1772 ResetADC(dev, ppl);
1773
1774 switch (cmd->start_src) {
1775 case TRIG_NOW:
1776 // Trigger ADC scan loop start by setting RPS Signal 0.
1777 // MC_ENABLE( P_MC2, MC2_ADC_RPS );
1778
1779 // Start executing the RPS program.
1780 MC_ENABLE(P_MC1, MC1_ERPS1);
1781
1782 DEBUG("s626_ai_cmd: ADC triggered\n");
1783 s->async->inttrig = NULL;
1784 break;
1785 case TRIG_EXT:
1786 //configure DIO channel for acquisition trigger
1787 s626_dio_set_irq(dev, cmd->start_arg);
1788
1789 DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1790
1791 s->async->inttrig = NULL;
1792 break;
1793 case TRIG_INT:
1794 s->async->inttrig = s626_ai_inttrig;
1795 break;
1796 }
1797
1798 //enable interrupt
1799 writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1800
1801 DEBUG("s626_ai_cmd: command function terminated\n");
1802
1803 return 0;
1804 }
1805
1806 static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
1807 comedi_cmd * cmd)
1808 {
1809 int err = 0;
1810 int tmp;
1811
1812 /* cmdtest tests a particular command to see if it is valid. Using
1813 * the cmdtest ioctl, a user can create a valid cmd and then have it
1814 * executes by the cmd ioctl.
1815 *
1816 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1817 * command passes. */
1818
1819 /* step 1: make sure trigger sources are trivially valid */
1820
1821 tmp = cmd->start_src;
1822 cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1823 if (!cmd->start_src || tmp != cmd->start_src)
1824 err++;
1825
1826 tmp = cmd->scan_begin_src;
1827 cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1828 if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1829 err++;
1830
1831 tmp = cmd->convert_src;
1832 cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1833 if (!cmd->convert_src || tmp != cmd->convert_src)
1834 err++;
1835
1836 tmp = cmd->scan_end_src;
1837 cmd->scan_end_src &= TRIG_COUNT;
1838 if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1839 err++;
1840
1841 tmp = cmd->stop_src;
1842 cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1843 if (!cmd->stop_src || tmp != cmd->stop_src)
1844 err++;
1845
1846 if (err)
1847 return 1;
1848
1849 /* step 2: make sure trigger sources are unique and mutually
1850 compatible */
1851
1852 /* note that mutual compatiblity is not an issue here */
1853 if (cmd->scan_begin_src != TRIG_TIMER &&
1854 cmd->scan_begin_src != TRIG_EXT
1855 && cmd->scan_begin_src != TRIG_FOLLOW)
1856 err++;
1857 if (cmd->convert_src != TRIG_TIMER &&
1858 cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1859 err++;
1860 if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1861 err++;
1862
1863 if (err)
1864 return 2;
1865
1866 /* step 3: make sure arguments are trivially compatible */
1867
1868 if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1869 cmd->start_arg = 0;
1870 err++;
1871 }
1872
1873 if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) {
1874 cmd->start_arg = 0;
1875 err++;
1876 }
1877
1878 if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1879 cmd->start_arg = 39;
1880 err++;
1881 }
1882
1883 if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) {
1884 cmd->scan_begin_arg = 0;
1885 err++;
1886 }
1887
1888 if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1889 cmd->scan_begin_arg = 39;
1890 err++;
1891 }
1892
1893 if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) {
1894 cmd->convert_arg = 0;
1895 err++;
1896 }
1897
1898 if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1899 cmd->convert_arg = 39;
1900 err++;
1901 }
1902 #define MAX_SPEED 200000 /* in nanoseconds */
1903 #define MIN_SPEED 2000000000 /* in nanoseconds */
1904
1905 if (cmd->scan_begin_src == TRIG_TIMER) {
1906 if (cmd->scan_begin_arg < MAX_SPEED) {
1907 cmd->scan_begin_arg = MAX_SPEED;
1908 err++;
1909 }
1910 if (cmd->scan_begin_arg > MIN_SPEED) {
1911 cmd->scan_begin_arg = MIN_SPEED;
1912 err++;
1913 }
1914 } else {
1915 /* external trigger */
1916 /* should be level/edge, hi/lo specification here */
1917 /* should specify multiple external triggers */
1918 /* if(cmd->scan_begin_arg>9){ */
1919 /* cmd->scan_begin_arg=9; */
1920 /* err++; */
1921 /* } */
1922 }
1923 if (cmd->convert_src == TRIG_TIMER) {
1924 if (cmd->convert_arg < MAX_SPEED) {
1925 cmd->convert_arg = MAX_SPEED;
1926 err++;
1927 }
1928 if (cmd->convert_arg > MIN_SPEED) {
1929 cmd->convert_arg = MIN_SPEED;
1930 err++;
1931 }
1932 } else {
1933 /* external trigger */
1934 /* see above */
1935 /* if(cmd->convert_arg>9){ */
1936 /* cmd->convert_arg=9; */
1937 /* err++; */
1938 /* } */
1939 }
1940
1941 if (cmd->scan_end_arg != cmd->chanlist_len) {
1942 cmd->scan_end_arg = cmd->chanlist_len;
1943 err++;
1944 }
1945 if (cmd->stop_src == TRIG_COUNT) {
1946 if (cmd->stop_arg > 0x00ffffff) {
1947 cmd->stop_arg = 0x00ffffff;
1948 err++;
1949 }
1950 } else {
1951 /* TRIG_NONE */
1952 if (cmd->stop_arg != 0) {
1953 cmd->stop_arg = 0;
1954 err++;
1955 }
1956 }
1957
1958 if (err)
1959 return 3;
1960
1961 /* step 4: fix up any arguments */
1962
1963 if (cmd->scan_begin_src == TRIG_TIMER) {
1964 tmp = cmd->scan_begin_arg;
1965 s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1966 cmd->flags & TRIG_ROUND_MASK);
1967 if (tmp != cmd->scan_begin_arg)
1968 err++;
1969 }
1970 if (cmd->convert_src == TRIG_TIMER) {
1971 tmp = cmd->convert_arg;
1972 s626_ns_to_timer((int *)&cmd->convert_arg,
1973 cmd->flags & TRIG_ROUND_MASK);
1974 if (tmp != cmd->convert_arg)
1975 err++;
1976 if (cmd->scan_begin_src == TRIG_TIMER &&
1977 cmd->scan_begin_arg <
1978 cmd->convert_arg * cmd->scan_end_arg) {
1979 cmd->scan_begin_arg =
1980 cmd->convert_arg * cmd->scan_end_arg;
1981 err++;
1982 }
1983 }
1984
1985 if (err)
1986 return 4;
1987
1988 return 0;
1989 }
1990
1991 static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s)
1992 {
1993 // Stop RPS program in case it is currently running.
1994 MC_DISABLE(P_MC1, MC1_ERPS1);
1995
1996 //disable master interrupt
1997 writel(0, devpriv->base_addr + P_IER);
1998
1999 devpriv->ai_cmd_running = 0;
2000
2001 return 0;
2002 }
2003
2004 /* This function doesn't require a particular form, this is just what
2005 * happens to be used in some of the drivers. It should convert ns
2006 * nanoseconds to a counter value suitable for programming the device.
2007 * Also, it should adjust ns so that it cooresponds to the actual time
2008 * that the device will use. */
2009 static int s626_ns_to_timer(int *nanosec, int round_mode)
2010 {
2011 int divider, base;
2012
2013 base = 500; //2MHz internal clock
2014
2015 switch (round_mode) {
2016 case TRIG_ROUND_NEAREST:
2017 default:
2018 divider = (*nanosec + base / 2) / base;
2019 break;
2020 case TRIG_ROUND_DOWN:
2021 divider = (*nanosec) / base;
2022 break;
2023 case TRIG_ROUND_UP:
2024 divider = (*nanosec + base - 1) / base;
2025 break;
2026 }
2027
2028 *nanosec = base * divider;
2029 return divider - 1;
2030 }
2031
2032 static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
2033 comedi_insn * insn, lsampl_t * data)
2034 {
2035
2036 int i;
2037 uint16_t chan = CR_CHAN(insn->chanspec);
2038 int16_t dacdata;
2039
2040 for (i = 0; i < insn->n; i++) {
2041 dacdata = (int16_t) data[i];
2042 devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2043 dacdata -= (0x1fff);
2044
2045 SetDAC(dev, chan, dacdata);
2046 }
2047
2048 return i;
2049 }
2050
2051 static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
2052 comedi_insn * insn, lsampl_t * data)
2053 {
2054 int i;
2055
2056 for (i = 0; i < insn->n; i++) {
2057 data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2058 }
2059
2060 return i;
2061 }
2062
2063 /////////////////////////////////////////////////////////////////////
2064 /////////////// DIGITAL I/O FUNCTIONS /////////////////////////////
2065 /////////////////////////////////////////////////////////////////////
2066 // All DIO functions address a group of DIO channels by means of
2067 // "group" argument. group may be 0, 1 or 2, which correspond to DIO
2068 // ports A, B and C, respectively.
2069 /////////////////////////////////////////////////////////////////////
2070
2071 static void s626_dio_init(comedi_device * dev)
2072 {
2073 uint16_t group;
2074 comedi_subdevice *s;
2075
2076 // Prepare to treat writes to WRCapSel as capture disables.
2077 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2078
2079 // For each group of sixteen channels ...
2080 for (group = 0; group < S626_DIO_BANKS; group++) {
2081 s = dev->subdevices + 2 + group;
2082 DEBIwrite(dev, diopriv->WRIntSel, 0); // Disable all interrupts.
2083 DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); // Disable all event
2084 // captures.
2085 DEBIwrite(dev, diopriv->WREdgSel, 0); // Init all DIOs to
2086 // default edge
2087 // polarity.
2088 DEBIwrite(dev, diopriv->WRDOut, 0); // Program all outputs
2089 // to inactive state.
2090 }
2091 DEBUG("s626_dio_init: DIO initialized \n");
2092 }
2093
2094 /* DIO devices are slightly special. Although it is possible to
2095 * implement the insn_read/insn_write interface, it is much more
2096 * useful to applications if you implement the insn_bits interface.
2097 * This allows packed reading/writing of the DIO channels. The comedi
2098 * core can convert between insn_bits and insn_read/write */
2099
2100 static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
2101 comedi_insn * insn, lsampl_t * data)
2102 {
2103
2104 /* Length of data must be 2 (mask and new data, see below) */
2105 if (insn->n == 0) {
2106 return 0;
2107 }
2108 if (insn->n != 2) {
2109 printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
2110 return -EINVAL;
2111 }
2112
2113 /*
2114 * The insn data consists of a mask in data[0] and the new data in
2115 * data[1]. The mask defines which bits we are concerning about.
2116 * The new data must be anded with the mask. Each channel
2117 * corresponds to a bit.
2118 */
2119 if (data[0]) {
2120 /* Check if requested ports are configured for output */
2121 if ((s->io_bits & data[0]) != data[0])
2122 return -EIO;
2123
2124 s->state &= ~data[0];
2125 s->state |= data[0] & data[1];
2126
2127 /* Write out the new digital output lines */
2128
2129 DEBIwrite(dev, diopriv->WRDOut, s->state);
2130 }
2131 data[1] = DEBIread(dev, diopriv->RDDIn);
2132
2133 return 2;
2134 }
2135
2136 static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
2137 comedi_insn * insn, lsampl_t * data)
2138 {
2139
2140 switch (data[0]) {
2141 case INSN_CONFIG_DIO_QUERY:
2142 data[1] =
2143 (s->io_bits & (1 << CR_CHAN(insn->
2144 chanspec))) ? COMEDI_OUTPUT :
2145 COMEDI_INPUT;
2146 return insn->n;
2147 break;
2148 case COMEDI_INPUT:
2149 s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2150 break;
2151 case COMEDI_OUTPUT:
2152 s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2153 break;
2154 default:
2155 return -EINVAL;
2156 break;
2157 }
2158 DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2159
2160 return 1;
2161 }
2162
2163 static int s626_dio_set_irq(comedi_device * dev, unsigned int chan)
2164 {
2165 unsigned int group;
2166 unsigned int bitmask;
2167 unsigned int status;
2168
2169 //select dio bank
2170 group = chan / 16;
2171 bitmask = 1 << (chan - (16 * group));
2172 DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2173 chan - (16 * group), group);
2174
2175 //set channel to capture positive edge
2176 status = DEBIread(dev,
2177 ((dio_private *) (dev->subdevices + 2 +
2178 group)->private)->RDEdgSel);
2179 DEBIwrite(dev,
2180 ((dio_private *) (dev->subdevices + 2 +
2181 group)->private)->WREdgSel, bitmask | status);
2182
2183 //enable interrupt on selected channel
2184 status = DEBIread(dev,
2185 ((dio_private *) (dev->subdevices + 2 +
2186 group)->private)->RDIntSel);
2187 DEBIwrite(dev,
2188 ((dio_private *) (dev->subdevices + 2 +
2189 group)->private)->WRIntSel, bitmask | status);
2190
2191 //enable edge capture write command
2192 DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2193
2194 //enable edge capture on selected channel
2195 status = DEBIread(dev,
2196 ((dio_private *) (dev->subdevices + 2 +
2197 group)->private)->RDCapSel);
2198 DEBIwrite(dev,
2199 ((dio_private *) (dev->subdevices + 2 +
2200 group)->private)->WRCapSel, bitmask | status);
2201
2202 return 0;
2203 }
2204
2205 static int s626_dio_reset_irq(comedi_device * dev, unsigned int group,
2206 unsigned int mask)
2207 {
2208 DEBUG("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n", mask, group);
2209
2210 //disable edge capture write command
2211 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2212
2213 //enable edge capture on selected channel
2214 DEBIwrite(dev,
2215 ((dio_private *) (dev->subdevices + 2 +
2216 group)->private)->WRCapSel, mask);
2217
2218 return 0;
2219 }
2220
2221 static int s626_dio_clear_irq(comedi_device * dev)
2222 {
2223 unsigned int group;
2224
2225 //disable edge capture write command
2226 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2227
2228 for (group = 0; group < S626_DIO_BANKS; group++) {
2229 //clear pending events and interrupt
2230 DEBIwrite(dev,
2231 ((dio_private *) (dev->subdevices + 2 +
2232 group)->private)->WRCapSel, 0xffff);
2233 }
2234
2235 return 0;
2236 }
2237
2238 /* Now this function initializes the value of the counter (data[0])
2239 and set the subdevice. To complete with trigger and interrupt
2240 configuration */
2241 static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
2242 comedi_insn * insn, lsampl_t * data)
2243 {
2244 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
2245 // index.
2246 (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
2247 (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is Counter.
2248 (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
2249 //( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down.
2250 (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
2251 (CLKENAB_INDEX << BF_CLKENAB);
2252 /* uint16_t DisableIntSrc=TRUE; */
2253 // uint32_t Preloadvalue; //Counter initial value
2254 uint16_t valueSrclatch = LATCHSRC_AB_READ;
2255 uint16_t enab = CLKENAB_ALWAYS;
2256 enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2257
2258 DEBUG("s626_enc_insn_config: encoder config\n");
2259
2260 // (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]);
2261
2262 k->SetMode(dev, k, Setup, TRUE);
2263 Preload(dev, k, *(insn->data));
2264 k->PulseIndex(dev, k);
2265 SetLatchSource(dev, k, valueSrclatch);
2266 k->SetEnable(dev, k, (uint16_t) (enab != 0));
2267
2268 return insn->n;
2269 }
2270
2271 static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
2272 comedi_insn * insn, lsampl_t * data)
2273 {
2274
2275 int n;
2276 enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2277
2278 DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2279 CR_CHAN(insn->chanspec));
2280
2281 for (n = 0; n < insn->n; n++)
2282 data[n] = ReadLatch(dev, k);
2283
2284 DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2285
2286 return n;
2287 }
2288
2289 static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
2290 comedi_insn * insn, lsampl_t * data)
2291 {
2292
2293 enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2294
2295 DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2296 CR_CHAN(insn->chanspec));
2297
2298 // Set the preload register
2299 Preload(dev, k, data[0]);
2300
2301 // Software index pulse forces the preload register to load
2302 // into the counter
2303 k->SetLoadTrig(dev, k, 0);
2304 k->PulseIndex(dev, k);
2305 k->SetLoadTrig(dev, k, 2);
2306
2307 DEBUG("s626_enc_insn_write: End encoder write\n");
2308
2309 return 1;
2310 }
2311
2312 static void s626_timer_load(comedi_device * dev, enc_private * k, int tick)
2313 {
2314 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
2315 // index.
2316 (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
2317 (CLKSRC_TIMER << BF_CLKSRC) | // Operating mode is Timer.
2318 (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
2319 (CNTDIR_DOWN << BF_CLKPOL) | // Count direction is Down.
2320 (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
2321 (CLKENAB_INDEX << BF_CLKENAB);
2322 uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2323 // uint16_t enab=CLKENAB_ALWAYS;
2324
2325 k->SetMode(dev, k, Setup, FALSE);
2326
2327 // Set the preload register
2328 Preload(dev, k, tick);
2329
2330 // Software index pulse forces the preload register to load
2331 // into the counter
2332 k->SetLoadTrig(dev, k, 0);
2333 k->PulseIndex(dev, k);
2334
2335 //set reload on counter overflow
2336 k->SetLoadTrig(dev, k, 1);
2337
2338 //set interrupt on overflow
2339 k->SetIntSrc(dev, k, INTSRC_OVER);
2340
2341 SetLatchSource(dev, k, valueSrclatch);
2342 // k->SetEnable(dev,k,(uint16_t)(enab != 0));
2343 }
2344
2345 ///////////////////////////////////////////////////////////////////////
2346 ///////////////////// DAC FUNCTIONS /////////////////////////////////
2347 ///////////////////////////////////////////////////////////////////////
2348
2349 // Slot 0 base settings.
2350 #define VECT0 ( XSD2 | RSD3 | SIB_A2 ) // Slot 0 always shifts in
2351 // 0xFF and store it to
2352 // FB_BUFFER2.
2353
2354 // TrimDac LogicalChan-to-PhysicalChan mapping table.
2355 static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2356
2357 // TrimDac LogicalChan-to-EepromAdrs mapping table.
2358 static uint8_t trimadrs[] =
2359 { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2360
2361 static void LoadTrimDACs(comedi_device * dev)
2362 {
2363 register uint8_t i;
2364
2365 // Copy TrimDac setpoint values from EEPROM to TrimDacs.
2366 for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
2367 WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2368 }
2369
2370 static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
2371 uint8_t DacData)
2372 {
2373 uint32_t chan;
2374
2375 // Save the new setpoint in case the application needs to read it back later.
2376 devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2377
2378 // Map logical channel number to physical channel number.
2379 chan = (uint32_t) trimchan[LogicalChan];
2380
2381 // Set up TSL2 records for TrimDac write operation. All slots shift
2382 // 0xFF in from pulled-up SD3 so that the end of the slot sequence
2383 // can be detected.
2384 SETVECT(2, XSD2 | XFIFO_1 | WS3); // Slot 2: Send high uint8_t
2385 // to target TrimDac.
2386 SETVECT(3, XSD2 | XFIFO_0 | WS3); // Slot 3: Send low uint8_t to
2387 // target TrimDac.
2388 SETVECT(4, XSD2 | XFIFO_3 | WS1); // Slot 4: Send NOP high
2389 // uint8_t to DAC0 to keep
2390 // clock running.
2391 SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS); // Slot 5: Send NOP low
2392 // uint8_t to DAC0.
2393
2394 // Construct and transmit target DAC's serial packet: ( 0000 AAAA
2395 // ),( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the DAC
2396 // channel's address, and D<7:0> is the DAC setpoint. Append a WORD
2397 // value (that writes a channel 0 NOP command to a non-existent main
2398 // DAC channel) that serves to keep the clock running after the
2399 // packet has been sent to the target DAC.
2400
2401 SendDAC(dev, ((uint32_t) chan << 8) // Address the DAC channel
2402 // within the trimdac device.
2403 | (uint32_t) DacData); // Include DAC setpoint data.
2404 }
2405
2406 /////////////////////////////////////////////////////////////////////////
2407 //////////////// EEPROM ACCESS FUNCTIONS //////////////////////////////
2408 /////////////////////////////////////////////////////////////////////////
2409
2410 ///////////////////////////////////////////
2411 // Read uint8_t from EEPROM.
2412
2413 static uint8_t I2Cread(comedi_device * dev, uint8_t addr)
2414 {
2415 uint8_t rtnval;
2416
2417 // Send EEPROM target address.
2418 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW) // Byte2 = I2C
2419 // command:
2420 // write to
2421 // I2C EEPROM
2422 // device.
2423 | I2C_B1(I2C_ATTRSTOP, addr) // Byte1 = EEPROM
2424 // internal target
2425 // address.
2426 | I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not
2427 // sent.
2428 {
2429 // Abort function and declare error if handshake failed.
2430 DEBUG("I2Cread: error handshake I2Cread a\n");
2431 return 0;
2432 }
2433 // Execute EEPROM read.
2434 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) // Byte2 = I2C
2435 // command: read
2436 // from I2C EEPROM
2437 // device.
2438 | I2C_B1(I2C_ATTRSTOP, 0) // Byte1 receives
2439 // uint8_t from
2440 // EEPROM.
2441 | I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not
2442 // sent.
2443 {
2444 // Abort function and declare error if handshake failed.
2445 DEBUG("I2Cread: error handshake I2Cread b\n");
2446 return 0;
2447 }
2448 // Return copy of EEPROM value.
2449 rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2450 return rtnval;
2451 }
2452
2453 static uint32_t I2Chandshake(comedi_device * dev, uint32_t val)
2454 {
2455 // Write I2C command to I2C Transfer Control shadow register.
2456 WR7146(P_I2CCTRL, val);
2457
2458 // Upload I2C shadow registers into working registers and wait for
2459 // upload confirmation.
2460
2461 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2462 while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
2463
2464 // Wait until I2C bus transfer is finished or an error occurs.
2465 while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;
2466
2467 // Return non-zero if I2C error occured.
2468 return RR7146(P_I2CCTRL) & I2C_ERR;
2469
2470 }
2471
2472 // Private helper function: Write setpoint to an application DAC channel.
2473
2474 static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata)
2475 {
2476 register uint16_t signmask;
2477 register uint32_t WSImage;
2478
2479 // Adjust DAC data polarity and set up Polarity Control Register
2480 // image.
2481 signmask = 1 << chan;
2482 if (dacdata < 0) {
2483 dacdata = -dacdata;
2484 devpriv->Dacpol |= signmask;
2485 } else
2486 devpriv->Dacpol &= ~signmask;
2487
2488 // Limit DAC setpoint value to valid range.
2489 if ((uint16_t) dacdata > 0x1FFF)
2490 dacdata = 0x1FFF;
2491
2492 // Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
2493 // and V3 transmit the setpoint to the target DAC. V4 and V5 send
2494 // data to a non-existent TrimDac channel just to keep the clock
2495 // running after sending data to the target DAC. This is necessary
2496 // to eliminate the clock glitch that would otherwise occur at the
2497 // end of the target DAC's serial data stream. When the sequence
2498 // restarts at V0 (after executing V5), the gate array automatically
2499 // disables gating for the DAC clock and all DAC chip selects.
2500 WSImage = (chan & 2) ? WS1 : WS2; // Choose DAC chip select to
2501 // be asserted.
2502 SETVECT(2, XSD2 | XFIFO_1 | WSImage); // Slot 2: Transmit high
2503 // data byte to target DAC.
2504 SETVECT(3, XSD2 | XFIFO_0 | WSImage); // Slot 3: Transmit low data
2505 // byte to target DAC.
2506 SETVECT(4, XSD2 | XFIFO_3 | WS3); // Slot 4: Transmit to
2507 // non-existent TrimDac
2508 // channel to keep clock
2509 SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS); // Slot 5: running after
2510 // writing target DAC's
2511 // low data byte.
2512
2513 // Construct and transmit target DAC's serial packet: ( A10D DDDD
2514 // ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>, and D<12:0>
2515 // is the DAC setpoint. Append a WORD value (that writes to a
2516 // non-existent TrimDac channel) that serves to keep the clock
2517 // running after the packet has been sent to the target DAC.
2518 SendDAC(dev, 0x0F000000 //Continue clock after target DAC
2519 //data (write to non-existent
2520 //trimdac).
2521 | 0x00004000 // Address the two main dual-DAC
2522 // devices (TSL's chip select enables
2523 // target device).
2524 | ((uint32_t) (chan & 1) << 15) // Address the DAC
2525 // channel within the
2526 // device.
2527 | (uint32_t) dacdata); // Include DAC setpoint data.
2528
2529 }
2530
2531 ////////////////////////////////////////////////////////
2532 // Private helper function: Transmit serial data to DAC via Audio
2533 // channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
2534 // Dacpol contains valid target image.
2535
2536 static void SendDAC(comedi_device * dev, uint32_t val)
2537 {
2538
2539 // START THE SERIAL CLOCK RUNNING -------------
2540
2541 // Assert DAC polarity control and enable gating of DAC serial clock
2542 // and audio bit stream signals. At this point in time we must be
2543 // assured of being in time slot 0. If we are not in slot 0, the
2544 // serial clock and audio stream signals will be disabled; this is
2545 // because the following DEBIwrite statement (which enables signals
2546 // to be passed through the gate array) would execute before the
2547 // trailing edge of WS1/WS3 (which turns off the signals), thus
2548 // causing the signals to be inactive during the DAC write.
2549 DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2550
2551 // TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ----------------
2552
2553 // Copy DAC setpoint value to DAC's output DMA buffer.
2554
2555 //WR7146( (uint32_t)devpriv->pDacWBuf, val );
2556 *devpriv->pDacWBuf = val;
2557
2558 // enab the output DMA transfer. This will cause the DMAC to copy
2559 // the DAC's data value to A2's output FIFO. The DMA transfer will
2560 // then immediately terminate because the protection address is
2561 // reached upon transfer of the first DWORD value.
2562 MC_ENABLE(P_MC1, MC1_A2OUT);
2563
2564 // While the DMA transfer is executing ...
2565
2566 // Reset Audio2 output FIFO's underflow flag (along with any other
2567 // FIFO underflow/overflow flags). When set, this flag will
2568 // indicate that we have emerged from slot 0.
2569 WR7146(P_ISR, ISR_AFOU);
2570
2571 // Wait for the DMA transfer to finish so that there will be data
2572 // available in the FIFO when time slot 1 tries to transfer a DWORD
2573 // from the FIFO to the output buffer register. We test for DMA
2574 // Done by polling the DMAC enable flag; this flag is automatically
2575 // cleared when the transfer has finished.
2576 while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;
2577
2578 // START THE OUTPUT STREAM TO THE TARGET DAC --------------------
2579
2580 // FIFO data is now available, so we enable execution of time slots
2581 // 1 and higher by clearing the EOS flag in slot 0. Note that SD3
2582 // will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2583 // detection.
2584 SETVECT(0, XSD2 | RSD3 | SIB_A2);
2585
2586 // Wait for slot 1 to execute to ensure that the Packet will be
2587 // transmitted. This is detected by polling the Audio2 output FIFO
2588 // underflow flag, which will be set when slot 1 execution has
2589 // finished transferring the DAC's data DWORD from the output FIFO
2590 // to the output buffer register.
2591 while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;
2592
2593 // Set up to trap execution at slot 0 when the TSL sequencer cycles
2594 // back to slot 0 after executing the EOS in slot 5. Also,
2595 // simultaneously shift out and in the 0x00 that is ALWAYS the value
2596 // stored in the last byte to be shifted out of the FIFO's DWORD
2597 // buffer register.
2598 SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2599
2600 // WAIT FOR THE TRANSACTION TO FINISH -----------------------
2601
2602 // Wait for the TSL to finish executing all time slots before
2603 // exiting this function. We must do this so that the next DAC
2604 // write doesn't start, thereby enabling clock/chip select signals:
2605 // 1. Before the TSL sequence cycles back to slot 0, which disables
2606 // the clock/cs signal gating and traps slot // list execution. If
2607 // we have not yet finished slot 5 then the clock/cs signals are
2608 // still gated and we have // not finished transmitting the stream.
2609 // 2. While slots 2-5 are executing due to a late slot 0 trap. In
2610 // this case, the slot sequence is currently // repeating, but with
2611 // clock/cs signals disabled. We must wait for slot 0 to trap
2612 // execution before setting // up the next DAC setpoint DMA transfer
2613 // and enabling the clock/cs signals. To detect the end of slot 5,
2614 // we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
2615 // the TSL has not yet finished executing slot 5 ...
2616 if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2617 // The trap was set on time and we are still executing somewhere
2618 // in slots 2-5, so we now wait for slot 0 to execute and trap
2619 // TSL execution. This is detected when FB_BUFFER2 MSB changes
2620 // from 0xFF to 0x00, which slot 0 causes to happen by shifting
2621 // out/in on SD2 the 0x00 that is always referenced by slot 5.
2622 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
2623 }
2624 // Either (1) we were too late setting the slot 0 trap; the TSL
2625 // sequencer restarted slot 0 before we could set the EOS trap flag,
2626 // or (2) we were not late and execution is now trapped at slot 0.
2627 // In either case, we must now change slot 0 so that it will store
2628 // value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2629 // In order to do this, we reprogram slot 0 so that it will shift in
2630 // SD3, which is driven only by a pull-up resistor.
2631 SETVECT(0, RSD3 | SIB_A2 | EOS);
2632
2633 // Wait for slot 0 to execute, at which time the TSL is setup for
2634 // the next DAC write. This is detected when FB_BUFFER2 MSB changes
2635 // from 0x00 to 0xFF.
2636 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
2637 }
2638
2639 static void WriteMISC2(comedi_device * dev, uint16_t NewImage)
2640 {
2641 DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); // enab writes to
2642 // MISC2 register.
2643 DEBIwrite(dev, LP_WRMISC2, NewImage); // Write new image to MISC2.
2644 DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); // Disable writes to MISC2.
2645 }
2646
2647 /////////////////////////////////////////////////////////////////////
2648 // Initialize the DEBI interface for all transfers.
2649
2650 static uint16_t DEBIread(comedi_device * dev, uint16_t addr)
2651 {
2652 uint16_t retval;
2653
2654 // Set up DEBI control register value in shadow RAM.
2655 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2656
2657 // Execute the DEBI transfer.
2658 DEBItransfer(dev);
2659
2660 // Fetch target register value.
2661 retval = (uint16_t) RR7146(P_DEBIAD);
2662
2663 // Return register value.
2664 return retval;
2665 }
2666
2667 // Execute a DEBI transfer. This must be called from within a
2668 // critical section.
2669 static void DEBItransfer(comedi_device * dev)
2670 {
2671 // Initiate upload of shadow RAM to DEBI control register.
2672 MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2673
2674 // Wait for completion of upload from shadow RAM to DEBI control
2675 // register.
2676 while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;
2677
2678 // Wait until DEBI transfer is done.
2679 while (RR7146(P_PSR) & PSR_DEBI_S) ;
2680 }
2681
2682 // Write a value to a gate array register.
2683 static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata)
2684 {
2685
2686 // Set up DEBI control register value in shadow RAM.
2687 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2688 WR7146(P_DEBIAD, wdata);
2689
2690 // Execute the DEBI transfer.
2691 DEBItransfer(dev);
2692 }
2693
2694 /////////////////////////////////////////////////////////////////////////////
2695 // Replace the specified bits in a gate array register. Imports: mask
2696 // specifies bits that are to be preserved, wdata is new value to be
2697 // or'd with the masked original.
2698 static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
2699 uint16_t wdata)
2700 {
2701
2702 // Copy target gate array register into P_DEBIAD register.
2703 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); // Set up DEBI control
2704 // reg value in shadow
2705 // RAM.
2706 DEBItransfer(dev); // Execute the DEBI
2707 // Read transfer.
2708
2709 // Write back the modified image.
2710 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); // Set up DEBI control
2711 // reg value in shadow
2712 // RAM.
2713
2714 WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask)); // Modify the register image.
2715 DEBItransfer(dev); // Execute the DEBI Write transfer.
2716 }
2717
2718 static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize)
2719 {
2720 void *vbptr;
2721 dma_addr_t vpptr;
2722
2723 DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2724 if (pdma == NULL)
2725 return;
2726 //find the matching allocation from the board struct
2727
2728 vbptr = pdma->LogicalBase;
2729 vpptr = pdma->PhysicalBase;
2730 if (vbptr) {
2731 pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2732 pdma->LogicalBase = 0;
2733 pdma->PhysicalBase = 0;
2734
2735 DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2736 vbptr, bsize, (uint32_t) vpptr);
2737 }
2738 }
2739
2740 ////////////////////////////////////////////////////////////////////////
2741 ///////////////// COUNTER FUNCTIONS //////////////////////////////////
2742 ////////////////////////////////////////////////////////////////////////
2743 // All counter functions address a specific counter by means of the
2744 // "Counter" argument, which is a logical counter number. The Counter
2745 // argument may have any of the following legal values: 0=0A, 1=1A,
2746 // 2=2A, 3=0B, 4=1B, 5=2B.
2747 ////////////////////////////////////////////////////////////////////////
2748
2749 // Forward declarations for functions that are common to both A and B
2750 // counters:
2751
2752 /////////////////////////////////////////////////////////////////////
2753 //////////////////// PRIVATE COUNTER FUNCTIONS /////////////////////
2754 /////////////////////////////////////////////////////////////////////
2755
2756 /////////////////////////////////////////////////////////////////
2757 // Read a counter's output latch.
2758
2759 static uint32_t ReadLatch(comedi_device * dev, enc_private * k)
2760 {
2761 register uint32_t value;
2762 //DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n");
2763
2764 // Latch counts and fetch LSW of latched counts value.
2765 value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2766
2767 // Fetch MSW of latched counts and combine with LSW.
2768 value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2769
2770 // DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n");
2771
2772 // Return latched counts.
2773 return value;
2774 }
2775
2776 ///////////////////////////////////////////////////////////////////
2777 // Reset a counter's index and overflow event capture flags.
2778
2779 static void ResetCapFlags_A(comedi_device * dev, enc_private * k)
2780 {
2781 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2782 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2783 }
2784
2785 static void ResetCapFlags_B(comedi_device * dev, enc_private * k)
2786 {
2787 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2788 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2789 }
2790
2791 /////////////////////////////////////////////////////////////////////////
2792 // Return counter setup in a format (COUNTER_SETUP) that is consistent
2793 // for both A and B counters.
2794
2795 static uint16_t GetMode_A(comedi_device * dev, enc_private * k)
2796 {
2797 register uint16_t cra;
2798 register uint16_t crb;
2799 register uint16_t setup;
2800
2801 // Fetch CRA and CRB register images.
2802 cra = DEBIread(dev, k->MyCRA);
2803 crb = DEBIread(dev, k->MyCRB);
2804
2805 // Populate the standardized counter setup bit fields. Note:
2806 // IndexSrc is restricted to ENC_X or IndxPol.
2807 setup = ((cra & STDMSK_LOADSRC) // LoadSrc = LoadSrcA.
2808 | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcA.
2809 | ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) // IntSrc = IntSrcA.
2810 | ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) // IndxSrc = IndxSrcA<1>.
2811 | ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) // IndxPol = IndxPolA.
2812 | ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); // ClkEnab = ClkEnabA.
2813
2814 // Adjust mode-dependent parameters.
2815 if (cra & (2 << CRABIT_CLKSRC_A)) // If Timer mode (ClkSrcA<1> == 1):
2816 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode.
2817 | ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) // Set ClkPol to indicate count direction (ClkSrcA<0>).
2818 | (MULT_X1 << STDBIT_CLKMULT)); // ClkMult must be 1x in Timer mode.
2819
2820 else // If Counter mode (ClkSrcA<1> == 0):
2821 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Counter mode.
2822 | ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) // Pass through ClkPol.
2823 | (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? // Force ClkMult to 1x if not legal, else pass through.
2824 (MULT_X1 << STDBIT_CLKMULT) :
2825 ((cra >> (CRABIT_CLKMULT_A -
2826 STDBIT_CLKMULT)) &
2827 STDMSK_CLKMULT)));
2828
2829 // Return adjusted counter setup.
2830 return setup;
2831 }
2832
2833 static uint16_t GetMode_B(comedi_device * dev, enc_private * k)
2834 {
2835 register uint16_t cra;
2836 register uint16_t crb;
2837 register uint16_t setup;
2838
2839 // Fetch CRA and CRB register images.
2840 cra = DEBIread(dev, k->MyCRA);
2841 crb = DEBIread(dev, k->MyCRB);
2842
2843 // Populate the standardized counter setup bit fields. Note:
2844 // IndexSrc is restricted to ENC_X or IndxPol.
2845 setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) // IntSrc = IntSrcB.
2846 | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcB.
2847 | ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) // LoadSrc = LoadSrcB.
2848 | ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) // IndxPol = IndxPolB.
2849 | ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) // ClkEnab = ClkEnabB.
2850 | ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); // IndxSrc = IndxSrcB<1>.
2851
2852 // Adjust mode-dependent parameters.
2853 if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) // If Extender mode (ClkMultB == MULT_X0):
2854 setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) // Indicate Extender mode.
2855 | (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x.
2856 | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>).
2857
2858 else if (cra & (2 << CRABIT_CLKSRC_B)) // If Timer mode (ClkSrcB<1> == 1):
2859 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode.
2860 | (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x.
2861 | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>).
2862
2863 else // If Counter mode (ClkSrcB<1> == 0):
2864 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Timer mode.
2865 | ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) // Clock multiplier is passed through.
2866 | ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); // Clock polarity is passed through.
2867
2868 // Return adjusted counter setup.
2869 return setup;
2870 }
2871
2872 /////////////////////////////////////////////////////////////////////////////////////////////
2873 // Set the operating mode for the specified counter. The setup
2874 // parameter is treated as a COUNTER_SETUP data type. The following
2875 // parameters are programmable (all other parms are ignored): ClkMult,
2876 // ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2877
2878 static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
2879 uint16_t DisableIntSrc)
2880 {
2881 register uint16_t cra;
2882 register uint16_t crb;
2883 register uint16_t setup = Setup; // Cache the Standard Setup.
2884
2885 // Initialize CRA and CRB images.
2886 cra = ((setup & CRAMSK_LOADSRC_A) // Preload trigger is passed through.
2887 | ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); // IndexSrc is restricted to ENC_X or IndxPol.
2888
2889 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A // Reset any pending CounterA event captures.
2890 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); // Clock enable is passed through.
2891
2892 // Force IntSrc to Disabled if DisableIntSrc is asserted.
2893 if (!DisableIntSrc)
2894 cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2895 CRABIT_INTSRC_A));
2896
2897 // Populate all mode-dependent attributes of CRA & CRB images.
2898 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2899 case CLKSRC_EXTENDER: // Extender Mode: Force to Timer mode
2900 // (Extender valid only for B counters).
2901
2902 case CLKSRC_TIMER: // Timer Mode:
2903 cra |= ((2 << CRABIT_CLKSRC_A) // ClkSrcA<1> selects system clock
2904 | ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) // with count direction (ClkSrcA<0>) obtained from ClkPol.
2905 | (1 << CRABIT_CLKPOL_A) // ClkPolA behaves as always-on clock enable.
2906 | (MULT_X1 << CRABIT_CLKMULT_A)); // ClkMult must be 1x.
2907 break;
2908
2909 default: // Counter Mode:
2910 cra |= (CLKSRC_COUNTER // Select ENC_C and ENC_D as clock/direction inputs.
2911 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) // Clock polarity is passed through.
2912 | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force multiplier to x1 if not legal, otherwise pass through.
2913 (MULT_X1 << CRABIT_CLKMULT_A) :
2914 ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2915 STDBIT_CLKMULT))));
2916 }
2917
2918 // Force positive index polarity if IndxSrc is software-driven only,
2919 // otherwise pass it through.
2920 if (~setup & STDMSK_INDXSRC)
2921 cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2922 STDBIT_INDXPOL));
2923
2924 // If IntSrc has been forced to Disabled, update the MISC2 interrupt
2925 // enable mask to indicate the counter interrupt is disabled.
2926 if (DisableIntSrc)
2927 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2928
2929 // While retaining CounterB and LatchSrc configurations, program the
2930 // new counter operating mode.
2931 DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2932 DEBIreplace(dev, k->MyCRB,
2933 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2934 }
2935
2936 static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
2937 uint16_t DisableIntSrc)
2938 {
2939 register uint16_t cra;
2940 register uint16_t crb;
2941 register uint16_t setup = Setup; // Cache the Standard Setup.
2942
2943 // Initialize CRA and CRB images.
2944 cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); // IndexSrc field is restricted to ENC_X or IndxPol.
2945
2946 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B // Reset event captures and disable interrupts.
2947 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) // Clock enable is passed through.
2948 | ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); // Preload trigger source is passed through.
2949
2950 // Force IntSrc to Disabled if DisableIntSrc is asserted.
2951 if (!DisableIntSrc)
2952 crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2953 CRBBIT_INTSRC_B));
2954
2955 // Populate all mode-dependent attributes of CRA & CRB images.
2956 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2957 case CLKSRC_TIMER: // Timer Mode:
2958 cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB<1> selects system clock
2959 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction (ClkSrcB<0>) obtained from ClkPol.
2960 crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB behaves as always-on clock enable.
2961 | (MULT_X1 << CRBBIT_CLKMULT_B)); // ClkMultB must be 1x.
2962 break;
2963
2964 case CLKSRC_EXTENDER: // Extender Mode:
2965 cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB source is OverflowA (same as "timer")
2966 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction obtained from ClkPol.
2967 crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB controls IndexB -- always set to active.
2968 | (MULT_X0 << CRBBIT_CLKMULT_B)); // ClkMultB selects OverflowA as the clock source.
2969 break;
2970
2971 default: // Counter Mode:
2972 cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); // Select ENC_C and ENC_D as clock/direction inputs.
2973 crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) // ClkPol is passed through.
2974 | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force ClkMult to x1 if not legal, otherwise pass through.
2975 (MULT_X1 << CRBBIT_CLKMULT_B) :
2976 ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2977 STDBIT_CLKMULT))));
2978 }
2979
2980 // Force positive index polarity if IndxSrc is software-driven only,
2981 // otherwise pass it through.
2982 if (~setup & STDMSK_INDXSRC)
2983 crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2984 CRBBIT_INDXPOL_B));
2985
2986 // If IntSrc has been forced to Disabled, update the MISC2 interrupt
2987 // enable mask to indicate the counter interrupt is disabled.
2988 if (DisableIntSrc)
2989 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2990
2991 // While retaining CounterA and LatchSrc configurations, program the
2992 // new counter operating mode.
2993 DEBIreplace(dev, k->MyCRA,
2994 (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
2995 DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
2996 }
2997
2998 ////////////////////////////////////////////////////////////////////////
2999 // Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
3000
3001 static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab)
3002 {
3003 DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3004 DEBIreplace(dev, k->MyCRB,
3005 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3006 (uint16_t) (enab << CRBBIT_CLKENAB_A));
3007 }
3008
3009 static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab)
3010 {
3011 DEBIreplace(dev, k->MyCRB,
3012 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3013 (uint16_t) (enab << CRBBIT_CLKENAB_B));
3014 }
3015
3016 static uint16_t GetEnable_A(comedi_device * dev, enc_private * k)
3017 {
3018 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3019 }
3020
3021 static uint16_t GetEnable_B(comedi_device * dev, enc_private * k)
3022 {
3023 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3024 }
3025
3026 ////////////////////////////////////////////////////////////////////////
3027 // Return/set a counter pair's latch trigger source. 0: On read
3028 // access, 1: A index latches A, 2: B index latches B, 3: A overflow
3029 // latches B.
3030
3031 static void SetLatchSource(comedi_device * dev, enc_private * k, uint16_t value)
3032 {
3033 DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3034 DEBIreplace(dev, k->MyCRB,
3035 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3036 (uint16_t) (value << CRBBIT_LATCHSRC));
3037
3038 DEBUG("SetLatchSource: SetLatchSource exit \n");
3039 }
3040
3041 /* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ) */
3042 /* { */
3043 /* return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3; */
3044 /* } */
3045
3046 /////////////////////////////////////////////////////////////////////////
3047 // Return/set the event that will trigger transfer of the preload
3048 // register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
3049 // 2=OverflowA (B counters only), 3=disabled.
3050
3051 static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig)
3052 {
3053 DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3054 (uint16_t) (Trig << CRABIT_LOADSRC_A));
3055 }
3056
3057 static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig)
3058 {
3059 DEBIreplace(dev, k->MyCRB,
3060 (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3061 (uint16_t) (Trig << CRBBIT_LOADSRC_B));
3062 }
3063
3064 static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k)
3065 {
3066 return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3067 }
3068
3069 static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k)
3070 {
3071 return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3072 }
3073
3074 ////////////////////
3075 // Return/set counter interrupt source and clear any captured
3076 // index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
3077 // 2=IndexOnly, 3=IndexAndOverflow.
3078
3079 static void SetIntSrc_A(comedi_device * dev, enc_private * k,
3080 uint16_t IntSource)
3081 {
3082 // Reset any pending counter overflow or index captures.
3083 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3084 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3085
3086 // Program counter interrupt source.
3087 DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3088 (uint16_t) (IntSource << CRABIT_INTSRC_A));
3089
3090 // Update MISC2 interrupt enable mask.
3091 devpriv->CounterIntEnabs =
3092 (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3093 MyEventBits[IntSource];
3094 }
3095
3096 static void SetIntSrc_B(comedi_device * dev, enc_private * k,
3097 uint16_t IntSource)
3098 {
3099 uint16_t crb;
3100
3101 // Cache writeable CRB register image.
3102 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3103
3104 // Reset any pending counter overflow or index captures.
3105 DEBIwrite(dev, k->MyCRB,
3106 (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3107
3108 // Program counter interrupt source.
3109 DEBIwrite(dev, k->MyCRB,
3110 (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3111 CRBBIT_INTSRC_B)));
3112
3113 // Update MISC2 interrupt enable mask.
3114 devpriv->CounterIntEnabs =
3115 (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3116 MyEventBits[IntSource];
3117 }
3118
3119 static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k)
3120 {
3121 return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3122 }
3123
3124 static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
3125 {
3126 return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3127 }
3128
3129 /////////////////////////////////////////////////////////////////////////
3130 // Return/set the clock multiplier.
3131
3132 /* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) */
3133 /* { */
3134 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3135 /* } */
3136
3137 /* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) */
3138 /* { */
3139 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3140 /* } */
3141
3142 /* ////////////////////////////////////////////////////////////////////////// */
3143 /* // Return/set the clock polarity. */
3144
3145 /* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value ) */
3146 /* { */
3147 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3148 /* } */
3149
3150 /* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) */
3151 /* { */
3152 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3153 /* } */
3154
3155 /* /////////////////////////////////////////////////////////////////////// */
3156 /* // Return/set the clock source. */
3157
3158 /* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value ) */
3159 /* { */
3160 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3161 /* } */
3162
3163 /* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ) */
3164 /* { */
3165 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3166 /* } */
3167
3168 /* //////////////////////////////////////////////////////////////////////// */
3169 /* // Return/set the index polarity. */
3170
3171 /* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ) */
3172 /* { */
3173 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3174 /* } */
3175
3176 /* static uint16_t GetIndexPol(comedi_device *dev, enc_private *k ) */
3177 /* { */
3178 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3179 /* } */
3180
3181 /* //////////////////////////////////////////////////////////////////////// */
3182 /* // Return/set the index source. */
3183
3184 /* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value ) */
3185 /* { */
3186 /* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3187 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3188 /* } */
3189
3190 /* static uint16_t GetIndexSrc(comedi_device *dev, enc_private *k ) */
3191 /* { */
3192 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3193 /* } */
3194
3195 ///////////////////////////////////////////////////////////////////
3196 // Generate an index pulse.
3197
3198 static void PulseIndex_A(comedi_device * dev, enc_private * k)
3199 {
3200 register uint16_t cra;
3201
3202 DEBUG("PulseIndex_A: pulse index enter\n");
3203
3204 cra = DEBIread(dev, k->MyCRA); // Pulse index.
3205 DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3206 DEBUG("PulseIndex_A: pulse index step1\n");
3207 DEBIwrite(dev, k->MyCRA, cra);
3208 }
3209
3210 static void PulseIndex_B(comedi_device * dev, enc_private * k)
3211 {
3212 register uint16_t crb;
3213
3214 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; // Pulse index.
3215 DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3216 DEBIwrite(dev, k->MyCRB, crb);
3217 }
3218
3219 /////////////////////////////////////////////////////////
3220 // Write value into counter preload register.
3221
3222 static void Preload(comedi_device * dev, enc_private * k, uint32_t value)
3223 {
3224 DEBUG("Preload: preload enter\n");
3225 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); // Write value to preload register.
3226 DEBUG("Preload: preload step 1\n");
3227 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3228 (uint16_t) (value >> 16));
3229 }
3230
3231 static void CountersInit(comedi_device * dev)
3232 {
3233 int chan;
3234 enc_private *k;
3235 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
3236 // index.
3237 (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
3238 (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is counter.
3239 (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
3240 (CNTDIR_UP << BF_CLKPOL) | // Count direction is up.
3241 (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
3242 (CLKENAB_INDEX << BF_CLKENAB); // Enabled by index
3243
3244 // Disable all counter interrupts and clear any captured counter events.
3245 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3246 k = &encpriv[chan];
3247 k->SetMode(dev, k, Setup, TRUE);
3248 k->SetIntSrc(dev, k, 0);
3249 k->ResetCapFlags(dev, k);
3250 k->SetEnable(dev, k, CLKENAB_ALWAYS);
3251 }
3252 DEBUG("CountersInit: counters initialized \n");
3253
3254 }
This page took 0.09662 seconds and 6 git commands to generate.