Merge tag 'backlight-for-linus-3.16' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / staging / et131x / et131x.c
1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
52 */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110 #define INT_MASK_DISABLE 0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_TCB flags */
138 #define FMP_DEST_MULTI 0x00000001
139 #define FMP_DEST_BROAD 0x00000002
140
141 /* MP_ADAPTER flags */
142 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
143
144 /* MP_SHARED flags */
145 #define FMP_ADAPTER_LOWER_POWER 0x00200000
146
147 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
148 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
149
150 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
151
152 /* Some offsets in PCI config space that are actually used. */
153 #define ET1310_PCI_MAC_ADDRESS 0xA4
154 #define ET1310_PCI_EEPROM_STATUS 0xB2
155 #define ET1310_PCI_ACK_NACK 0xC0
156 #define ET1310_PCI_REPLAY 0xC2
157 #define ET1310_PCI_L0L1LATENCY 0xCF
158
159 /* PCI Product IDs */
160 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
161 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
162
163 /* Define order of magnitude converter */
164 #define NANO_IN_A_MICRO 1000
165
166 #define PARM_RX_NUM_BUFS_DEF 4
167 #define PARM_RX_TIME_INT_DEF 10
168 #define PARM_RX_MEM_END_DEF 0x2bc
169 #define PARM_TX_TIME_INT_DEF 40
170 #define PARM_TX_NUM_BUFS_DEF 4
171 #define PARM_DMA_CACHE_DEF 0
172
173 /* RX defines */
174 #define FBR_CHUNKS 32
175 #define MAX_DESC_PER_RING_RX 1024
176
177 /* number of RFDs - default and min */
178 #define RFD_LOW_WATER_MARK 40
179 #define NIC_DEFAULT_NUM_RFD 1024
180 #define NUM_FBRS 2
181
182 #define NUM_PACKETS_HANDLED 256
183
184 #define ALCATEL_MULTICAST_PKT 0x01000000
185 #define ALCATEL_BROADCAST_PKT 0x02000000
186
187 /* typedefs for Free Buffer Descriptors */
188 struct fbr_desc {
189 u32 addr_lo;
190 u32 addr_hi;
191 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
192 };
193
194 /* Packet Status Ring Descriptors
195 *
196 * Word 0:
197 *
198 * top 16 bits are from the Alcatel Status Word as enumerated in
199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
200 *
201 * 0: hp hash pass
202 * 1: ipa IP checksum assist
203 * 2: ipp IP checksum pass
204 * 3: tcpa TCP checksum assist
205 * 4: tcpp TCP checksum pass
206 * 5: wol WOL Event
207 * 6: rxmac_error RXMAC Error Indicator
208 * 7: drop Drop packet
209 * 8: ft Frame Truncated
210 * 9: jp Jumbo Packet
211 * 10: vp VLAN Packet
212 * 11-15: unused
213 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
214 * 17: asw_RX_DV_event short receive event detected
215 * 18: asw_false_carrier_event bad carrier since last good packet
216 * 19: asw_code_err one or more nibbles signalled as errors
217 * 20: asw_CRC_err CRC error
218 * 21: asw_len_chk_err frame length field incorrect
219 * 22: asw_too_long frame length > 1518 bytes
220 * 23: asw_OK valid CRC + no code error
221 * 24: asw_multicast has a multicast address
222 * 25: asw_broadcast has a broadcast address
223 * 26: asw_dribble_nibble spurious bits after EOP
224 * 27: asw_control_frame is a control frame
225 * 28: asw_pause_frame is a pause frame
226 * 29: asw_unsupported_op unsupported OP code
227 * 30: asw_VLAN_tag VLAN tag detected
228 * 31: asw_long_evt Rx long event
229 *
230 * Word 1:
231 * 0-15: length length in bytes
232 * 16-25: bi Buffer Index
233 * 26-27: ri Ring Index
234 * 28-31: reserved
235 */
236
237 struct pkt_stat_desc {
238 u32 word0;
239 u32 word1;
240 };
241
242 /* Typedefs for the RX DMA status word */
243
244 /* rx status word 0 holds part of the status bits of the Rx DMA engine
245 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
246 * which contains the Free Buffer ring 0 and 1 available offset.
247 *
248 * bit 0-9 FBR1 offset
249 * bit 10 Wrap flag for FBR1
250 * bit 16-25 FBR0 offset
251 * bit 26 Wrap flag for FBR0
252 */
253
254 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
255 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
256 * which contains the Packet Status Ring available offset.
257 *
258 * bit 0-15 reserved
259 * bit 16-27 PSRoffset
260 * bit 28 PSRwrap
261 * bit 29-31 unused
262 */
263
264 /* struct rx_status_block is a structure representing the status of the Rx
265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
266 */
267 struct rx_status_block {
268 u32 word0;
269 u32 word1;
270 };
271
272 /* Structure for look-up table holding free buffer ring pointers, addresses
273 * and state.
274 */
275 struct fbr_lookup {
276 void *virt[MAX_DESC_PER_RING_RX];
277 u32 bus_high[MAX_DESC_PER_RING_RX];
278 u32 bus_low[MAX_DESC_PER_RING_RX];
279 void *ring_virtaddr;
280 dma_addr_t ring_physaddr;
281 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
282 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
283 u32 local_full;
284 u32 num_entries;
285 dma_addr_t buffsize;
286 };
287
288 /* struct rx_ring is the sructure representing the adaptor's local
289 * reference(s) to the rings
290 */
291 struct rx_ring {
292 struct fbr_lookup *fbr[NUM_FBRS];
293 void *ps_ring_virtaddr;
294 dma_addr_t ps_ring_physaddr;
295 u32 local_psr_full;
296 u32 psr_num_entries;
297
298 struct rx_status_block *rx_status_block;
299 dma_addr_t rx_status_bus;
300
301 /* RECV */
302 struct list_head recv_list;
303 u32 num_ready_recv;
304
305 u32 num_rfd;
306
307 bool unfinished_receives;
308 };
309
310 /* TX defines */
311 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
312 *
313 * 0-15: length of packet
314 * 16-27: VLAN tag
315 * 28: VLAN CFI
316 * 29-31: VLAN priority
317 *
318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
319 *
320 * 0: last packet in the sequence
321 * 1: first packet in the sequence
322 * 2: interrupt the processor when this pkt sent
323 * 3: Control word - no packet data
324 * 4: Issue half-duplex backpressure : XON/XOFF
325 * 5: send pause frame
326 * 6: Tx frame has error
327 * 7: append CRC
328 * 8: MAC override
329 * 9: pad packet
330 * 10: Packet is a Huge packet
331 * 11: append VLAN tag
332 * 12: IP checksum assist
333 * 13: TCP checksum assist
334 * 14: UDP checksum assist
335 */
336
337 #define TXDESC_FLAG_LASTPKT 0x0001
338 #define TXDESC_FLAG_FIRSTPKT 0x0002
339 #define TXDESC_FLAG_INTPROC 0x0004
340
341 /* struct tx_desc represents each descriptor on the ring */
342 struct tx_desc {
343 u32 addr_hi;
344 u32 addr_lo;
345 u32 len_vlan; /* control words how to xmit the */
346 u32 flags; /* data (detailed above) */
347 };
348
349 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
350 * by 0x101c / 0x1020. This is a DMA10 type
351 */
352
353 /* TCB (Transmit Control Block: Host Side) */
354 struct tcb {
355 struct tcb *next; /* Next entry in ring */
356 u32 flags; /* Our flags for the packet */
357 u32 count; /* Used to spot stuck/lost packets */
358 u32 stale; /* Used to spot stuck/lost packets */
359 struct sk_buff *skb; /* Network skb we are tied to */
360 u32 index; /* Ring indexes */
361 u32 index_start;
362 };
363
364 /* Structure representing our local reference(s) to the ring */
365 struct tx_ring {
366 /* TCB (Transmit Control Block) memory and lists */
367 struct tcb *tcb_ring;
368
369 /* List of TCBs that are ready to be used */
370 struct tcb *tcb_qhead;
371 struct tcb *tcb_qtail;
372
373 /* list of TCBs that are currently being sent. NOTE that access to all
374 * three of these (including used) are controlled via the
375 * TCBSendQLock. This lock should be secured prior to incementing /
376 * decrementing used, or any queue manipulation on send_head /
377 * tail
378 */
379 struct tcb *send_head;
380 struct tcb *send_tail;
381 int used;
382
383 /* The actual descriptor ring */
384 struct tx_desc *tx_desc_ring;
385 dma_addr_t tx_desc_ring_pa;
386
387 /* send_idx indicates where we last wrote to in the descriptor ring. */
388 u32 send_idx;
389
390 /* The location of the write-back status block */
391 u32 *tx_status;
392 dma_addr_t tx_status_pa;
393
394 /* Packets since the last IRQ: used for interrupt coalescing */
395 int since_irq;
396 };
397
398 /* Do not change these values: if changed, then change also in respective
399 * TXdma and Rxdma engines
400 */
401 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
402 #define NUM_TCB 64
403
404 /* These values are all superseded by registry entries to facilitate tuning.
405 * Once the desired performance has been achieved, the optimal registry values
406 * should be re-populated to these #defines:
407 */
408 #define TX_ERROR_PERIOD 1000
409
410 #define LO_MARK_PERCENT_FOR_PSR 15
411 #define LO_MARK_PERCENT_FOR_RX 15
412
413 /* RFD (Receive Frame Descriptor) */
414 struct rfd {
415 struct list_head list_node;
416 struct sk_buff *skb;
417 u32 len; /* total size of receive frame */
418 u16 bufferindex;
419 u8 ringindex;
420 };
421
422 /* Flow Control */
423 #define FLOW_BOTH 0
424 #define FLOW_TXONLY 1
425 #define FLOW_RXONLY 2
426 #define FLOW_NONE 3
427
428 /* Struct to define some device statistics */
429 struct ce_stats {
430 /* MIB II variables
431 *
432 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
433 * MUST have 32, then we'll need another way to perform atomic
434 * operations
435 */
436 u32 unicast_pkts_rcvd;
437 atomic_t unicast_pkts_xmtd;
438 u32 multicast_pkts_rcvd;
439 atomic_t multicast_pkts_xmtd;
440 u32 broadcast_pkts_rcvd;
441 atomic_t broadcast_pkts_xmtd;
442 u32 rcvd_pkts_dropped;
443
444 /* Tx Statistics. */
445 u32 tx_underflows;
446
447 u32 tx_collisions;
448 u32 tx_excessive_collisions;
449 u32 tx_first_collisions;
450 u32 tx_late_collisions;
451 u32 tx_max_pkt_errs;
452 u32 tx_deferred;
453
454 /* Rx Statistics. */
455 u32 rx_overflows;
456
457 u32 rx_length_errs;
458 u32 rx_align_errs;
459 u32 rx_crc_errs;
460 u32 rx_code_violations;
461 u32 rx_other_errs;
462
463 u32 synchronous_iterations;
464 u32 interrupt_status;
465 };
466
467 /* The private adapter structure */
468 struct et131x_adapter {
469 struct net_device *netdev;
470 struct pci_dev *pdev;
471 struct mii_bus *mii_bus;
472 struct phy_device *phydev;
473 struct work_struct task;
474
475 /* Flags that indicate current state of the adapter */
476 u32 flags;
477
478 /* local link state, to determine if a state change has occurred */
479 int link;
480
481 /* Configuration */
482 u8 rom_addr[ETH_ALEN];
483 u8 addr[ETH_ALEN];
484 bool has_eeprom;
485 u8 eeprom_data[2];
486
487 /* Spinlocks */
488 spinlock_t tcb_send_qlock;
489 spinlock_t tcb_ready_qlock;
490 spinlock_t send_hw_lock;
491
492 spinlock_t rcv_lock;
493 spinlock_t fbr_lock;
494
495 /* Packet Filter and look ahead size */
496 u32 packet_filter;
497
498 /* multicast list */
499 u32 multicast_addr_count;
500 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
501
502 /* Pointer to the device's PCI register space */
503 struct address_map __iomem *regs;
504
505 /* Registry parameters */
506 u8 wanted_flow; /* Flow we want for 802.3x flow control */
507 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
508
509 /* Derived from the registry: */
510 u8 flowcontrol; /* flow control validated by the far-end */
511
512 /* Minimize init-time */
513 struct timer_list error_timer;
514
515 /* variable putting the phy into coma mode when boot up with no cable
516 * plugged in after 5 seconds
517 */
518 u8 boot_coma;
519
520 /* Next two used to save power information at power down. This
521 * information will be used during power up to set up parts of Power
522 * Management in JAGCore
523 */
524 u16 pdown_speed;
525 u8 pdown_duplex;
526
527 /* Tx Memory Variables */
528 struct tx_ring tx_ring;
529
530 /* Rx Memory Variables */
531 struct rx_ring rx_ring;
532
533 /* Stats */
534 struct ce_stats stats;
535
536 struct net_device_stats net_stats;
537 };
538
539 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
540 {
541 u32 reg;
542 int i;
543
544 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
545 * bits 7,1:0 both equal to 1, at least once after reset.
546 * Subsequent operations need only to check that bits 1:0 are equal
547 * to 1 prior to starting a single byte read/write
548 */
549
550 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
551 /* Read registers grouped in DWORD1 */
552 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
553 return -EIO;
554
555 /* I2C idle and Phy Queue Avail both true */
556 if ((reg & 0x3000) == 0x3000) {
557 if (status)
558 *status = reg;
559 return reg & 0xFF;
560 }
561 }
562 return -ETIMEDOUT;
563 }
564
565 /* eeprom_write - Write a byte to the ET1310's EEPROM
566 * @adapter: pointer to our private adapter structure
567 * @addr: the address to write
568 * @data: the value to write
569 *
570 * Returns 1 for a successful write.
571 */
572 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
573 {
574 struct pci_dev *pdev = adapter->pdev;
575 int index = 0;
576 int retries;
577 int err = 0;
578 int i2c_wack = 0;
579 int writeok = 0;
580 u32 status;
581 u32 val = 0;
582
583 /* For an EEPROM, an I2C single byte write is defined as a START
584 * condition followed by the device address, EEPROM address, one byte
585 * of data and a STOP condition. The STOP condition will trigger the
586 * EEPROM's internally timed write cycle to the nonvolatile memory.
587 * All inputs are disabled during this write cycle and the EEPROM will
588 * not respond to any access until the internal write is complete.
589 */
590
591 err = eeprom_wait_ready(pdev, NULL);
592 if (err < 0)
593 return err;
594
595 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
596 * and bits 1:0 both =0. Bit 5 should be set according to the
597 * type of EEPROM being accessed (1=two byte addressing, 0=one
598 * byte addressing).
599 */
600 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
601 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
602 return -EIO;
603
604 i2c_wack = 1;
605
606 /* Prepare EEPROM address for Step 3 */
607
608 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
609 /* Write the address to the LBCIF Address Register */
610 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
611 break;
612 /* Write the data to the LBCIF Data Register (the I2C write
613 * will begin).
614 */
615 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
616 break;
617 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
618 * 1:0 are both equal to 1, the I2C write has completed and the
619 * internal write cycle of the EEPROM is about to start.
620 * (bits 1:0 = 01 is a legal state while waiting from both
621 * equal to 1, but bits 1:0 = 10 is invalid and implies that
622 * something is broken).
623 */
624 err = eeprom_wait_ready(pdev, &status);
625 if (err < 0)
626 return 0;
627
628 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
629 * an error has occurred.Don't break here if we are revision
630 * 1, this is so we do a blind write for load bug.
631 */
632 if ((status & LBCIF_STATUS_GENERAL_ERROR)
633 && adapter->pdev->revision == 0)
634 break;
635
636 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
637 * ACK error has occurred on the address phase of the write.
638 * This could be due to an actual hardware failure or the
639 * EEPROM may still be in its internal write cycle from a
640 * previous write. This write operation was ignored and must be
641 *repeated later.
642 */
643 if (status & LBCIF_STATUS_ACK_ERROR) {
644 /* This could be due to an actual hardware failure
645 * or the EEPROM may still be in its internal write
646 * cycle from a previous write. This write operation
647 * was ignored and must be repeated later.
648 */
649 udelay(10);
650 continue;
651 }
652
653 writeok = 1;
654 break;
655 }
656
657 /* Set bit 6 of the LBCIF Control Register = 0.
658 */
659 udelay(10);
660
661 while (i2c_wack) {
662 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
663 LBCIF_CONTROL_LBCIF_ENABLE))
664 writeok = 0;
665
666 /* Do read until internal ACK_ERROR goes away meaning write
667 * completed
668 */
669 do {
670 pci_write_config_dword(pdev,
671 LBCIF_ADDRESS_REGISTER,
672 addr);
673 do {
674 pci_read_config_dword(pdev,
675 LBCIF_DATA_REGISTER, &val);
676 } while ((val & 0x00010000) == 0);
677 } while (val & 0x00040000);
678
679 if ((val & 0xFF00) != 0xC000 || index == 10000)
680 break;
681 index++;
682 }
683 return writeok ? 0 : -EIO;
684 }
685
686 /* eeprom_read - Read a byte from the ET1310's EEPROM
687 * @adapter: pointer to our private adapter structure
688 * @addr: the address from which to read
689 * @pdata: a pointer to a byte in which to store the value of the read
690 * @eeprom_id: the ID of the EEPROM
691 * @addrmode: how the EEPROM is to be accessed
692 *
693 * Returns 1 for a successful read
694 */
695 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
696 {
697 struct pci_dev *pdev = adapter->pdev;
698 int err;
699 u32 status;
700
701 /* A single byte read is similar to the single byte write, with the
702 * exception of the data flow:
703 */
704
705 err = eeprom_wait_ready(pdev, NULL);
706 if (err < 0)
707 return err;
708 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
709 * and bits 1:0 both =0. Bit 5 should be set according to the type
710 * of EEPROM being accessed (1=two byte addressing, 0=one byte
711 * addressing).
712 */
713 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
714 LBCIF_CONTROL_LBCIF_ENABLE))
715 return -EIO;
716 /* Write the address to the LBCIF Address Register (I2C read will
717 * begin).
718 */
719 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
720 return -EIO;
721 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
722 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
723 * has occurred).
724 */
725 err = eeprom_wait_ready(pdev, &status);
726 if (err < 0)
727 return err;
728 /* Regardless of error status, read data byte from LBCIF Data
729 * Register.
730 */
731 *pdata = err;
732 /* Check bit 2 of the LBCIF Status Register. If = 1,
733 * then an error has occurred.
734 */
735 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
736 }
737
738 static int et131x_init_eeprom(struct et131x_adapter *adapter)
739 {
740 struct pci_dev *pdev = adapter->pdev;
741 u8 eestatus;
742
743 /* We first need to check the EEPROM Status code located at offset
744 * 0xB2 of config space
745 */
746 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
747
748 /* THIS IS A WORKAROUND:
749 * I need to call this function twice to get my card in a
750 * LG M1 Express Dual running. I tried also a msleep before this
751 * function, because I thought there could be some time conditions
752 * but it didn't work. Call the whole function twice also work.
753 */
754 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
755 dev_err(&pdev->dev,
756 "Could not read PCI config space for EEPROM Status\n");
757 return -EIO;
758 }
759
760 /* Determine if the error(s) we care about are present. If they are
761 * present we need to fail.
762 */
763 if (eestatus & 0x4C) {
764 int write_failed = 0;
765
766 if (pdev->revision == 0x01) {
767 int i;
768 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
769
770 /* Re-write the first 4 bytes if we have an eeprom
771 * present and the revision id is 1, this fixes the
772 * corruption seen with 1310 B Silicon
773 */
774 for (i = 0; i < 3; i++)
775 if (eeprom_write(adapter, i, eedata[i]) < 0)
776 write_failed = 1;
777 }
778 if (pdev->revision != 0x01 || write_failed) {
779 dev_err(&pdev->dev,
780 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
781
782 /* This error could mean that there was an error
783 * reading the eeprom or that the eeprom doesn't exist.
784 * We will treat each case the same and not try to
785 * gather additional information that normally would
786 * come from the eeprom, like MAC Address
787 */
788 adapter->has_eeprom = 0;
789 return -EIO;
790 }
791 }
792 adapter->has_eeprom = 1;
793
794 /* Read the EEPROM for information regarding LED behavior. Refer to
795 * ET1310_phy.c, et131x_xcvr_init(), for its use.
796 */
797 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
798 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
799
800 if (adapter->eeprom_data[0] != 0xcd)
801 /* Disable all optional features */
802 adapter->eeprom_data[1] = 0x00;
803
804 return 0;
805 }
806
807 /* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
808 * @adapter: pointer to our adapter structure
809 */
810 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
811 {
812 /* Setup the receive dma configuration register for normal operation */
813 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
814 struct rx_ring *rx_ring = &adapter->rx_ring;
815
816 if (rx_ring->fbr[1]->buffsize == 4096)
817 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
818 else if (rx_ring->fbr[1]->buffsize == 8192)
819 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
820 else if (rx_ring->fbr[1]->buffsize == 16384)
821 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
822
823 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
824 if (rx_ring->fbr[0]->buffsize == 256)
825 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
826 else if (rx_ring->fbr[0]->buffsize == 512)
827 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
828 else if (rx_ring->fbr[0]->buffsize == 1024)
829 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
830 writel(csr, &adapter->regs->rxdma.csr);
831
832 csr = readl(&adapter->regs->rxdma.csr);
833 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
834 udelay(5);
835 csr = readl(&adapter->regs->rxdma.csr);
836 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
837 dev_err(&adapter->pdev->dev,
838 "RX Dma failed to exit halt state. CSR 0x%08x\n",
839 csr);
840 }
841 }
842 }
843
844 /* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
845 * @adapter: pointer to our adapter structure
846 */
847 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
848 {
849 u32 csr;
850 /* Setup the receive dma configuration register */
851 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
852 &adapter->regs->rxdma.csr);
853 csr = readl(&adapter->regs->rxdma.csr);
854 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
855 udelay(5);
856 csr = readl(&adapter->regs->rxdma.csr);
857 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
858 dev_err(&adapter->pdev->dev,
859 "RX Dma failed to enter halt state. CSR 0x%08x\n",
860 csr);
861 }
862 }
863
864 /* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
865 * @adapter: pointer to our adapter structure
866 *
867 * Mainly used after a return to the D0 (full-power) state from a lower state.
868 */
869 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
870 {
871 /* Setup the transmit dma configuration register for normal
872 * operation
873 */
874 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
875 &adapter->regs->txdma.csr);
876 }
877
878 static inline void add_10bit(u32 *v, int n)
879 {
880 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
881 }
882
883 static inline void add_12bit(u32 *v, int n)
884 {
885 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
886 }
887
888 /* et1310_config_mac_regs1 - Initialize the first part of MAC regs
889 * @adapter: pointer to our adapter structure
890 */
891 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
892 {
893 struct mac_regs __iomem *macregs = &adapter->regs->mac;
894 u32 station1;
895 u32 station2;
896 u32 ipg;
897
898 /* First we need to reset everything. Write to MAC configuration
899 * register 1 to perform reset.
900 */
901 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
902 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
903 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
904 &macregs->cfg1);
905
906 /* Next lets configure the MAC Inter-packet gap register */
907 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
908 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
909 writel(ipg, &macregs->ipg);
910
911 /* Next lets configure the MAC Half Duplex register */
912 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
913 writel(0x00A1F037, &macregs->hfdp);
914
915 /* Next lets configure the MAC Interface Control register */
916 writel(0, &macregs->if_ctrl);
917
918 /* Let's move on to setting up the mii management configuration */
919 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
920
921 /* Next lets configure the MAC Station Address register. These
922 * values are read from the EEPROM during initialization and stored
923 * in the adapter structure. We write what is stored in the adapter
924 * structure to the MAC Station Address registers high and low. This
925 * station address is used for generating and checking pause control
926 * packets.
927 */
928 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
929 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
930 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
931 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
932 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
933 adapter->addr[2];
934 writel(station1, &macregs->station_addr_1);
935 writel(station2, &macregs->station_addr_2);
936
937 /* Max ethernet packet in bytes that will be passed by the mac without
938 * being truncated. Allow the MAC to pass 4 more than our max packet
939 * size. This is 4 for the Ethernet CRC.
940 *
941 * Packets larger than (registry_jumbo_packet) that do not contain a
942 * VLAN ID will be dropped by the Rx function.
943 */
944 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
945
946 /* clear out MAC config reset */
947 writel(0, &macregs->cfg1);
948 }
949
950 /* et1310_config_mac_regs2 - Initialize the second part of MAC regs
951 * @adapter: pointer to our adapter structure
952 */
953 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
954 {
955 int32_t delay = 0;
956 struct mac_regs __iomem *mac = &adapter->regs->mac;
957 struct phy_device *phydev = adapter->phydev;
958 u32 cfg1;
959 u32 cfg2;
960 u32 ifctrl;
961 u32 ctl;
962
963 ctl = readl(&adapter->regs->txmac.ctl);
964 cfg1 = readl(&mac->cfg1);
965 cfg2 = readl(&mac->cfg2);
966 ifctrl = readl(&mac->if_ctrl);
967
968 /* Set up the if mode bits */
969 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
970 if (phydev->speed == SPEED_1000) {
971 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
972 /* Phy mode bit */
973 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
974 } else {
975 cfg2 |= ET_MAC_CFG2_IFMODE_100;
976 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
977 }
978
979 /* We need to enable Rx/Tx */
980 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
981 ET_MAC_CFG1_TX_FLOW;
982 /* Initialize loop back to off */
983 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
984 if (adapter->flowcontrol == FLOW_RXONLY ||
985 adapter->flowcontrol == FLOW_BOTH)
986 cfg1 |= ET_MAC_CFG1_RX_FLOW;
987 writel(cfg1, &mac->cfg1);
988
989 /* Now we need to initialize the MAC Configuration 2 register */
990 /* preamble 7, check length, huge frame off, pad crc, crc enable
991 * full duplex off
992 */
993 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
994 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
995 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
996 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
997 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
998 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
999
1000 /* Turn on duplex if needed */
1001 if (phydev->duplex == DUPLEX_FULL)
1002 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
1003
1004 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
1005 if (phydev->duplex == DUPLEX_HALF)
1006 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
1007
1008 writel(ifctrl, &mac->if_ctrl);
1009 writel(cfg2, &mac->cfg2);
1010
1011 do {
1012 udelay(10);
1013 delay++;
1014 cfg1 = readl(&mac->cfg1);
1015 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
1016
1017 if (delay == 100) {
1018 dev_warn(&adapter->pdev->dev,
1019 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1020 cfg1);
1021 }
1022
1023 /* Enable txmac */
1024 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
1025 writel(ctl, &adapter->regs->txmac.ctl);
1026
1027 /* Ready to start the RXDMA/TXDMA engine */
1028 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
1029 et131x_rx_dma_enable(adapter);
1030 et131x_tx_dma_enable(adapter);
1031 }
1032 }
1033
1034 /* et1310_in_phy_coma - check if the device is in phy coma
1035 * @adapter: pointer to our adapter structure
1036 *
1037 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1038 */
1039 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1040 {
1041 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1042
1043 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1044 }
1045
1046 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1047 {
1048 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1049 u32 hash1 = 0;
1050 u32 hash2 = 0;
1051 u32 hash3 = 0;
1052 u32 hash4 = 0;
1053 u32 pm_csr;
1054
1055 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1056 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1057 * specified) then we should pass NO multi-cast addresses to the
1058 * driver.
1059 */
1060 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1061 int i;
1062
1063 /* Loop through our multicast array and set up the device */
1064 for (i = 0; i < adapter->multicast_addr_count; i++) {
1065 u32 result;
1066
1067 result = ether_crc(6, adapter->multicast_list[i]);
1068
1069 result = (result & 0x3F800000) >> 23;
1070
1071 if (result < 32) {
1072 hash1 |= (1 << result);
1073 } else if ((31 < result) && (result < 64)) {
1074 result -= 32;
1075 hash2 |= (1 << result);
1076 } else if ((63 < result) && (result < 96)) {
1077 result -= 64;
1078 hash3 |= (1 << result);
1079 } else {
1080 result -= 96;
1081 hash4 |= (1 << result);
1082 }
1083 }
1084 }
1085
1086 /* Write out the new hash to the device */
1087 pm_csr = readl(&adapter->regs->global.pm_csr);
1088 if (!et1310_in_phy_coma(adapter)) {
1089 writel(hash1, &rxmac->multi_hash1);
1090 writel(hash2, &rxmac->multi_hash2);
1091 writel(hash3, &rxmac->multi_hash3);
1092 writel(hash4, &rxmac->multi_hash4);
1093 }
1094 }
1095
1096 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1097 {
1098 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1099 u32 uni_pf1;
1100 u32 uni_pf2;
1101 u32 uni_pf3;
1102 u32 pm_csr;
1103
1104 /* Set up unicast packet filter reg 3 to be the first two octets of
1105 * the MAC address for both address
1106 *
1107 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1108 * MAC address for second address
1109 *
1110 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1111 * MAC address for first address
1112 */
1113 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1114 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1115 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1116 adapter->addr[1];
1117
1118 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1119 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1120 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1121 adapter->addr[5];
1122
1123 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1124 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1125 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1126 adapter->addr[5];
1127
1128 pm_csr = readl(&adapter->regs->global.pm_csr);
1129 if (!et1310_in_phy_coma(adapter)) {
1130 writel(uni_pf1, &rxmac->uni_pf_addr1);
1131 writel(uni_pf2, &rxmac->uni_pf_addr2);
1132 writel(uni_pf3, &rxmac->uni_pf_addr3);
1133 }
1134 }
1135
1136 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1137 {
1138 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1139 struct phy_device *phydev = adapter->phydev;
1140 u32 sa_lo;
1141 u32 sa_hi = 0;
1142 u32 pf_ctrl = 0;
1143
1144 /* Disable the MAC while it is being configured (also disable WOL) */
1145 writel(0x8, &rxmac->ctrl);
1146
1147 /* Initialize WOL to disabled. */
1148 writel(0, &rxmac->crc0);
1149 writel(0, &rxmac->crc12);
1150 writel(0, &rxmac->crc34);
1151
1152 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1153 * its default Values of 0x00000000 because there are not WOL masks
1154 * as of this time.
1155 */
1156 writel(0, &rxmac->mask0_word0);
1157 writel(0, &rxmac->mask0_word1);
1158 writel(0, &rxmac->mask0_word2);
1159 writel(0, &rxmac->mask0_word3);
1160
1161 writel(0, &rxmac->mask1_word0);
1162 writel(0, &rxmac->mask1_word1);
1163 writel(0, &rxmac->mask1_word2);
1164 writel(0, &rxmac->mask1_word3);
1165
1166 writel(0, &rxmac->mask2_word0);
1167 writel(0, &rxmac->mask2_word1);
1168 writel(0, &rxmac->mask2_word2);
1169 writel(0, &rxmac->mask2_word3);
1170
1171 writel(0, &rxmac->mask3_word0);
1172 writel(0, &rxmac->mask3_word1);
1173 writel(0, &rxmac->mask3_word2);
1174 writel(0, &rxmac->mask3_word3);
1175
1176 writel(0, &rxmac->mask4_word0);
1177 writel(0, &rxmac->mask4_word1);
1178 writel(0, &rxmac->mask4_word2);
1179 writel(0, &rxmac->mask4_word3);
1180
1181 /* Lets setup the WOL Source Address */
1182 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1183 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1184 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1185 adapter->addr[5];
1186 writel(sa_lo, &rxmac->sa_lo);
1187
1188 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1189 adapter->addr[1];
1190 writel(sa_hi, &rxmac->sa_hi);
1191
1192 /* Disable all Packet Filtering */
1193 writel(0, &rxmac->pf_ctrl);
1194
1195 /* Let's initialize the Unicast Packet filtering address */
1196 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1197 et1310_setup_device_for_unicast(adapter);
1198 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1199 } else {
1200 writel(0, &rxmac->uni_pf_addr1);
1201 writel(0, &rxmac->uni_pf_addr2);
1202 writel(0, &rxmac->uni_pf_addr3);
1203 }
1204
1205 /* Let's initialize the Multicast hash */
1206 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1207 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1208 et1310_setup_device_for_multicast(adapter);
1209 }
1210
1211 /* Runt packet filtering. Didn't work in version A silicon. */
1212 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1213 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1214
1215 if (adapter->registry_jumbo_packet > 8192)
1216 /* In order to transmit jumbo packets greater than 8k, the
1217 * FIFO between RxMAC and RxDMA needs to be reduced in size
1218 * to (16k - Jumbo packet size). In order to implement this,
1219 * we must use "cut through" mode in the RxMAC, which chops
1220 * packets down into segments which are (max_size * 16). In
1221 * this case we selected 256 bytes, since this is the size of
1222 * the PCI-Express TLP's that the 1310 uses.
1223 *
1224 * seg_en on, fc_en off, size 0x10
1225 */
1226 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1227 else
1228 writel(0, &rxmac->mcif_ctrl_max_seg);
1229
1230 /* Initialize the MCIF water marks */
1231 writel(0, &rxmac->mcif_water_mark);
1232
1233 /* Initialize the MIF control */
1234 writel(0, &rxmac->mif_ctrl);
1235
1236 /* Initialize the Space Available Register */
1237 writel(0, &rxmac->space_avail);
1238
1239 /* Initialize the the mif_ctrl register
1240 * bit 3: Receive code error. One or more nibbles were signaled as
1241 * errors during the reception of the packet. Clear this
1242 * bit in Gigabit, set it in 100Mbit. This was derived
1243 * experimentally at UNH.
1244 * bit 4: Receive CRC error. The packet's CRC did not match the
1245 * internally generated CRC.
1246 * bit 5: Receive length check error. Indicates that frame length
1247 * field value in the packet does not match the actual data
1248 * byte length and is not a type field.
1249 * bit 16: Receive frame truncated.
1250 * bit 17: Drop packet enable
1251 */
1252 if (phydev && phydev->speed == SPEED_100)
1253 writel(0x30038, &rxmac->mif_ctrl);
1254 else
1255 writel(0x30030, &rxmac->mif_ctrl);
1256
1257 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1258 * filter is always enabled since it is where the runt packets are
1259 * supposed to be dropped. For version A silicon, runt packet
1260 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1261 * but we still leave the packet filter on.
1262 */
1263 writel(pf_ctrl, &rxmac->pf_ctrl);
1264 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1265 }
1266
1267 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1268 {
1269 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1270
1271 /* We need to update the Control Frame Parameters
1272 * cfpt - control frame pause timer set to 64 (0x40)
1273 * cfep - control frame extended pause timer set to 0x0
1274 */
1275 if (adapter->flowcontrol == FLOW_NONE)
1276 writel(0, &txmac->cf_param);
1277 else
1278 writel(0x40, &txmac->cf_param);
1279 }
1280
1281 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1282 {
1283 struct macstat_regs __iomem *macstat =
1284 &adapter->regs->macstat;
1285
1286 /* Next we need to initialize all the macstat registers to zero on
1287 * the device.
1288 */
1289 writel(0, &macstat->txrx_0_64_byte_frames);
1290 writel(0, &macstat->txrx_65_127_byte_frames);
1291 writel(0, &macstat->txrx_128_255_byte_frames);
1292 writel(0, &macstat->txrx_256_511_byte_frames);
1293 writel(0, &macstat->txrx_512_1023_byte_frames);
1294 writel(0, &macstat->txrx_1024_1518_byte_frames);
1295 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1296
1297 writel(0, &macstat->rx_bytes);
1298 writel(0, &macstat->rx_packets);
1299 writel(0, &macstat->rx_fcs_errs);
1300 writel(0, &macstat->rx_multicast_packets);
1301 writel(0, &macstat->rx_broadcast_packets);
1302 writel(0, &macstat->rx_control_frames);
1303 writel(0, &macstat->rx_pause_frames);
1304 writel(0, &macstat->rx_unknown_opcodes);
1305 writel(0, &macstat->rx_align_errs);
1306 writel(0, &macstat->rx_frame_len_errs);
1307 writel(0, &macstat->rx_code_errs);
1308 writel(0, &macstat->rx_carrier_sense_errs);
1309 writel(0, &macstat->rx_undersize_packets);
1310 writel(0, &macstat->rx_oversize_packets);
1311 writel(0, &macstat->rx_fragment_packets);
1312 writel(0, &macstat->rx_jabbers);
1313 writel(0, &macstat->rx_drops);
1314
1315 writel(0, &macstat->tx_bytes);
1316 writel(0, &macstat->tx_packets);
1317 writel(0, &macstat->tx_multicast_packets);
1318 writel(0, &macstat->tx_broadcast_packets);
1319 writel(0, &macstat->tx_pause_frames);
1320 writel(0, &macstat->tx_deferred);
1321 writel(0, &macstat->tx_excessive_deferred);
1322 writel(0, &macstat->tx_single_collisions);
1323 writel(0, &macstat->tx_multiple_collisions);
1324 writel(0, &macstat->tx_late_collisions);
1325 writel(0, &macstat->tx_excessive_collisions);
1326 writel(0, &macstat->tx_total_collisions);
1327 writel(0, &macstat->tx_pause_honored_frames);
1328 writel(0, &macstat->tx_drops);
1329 writel(0, &macstat->tx_jabbers);
1330 writel(0, &macstat->tx_fcs_errs);
1331 writel(0, &macstat->tx_control_frames);
1332 writel(0, &macstat->tx_oversize_frames);
1333 writel(0, &macstat->tx_undersize_frames);
1334 writel(0, &macstat->tx_fragments);
1335 writel(0, &macstat->carry_reg1);
1336 writel(0, &macstat->carry_reg2);
1337
1338 /* Unmask any counters that we want to track the overflow of.
1339 * Initially this will be all counters. It may become clear later
1340 * that we do not need to track all counters.
1341 */
1342 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1343 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1344 }
1345
1346 /* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1347 * @adapter: pointer to our private adapter structure
1348 * @addr: the address of the transceiver
1349 * @reg: the register to read
1350 * @value: pointer to a 16-bit value in which the value will be stored
1351 */
1352 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1353 u8 reg, u16 *value)
1354 {
1355 struct mac_regs __iomem *mac = &adapter->regs->mac;
1356 int status = 0;
1357 u32 delay = 0;
1358 u32 mii_addr;
1359 u32 mii_cmd;
1360 u32 mii_indicator;
1361
1362 /* Save a local copy of the registers we are dealing with so we can
1363 * set them back
1364 */
1365 mii_addr = readl(&mac->mii_mgmt_addr);
1366 mii_cmd = readl(&mac->mii_mgmt_cmd);
1367
1368 /* Stop the current operation */
1369 writel(0, &mac->mii_mgmt_cmd);
1370
1371 /* Set up the register we need to read from on the correct PHY */
1372 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1373
1374 writel(0x1, &mac->mii_mgmt_cmd);
1375
1376 do {
1377 udelay(50);
1378 delay++;
1379 mii_indicator = readl(&mac->mii_mgmt_indicator);
1380 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1381
1382 /* If we hit the max delay, we could not read the register */
1383 if (delay == 50) {
1384 dev_warn(&adapter->pdev->dev,
1385 "reg 0x%08x could not be read\n", reg);
1386 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1387 mii_indicator);
1388
1389 status = -EIO;
1390 goto out;
1391 }
1392
1393 /* If we hit here we were able to read the register and we need to
1394 * return the value to the caller
1395 */
1396 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1397
1398 out:
1399 /* Stop the read operation */
1400 writel(0, &mac->mii_mgmt_cmd);
1401
1402 /* set the registers we touched back to the state at which we entered
1403 * this function
1404 */
1405 writel(mii_addr, &mac->mii_mgmt_addr);
1406 writel(mii_cmd, &mac->mii_mgmt_cmd);
1407
1408 return status;
1409 }
1410
1411 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1412 {
1413 struct phy_device *phydev = adapter->phydev;
1414
1415 if (!phydev)
1416 return -EIO;
1417
1418 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1419 }
1420
1421 /* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
1422 * @adapter: pointer to our private adapter structure
1423 * @reg: the register to read
1424 * @value: 16-bit value to write
1425 */
1426 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1427 {
1428 struct mac_regs __iomem *mac = &adapter->regs->mac;
1429 struct phy_device *phydev = adapter->phydev;
1430 int status = 0;
1431 u8 addr;
1432 u32 delay = 0;
1433 u32 mii_addr;
1434 u32 mii_cmd;
1435 u32 mii_indicator;
1436
1437 if (!phydev)
1438 return -EIO;
1439
1440 addr = phydev->addr;
1441
1442 /* Save a local copy of the registers we are dealing with so we can
1443 * set them back
1444 */
1445 mii_addr = readl(&mac->mii_mgmt_addr);
1446 mii_cmd = readl(&mac->mii_mgmt_cmd);
1447
1448 /* Stop the current operation */
1449 writel(0, &mac->mii_mgmt_cmd);
1450
1451 /* Set up the register we need to write to on the correct PHY */
1452 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1453
1454 /* Add the value to write to the registers to the mac */
1455 writel(value, &mac->mii_mgmt_ctrl);
1456
1457 do {
1458 udelay(50);
1459 delay++;
1460 mii_indicator = readl(&mac->mii_mgmt_indicator);
1461 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1462
1463 /* If we hit the max delay, we could not write the register */
1464 if (delay == 100) {
1465 u16 tmp;
1466
1467 dev_warn(&adapter->pdev->dev,
1468 "reg 0x%08x could not be written", reg);
1469 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1470 mii_indicator);
1471 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1472 readl(&mac->mii_mgmt_cmd));
1473
1474 et131x_mii_read(adapter, reg, &tmp);
1475
1476 status = -EIO;
1477 }
1478 /* Stop the write operation */
1479 writel(0, &mac->mii_mgmt_cmd);
1480
1481 /* set the registers we touched back to the state at which we entered
1482 * this function
1483 */
1484 writel(mii_addr, &mac->mii_mgmt_addr);
1485 writel(mii_cmd, &mac->mii_mgmt_cmd);
1486
1487 return status;
1488 }
1489
1490 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1491 u16 regnum,
1492 u16 bitnum,
1493 u8 *value)
1494 {
1495 u16 reg;
1496 u16 mask = 1 << bitnum;
1497
1498 /* Read the requested register */
1499 et131x_mii_read(adapter, regnum, &reg);
1500
1501 *value = (reg & mask) >> bitnum;
1502 }
1503
1504 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1505 {
1506 struct phy_device *phydev = adapter->phydev;
1507
1508 if (phydev->duplex == DUPLEX_HALF) {
1509 adapter->flowcontrol = FLOW_NONE;
1510 } else {
1511 char remote_pause, remote_async_pause;
1512
1513 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1514 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1515
1516 if (remote_pause && remote_async_pause) {
1517 adapter->flowcontrol = adapter->wanted_flow;
1518 } else if (remote_pause && !remote_async_pause) {
1519 if (adapter->wanted_flow == FLOW_BOTH)
1520 adapter->flowcontrol = FLOW_BOTH;
1521 else
1522 adapter->flowcontrol = FLOW_NONE;
1523 } else if (!remote_pause && !remote_async_pause) {
1524 adapter->flowcontrol = FLOW_NONE;
1525 } else {
1526 if (adapter->wanted_flow == FLOW_BOTH)
1527 adapter->flowcontrol = FLOW_RXONLY;
1528 else
1529 adapter->flowcontrol = FLOW_NONE;
1530 }
1531 }
1532 }
1533
1534 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1535 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1536 {
1537 struct ce_stats *stats = &adapter->stats;
1538 struct macstat_regs __iomem *macstat =
1539 &adapter->regs->macstat;
1540
1541 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1542 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1543 stats->tx_deferred += readl(&macstat->tx_deferred);
1544 stats->tx_excessive_collisions +=
1545 readl(&macstat->tx_multiple_collisions);
1546 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1547 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1548 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1549
1550 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1551 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1552 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1553 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1554 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1555 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1556 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1557 }
1558
1559 /* et1310_handle_macstat_interrupt
1560 *
1561 * One of the MACSTAT counters has wrapped. Update the local copy of
1562 * the statistics held in the adapter structure, checking the "wrap"
1563 * bit for each counter.
1564 */
1565 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1566 {
1567 u32 carry_reg1;
1568 u32 carry_reg2;
1569
1570 /* Read the interrupt bits from the register(s). These are Clear On
1571 * Write.
1572 */
1573 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1574 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1575
1576 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1577 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1578
1579 /* We need to do update the host copy of all the MAC_STAT counters.
1580 * For each counter, check it's overflow bit. If the overflow bit is
1581 * set, then increment the host version of the count by one complete
1582 * revolution of the counter. This routine is called when the counter
1583 * block indicates that one of the counters has wrapped.
1584 */
1585 if (carry_reg1 & (1 << 14))
1586 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1587 if (carry_reg1 & (1 << 8))
1588 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1589 if (carry_reg1 & (1 << 7))
1590 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1591 if (carry_reg1 & (1 << 2))
1592 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1593 if (carry_reg1 & (1 << 6))
1594 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1595 if (carry_reg1 & (1 << 3))
1596 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1597 if (carry_reg1 & (1 << 0))
1598 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1599 if (carry_reg2 & (1 << 16))
1600 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1601 if (carry_reg2 & (1 << 15))
1602 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1603 if (carry_reg2 & (1 << 6))
1604 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1605 if (carry_reg2 & (1 << 8))
1606 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1607 if (carry_reg2 & (1 << 5))
1608 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1609 if (carry_reg2 & (1 << 4))
1610 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1611 if (carry_reg2 & (1 << 2))
1612 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1613 }
1614
1615 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1616 {
1617 struct net_device *netdev = bus->priv;
1618 struct et131x_adapter *adapter = netdev_priv(netdev);
1619 u16 value;
1620 int ret;
1621
1622 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1623
1624 if (ret < 0)
1625 return ret;
1626 else
1627 return value;
1628 }
1629
1630 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1631 int reg, u16 value)
1632 {
1633 struct net_device *netdev = bus->priv;
1634 struct et131x_adapter *adapter = netdev_priv(netdev);
1635
1636 return et131x_mii_write(adapter, reg, value);
1637 }
1638
1639 static int et131x_mdio_reset(struct mii_bus *bus)
1640 {
1641 struct net_device *netdev = bus->priv;
1642 struct et131x_adapter *adapter = netdev_priv(netdev);
1643
1644 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1645
1646 return 0;
1647 }
1648
1649 /* et1310_phy_power_switch - PHY power control
1650 * @adapter: device to control
1651 * @down: true for off/false for back on
1652 *
1653 * one hundred, ten, one thousand megs
1654 * How would you like to have your LAN accessed
1655 * Can't you see that this code processed
1656 * Phy power, phy power..
1657 */
1658 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1659 {
1660 u16 data;
1661
1662 et131x_mii_read(adapter, MII_BMCR, &data);
1663 data &= ~BMCR_PDOWN;
1664 if (down)
1665 data |= BMCR_PDOWN;
1666 et131x_mii_write(adapter, MII_BMCR, data);
1667 }
1668
1669 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1670 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1671 {
1672 u16 lcr2;
1673
1674 /* Set the LED behavior such that LED 1 indicates speed (off =
1675 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1676 * link and activity (on for link, blink off for activity).
1677 *
1678 * NOTE: Some customizations have been added here for specific
1679 * vendors; The LED behavior is now determined by vendor data in the
1680 * EEPROM. However, the above description is the default.
1681 */
1682 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1683 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1684
1685 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1686 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1687
1688 if ((adapter->eeprom_data[1] & 0x8) == 0)
1689 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1690 else
1691 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1692
1693 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1694 }
1695 }
1696
1697 /* et131x_configure_global_regs - configure JAGCore global regs
1698 *
1699 * Used to configure the global registers on the JAGCore
1700 */
1701 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1702 {
1703 struct global_regs __iomem *regs = &adapter->regs->global;
1704
1705 writel(0, &regs->rxq_start_addr);
1706 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1707
1708 if (adapter->registry_jumbo_packet < 2048) {
1709 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1710 * block of RAM that the driver can split between Tx
1711 * and Rx as it desires. Our default is to split it
1712 * 50/50:
1713 */
1714 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1715 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1716 } else if (adapter->registry_jumbo_packet < 8192) {
1717 /* For jumbo packets > 2k but < 8k, split 50-50. */
1718 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1719 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1720 } else {
1721 /* 9216 is the only packet size greater than 8k that
1722 * is available. The Tx buffer has to be big enough
1723 * for one whole packet on the Tx side. We'll make
1724 * the Tx 9408, and give the rest to Rx
1725 */
1726 writel(0x01b3, &regs->rxq_end_addr);
1727 writel(0x01b4, &regs->txq_start_addr);
1728 }
1729
1730 /* Initialize the loopback register. Disable all loopbacks. */
1731 writel(0, &regs->loopback);
1732
1733 /* MSI Register */
1734 writel(0, &regs->msi_config);
1735
1736 /* By default, disable the watchdog timer. It will be enabled when
1737 * a packet is queued.
1738 */
1739 writel(0, &regs->watchdog_timer);
1740 }
1741
1742 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1743 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1744 {
1745 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1746 struct rx_ring *rx_local = &adapter->rx_ring;
1747 struct fbr_desc *fbr_entry;
1748 u32 entry;
1749 u32 psr_num_des;
1750 unsigned long flags;
1751 u8 id;
1752
1753 /* Halt RXDMA to perform the reconfigure. */
1754 et131x_rx_dma_disable(adapter);
1755
1756 /* Load the completion writeback physical address */
1757 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1758 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1759
1760 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1761
1762 /* Set the address and parameters of the packet status ring into the
1763 * 1310's registers
1764 */
1765 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1766 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1767 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1768 writel(0, &rx_dma->psr_full_offset);
1769
1770 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1771 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1772 &rx_dma->psr_min_des);
1773
1774 spin_lock_irqsave(&adapter->rcv_lock, flags);
1775
1776 /* These local variables track the PSR in the adapter structure */
1777 rx_local->local_psr_full = 0;
1778
1779 for (id = 0; id < NUM_FBRS; id++) {
1780 u32 __iomem *num_des;
1781 u32 __iomem *full_offset;
1782 u32 __iomem *min_des;
1783 u32 __iomem *base_hi;
1784 u32 __iomem *base_lo;
1785 struct fbr_lookup *fbr = rx_local->fbr[id];
1786
1787 if (id == 0) {
1788 num_des = &rx_dma->fbr0_num_des;
1789 full_offset = &rx_dma->fbr0_full_offset;
1790 min_des = &rx_dma->fbr0_min_des;
1791 base_hi = &rx_dma->fbr0_base_hi;
1792 base_lo = &rx_dma->fbr0_base_lo;
1793 } else {
1794 num_des = &rx_dma->fbr1_num_des;
1795 full_offset = &rx_dma->fbr1_full_offset;
1796 min_des = &rx_dma->fbr1_min_des;
1797 base_hi = &rx_dma->fbr1_base_hi;
1798 base_lo = &rx_dma->fbr1_base_lo;
1799 }
1800
1801 /* Now's the best time to initialize FBR contents */
1802 fbr_entry = fbr->ring_virtaddr;
1803 for (entry = 0; entry < fbr->num_entries; entry++) {
1804 fbr_entry->addr_hi = fbr->bus_high[entry];
1805 fbr_entry->addr_lo = fbr->bus_low[entry];
1806 fbr_entry->word2 = entry;
1807 fbr_entry++;
1808 }
1809
1810 /* Set the address and parameters of Free buffer ring 1 and 0
1811 * into the 1310's registers
1812 */
1813 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1814 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1815 writel(fbr->num_entries - 1, num_des);
1816 writel(ET_DMA10_WRAP, full_offset);
1817
1818 /* This variable tracks the free buffer ring 1 full position,
1819 * so it has to match the above.
1820 */
1821 fbr->local_full = ET_DMA10_WRAP;
1822 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1823 min_des);
1824 }
1825
1826 /* Program the number of packets we will receive before generating an
1827 * interrupt.
1828 * For version B silicon, this value gets updated once autoneg is
1829 *complete.
1830 */
1831 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1832
1833 /* The "time_done" is not working correctly to coalesce interrupts
1834 * after a given time period, but rather is giving us an interrupt
1835 * regardless of whether we have received packets.
1836 * This value gets updated once autoneg is complete.
1837 */
1838 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1839
1840 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1841 }
1842
1843 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1844 *
1845 * Configure the transmit engine with the ring buffers we have created
1846 * and prepare it for use.
1847 */
1848 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1849 {
1850 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1851 struct tx_ring *tx_ring = &adapter->tx_ring;
1852
1853 /* Load the hardware with the start of the transmit descriptor ring. */
1854 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1855 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1856
1857 /* Initialise the transmit DMA engine */
1858 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1859
1860 /* Load the completion writeback physical address */
1861 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1862 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1863
1864 *tx_ring->tx_status = 0;
1865
1866 writel(0, &txdma->service_request);
1867 tx_ring->send_idx = 0;
1868 }
1869
1870 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1871 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1872 {
1873 /* Configure the JAGCore */
1874 et131x_configure_global_regs(adapter);
1875
1876 et1310_config_mac_regs1(adapter);
1877
1878 /* Configure the MMC registers */
1879 /* All we need to do is initialize the Memory Control Register */
1880 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1881
1882 et1310_config_rxmac_regs(adapter);
1883 et1310_config_txmac_regs(adapter);
1884
1885 et131x_config_rx_dma_regs(adapter);
1886 et131x_config_tx_dma_regs(adapter);
1887
1888 et1310_config_macstat_regs(adapter);
1889
1890 et1310_phy_power_switch(adapter, 0);
1891 et131x_xcvr_init(adapter);
1892 }
1893
1894 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1895 static void et131x_soft_reset(struct et131x_adapter *adapter)
1896 {
1897 u32 reg;
1898
1899 /* Disable MAC Core */
1900 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1901 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1902 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1903 writel(reg, &adapter->regs->mac.cfg1);
1904
1905 reg = ET_RESET_ALL;
1906 writel(reg, &adapter->regs->global.sw_reset);
1907
1908 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1909 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1910 writel(reg, &adapter->regs->mac.cfg1);
1911 writel(0, &adapter->regs->mac.cfg1);
1912 }
1913
1914 /* et131x_enable_interrupts - enable interrupt
1915 *
1916 * Enable the appropriate interrupts on the ET131x according to our
1917 * configuration
1918 */
1919 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1920 {
1921 u32 mask;
1922
1923 /* Enable all global interrupts */
1924 if (adapter->flowcontrol == FLOW_TXONLY ||
1925 adapter->flowcontrol == FLOW_BOTH)
1926 mask = INT_MASK_ENABLE;
1927 else
1928 mask = INT_MASK_ENABLE_NO_FLOW;
1929
1930 writel(mask, &adapter->regs->global.int_mask);
1931 }
1932
1933 /* et131x_disable_interrupts - interrupt disable
1934 *
1935 * Block all interrupts from the et131x device at the device itself
1936 */
1937 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1938 {
1939 /* Disable all global interrupts */
1940 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1941 }
1942
1943 /* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
1944 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1945 {
1946 /* Setup the tramsmit dma configuration register */
1947 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1948 &adapter->regs->txdma.csr);
1949 }
1950
1951 /* et131x_enable_txrx - Enable tx/rx queues */
1952 static void et131x_enable_txrx(struct net_device *netdev)
1953 {
1954 struct et131x_adapter *adapter = netdev_priv(netdev);
1955
1956 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1957 et131x_rx_dma_enable(adapter);
1958 et131x_tx_dma_enable(adapter);
1959
1960 /* Enable device interrupts */
1961 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1962 et131x_enable_interrupts(adapter);
1963
1964 /* We're ready to move some data, so start the queue */
1965 netif_start_queue(netdev);
1966 }
1967
1968 /* et131x_disable_txrx - Disable tx/rx queues */
1969 static void et131x_disable_txrx(struct net_device *netdev)
1970 {
1971 struct et131x_adapter *adapter = netdev_priv(netdev);
1972
1973 /* First thing is to stop the queue */
1974 netif_stop_queue(netdev);
1975
1976 /* Stop the Tx and Rx DMA engines */
1977 et131x_rx_dma_disable(adapter);
1978 et131x_tx_dma_disable(adapter);
1979
1980 /* Disable device interrupts */
1981 et131x_disable_interrupts(adapter);
1982 }
1983
1984 /* et131x_init_send - Initialize send data structures */
1985 static void et131x_init_send(struct et131x_adapter *adapter)
1986 {
1987 u32 ct;
1988 struct tx_ring *tx_ring = &adapter->tx_ring;
1989 struct tcb *tcb = tx_ring->tcb_ring;
1990
1991 tx_ring->tcb_qhead = tcb;
1992
1993 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1994
1995 /* Go through and set up each TCB */
1996 for (ct = 0; ct++ < NUM_TCB; tcb++)
1997 /* Set the link pointer in HW TCB to the next TCB in the
1998 * chain
1999 */
2000 tcb->next = tcb + 1;
2001
2002 /* Set the tail pointer */
2003 tcb--;
2004 tx_ring->tcb_qtail = tcb;
2005 tcb->next = NULL;
2006 /* Curr send queue should now be empty */
2007 tx_ring->send_head = NULL;
2008 tx_ring->send_tail = NULL;
2009 }
2010
2011 /* et1310_enable_phy_coma - called when network cable is unplugged
2012 *
2013 * driver receive an phy status change interrupt while in D0 and check that
2014 * phy_status is down.
2015 *
2016 * -- gate off JAGCore;
2017 * -- set gigE PHY in Coma mode
2018 * -- wake on phy_interrupt; Perform software reset JAGCore,
2019 * re-initialize jagcore and gigE PHY
2020 *
2021 * Add D0-ASPM-PhyLinkDown Support:
2022 * -- while in D0, when there is a phy_interrupt indicating phy link
2023 * down status, call the MPSetPhyComa routine to enter this active
2024 * state power saving mode
2025 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2026 * indicating linkup status, call the MPDisablePhyComa routine to
2027 * restore JAGCore and gigE PHY
2028 */
2029 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2030 {
2031 unsigned long flags;
2032 u32 pmcsr;
2033
2034 pmcsr = readl(&adapter->regs->global.pm_csr);
2035
2036 /* Save the GbE PHY speed and duplex modes. Need to restore this
2037 * when cable is plugged back in
2038 */
2039
2040 /* Stop sending packets. */
2041 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2042 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
2043 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2044
2045 /* Wait for outstanding Receive packets */
2046
2047 et131x_disable_txrx(adapter->netdev);
2048
2049 /* Gate off JAGCore 3 clock domains */
2050 pmcsr &= ~ET_PMCSR_INIT;
2051 writel(pmcsr, &adapter->regs->global.pm_csr);
2052
2053 /* Program gigE PHY in to Coma mode */
2054 pmcsr |= ET_PM_PHY_SW_COMA;
2055 writel(pmcsr, &adapter->regs->global.pm_csr);
2056 }
2057
2058 /* et1310_disable_phy_coma - Disable the Phy Coma Mode */
2059 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2060 {
2061 u32 pmcsr;
2062
2063 pmcsr = readl(&adapter->regs->global.pm_csr);
2064
2065 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2066 pmcsr |= ET_PMCSR_INIT;
2067 pmcsr &= ~ET_PM_PHY_SW_COMA;
2068 writel(pmcsr, &adapter->regs->global.pm_csr);
2069
2070 /* Restore the GbE PHY speed and duplex modes;
2071 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2072 */
2073
2074 /* Re-initialize the send structures */
2075 et131x_init_send(adapter);
2076
2077 /* Bring the device back to the state it was during init prior to
2078 * autonegotiation being complete. This way, when we get the auto-neg
2079 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2080 */
2081 et131x_soft_reset(adapter);
2082
2083 /* setup et1310 as per the documentation ?? */
2084 et131x_adapter_setup(adapter);
2085
2086 /* Allow Tx to restart */
2087 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
2088
2089 et131x_enable_txrx(adapter->netdev);
2090 }
2091
2092 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2093 {
2094 u32 tmp_free_buff_ring = *free_buff_ring;
2095
2096 tmp_free_buff_ring++;
2097 /* This works for all cases where limit < 1024. The 1023 case
2098 * works because 1023++ is 1024 which means the if condition is not
2099 * taken but the carry of the bit into the wrap bit toggles the wrap
2100 * value correctly
2101 */
2102 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2103 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2104 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2105 }
2106 /* For the 1023 case */
2107 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
2108 *free_buff_ring = tmp_free_buff_ring;
2109 return tmp_free_buff_ring;
2110 }
2111
2112 /* et131x_rx_dma_memory_alloc
2113 *
2114 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2115 * and the Packet Status Ring.
2116 */
2117 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2118 {
2119 u8 id;
2120 u32 i, j;
2121 u32 bufsize;
2122 u32 pktstat_ringsize;
2123 u32 fbr_chunksize;
2124 struct rx_ring *rx_ring = &adapter->rx_ring;
2125 struct fbr_lookup *fbr;
2126
2127 /* Alloc memory for the lookup table */
2128 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2129 if (rx_ring->fbr[0] == NULL)
2130 return -ENOMEM;
2131 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2132 if (rx_ring->fbr[1] == NULL)
2133 return -ENOMEM;
2134
2135 /* The first thing we will do is configure the sizes of the buffer
2136 * rings. These will change based on jumbo packet support. Larger
2137 * jumbo packets increases the size of each entry in FBR0, and the
2138 * number of entries in FBR0, while at the same time decreasing the
2139 * number of entries in FBR1.
2140 *
2141 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2142 * entries are huge in order to accommodate a "jumbo" frame, then it
2143 * will have less entries. Conversely, FBR1 will now be relied upon
2144 * to carry more "normal" frames, thus it's entry size also increases
2145 * and the number of entries goes up too (since it now carries
2146 * "small" + "regular" packets.
2147 *
2148 * In this scheme, we try to maintain 512 entries between the two
2149 * rings. Also, FBR1 remains a constant size - when it's size doubles
2150 * the number of entries halves. FBR0 increases in size, however.
2151 */
2152
2153 if (adapter->registry_jumbo_packet < 2048) {
2154 rx_ring->fbr[0]->buffsize = 256;
2155 rx_ring->fbr[0]->num_entries = 512;
2156 rx_ring->fbr[1]->buffsize = 2048;
2157 rx_ring->fbr[1]->num_entries = 512;
2158 } else if (adapter->registry_jumbo_packet < 4096) {
2159 rx_ring->fbr[0]->buffsize = 512;
2160 rx_ring->fbr[0]->num_entries = 1024;
2161 rx_ring->fbr[1]->buffsize = 4096;
2162 rx_ring->fbr[1]->num_entries = 512;
2163 } else {
2164 rx_ring->fbr[0]->buffsize = 1024;
2165 rx_ring->fbr[0]->num_entries = 768;
2166 rx_ring->fbr[1]->buffsize = 16384;
2167 rx_ring->fbr[1]->num_entries = 128;
2168 }
2169
2170 rx_ring->psr_num_entries = rx_ring->fbr[0]->num_entries +
2171 rx_ring->fbr[1]->num_entries;
2172
2173 for (id = 0; id < NUM_FBRS; id++) {
2174 fbr = rx_ring->fbr[id];
2175 /* Allocate an area of memory for Free Buffer Ring */
2176 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2177 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2178 bufsize,
2179 &fbr->ring_physaddr,
2180 GFP_KERNEL);
2181 if (!fbr->ring_virtaddr) {
2182 dev_err(&adapter->pdev->dev,
2183 "Cannot alloc memory for Free Buffer Ring %d\n", id);
2184 return -ENOMEM;
2185 }
2186 }
2187
2188 for (id = 0; id < NUM_FBRS; id++) {
2189 fbr = rx_ring->fbr[id];
2190 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
2191
2192 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
2193 dma_addr_t fbr_tmp_physaddr;
2194
2195 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
2196 &adapter->pdev->dev, fbr_chunksize,
2197 &fbr->mem_physaddrs[i],
2198 GFP_KERNEL);
2199
2200 if (!fbr->mem_virtaddrs[i]) {
2201 dev_err(&adapter->pdev->dev,
2202 "Could not alloc memory\n");
2203 return -ENOMEM;
2204 }
2205
2206 /* See NOTE in "Save Physical Address" comment above */
2207 fbr_tmp_physaddr = fbr->mem_physaddrs[i];
2208
2209 for (j = 0; j < FBR_CHUNKS; j++) {
2210 u32 index = (i * FBR_CHUNKS) + j;
2211
2212 /* Save the Virtual address of this index for
2213 * quick access later
2214 */
2215 fbr->virt[index] = (u8 *)fbr->mem_virtaddrs[i] +
2216 (j * fbr->buffsize);
2217
2218 /* now store the physical address in the
2219 * descriptor so the device can access it
2220 */
2221 fbr->bus_high[index] =
2222 upper_32_bits(fbr_tmp_physaddr);
2223 fbr->bus_low[index] =
2224 lower_32_bits(fbr_tmp_physaddr);
2225
2226 fbr_tmp_physaddr += fbr->buffsize;
2227 }
2228 }
2229 }
2230
2231 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2232 pktstat_ringsize =
2233 sizeof(struct pkt_stat_desc) * rx_ring->psr_num_entries;
2234
2235 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2236 pktstat_ringsize,
2237 &rx_ring->ps_ring_physaddr,
2238 GFP_KERNEL);
2239
2240 if (!rx_ring->ps_ring_virtaddr) {
2241 dev_err(&adapter->pdev->dev,
2242 "Cannot alloc memory for Packet Status Ring\n");
2243 return -ENOMEM;
2244 }
2245
2246 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2247 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2248 * are ever returned, make sure the high part is retrieved here before
2249 * storing the adjusted address.
2250 */
2251
2252 /* Allocate an area of memory for writeback of status information */
2253 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2254 sizeof(struct rx_status_block),
2255 &rx_ring->rx_status_bus,
2256 GFP_KERNEL);
2257 if (!rx_ring->rx_status_block) {
2258 dev_err(&adapter->pdev->dev,
2259 "Cannot alloc memory for Status Block\n");
2260 return -ENOMEM;
2261 }
2262 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2263
2264 /* The RFDs are going to be put on lists later on, so initialize the
2265 * lists now.
2266 */
2267 INIT_LIST_HEAD(&rx_ring->recv_list);
2268 return 0;
2269 }
2270
2271 /* et131x_rx_dma_memory_free - Free all memory allocated within this module */
2272 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2273 {
2274 u8 id;
2275 u32 index;
2276 u32 bufsize;
2277 u32 pktstat_ringsize;
2278 struct rfd *rfd;
2279 struct rx_ring *rx_ring = &adapter->rx_ring;
2280 struct fbr_lookup *fbr;
2281
2282 /* Free RFDs and associated packet descriptors */
2283 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2284
2285 while (!list_empty(&rx_ring->recv_list)) {
2286 rfd = list_entry(rx_ring->recv_list.next,
2287 struct rfd, list_node);
2288
2289 list_del(&rfd->list_node);
2290 rfd->skb = NULL;
2291 kfree(rfd);
2292 }
2293
2294 /* Free Free Buffer Rings */
2295 for (id = 0; id < NUM_FBRS; id++) {
2296 fbr = rx_ring->fbr[id];
2297
2298 if (!fbr || !fbr->ring_virtaddr)
2299 continue;
2300
2301 /* First the packet memory */
2302 for (index = 0;
2303 index < fbr->num_entries / FBR_CHUNKS;
2304 index++) {
2305 if (fbr->mem_virtaddrs[index]) {
2306 bufsize = fbr->buffsize * FBR_CHUNKS;
2307
2308 dma_free_coherent(&adapter->pdev->dev,
2309 bufsize,
2310 fbr->mem_virtaddrs[index],
2311 fbr->mem_physaddrs[index]);
2312
2313 fbr->mem_virtaddrs[index] = NULL;
2314 }
2315 }
2316
2317 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2318
2319 dma_free_coherent(&adapter->pdev->dev,
2320 bufsize,
2321 fbr->ring_virtaddr,
2322 fbr->ring_physaddr);
2323
2324 fbr->ring_virtaddr = NULL;
2325 }
2326
2327 /* Free Packet Status Ring */
2328 if (rx_ring->ps_ring_virtaddr) {
2329 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
2330 rx_ring->psr_num_entries;
2331
2332 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2333 rx_ring->ps_ring_virtaddr,
2334 rx_ring->ps_ring_physaddr);
2335
2336 rx_ring->ps_ring_virtaddr = NULL;
2337 }
2338
2339 /* Free area of memory for the writeback of status information */
2340 if (rx_ring->rx_status_block) {
2341 dma_free_coherent(&adapter->pdev->dev,
2342 sizeof(struct rx_status_block),
2343 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2344 rx_ring->rx_status_block = NULL;
2345 }
2346
2347 /* Free the FBR Lookup Table */
2348 kfree(rx_ring->fbr[0]);
2349 kfree(rx_ring->fbr[1]);
2350
2351 /* Reset Counters */
2352 rx_ring->num_ready_recv = 0;
2353 }
2354
2355 /* et131x_init_recv - Initialize receive data structures */
2356 static int et131x_init_recv(struct et131x_adapter *adapter)
2357 {
2358 struct rfd *rfd;
2359 u32 rfdct;
2360 struct rx_ring *rx_ring = &adapter->rx_ring;
2361
2362 /* Setup each RFD */
2363 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2364 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
2365 if (!rfd)
2366 return -ENOMEM;
2367
2368 rfd->skb = NULL;
2369
2370 /* Add this RFD to the recv_list */
2371 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2372
2373 /* Increment the available RFD's */
2374 rx_ring->num_ready_recv++;
2375 }
2376
2377 return 0;
2378 }
2379
2380 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2381 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2382 {
2383 struct phy_device *phydev = adapter->phydev;
2384
2385 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2386 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2387 */
2388 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2389 writel(0, &adapter->regs->rxdma.max_pkt_time);
2390 writel(1, &adapter->regs->rxdma.num_pkt_done);
2391 }
2392 }
2393
2394 /* NICReturnRFD - Recycle a RFD and put it back onto the receive list
2395 * @adapter: pointer to our adapter
2396 * @rfd: pointer to the RFD
2397 */
2398 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2399 {
2400 struct rx_ring *rx_local = &adapter->rx_ring;
2401 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2402 u16 buff_index = rfd->bufferindex;
2403 u8 ring_index = rfd->ringindex;
2404 unsigned long flags;
2405 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2406
2407 /* We don't use any of the OOB data besides status. Otherwise, we
2408 * need to clean up OOB data
2409 */
2410 if (buff_index < fbr->num_entries) {
2411 u32 free_buff_ring;
2412 u32 __iomem *offset;
2413 struct fbr_desc *next;
2414
2415 spin_lock_irqsave(&adapter->fbr_lock, flags);
2416
2417 if (ring_index == 0)
2418 offset = &rx_dma->fbr0_full_offset;
2419 else
2420 offset = &rx_dma->fbr1_full_offset;
2421
2422 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2423 INDEX10(fbr->local_full);
2424
2425 /* Handle the Free Buffer Ring advancement here. Write
2426 * the PA / Buffer Index for the returned buffer into
2427 * the oldest (next to be freed)FBR entry
2428 */
2429 next->addr_hi = fbr->bus_high[buff_index];
2430 next->addr_lo = fbr->bus_low[buff_index];
2431 next->word2 = buff_index;
2432
2433 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2434 fbr->num_entries - 1);
2435 writel(free_buff_ring, offset);
2436
2437 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2438 } else {
2439 dev_err(&adapter->pdev->dev,
2440 "%s illegal Buffer Index returned\n", __func__);
2441 }
2442
2443 /* The processing on this RFD is done, so put it back on the tail of
2444 * our list
2445 */
2446 spin_lock_irqsave(&adapter->rcv_lock, flags);
2447 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2448 rx_local->num_ready_recv++;
2449 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2450
2451 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2452 }
2453
2454 /* nic_rx_pkts - Checks the hardware for available packets
2455 *
2456 * Returns rfd, a pointer to our MPRFD.
2457 *
2458 * Checks the hardware for available packets, using completion ring
2459 * If packets are available, it gets an RFD from the recv_list, attaches
2460 * the packet to it, puts the RFD in the RecvPendList, and also returns
2461 * the pointer to the RFD.
2462 */
2463 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2464 {
2465 struct rx_ring *rx_local = &adapter->rx_ring;
2466 struct rx_status_block *status;
2467 struct pkt_stat_desc *psr;
2468 struct rfd *rfd;
2469 u32 i;
2470 u8 *buf;
2471 unsigned long flags;
2472 struct list_head *element;
2473 u8 ring_index;
2474 u16 buff_index;
2475 u32 len;
2476 u32 word0;
2477 u32 word1;
2478 struct sk_buff *skb;
2479 struct fbr_lookup *fbr;
2480
2481 /* RX Status block is written by the DMA engine prior to every
2482 * interrupt. It contains the next to be used entry in the Packet
2483 * Status Ring, and also the two Free Buffer rings.
2484 */
2485 status = rx_local->rx_status_block;
2486 word1 = status->word1 >> 16; /* Get the useful bits */
2487
2488 /* Check the PSR and wrap bits do not match */
2489 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2490 return NULL; /* Looks like this ring is not updated yet */
2491
2492 /* The packet status ring indicates that data is available. */
2493 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2494 (rx_local->local_psr_full & 0xFFF);
2495
2496 /* Grab any information that is required once the PSR is advanced,
2497 * since we can no longer rely on the memory being accurate
2498 */
2499 len = psr->word1 & 0xFFFF;
2500 ring_index = (psr->word1 >> 26) & 0x03;
2501 fbr = rx_local->fbr[ring_index];
2502 buff_index = (psr->word1 >> 16) & 0x3FF;
2503 word0 = psr->word0;
2504
2505 /* Indicate that we have used this PSR entry. */
2506 /* FIXME wrap 12 */
2507 add_12bit(&rx_local->local_psr_full, 1);
2508 if (
2509 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2510 /* Clear psr full and toggle the wrap bit */
2511 rx_local->local_psr_full &= ~0xFFF;
2512 rx_local->local_psr_full ^= 0x1000;
2513 }
2514
2515 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2516
2517 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2518 /* Illegal buffer or ring index cannot be used by S/W*/
2519 dev_err(&adapter->pdev->dev,
2520 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2521 rx_local->local_psr_full & 0xFFF, len, buff_index);
2522 return NULL;
2523 }
2524
2525 /* Get and fill the RFD. */
2526 spin_lock_irqsave(&adapter->rcv_lock, flags);
2527
2528 element = rx_local->recv_list.next;
2529 rfd = list_entry(element, struct rfd, list_node);
2530
2531 if (!rfd) {
2532 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2533 return NULL;
2534 }
2535
2536 list_del(&rfd->list_node);
2537 rx_local->num_ready_recv--;
2538
2539 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2540
2541 rfd->bufferindex = buff_index;
2542 rfd->ringindex = ring_index;
2543
2544 /* In V1 silicon, there is a bug which screws up filtering of runt
2545 * packets. Therefore runt packet filtering is disabled in the MAC and
2546 * the packets are dropped here. They are also counted here.
2547 */
2548 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2549 adapter->stats.rx_other_errs++;
2550 len = 0;
2551 }
2552
2553 if (len == 0) {
2554 rfd->len = 0;
2555 goto out;
2556 }
2557
2558 /* Determine if this is a multicast packet coming in */
2559 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2560 !(word0 & ALCATEL_BROADCAST_PKT)) {
2561 /* Promiscuous mode and Multicast mode are not mutually
2562 * exclusive as was first thought. I guess Promiscuous is just
2563 * considered a super-set of the other filters. Generally filter
2564 * is 0x2b when in promiscuous mode.
2565 */
2566 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2567 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2568 && !(adapter->packet_filter &
2569 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
2570 buf = fbr->virt[buff_index];
2571
2572 /* Loop through our list to see if the destination
2573 * address of this packet matches one in our list.
2574 */
2575 for (i = 0; i < adapter->multicast_addr_count; i++) {
2576 if (buf[0] == adapter->multicast_list[i][0]
2577 && buf[1] == adapter->multicast_list[i][1]
2578 && buf[2] == adapter->multicast_list[i][2]
2579 && buf[3] == adapter->multicast_list[i][3]
2580 && buf[4] == adapter->multicast_list[i][4]
2581 && buf[5] == adapter->multicast_list[i][5]) {
2582 break;
2583 }
2584 }
2585
2586 /* If our index is equal to the number of Multicast
2587 * address we have, then this means we did not find this
2588 * packet's matching address in our list. Set the len to
2589 * zero, so we free our RFD when we return from this
2590 * function.
2591 */
2592 if (i == adapter->multicast_addr_count)
2593 len = 0;
2594 }
2595
2596 if (len > 0)
2597 adapter->stats.multicast_pkts_rcvd++;
2598 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2599 adapter->stats.broadcast_pkts_rcvd++;
2600 } else {
2601 /* Not sure what this counter measures in promiscuous mode.
2602 * Perhaps we should check the MAC address to see if it is
2603 * directed to us in promiscuous mode.
2604 */
2605 adapter->stats.unicast_pkts_rcvd++;
2606 }
2607
2608 if (!len) {
2609 rfd->len = 0;
2610 goto out;
2611 }
2612
2613 rfd->len = len;
2614
2615 skb = dev_alloc_skb(rfd->len + 2);
2616 if (!skb) {
2617 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2618 return NULL;
2619 }
2620
2621 adapter->net_stats.rx_bytes += rfd->len;
2622
2623 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2624
2625 skb->protocol = eth_type_trans(skb, adapter->netdev);
2626 skb->ip_summed = CHECKSUM_NONE;
2627 netif_rx_ni(skb);
2628
2629 out:
2630 nic_return_rfd(adapter, rfd);
2631 return rfd;
2632 }
2633
2634 /* et131x_handle_recv_interrupt - Interrupt handler for receive processing
2635 *
2636 * Assumption, Rcv spinlock has been acquired.
2637 */
2638 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
2639 {
2640 struct rfd *rfd = NULL;
2641 u32 count = 0;
2642 bool done = true;
2643 struct rx_ring *rx_ring = &adapter->rx_ring;
2644
2645 /* Process up to available RFD's */
2646 while (count < NUM_PACKETS_HANDLED) {
2647 if (list_empty(&rx_ring->recv_list)) {
2648 WARN_ON(rx_ring->num_ready_recv != 0);
2649 done = false;
2650 break;
2651 }
2652
2653 rfd = nic_rx_pkts(adapter);
2654
2655 if (rfd == NULL)
2656 break;
2657
2658 /* Do not receive any packets until a filter has been set.
2659 * Do not receive any packets until we have link.
2660 * If length is zero, return the RFD in order to advance the
2661 * Free buffer ring.
2662 */
2663 if (!adapter->packet_filter ||
2664 !netif_carrier_ok(adapter->netdev) ||
2665 rfd->len == 0)
2666 continue;
2667
2668 /* Increment the number of packets we received */
2669 adapter->net_stats.rx_packets++;
2670
2671 /* Set the status on the packet, either resources or success */
2672 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2673 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2674
2675 count++;
2676 }
2677
2678 if (count == NUM_PACKETS_HANDLED || !done) {
2679 rx_ring->unfinished_receives = true;
2680 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2681 &adapter->regs->global.watchdog_timer);
2682 } else
2683 /* Watchdog timer will disable itself if appropriate. */
2684 rx_ring->unfinished_receives = false;
2685 }
2686
2687 /* et131x_tx_dma_memory_alloc
2688 *
2689 * Allocates memory that will be visible both to the device and to the CPU.
2690 * The OS will pass us packets, pointers to which we will insert in the Tx
2691 * Descriptor queue. The device will read this queue to find the packets in
2692 * memory. The device will update the "status" in memory each time it xmits a
2693 * packet.
2694 */
2695 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2696 {
2697 int desc_size = 0;
2698 struct tx_ring *tx_ring = &adapter->tx_ring;
2699
2700 /* Allocate memory for the TCB's (Transmit Control Block) */
2701 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2702 GFP_ATOMIC | GFP_DMA);
2703 if (!tx_ring->tcb_ring)
2704 return -ENOMEM;
2705
2706 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2707 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2708 desc_size,
2709 &tx_ring->tx_desc_ring_pa,
2710 GFP_KERNEL);
2711 if (!tx_ring->tx_desc_ring) {
2712 dev_err(&adapter->pdev->dev,
2713 "Cannot alloc memory for Tx Ring\n");
2714 return -ENOMEM;
2715 }
2716
2717 /* Save physical address
2718 *
2719 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2720 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2721 * are ever returned, make sure the high part is retrieved here before
2722 * storing the adjusted address.
2723 */
2724 /* Allocate memory for the Tx status block */
2725 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2726 sizeof(u32),
2727 &tx_ring->tx_status_pa,
2728 GFP_KERNEL);
2729 if (!tx_ring->tx_status_pa) {
2730 dev_err(&adapter->pdev->dev,
2731 "Cannot alloc memory for Tx status block\n");
2732 return -ENOMEM;
2733 }
2734 return 0;
2735 }
2736
2737 /* et131x_tx_dma_memory_free - Free all memory allocated within this module */
2738 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2739 {
2740 int desc_size = 0;
2741 struct tx_ring *tx_ring = &adapter->tx_ring;
2742
2743 if (tx_ring->tx_desc_ring) {
2744 /* Free memory relating to Tx rings here */
2745 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2746 dma_free_coherent(&adapter->pdev->dev,
2747 desc_size,
2748 tx_ring->tx_desc_ring,
2749 tx_ring->tx_desc_ring_pa);
2750 tx_ring->tx_desc_ring = NULL;
2751 }
2752
2753 /* Free memory for the Tx status block */
2754 if (tx_ring->tx_status) {
2755 dma_free_coherent(&adapter->pdev->dev,
2756 sizeof(u32),
2757 tx_ring->tx_status,
2758 tx_ring->tx_status_pa);
2759
2760 tx_ring->tx_status = NULL;
2761 }
2762 /* Free the memory for the tcb structures */
2763 kfree(tx_ring->tcb_ring);
2764 }
2765
2766 /* nic_send_packet - NIC specific send handler for version B silicon.
2767 * @adapter: pointer to our adapter
2768 * @tcb: pointer to struct tcb
2769 */
2770 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2771 {
2772 u32 i;
2773 struct tx_desc desc[24]; /* 24 x 16 byte */
2774 u32 frag = 0;
2775 u32 thiscopy, remainder;
2776 struct sk_buff *skb = tcb->skb;
2777 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2778 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2779 unsigned long flags;
2780 struct phy_device *phydev = adapter->phydev;
2781 dma_addr_t dma_addr;
2782 struct tx_ring *tx_ring = &adapter->tx_ring;
2783
2784 /* Part of the optimizations of this send routine restrict us to
2785 * sending 24 fragments at a pass. In practice we should never see
2786 * more than 5 fragments.
2787 *
2788 * NOTE: The older version of this function (below) can handle any
2789 * number of fragments. If needed, we can call this function,
2790 * although it is less efficient.
2791 */
2792
2793 /* nr_frags should be no more than 18. */
2794 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2795
2796 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2797
2798 for (i = 0; i < nr_frags; i++) {
2799 /* If there is something in this element, lets get a
2800 * descriptor from the ring and get the necessary data
2801 */
2802 if (i == 0) {
2803 /* If the fragments are smaller than a standard MTU,
2804 * then map them to a single descriptor in the Tx
2805 * Desc ring. However, if they're larger, as is
2806 * possible with support for jumbo packets, then
2807 * split them each across 2 descriptors.
2808 *
2809 * This will work until we determine why the hardware
2810 * doesn't seem to like large fragments.
2811 */
2812 if (skb_headlen(skb) <= 1514) {
2813 /* Low 16bits are length, high is vlan and
2814 * unused currently so zero
2815 */
2816 desc[frag].len_vlan = skb_headlen(skb);
2817 dma_addr = dma_map_single(&adapter->pdev->dev,
2818 skb->data,
2819 skb_headlen(skb),
2820 DMA_TO_DEVICE);
2821 desc[frag].addr_lo = lower_32_bits(dma_addr);
2822 desc[frag].addr_hi = upper_32_bits(dma_addr);
2823 frag++;
2824 } else {
2825 desc[frag].len_vlan = skb_headlen(skb) / 2;
2826 dma_addr = dma_map_single(&adapter->pdev->dev,
2827 skb->data,
2828 (skb_headlen(skb) / 2),
2829 DMA_TO_DEVICE);
2830 desc[frag].addr_lo = lower_32_bits(dma_addr);
2831 desc[frag].addr_hi = upper_32_bits(dma_addr);
2832 frag++;
2833
2834 desc[frag].len_vlan = skb_headlen(skb) / 2;
2835 dma_addr = dma_map_single(&adapter->pdev->dev,
2836 skb->data +
2837 (skb_headlen(skb) / 2),
2838 (skb_headlen(skb) / 2),
2839 DMA_TO_DEVICE);
2840 desc[frag].addr_lo = lower_32_bits(dma_addr);
2841 desc[frag].addr_hi = upper_32_bits(dma_addr);
2842 frag++;
2843 }
2844 } else {
2845 desc[frag].len_vlan = frags[i - 1].size;
2846 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2847 &frags[i - 1],
2848 0,
2849 frags[i - 1].size,
2850 DMA_TO_DEVICE);
2851 desc[frag].addr_lo = lower_32_bits(dma_addr);
2852 desc[frag].addr_hi = upper_32_bits(dma_addr);
2853 frag++;
2854 }
2855 }
2856
2857 if (phydev && phydev->speed == SPEED_1000) {
2858 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2859 /* Last element & Interrupt flag */
2860 desc[frag - 1].flags =
2861 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2862 tx_ring->since_irq = 0;
2863 } else { /* Last element */
2864 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2865 }
2866 } else
2867 desc[frag - 1].flags =
2868 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2869
2870 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2871
2872 tcb->index_start = tx_ring->send_idx;
2873 tcb->stale = 0;
2874
2875 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2876
2877 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2878
2879 if (thiscopy >= frag) {
2880 remainder = 0;
2881 thiscopy = frag;
2882 } else {
2883 remainder = frag - thiscopy;
2884 }
2885
2886 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2887 desc,
2888 sizeof(struct tx_desc) * thiscopy);
2889
2890 add_10bit(&tx_ring->send_idx, thiscopy);
2891
2892 if (INDEX10(tx_ring->send_idx) == 0 ||
2893 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2894 tx_ring->send_idx &= ~ET_DMA10_MASK;
2895 tx_ring->send_idx ^= ET_DMA10_WRAP;
2896 }
2897
2898 if (remainder) {
2899 memcpy(tx_ring->tx_desc_ring,
2900 desc + thiscopy,
2901 sizeof(struct tx_desc) * remainder);
2902
2903 add_10bit(&tx_ring->send_idx, remainder);
2904 }
2905
2906 if (INDEX10(tx_ring->send_idx) == 0) {
2907 if (tx_ring->send_idx)
2908 tcb->index = NUM_DESC_PER_RING_TX - 1;
2909 else
2910 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2911 } else
2912 tcb->index = tx_ring->send_idx - 1;
2913
2914 spin_lock(&adapter->tcb_send_qlock);
2915
2916 if (tx_ring->send_tail)
2917 tx_ring->send_tail->next = tcb;
2918 else
2919 tx_ring->send_head = tcb;
2920
2921 tx_ring->send_tail = tcb;
2922
2923 WARN_ON(tcb->next != NULL);
2924
2925 tx_ring->used++;
2926
2927 spin_unlock(&adapter->tcb_send_qlock);
2928
2929 /* Write the new write pointer back to the device. */
2930 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2931
2932 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2933 * timer to wake us up if this packet isn't followed by N more.
2934 */
2935 if (phydev && phydev->speed == SPEED_1000) {
2936 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2937 &adapter->regs->global.watchdog_timer);
2938 }
2939 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2940
2941 return 0;
2942 }
2943
2944 /* send_packet - Do the work to send a packet
2945 *
2946 * Assumption: Send spinlock has been acquired
2947 */
2948 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2949 {
2950 int status;
2951 struct tcb *tcb;
2952 u16 *shbufva;
2953 unsigned long flags;
2954 struct tx_ring *tx_ring = &adapter->tx_ring;
2955
2956 /* All packets must have at least a MAC address and a protocol type */
2957 if (skb->len < ETH_HLEN)
2958 return -EIO;
2959
2960 /* Get a TCB for this packet */
2961 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2962
2963 tcb = tx_ring->tcb_qhead;
2964
2965 if (tcb == NULL) {
2966 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2967 return -ENOMEM;
2968 }
2969
2970 tx_ring->tcb_qhead = tcb->next;
2971
2972 if (tx_ring->tcb_qhead == NULL)
2973 tx_ring->tcb_qtail = NULL;
2974
2975 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2976
2977 tcb->skb = skb;
2978
2979 if (skb->data != NULL && skb_headlen(skb) >= 6) {
2980 shbufva = (u16 *) skb->data;
2981
2982 if ((shbufva[0] == 0xffff) &&
2983 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
2984 tcb->flags |= FMP_DEST_BROAD;
2985 else if ((shbufva[0] & 0x3) == 0x0001)
2986 tcb->flags |= FMP_DEST_MULTI;
2987 }
2988
2989 tcb->next = NULL;
2990
2991 /* Call the NIC specific send handler. */
2992 status = nic_send_packet(adapter, tcb);
2993
2994 if (status != 0) {
2995 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2996
2997 if (tx_ring->tcb_qtail)
2998 tx_ring->tcb_qtail->next = tcb;
2999 else
3000 /* Apparently ready Q is empty. */
3001 tx_ring->tcb_qhead = tcb;
3002
3003 tx_ring->tcb_qtail = tcb;
3004 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3005 return status;
3006 }
3007 WARN_ON(tx_ring->used > NUM_TCB);
3008 return 0;
3009 }
3010
3011 /* et131x_send_packets - This function is called by the OS to send packets */
3012 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3013 {
3014 int status = 0;
3015 struct et131x_adapter *adapter = netdev_priv(netdev);
3016 struct tx_ring *tx_ring = &adapter->tx_ring;
3017
3018 /* Send these packets
3019 *
3020 * NOTE: The Linux Tx entry point is only given one packet at a time
3021 * to Tx, so the PacketCount and it's array used makes no sense here
3022 */
3023
3024 /* TCB is not available */
3025 if (tx_ring->used >= NUM_TCB) {
3026 /* NOTE: If there's an error on send, no need to queue the
3027 * packet under Linux; if we just send an error up to the
3028 * netif layer, it will resend the skb to us.
3029 */
3030 status = -ENOMEM;
3031 } else {
3032 /* We need to see if the link is up; if it's not, make the
3033 * netif layer think we're good and drop the packet
3034 */
3035 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3036 !netif_carrier_ok(netdev)) {
3037 dev_kfree_skb_any(skb);
3038 skb = NULL;
3039
3040 adapter->net_stats.tx_dropped++;
3041 } else {
3042 status = send_packet(skb, adapter);
3043 if (status != 0 && status != -ENOMEM) {
3044 /* On any other error, make netif think we're
3045 * OK and drop the packet
3046 */
3047 dev_kfree_skb_any(skb);
3048 skb = NULL;
3049 adapter->net_stats.tx_dropped++;
3050 }
3051 }
3052 }
3053 return status;
3054 }
3055
3056 /* free_send_packet - Recycle a struct tcb
3057 * @adapter: pointer to our adapter
3058 * @tcb: pointer to struct tcb
3059 *
3060 * Complete the packet if necessary
3061 * Assumption - Send spinlock has been acquired
3062 */
3063 static inline void free_send_packet(struct et131x_adapter *adapter,
3064 struct tcb *tcb)
3065 {
3066 unsigned long flags;
3067 struct tx_desc *desc = NULL;
3068 struct net_device_stats *stats = &adapter->net_stats;
3069 struct tx_ring *tx_ring = &adapter->tx_ring;
3070 u64 dma_addr;
3071
3072 if (tcb->flags & FMP_DEST_BROAD)
3073 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3074 else if (tcb->flags & FMP_DEST_MULTI)
3075 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3076 else
3077 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3078
3079 if (tcb->skb) {
3080 stats->tx_bytes += tcb->skb->len;
3081
3082 /* Iterate through the TX descriptors on the ring
3083 * corresponding to this packet and umap the fragments
3084 * they point to
3085 */
3086 do {
3087 desc = tx_ring->tx_desc_ring +
3088 INDEX10(tcb->index_start);
3089
3090 dma_addr = desc->addr_lo;
3091 dma_addr |= (u64)desc->addr_hi << 32;
3092
3093 dma_unmap_single(&adapter->pdev->dev,
3094 dma_addr,
3095 desc->len_vlan, DMA_TO_DEVICE);
3096
3097 add_10bit(&tcb->index_start, 1);
3098 if (INDEX10(tcb->index_start) >=
3099 NUM_DESC_PER_RING_TX) {
3100 tcb->index_start &= ~ET_DMA10_MASK;
3101 tcb->index_start ^= ET_DMA10_WRAP;
3102 }
3103 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
3104
3105 dev_kfree_skb_any(tcb->skb);
3106 }
3107
3108 memset(tcb, 0, sizeof(struct tcb));
3109
3110 /* Add the TCB to the Ready Q */
3111 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3112
3113 adapter->net_stats.tx_packets++;
3114
3115 if (tx_ring->tcb_qtail)
3116 tx_ring->tcb_qtail->next = tcb;
3117 else
3118 /* Apparently ready Q is empty. */
3119 tx_ring->tcb_qhead = tcb;
3120
3121 tx_ring->tcb_qtail = tcb;
3122
3123 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3124 WARN_ON(tx_ring->used < 0);
3125 }
3126
3127 /* et131x_free_busy_send_packets - Free and complete the stopped active sends
3128 *
3129 * Assumption - Send spinlock has been acquired
3130 */
3131 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3132 {
3133 struct tcb *tcb;
3134 unsigned long flags;
3135 u32 freed = 0;
3136 struct tx_ring *tx_ring = &adapter->tx_ring;
3137
3138 /* Any packets being sent? Check the first TCB on the send list */
3139 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3140
3141 tcb = tx_ring->send_head;
3142
3143 while (tcb != NULL && freed < NUM_TCB) {
3144 struct tcb *next = tcb->next;
3145
3146 tx_ring->send_head = next;
3147
3148 if (next == NULL)
3149 tx_ring->send_tail = NULL;
3150
3151 tx_ring->used--;
3152
3153 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3154
3155 freed++;
3156 free_send_packet(adapter, tcb);
3157
3158 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3159
3160 tcb = tx_ring->send_head;
3161 }
3162
3163 WARN_ON(freed == NUM_TCB);
3164
3165 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3166
3167 tx_ring->used = 0;
3168 }
3169
3170 /* et131x_handle_send_interrupt - Interrupt handler for sending processing
3171 *
3172 * Re-claim the send resources, complete sends and get more to send from
3173 * the send wait queue.
3174 *
3175 * Assumption - Send spinlock has been acquired
3176 */
3177 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3178 {
3179 unsigned long flags;
3180 u32 serviced;
3181 struct tcb *tcb;
3182 u32 index;
3183 struct tx_ring *tx_ring = &adapter->tx_ring;
3184
3185 serviced = readl(&adapter->regs->txdma.new_service_complete);
3186 index = INDEX10(serviced);
3187
3188 /* Has the ring wrapped? Process any descriptors that do not have
3189 * the same "wrap" indicator as the current completion indicator
3190 */
3191 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3192
3193 tcb = tx_ring->send_head;
3194
3195 while (tcb &&
3196 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3197 index < INDEX10(tcb->index)) {
3198 tx_ring->used--;
3199 tx_ring->send_head = tcb->next;
3200 if (tcb->next == NULL)
3201 tx_ring->send_tail = NULL;
3202
3203 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3204 free_send_packet(adapter, tcb);
3205 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3206
3207 /* Goto the next packet */
3208 tcb = tx_ring->send_head;
3209 }
3210 while (tcb &&
3211 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3212 && index > (tcb->index & ET_DMA10_MASK)) {
3213 tx_ring->used--;
3214 tx_ring->send_head = tcb->next;
3215 if (tcb->next == NULL)
3216 tx_ring->send_tail = NULL;
3217
3218 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3219 free_send_packet(adapter, tcb);
3220 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3221
3222 /* Goto the next packet */
3223 tcb = tx_ring->send_head;
3224 }
3225
3226 /* Wake up the queue when we hit a low-water mark */
3227 if (tx_ring->used <= NUM_TCB / 3)
3228 netif_wake_queue(adapter->netdev);
3229
3230 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3231 }
3232
3233 static int et131x_get_settings(struct net_device *netdev,
3234 struct ethtool_cmd *cmd)
3235 {
3236 struct et131x_adapter *adapter = netdev_priv(netdev);
3237
3238 return phy_ethtool_gset(adapter->phydev, cmd);
3239 }
3240
3241 static int et131x_set_settings(struct net_device *netdev,
3242 struct ethtool_cmd *cmd)
3243 {
3244 struct et131x_adapter *adapter = netdev_priv(netdev);
3245
3246 return phy_ethtool_sset(adapter->phydev, cmd);
3247 }
3248
3249 static int et131x_get_regs_len(struct net_device *netdev)
3250 {
3251 #define ET131X_REGS_LEN 256
3252 return ET131X_REGS_LEN * sizeof(u32);
3253 }
3254
3255 static void et131x_get_regs(struct net_device *netdev,
3256 struct ethtool_regs *regs, void *regs_data)
3257 {
3258 struct et131x_adapter *adapter = netdev_priv(netdev);
3259 struct address_map __iomem *aregs = adapter->regs;
3260 u32 *regs_buff = regs_data;
3261 u32 num = 0;
3262 u16 tmp;
3263
3264 memset(regs_data, 0, et131x_get_regs_len(netdev));
3265
3266 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3267 adapter->pdev->device;
3268
3269 /* PHY regs */
3270 et131x_mii_read(adapter, MII_BMCR, &tmp);
3271 regs_buff[num++] = tmp;
3272 et131x_mii_read(adapter, MII_BMSR, &tmp);
3273 regs_buff[num++] = tmp;
3274 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3275 regs_buff[num++] = tmp;
3276 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3277 regs_buff[num++] = tmp;
3278 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3279 regs_buff[num++] = tmp;
3280 et131x_mii_read(adapter, MII_LPA, &tmp);
3281 regs_buff[num++] = tmp;
3282 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3283 regs_buff[num++] = tmp;
3284 /* Autoneg next page transmit reg */
3285 et131x_mii_read(adapter, 0x07, &tmp);
3286 regs_buff[num++] = tmp;
3287 /* Link partner next page reg */
3288 et131x_mii_read(adapter, 0x08, &tmp);
3289 regs_buff[num++] = tmp;
3290 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3291 regs_buff[num++] = tmp;
3292 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3293 regs_buff[num++] = tmp;
3294 et131x_mii_read(adapter, 0x0b, &tmp);
3295 regs_buff[num++] = tmp;
3296 et131x_mii_read(adapter, 0x0c, &tmp);
3297 regs_buff[num++] = tmp;
3298 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3299 regs_buff[num++] = tmp;
3300 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3301 regs_buff[num++] = tmp;
3302 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3303 regs_buff[num++] = tmp;
3304
3305 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3306 regs_buff[num++] = tmp;
3307 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3308 regs_buff[num++] = tmp;
3309 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3310 regs_buff[num++] = tmp;
3311 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3312 regs_buff[num++] = tmp;
3313 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3314 regs_buff[num++] = tmp;
3315
3316 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3317 regs_buff[num++] = tmp;
3318 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3319 regs_buff[num++] = tmp;
3320 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3321 regs_buff[num++] = tmp;
3322 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3323 regs_buff[num++] = tmp;
3324 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3325 regs_buff[num++] = tmp;
3326 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3327 regs_buff[num++] = tmp;
3328 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3329 regs_buff[num++] = tmp;
3330 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3331 regs_buff[num++] = tmp;
3332
3333 /* Global regs */
3334 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3335 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3336 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3337 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3338 regs_buff[num++] = readl(&aregs->global.pm_csr);
3339 regs_buff[num++] = adapter->stats.interrupt_status;
3340 regs_buff[num++] = readl(&aregs->global.int_mask);
3341 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3342 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3343 regs_buff[num++] = readl(&aregs->global.sw_reset);
3344 regs_buff[num++] = readl(&aregs->global.slv_timer);
3345 regs_buff[num++] = readl(&aregs->global.msi_config);
3346 regs_buff[num++] = readl(&aregs->global.loopback);
3347 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3348
3349 /* TXDMA regs */
3350 regs_buff[num++] = readl(&aregs->txdma.csr);
3351 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3352 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3353 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3354 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3355 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3356 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3357 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3358 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3359 regs_buff[num++] = readl(&aregs->txdma.service_request);
3360 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3361 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3362 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3363 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3364 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3365 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3366 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3367 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3368 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3369 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3370 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3371 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3372 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3373 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3374 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3375 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3376
3377 /* RXDMA regs */
3378 regs_buff[num++] = readl(&aregs->rxdma.csr);
3379 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3380 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3381 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3382 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3383 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3384 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3385 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3386 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3387 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3388 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3389 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3390 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3391 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3392 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3393 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3394 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3395 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3396 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3397 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3398 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3399 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3400 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3401 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3402 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3403 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3404 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3405 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3406 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3407 }
3408
3409 static void et131x_get_drvinfo(struct net_device *netdev,
3410 struct ethtool_drvinfo *info)
3411 {
3412 struct et131x_adapter *adapter = netdev_priv(netdev);
3413
3414 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3415 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3416 strlcpy(info->bus_info, pci_name(adapter->pdev),
3417 sizeof(info->bus_info));
3418 }
3419
3420 static struct ethtool_ops et131x_ethtool_ops = {
3421 .get_settings = et131x_get_settings,
3422 .set_settings = et131x_set_settings,
3423 .get_drvinfo = et131x_get_drvinfo,
3424 .get_regs_len = et131x_get_regs_len,
3425 .get_regs = et131x_get_regs,
3426 .get_link = ethtool_op_get_link,
3427 };
3428
3429 /* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
3430 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3431 {
3432 /* If have our default mac from init and no mac address from
3433 * EEPROM then we need to generate the last octet and set it on the
3434 * device
3435 */
3436 if (is_zero_ether_addr(adapter->rom_addr)) {
3437 /* We need to randomly generate the last octet so we
3438 * decrease our chances of setting the mac address to
3439 * same as another one of our cards in the system
3440 */
3441 get_random_bytes(&adapter->addr[5], 1);
3442 /* We have the default value in the register we are
3443 * working with so we need to copy the current
3444 * address into the permanent address
3445 */
3446 memcpy(adapter->rom_addr,
3447 adapter->addr, ETH_ALEN);
3448 } else {
3449 /* We do not have an override address, so set the
3450 * current address to the permanent address and add
3451 * it to the device
3452 */
3453 memcpy(adapter->addr,
3454 adapter->rom_addr, ETH_ALEN);
3455 }
3456 }
3457
3458 /* et131x_pci_init - initial PCI setup
3459 *
3460 * Perform the initial setup of PCI registers and if possible initialise
3461 * the MAC address. At this point the I/O registers have yet to be mapped
3462 */
3463 static int et131x_pci_init(struct et131x_adapter *adapter,
3464 struct pci_dev *pdev)
3465 {
3466 u16 max_payload;
3467 int i, rc;
3468
3469 rc = et131x_init_eeprom(adapter);
3470 if (rc < 0)
3471 goto out;
3472
3473 if (!pci_is_pcie(pdev)) {
3474 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3475 goto err_out;
3476 }
3477
3478 /* Let's set up the PORT LOGIC Register. */
3479
3480 /* Program the Ack/Nak latency and replay timers */
3481 max_payload = pdev->pcie_mpss;
3482
3483 if (max_payload < 2) {
3484 static const u16 acknak[2] = { 0x76, 0xD0 };
3485 static const u16 replay[2] = { 0x1E0, 0x2ED };
3486
3487 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3488 acknak[max_payload])) {
3489 dev_err(&pdev->dev,
3490 "Could not write PCI config space for ACK/NAK\n");
3491 goto err_out;
3492 }
3493 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3494 replay[max_payload])) {
3495 dev_err(&pdev->dev,
3496 "Could not write PCI config space for Replay Timer\n");
3497 goto err_out;
3498 }
3499 }
3500
3501 /* l0s and l1 latency timers. We are using default values.
3502 * Representing 001 for L0s and 010 for L1
3503 */
3504 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3505 dev_err(&pdev->dev,
3506 "Could not write PCI config space for Latency Timers\n");
3507 goto err_out;
3508 }
3509
3510 /* Change the max read size to 2k */
3511 if (pcie_set_readrq(pdev, 2048)) {
3512 dev_err(&pdev->dev,
3513 "Couldn't change PCI config space for Max read size\n");
3514 goto err_out;
3515 }
3516
3517 /* Get MAC address from config space if an eeprom exists, otherwise
3518 * the MAC address there will not be valid
3519 */
3520 if (!adapter->has_eeprom) {
3521 et131x_hwaddr_init(adapter);
3522 return 0;
3523 }
3524
3525 for (i = 0; i < ETH_ALEN; i++) {
3526 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3527 adapter->rom_addr + i)) {
3528 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3529 goto err_out;
3530 }
3531 }
3532 ether_addr_copy(adapter->addr, adapter->rom_addr);
3533 out:
3534 return rc;
3535 err_out:
3536 rc = -EIO;
3537 goto out;
3538 }
3539
3540 /* et131x_error_timer_handler
3541 * @data: timer-specific variable; here a pointer to our adapter structure
3542 *
3543 * The routine called when the error timer expires, to track the number of
3544 * recurring errors.
3545 */
3546 static void et131x_error_timer_handler(unsigned long data)
3547 {
3548 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3549 struct phy_device *phydev = adapter->phydev;
3550
3551 if (et1310_in_phy_coma(adapter)) {
3552 /* Bring the device immediately out of coma, to
3553 * prevent it from sleeping indefinitely, this
3554 * mechanism could be improved!
3555 */
3556 et1310_disable_phy_coma(adapter);
3557 adapter->boot_coma = 20;
3558 } else {
3559 et1310_update_macstat_host_counters(adapter);
3560 }
3561
3562 if (!phydev->link && adapter->boot_coma < 11)
3563 adapter->boot_coma++;
3564
3565 if (adapter->boot_coma == 10) {
3566 if (!phydev->link) {
3567 if (!et1310_in_phy_coma(adapter)) {
3568 /* NOTE - This was originally a 'sync with
3569 * interrupt'. How to do that under Linux?
3570 */
3571 et131x_enable_interrupts(adapter);
3572 et1310_enable_phy_coma(adapter);
3573 }
3574 }
3575 }
3576
3577 /* This is a periodic timer, so reschedule */
3578 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
3579 }
3580
3581 /* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
3582 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3583 {
3584 et131x_tx_dma_memory_free(adapter);
3585 et131x_rx_dma_memory_free(adapter);
3586 }
3587
3588 /* et131x_adapter_memory_alloc
3589 * Allocate all the memory blocks for send, receive and others.
3590 */
3591 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3592 {
3593 int status;
3594
3595 /* Allocate memory for the Tx Ring */
3596 status = et131x_tx_dma_memory_alloc(adapter);
3597 if (status) {
3598 dev_err(&adapter->pdev->dev,
3599 "et131x_tx_dma_memory_alloc FAILED\n");
3600 et131x_tx_dma_memory_free(adapter);
3601 return status;
3602 }
3603 /* Receive buffer memory allocation */
3604 status = et131x_rx_dma_memory_alloc(adapter);
3605 if (status) {
3606 dev_err(&adapter->pdev->dev,
3607 "et131x_rx_dma_memory_alloc FAILED\n");
3608 et131x_adapter_memory_free(adapter);
3609 return status;
3610 }
3611
3612 /* Init receive data structures */
3613 status = et131x_init_recv(adapter);
3614 if (status) {
3615 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3616 et131x_adapter_memory_free(adapter);
3617 }
3618 return status;
3619 }
3620
3621 static void et131x_adjust_link(struct net_device *netdev)
3622 {
3623 struct et131x_adapter *adapter = netdev_priv(netdev);
3624 struct phy_device *phydev = adapter->phydev;
3625
3626 if (!phydev)
3627 return;
3628 if (phydev->link == adapter->link)
3629 return;
3630
3631 /* Check to see if we are in coma mode and if
3632 * so, disable it because we will not be able
3633 * to read PHY values until we are out.
3634 */
3635 if (et1310_in_phy_coma(adapter))
3636 et1310_disable_phy_coma(adapter);
3637
3638 adapter->link = phydev->link;
3639 phy_print_status(phydev);
3640
3641 if (phydev->link) {
3642 adapter->boot_coma = 20;
3643 if (phydev->speed == SPEED_10) {
3644 u16 register18;
3645
3646 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3647 &register18);
3648 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3649 register18 | 0x4);
3650 et131x_mii_write(adapter, PHY_INDEX_REG,
3651 register18 | 0x8402);
3652 et131x_mii_write(adapter, PHY_DATA_REG,
3653 register18 | 511);
3654 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3655 register18);
3656 }
3657
3658 et1310_config_flow_control(adapter);
3659
3660 if (phydev->speed == SPEED_1000 &&
3661 adapter->registry_jumbo_packet > 2048) {
3662 u16 reg;
3663
3664 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3665 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3666 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3667 et131x_mii_write(adapter, PHY_CONFIG, reg);
3668 }
3669
3670 et131x_set_rx_dma_timer(adapter);
3671 et1310_config_mac_regs2(adapter);
3672 } else {
3673 adapter->boot_coma = 0;
3674
3675 if (phydev->speed == SPEED_10) {
3676 u16 register18;
3677
3678 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3679 &register18);
3680 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3681 register18 | 0x4);
3682 et131x_mii_write(adapter, PHY_INDEX_REG,
3683 register18 | 0x8402);
3684 et131x_mii_write(adapter, PHY_DATA_REG,
3685 register18 | 511);
3686 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3687 register18);
3688 }
3689
3690 /* Free the packets being actively sent & stopped */
3691 et131x_free_busy_send_packets(adapter);
3692
3693 /* Re-initialize the send structures */
3694 et131x_init_send(adapter);
3695
3696 /* Bring the device back to the state it was during
3697 * init prior to autonegotiation being complete. This
3698 * way, when we get the auto-neg complete interrupt,
3699 * we can complete init by calling config_mac_regs2.
3700 */
3701 et131x_soft_reset(adapter);
3702
3703 /* Setup ET1310 as per the documentation */
3704 et131x_adapter_setup(adapter);
3705
3706 /* perform reset of tx/rx */
3707 et131x_disable_txrx(netdev);
3708 et131x_enable_txrx(netdev);
3709 }
3710 }
3711
3712 static int et131x_mii_probe(struct net_device *netdev)
3713 {
3714 struct et131x_adapter *adapter = netdev_priv(netdev);
3715 struct phy_device *phydev = NULL;
3716
3717 phydev = phy_find_first(adapter->mii_bus);
3718 if (!phydev) {
3719 dev_err(&adapter->pdev->dev, "no PHY found\n");
3720 return -ENODEV;
3721 }
3722
3723 phydev = phy_connect(netdev, dev_name(&phydev->dev),
3724 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3725
3726 if (IS_ERR(phydev)) {
3727 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3728 return PTR_ERR(phydev);
3729 }
3730
3731 phydev->supported &= (SUPPORTED_10baseT_Half
3732 | SUPPORTED_10baseT_Full
3733 | SUPPORTED_100baseT_Half
3734 | SUPPORTED_100baseT_Full
3735 | SUPPORTED_Autoneg
3736 | SUPPORTED_MII
3737 | SUPPORTED_TP);
3738
3739 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3740 phydev->supported |= SUPPORTED_1000baseT_Full;
3741
3742 phydev->advertising = phydev->supported;
3743 adapter->phydev = phydev;
3744
3745 dev_info(&adapter->pdev->dev,
3746 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3747 phydev->drv->name, dev_name(&phydev->dev));
3748
3749 return 0;
3750 }
3751
3752 /* et131x_adapter_init
3753 *
3754 * Initialize the data structures for the et131x_adapter object and link
3755 * them together with the platform provided device structures.
3756 */
3757 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3758 struct pci_dev *pdev)
3759 {
3760 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3761
3762 struct et131x_adapter *adapter;
3763
3764 /* Allocate private adapter struct and copy in relevant information */
3765 adapter = netdev_priv(netdev);
3766 adapter->pdev = pci_dev_get(pdev);
3767 adapter->netdev = netdev;
3768
3769 /* Initialize spinlocks here */
3770 spin_lock_init(&adapter->tcb_send_qlock);
3771 spin_lock_init(&adapter->tcb_ready_qlock);
3772 spin_lock_init(&adapter->send_hw_lock);
3773 spin_lock_init(&adapter->rcv_lock);
3774 spin_lock_init(&adapter->fbr_lock);
3775
3776 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3777
3778 /* Set the MAC address to a default */
3779 ether_addr_copy(adapter->addr, default_mac);
3780
3781 return adapter;
3782 }
3783
3784 /* et131x_pci_remove
3785 *
3786 * Registered in the pci_driver structure, this function is called when the
3787 * PCI subsystem detects that a PCI device which matches the information
3788 * contained in the pci_device_id table has been removed.
3789 */
3790 static void et131x_pci_remove(struct pci_dev *pdev)
3791 {
3792 struct net_device *netdev = pci_get_drvdata(pdev);
3793 struct et131x_adapter *adapter = netdev_priv(netdev);
3794
3795 unregister_netdev(netdev);
3796 phy_disconnect(adapter->phydev);
3797 mdiobus_unregister(adapter->mii_bus);
3798 cancel_work_sync(&adapter->task);
3799 kfree(adapter->mii_bus->irq);
3800 mdiobus_free(adapter->mii_bus);
3801
3802 et131x_adapter_memory_free(adapter);
3803 iounmap(adapter->regs);
3804 pci_dev_put(pdev);
3805
3806 free_netdev(netdev);
3807 pci_release_regions(pdev);
3808 pci_disable_device(pdev);
3809 }
3810
3811 /* et131x_up - Bring up a device for use. */
3812 static void et131x_up(struct net_device *netdev)
3813 {
3814 struct et131x_adapter *adapter = netdev_priv(netdev);
3815
3816 et131x_enable_txrx(netdev);
3817 phy_start(adapter->phydev);
3818 }
3819
3820 /* et131x_down - Bring down the device */
3821 static void et131x_down(struct net_device *netdev)
3822 {
3823 struct et131x_adapter *adapter = netdev_priv(netdev);
3824
3825 /* Save the timestamp for the TX watchdog, prevent a timeout */
3826 netdev->trans_start = jiffies;
3827
3828 phy_stop(adapter->phydev);
3829 et131x_disable_txrx(netdev);
3830 }
3831
3832 #ifdef CONFIG_PM_SLEEP
3833 static int et131x_suspend(struct device *dev)
3834 {
3835 struct pci_dev *pdev = to_pci_dev(dev);
3836 struct net_device *netdev = pci_get_drvdata(pdev);
3837
3838 if (netif_running(netdev)) {
3839 netif_device_detach(netdev);
3840 et131x_down(netdev);
3841 pci_save_state(pdev);
3842 }
3843
3844 return 0;
3845 }
3846
3847 static int et131x_resume(struct device *dev)
3848 {
3849 struct pci_dev *pdev = to_pci_dev(dev);
3850 struct net_device *netdev = pci_get_drvdata(pdev);
3851
3852 if (netif_running(netdev)) {
3853 pci_restore_state(pdev);
3854 et131x_up(netdev);
3855 netif_device_attach(netdev);
3856 }
3857
3858 return 0;
3859 }
3860
3861 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3862 #define ET131X_PM_OPS (&et131x_pm_ops)
3863 #else
3864 #define ET131X_PM_OPS NULL
3865 #endif
3866
3867 /* et131x_isr - The Interrupt Service Routine for the driver.
3868 * @irq: the IRQ on which the interrupt was received.
3869 * @dev_id: device-specific info (here a pointer to a net_device struct)
3870 *
3871 * Returns a value indicating if the interrupt was handled.
3872 */
3873 static irqreturn_t et131x_isr(int irq, void *dev_id)
3874 {
3875 bool handled = true;
3876 struct net_device *netdev = (struct net_device *)dev_id;
3877 struct et131x_adapter *adapter = netdev_priv(netdev);
3878 struct rx_ring *rx_ring = &adapter->rx_ring;
3879 struct tx_ring *tx_ring = &adapter->tx_ring;
3880 u32 status;
3881
3882 if (!netif_device_present(netdev)) {
3883 handled = false;
3884 goto out;
3885 }
3886
3887 /* If the adapter is in low power state, then it should not
3888 * recognize any interrupt
3889 */
3890
3891 /* Disable Device Interrupts */
3892 et131x_disable_interrupts(adapter);
3893
3894 /* Get a copy of the value in the interrupt status register
3895 * so we can process the interrupting section
3896 */
3897 status = readl(&adapter->regs->global.int_status);
3898
3899 if (adapter->flowcontrol == FLOW_TXONLY ||
3900 adapter->flowcontrol == FLOW_BOTH) {
3901 status &= ~INT_MASK_ENABLE;
3902 } else {
3903 status &= ~INT_MASK_ENABLE_NO_FLOW;
3904 }
3905
3906 /* Make sure this is our interrupt */
3907 if (!status) {
3908 handled = false;
3909 et131x_enable_interrupts(adapter);
3910 goto out;
3911 }
3912
3913 /* This is our interrupt, so process accordingly */
3914
3915 if (status & ET_INTR_WATCHDOG) {
3916 struct tcb *tcb = tx_ring->send_head;
3917
3918 if (tcb)
3919 if (++tcb->stale > 1)
3920 status |= ET_INTR_TXDMA_ISR;
3921
3922 if (rx_ring->unfinished_receives)
3923 status |= ET_INTR_RXDMA_XFR_DONE;
3924 else if (tcb == NULL)
3925 writel(0, &adapter->regs->global.watchdog_timer);
3926
3927 status &= ~ET_INTR_WATCHDOG;
3928 }
3929
3930 if (!status) {
3931 /* This interrupt has in some way been "handled" by
3932 * the ISR. Either it was a spurious Rx interrupt, or
3933 * it was a Tx interrupt that has been filtered by
3934 * the ISR.
3935 */
3936 et131x_enable_interrupts(adapter);
3937 goto out;
3938 }
3939
3940 /* We need to save the interrupt status value for use in our
3941 * DPC. We will clear the software copy of that in that
3942 * routine.
3943 */
3944 adapter->stats.interrupt_status = status;
3945
3946 /* Schedule the ISR handler as a bottom-half task in the
3947 * kernel's tq_immediate queue, and mark the queue for
3948 * execution
3949 */
3950 schedule_work(&adapter->task);
3951 out:
3952 return IRQ_RETVAL(handled);
3953 }
3954
3955 /* et131x_isr_handler - The ISR handler
3956 *
3957 * scheduled to run in a deferred context by the ISR. This is where the ISR's
3958 * work actually gets done.
3959 */
3960 static void et131x_isr_handler(struct work_struct *work)
3961 {
3962 struct et131x_adapter *adapter =
3963 container_of(work, struct et131x_adapter, task);
3964 u32 status = adapter->stats.interrupt_status;
3965 struct address_map __iomem *iomem = adapter->regs;
3966
3967 /* These first two are by far the most common. Once handled, we clear
3968 * their two bits in the status word. If the word is now zero, we
3969 * exit.
3970 */
3971 /* Handle all the completed Transmit interrupts */
3972 if (status & ET_INTR_TXDMA_ISR)
3973 et131x_handle_send_interrupt(adapter);
3974
3975 /* Handle all the completed Receives interrupts */
3976 if (status & ET_INTR_RXDMA_XFR_DONE)
3977 et131x_handle_recv_interrupt(adapter);
3978
3979 status &= ~(ET_INTR_TXDMA_ERR | ET_INTR_RXDMA_XFR_DONE);
3980
3981 if (!status)
3982 goto out;
3983
3984 /* Handle the TXDMA Error interrupt */
3985 if (status & ET_INTR_TXDMA_ERR) {
3986 /* Following read also clears the register (COR) */
3987 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3988
3989 dev_warn(&adapter->pdev->dev,
3990 "TXDMA_ERR interrupt, error = %d\n",
3991 txdma_err);
3992 }
3993
3994 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3995 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3996 /* This indicates the number of unused buffers in RXDMA free
3997 * buffer ring 0 is <= the limit you programmed. Free buffer
3998 * resources need to be returned. Free buffers are consumed as
3999 * packets are passed from the network to the host. The host
4000 * becomes aware of the packets from the contents of the packet
4001 * status ring. This ring is queried when the packet done
4002 * interrupt occurs. Packets are then passed to the OS. When
4003 * the OS is done with the packets the resources can be
4004 * returned to the ET1310 for re-use. This interrupt is one
4005 * method of returning resources.
4006 */
4007
4008 /* If the user has flow control on, then we will
4009 * send a pause packet, otherwise just exit
4010 */
4011 if (adapter->flowcontrol == FLOW_TXONLY ||
4012 adapter->flowcontrol == FLOW_BOTH) {
4013 u32 pm_csr;
4014
4015 /* Tell the device to send a pause packet via the back
4016 * pressure register (bp req and bp xon/xoff)
4017 */
4018 pm_csr = readl(&iomem->global.pm_csr);
4019 if (!et1310_in_phy_coma(adapter))
4020 writel(3, &iomem->txmac.bp_ctrl);
4021 }
4022 }
4023
4024 /* Handle Packet Status Ring Low Interrupt */
4025 if (status & ET_INTR_RXDMA_STAT_LOW) {
4026 /* Same idea as with the two Free Buffer Rings. Packets going
4027 * from the network to the host each consume a free buffer
4028 * resource and a packet status resource. These resoures are
4029 * passed to the OS. When the OS is done with the resources,
4030 * they need to be returned to the ET1310. This is one method
4031 * of returning the resources.
4032 */
4033 }
4034
4035 /* Handle RXDMA Error Interrupt */
4036 if (status & ET_INTR_RXDMA_ERR) {
4037 /* The rxdma_error interrupt is sent when a time-out on a
4038 * request issued by the JAGCore has occurred or a completion is
4039 * returned with an un-successful status. In both cases the
4040 * request is considered complete. The JAGCore will
4041 * automatically re-try the request in question. Normally
4042 * information on events like these are sent to the host using
4043 * the "Advanced Error Reporting" capability. This interrupt is
4044 * another way of getting similar information. The only thing
4045 * required is to clear the interrupt by reading the ISR in the
4046 * global resources. The JAGCore will do a re-try on the
4047 * request. Normally you should never see this interrupt. If
4048 * you start to see this interrupt occurring frequently then
4049 * something bad has occurred. A reset might be the thing to do.
4050 */
4051 /* TRAP();*/
4052
4053 dev_warn(&adapter->pdev->dev,
4054 "RxDMA_ERR interrupt, error %x\n",
4055 readl(&iomem->txmac.tx_test));
4056 }
4057
4058 /* Handle the Wake on LAN Event */
4059 if (status & ET_INTR_WOL) {
4060 /* This is a secondary interrupt for wake on LAN. The driver
4061 * should never see this, if it does, something serious is
4062 * wrong. We will TRAP the message when we are in DBG mode,
4063 * otherwise we will ignore it.
4064 */
4065 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4066 }
4067
4068 /* Let's move on to the TxMac */
4069 if (status & ET_INTR_TXMAC) {
4070 u32 err = readl(&iomem->txmac.err);
4071
4072 /* When any of the errors occur and TXMAC generates an
4073 * interrupt to report these errors, it usually means that
4074 * TXMAC has detected an error in the data stream retrieved
4075 * from the on-chip Tx Q. All of these errors are catastrophic
4076 * and TXMAC won't be able to recover data when these errors
4077 * occur. In a nutshell, the whole Tx path will have to be reset
4078 * and re-configured afterwards.
4079 */
4080 dev_warn(&adapter->pdev->dev,
4081 "TXMAC interrupt, error 0x%08x\n",
4082 err);
4083
4084 /* If we are debugging, we want to see this error, otherwise we
4085 * just want the device to be reset and continue
4086 */
4087 }
4088
4089 /* Handle RXMAC Interrupt */
4090 if (status & ET_INTR_RXMAC) {
4091 /* These interrupts are catastrophic to the device, what we need
4092 * to do is disable the interrupts and set the flag to cause us
4093 * to reset so we can solve this issue.
4094 */
4095 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
4096
4097 dev_warn(&adapter->pdev->dev,
4098 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4099 readl(&iomem->rxmac.err_reg));
4100
4101 dev_warn(&adapter->pdev->dev,
4102 "Enable 0x%08x, Diag 0x%08x\n",
4103 readl(&iomem->rxmac.ctrl),
4104 readl(&iomem->rxmac.rxq_diag));
4105
4106 /* If we are debugging, we want to see this error, otherwise we
4107 * just want the device to be reset and continue
4108 */
4109 }
4110
4111 /* Handle MAC_STAT Interrupt */
4112 if (status & ET_INTR_MAC_STAT) {
4113 /* This means at least one of the un-masked counters in the
4114 * MAC_STAT block has rolled over. Use this to maintain the top,
4115 * software managed bits of the counter(s).
4116 */
4117 et1310_handle_macstat_interrupt(adapter);
4118 }
4119
4120 /* Handle SLV Timeout Interrupt */
4121 if (status & ET_INTR_SLV_TIMEOUT) {
4122 /* This means a timeout has occurred on a read or write request
4123 * to one of the JAGCore registers. The Global Resources block
4124 * has terminated the request and on a read request, returned a
4125 * "fake" value. The most likely reasons are: Bad Address or the
4126 * addressed module is in a power-down state and can't respond.
4127 */
4128 }
4129 out:
4130 et131x_enable_interrupts(adapter);
4131 }
4132
4133 /* et131x_stats - Return the current device statistics */
4134 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4135 {
4136 struct et131x_adapter *adapter = netdev_priv(netdev);
4137 struct net_device_stats *stats = &adapter->net_stats;
4138 struct ce_stats *devstat = &adapter->stats;
4139
4140 stats->rx_errors = devstat->rx_length_errs +
4141 devstat->rx_align_errs +
4142 devstat->rx_crc_errs +
4143 devstat->rx_code_violations +
4144 devstat->rx_other_errs;
4145 stats->tx_errors = devstat->tx_max_pkt_errs;
4146 stats->multicast = devstat->multicast_pkts_rcvd;
4147 stats->collisions = devstat->tx_collisions;
4148
4149 stats->rx_length_errors = devstat->rx_length_errs;
4150 stats->rx_over_errors = devstat->rx_overflows;
4151 stats->rx_crc_errors = devstat->rx_crc_errs;
4152
4153 /* NOTE: These stats don't have corresponding values in CE_STATS,
4154 * so we're going to have to update these directly from within the
4155 * TX/RX code
4156 */
4157 /* stats->rx_bytes = 20; devstat->; */
4158 /* stats->tx_bytes = 20; devstat->; */
4159 /* stats->rx_dropped = devstat->; */
4160 /* stats->tx_dropped = devstat->; */
4161
4162 /* NOTE: Not used, can't find analogous statistics */
4163 /* stats->rx_frame_errors = devstat->; */
4164 /* stats->rx_fifo_errors = devstat->; */
4165 /* stats->rx_missed_errors = devstat->; */
4166
4167 /* stats->tx_aborted_errors = devstat->; */
4168 /* stats->tx_carrier_errors = devstat->; */
4169 /* stats->tx_fifo_errors = devstat->; */
4170 /* stats->tx_heartbeat_errors = devstat->; */
4171 /* stats->tx_window_errors = devstat->; */
4172 return stats;
4173 }
4174
4175 /* et131x_open - Open the device for use. */
4176 static int et131x_open(struct net_device *netdev)
4177 {
4178 struct et131x_adapter *adapter = netdev_priv(netdev);
4179 struct pci_dev *pdev = adapter->pdev;
4180 unsigned int irq = pdev->irq;
4181 int result;
4182
4183 /* Start the timer to track NIC errors */
4184 init_timer(&adapter->error_timer);
4185 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4186 adapter->error_timer.function = et131x_error_timer_handler;
4187 adapter->error_timer.data = (unsigned long)adapter;
4188 add_timer(&adapter->error_timer);
4189
4190 result = request_irq(irq, et131x_isr,
4191 IRQF_SHARED, netdev->name, netdev);
4192 if (result) {
4193 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4194 return result;
4195 }
4196
4197 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
4198
4199 et131x_up(netdev);
4200
4201 return result;
4202 }
4203
4204 /* et131x_close - Close the device */
4205 static int et131x_close(struct net_device *netdev)
4206 {
4207 struct et131x_adapter *adapter = netdev_priv(netdev);
4208
4209 et131x_down(netdev);
4210
4211 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
4212 free_irq(adapter->pdev->irq, netdev);
4213
4214 /* Stop the error timer */
4215 return del_timer_sync(&adapter->error_timer);
4216 }
4217
4218 /* et131x_ioctl - The I/O Control handler for the driver
4219 * @netdev: device on which the control request is being made
4220 * @reqbuf: a pointer to the IOCTL request buffer
4221 * @cmd: the IOCTL command code
4222 */
4223 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4224 int cmd)
4225 {
4226 struct et131x_adapter *adapter = netdev_priv(netdev);
4227
4228 if (!adapter->phydev)
4229 return -EINVAL;
4230
4231 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4232 }
4233
4234 /* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4235 * @adapter: pointer to our private adapter structure
4236 *
4237 * FIXME: lot of dups with MAC code
4238 */
4239 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4240 {
4241 int filter = adapter->packet_filter;
4242 u32 ctrl;
4243 u32 pf_ctrl;
4244
4245 ctrl = readl(&adapter->regs->rxmac.ctrl);
4246 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4247
4248 /* Default to disabled packet filtering. Enable it in the individual
4249 * case statements that require the device to filter something
4250 */
4251 ctrl |= 0x04;
4252
4253 /* Set us to be in promiscuous mode so we receive everything, this
4254 * is also true when we get a packet filter of 0
4255 */
4256 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4257 pf_ctrl &= ~7; /* Clear filter bits */
4258 else {
4259 /* Set us up with Multicast packet filtering. Three cases are
4260 * possible - (1) we have a multi-cast list, (2) we receive ALL
4261 * multicast entries or (3) we receive none.
4262 */
4263 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4264 pf_ctrl &= ~2; /* Multicast filter bit */
4265 else {
4266 et1310_setup_device_for_multicast(adapter);
4267 pf_ctrl |= 2;
4268 ctrl &= ~0x04;
4269 }
4270
4271 /* Set us up with Unicast packet filtering */
4272 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4273 et1310_setup_device_for_unicast(adapter);
4274 pf_ctrl |= 4;
4275 ctrl &= ~0x04;
4276 }
4277
4278 /* Set us up with Broadcast packet filtering */
4279 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4280 pf_ctrl |= 1; /* Broadcast filter bit */
4281 ctrl &= ~0x04;
4282 } else
4283 pf_ctrl &= ~1;
4284
4285 /* Setup the receive mac configuration registers - Packet
4286 * Filter control + the enable / disable for packet filter
4287 * in the control reg.
4288 */
4289 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4290 writel(ctrl, &adapter->regs->rxmac.ctrl);
4291 }
4292 return 0;
4293 }
4294
4295 /* et131x_multicast - The handler to configure multicasting on the interface */
4296 static void et131x_multicast(struct net_device *netdev)
4297 {
4298 struct et131x_adapter *adapter = netdev_priv(netdev);
4299 int packet_filter;
4300 struct netdev_hw_addr *ha;
4301 int i;
4302
4303 /* Before we modify the platform-independent filter flags, store them
4304 * locally. This allows us to determine if anything's changed and if
4305 * we even need to bother the hardware
4306 */
4307 packet_filter = adapter->packet_filter;
4308
4309 /* Clear the 'multicast' flag locally; because we only have a single
4310 * flag to check multicast, and multiple multicast addresses can be
4311 * set, this is the easiest way to determine if more than one
4312 * multicast address is being set.
4313 */
4314 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4315
4316 /* Check the net_device flags and set the device independent flags
4317 * accordingly
4318 */
4319
4320 if (netdev->flags & IFF_PROMISC)
4321 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4322 else
4323 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4324
4325 if (netdev->flags & IFF_ALLMULTI)
4326 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4327
4328 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4329 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4330
4331 if (netdev_mc_count(netdev) < 1) {
4332 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4333 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4334 } else
4335 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4336
4337 /* Set values in the private adapter struct */
4338 i = 0;
4339 netdev_for_each_mc_addr(ha, netdev) {
4340 if (i == NIC_MAX_MCAST_LIST)
4341 break;
4342 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4343 }
4344 adapter->multicast_addr_count = i;
4345
4346 /* Are the new flags different from the previous ones? If not, then no
4347 * action is required
4348 *
4349 * NOTE - This block will always update the multicast_list with the
4350 * hardware, even if the addresses aren't the same.
4351 */
4352 if (packet_filter != adapter->packet_filter)
4353 et131x_set_packet_filter(adapter);
4354 }
4355
4356 /* et131x_tx - The handler to tx a packet on the device */
4357 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4358 {
4359 int status = 0;
4360 struct et131x_adapter *adapter = netdev_priv(netdev);
4361 struct tx_ring *tx_ring = &adapter->tx_ring;
4362
4363 /* stop the queue if it's getting full */
4364 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
4365 netif_stop_queue(netdev);
4366
4367 /* Save the timestamp for the TX timeout watchdog */
4368 netdev->trans_start = jiffies;
4369
4370 /* Call the device-specific data Tx routine */
4371 status = et131x_send_packets(skb, netdev);
4372
4373 /* Check status and manage the netif queue if necessary */
4374 if (status != 0) {
4375 if (status == -ENOMEM)
4376 status = NETDEV_TX_BUSY;
4377 else
4378 status = NETDEV_TX_OK;
4379 }
4380 return status;
4381 }
4382
4383 /* et131x_tx_timeout - Timeout handler
4384 *
4385 * The handler called when a Tx request times out. The timeout period is
4386 * specified by the 'tx_timeo" element in the net_device structure (see
4387 * et131x_alloc_device() to see how this value is set).
4388 */
4389 static void et131x_tx_timeout(struct net_device *netdev)
4390 {
4391 struct et131x_adapter *adapter = netdev_priv(netdev);
4392 struct tx_ring *tx_ring = &adapter->tx_ring;
4393 struct tcb *tcb;
4394 unsigned long flags;
4395
4396 /* If the device is closed, ignore the timeout */
4397 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
4398 return;
4399
4400 /* Any nonrecoverable hardware error?
4401 * Checks adapter->flags for any failure in phy reading
4402 */
4403 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
4404 return;
4405
4406 /* Hardware failure? */
4407 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
4408 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4409 return;
4410 }
4411
4412 /* Is send stuck? */
4413 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4414
4415 tcb = tx_ring->send_head;
4416
4417 if (tcb != NULL) {
4418 tcb->count++;
4419
4420 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4421 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4422 flags);
4423
4424 dev_warn(&adapter->pdev->dev,
4425 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4426 tcb->index,
4427 tcb->flags);
4428
4429 adapter->net_stats.tx_errors++;
4430
4431 /* perform reset of tx/rx */
4432 et131x_disable_txrx(netdev);
4433 et131x_enable_txrx(netdev);
4434 return;
4435 }
4436 }
4437
4438 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4439 }
4440
4441 /* et131x_change_mtu - The handler called to change the MTU for the device */
4442 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4443 {
4444 int result = 0;
4445 struct et131x_adapter *adapter = netdev_priv(netdev);
4446
4447 /* Make sure the requested MTU is valid */
4448 if (new_mtu < 64 || new_mtu > 9216)
4449 return -EINVAL;
4450
4451 et131x_disable_txrx(netdev);
4452 et131x_handle_send_interrupt(adapter);
4453 et131x_handle_recv_interrupt(adapter);
4454
4455 /* Set the new MTU */
4456 netdev->mtu = new_mtu;
4457
4458 /* Free Rx DMA memory */
4459 et131x_adapter_memory_free(adapter);
4460
4461 /* Set the config parameter for Jumbo Packet support */
4462 adapter->registry_jumbo_packet = new_mtu + 14;
4463 et131x_soft_reset(adapter);
4464
4465 /* Alloc and init Rx DMA memory */
4466 result = et131x_adapter_memory_alloc(adapter);
4467 if (result != 0) {
4468 dev_warn(&adapter->pdev->dev,
4469 "Change MTU failed; couldn't re-alloc DMA memory\n");
4470 return result;
4471 }
4472
4473 et131x_init_send(adapter);
4474
4475 et131x_hwaddr_init(adapter);
4476 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4477
4478 /* Init the device with the new settings */
4479 et131x_adapter_setup(adapter);
4480
4481 et131x_enable_txrx(netdev);
4482
4483 return result;
4484 }
4485
4486 /* et131x_set_mac_addr - handler to change the MAC address for the device */
4487 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
4488 {
4489 int result = 0;
4490 struct et131x_adapter *adapter = netdev_priv(netdev);
4491 struct sockaddr *address = new_mac;
4492
4493 if (adapter == NULL)
4494 return -ENODEV;
4495
4496 /* Make sure the requested MAC is valid */
4497 if (!is_valid_ether_addr(address->sa_data))
4498 return -EADDRNOTAVAIL;
4499
4500 et131x_disable_txrx(netdev);
4501 et131x_handle_send_interrupt(adapter);
4502 et131x_handle_recv_interrupt(adapter);
4503
4504 /* Set the new MAC */
4505 /* netdev->set_mac_address = &new_mac; */
4506
4507 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
4508
4509 netdev_info(netdev, "Setting MAC address to %pM\n",
4510 netdev->dev_addr);
4511
4512 /* Free Rx DMA memory */
4513 et131x_adapter_memory_free(adapter);
4514
4515 et131x_soft_reset(adapter);
4516
4517 /* Alloc and init Rx DMA memory */
4518 result = et131x_adapter_memory_alloc(adapter);
4519 if (result != 0) {
4520 dev_err(&adapter->pdev->dev,
4521 "Change MAC failed; couldn't re-alloc DMA memory\n");
4522 return result;
4523 }
4524
4525 et131x_init_send(adapter);
4526
4527 et131x_hwaddr_init(adapter);
4528
4529 /* Init the device with the new settings */
4530 et131x_adapter_setup(adapter);
4531
4532 et131x_enable_txrx(netdev);
4533
4534 return result;
4535 }
4536
4537 static const struct net_device_ops et131x_netdev_ops = {
4538 .ndo_open = et131x_open,
4539 .ndo_stop = et131x_close,
4540 .ndo_start_xmit = et131x_tx,
4541 .ndo_set_rx_mode = et131x_multicast,
4542 .ndo_tx_timeout = et131x_tx_timeout,
4543 .ndo_change_mtu = et131x_change_mtu,
4544 .ndo_set_mac_address = et131x_set_mac_addr,
4545 .ndo_validate_addr = eth_validate_addr,
4546 .ndo_get_stats = et131x_stats,
4547 .ndo_do_ioctl = et131x_ioctl,
4548 };
4549
4550 /* et131x_pci_setup - Perform device initialization
4551 * @pdev: a pointer to the device's pci_dev structure
4552 * @ent: this device's entry in the pci_device_id table
4553 *
4554 * Registered in the pci_driver structure, this function is called when the
4555 * PCI subsystem finds a new PCI device which matches the information
4556 * contained in the pci_device_id table. This routine is the equivalent to
4557 * a device insertion routine.
4558 */
4559 static int et131x_pci_setup(struct pci_dev *pdev,
4560 const struct pci_device_id *ent)
4561 {
4562 struct net_device *netdev;
4563 struct et131x_adapter *adapter;
4564 int rc;
4565 int ii;
4566
4567 rc = pci_enable_device(pdev);
4568 if (rc < 0) {
4569 dev_err(&pdev->dev, "pci_enable_device() failed\n");
4570 goto out;
4571 }
4572
4573 /* Perform some basic PCI checks */
4574 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4575 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
4576 rc = -ENODEV;
4577 goto err_disable;
4578 }
4579
4580 rc = pci_request_regions(pdev, DRIVER_NAME);
4581 if (rc < 0) {
4582 dev_err(&pdev->dev, "Can't get PCI resources\n");
4583 goto err_disable;
4584 }
4585
4586 pci_set_master(pdev);
4587
4588 /* Check the DMA addressing support of this device */
4589 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4590 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
4591 dev_err(&pdev->dev, "No usable DMA addressing method\n");
4592 rc = -EIO;
4593 goto err_release_res;
4594 }
4595
4596 /* Allocate netdev and private adapter structs */
4597 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
4598 if (!netdev) {
4599 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
4600 rc = -ENOMEM;
4601 goto err_release_res;
4602 }
4603
4604 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4605 netdev->netdev_ops = &et131x_netdev_ops;
4606
4607 SET_NETDEV_DEV(netdev, &pdev->dev);
4608 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
4609
4610 adapter = et131x_adapter_init(netdev, pdev);
4611
4612 rc = et131x_pci_init(adapter, pdev);
4613 if (rc < 0)
4614 goto err_free_dev;
4615
4616 /* Map the bus-relative registers to system virtual memory */
4617 adapter->regs = pci_ioremap_bar(pdev, 0);
4618 if (!adapter->regs) {
4619 dev_err(&pdev->dev, "Cannot map device registers\n");
4620 rc = -ENOMEM;
4621 goto err_free_dev;
4622 }
4623
4624 /* If Phy COMA mode was enabled when we went down, disable it here. */
4625 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4626
4627 /* Issue a global reset to the et1310 */
4628 et131x_soft_reset(adapter);
4629
4630 /* Disable all interrupts (paranoid) */
4631 et131x_disable_interrupts(adapter);
4632
4633 /* Allocate DMA memory */
4634 rc = et131x_adapter_memory_alloc(adapter);
4635 if (rc < 0) {
4636 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
4637 goto err_iounmap;
4638 }
4639
4640 /* Init send data structures */
4641 et131x_init_send(adapter);
4642
4643 /* Set up the task structure for the ISR's deferred handler */
4644 INIT_WORK(&adapter->task, et131x_isr_handler);
4645
4646 /* Copy address into the net_device struct */
4647 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4648
4649 /* Init variable for counting how long we do not have link status */
4650 adapter->boot_coma = 0;
4651 et1310_disable_phy_coma(adapter);
4652
4653 rc = -ENOMEM;
4654
4655 /* Setup the mii_bus struct */
4656 adapter->mii_bus = mdiobus_alloc();
4657 if (!adapter->mii_bus) {
4658 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4659 goto err_mem_free;
4660 }
4661
4662 adapter->mii_bus->name = "et131x_eth_mii";
4663 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4664 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4665 adapter->mii_bus->priv = netdev;
4666 adapter->mii_bus->read = et131x_mdio_read;
4667 adapter->mii_bus->write = et131x_mdio_write;
4668 adapter->mii_bus->reset = et131x_mdio_reset;
4669 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4670 GFP_KERNEL);
4671 if (!adapter->mii_bus->irq)
4672 goto err_mdio_free;
4673
4674 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4675 adapter->mii_bus->irq[ii] = PHY_POLL;
4676
4677 rc = mdiobus_register(adapter->mii_bus);
4678 if (rc < 0) {
4679 dev_err(&pdev->dev, "failed to register MII bus\n");
4680 goto err_mdio_free_irq;
4681 }
4682
4683 rc = et131x_mii_probe(netdev);
4684 if (rc < 0) {
4685 dev_err(&pdev->dev, "failed to probe MII bus\n");
4686 goto err_mdio_unregister;
4687 }
4688
4689 /* Setup et1310 as per the documentation */
4690 et131x_adapter_setup(adapter);
4691
4692 /* We can enable interrupts now
4693 *
4694 * NOTE - Because registration of interrupt handler is done in the
4695 * device's open(), defer enabling device interrupts to that
4696 * point
4697 */
4698
4699 /* Register the net_device struct with the Linux network layer */
4700 rc = register_netdev(netdev);
4701 if (rc < 0) {
4702 dev_err(&pdev->dev, "register_netdev() failed\n");
4703 goto err_phy_disconnect;
4704 }
4705
4706 /* Register the net_device struct with the PCI subsystem. Save a copy
4707 * of the PCI config space for this device now that the device has
4708 * been initialized, just in case it needs to be quickly restored.
4709 */
4710 pci_set_drvdata(pdev, netdev);
4711 out:
4712 return rc;
4713
4714 err_phy_disconnect:
4715 phy_disconnect(adapter->phydev);
4716 err_mdio_unregister:
4717 mdiobus_unregister(adapter->mii_bus);
4718 err_mdio_free_irq:
4719 kfree(adapter->mii_bus->irq);
4720 err_mdio_free:
4721 mdiobus_free(adapter->mii_bus);
4722 err_mem_free:
4723 et131x_adapter_memory_free(adapter);
4724 err_iounmap:
4725 iounmap(adapter->regs);
4726 err_free_dev:
4727 pci_dev_put(pdev);
4728 free_netdev(netdev);
4729 err_release_res:
4730 pci_release_regions(pdev);
4731 err_disable:
4732 pci_disable_device(pdev);
4733 goto out;
4734 }
4735
4736 static const struct pci_device_id et131x_pci_table[] = {
4737 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4738 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4739 {0,}
4740 };
4741 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4742
4743 static struct pci_driver et131x_driver = {
4744 .name = DRIVER_NAME,
4745 .id_table = et131x_pci_table,
4746 .probe = et131x_pci_setup,
4747 .remove = et131x_pci_remove,
4748 .driver.pm = ET131X_PM_OPS,
4749 };
4750
4751 module_pci_driver(et131x_driver);
This page took 0.146476 seconds and 5 git commands to generate.