5b11c5e3622e2dc50ffd6422c6b8c1e14cadcdec
[deliverable/linux.git] / drivers / staging / et131x / et131x.c
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 *
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
8 *
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *
11 *------------------------------------------------------------------------------
12 *
13 * SOFTWARE LICENSE
14 *
15 * This software is provided subject to the following terms and conditions,
16 * which you should read carefully before using the software. Using this
17 * software indicates your acceptance of these terms and conditions. If you do
18 * not agree with these terms and conditions, do not use the software.
19 *
20 * Copyright © 2005 Agere Systems Inc.
21 * All rights reserved.
22 *
23 * Redistribution and use in source or binary forms, with or without
24 * modifications, are permitted provided that the following conditions are met:
25 *
26 * . Redistributions of source code must retain the above copyright notice, this
27 * list of conditions and the following Disclaimer as comments in the code as
28 * well as in the documentation and/or other materials provided with the
29 * distribution.
30 *
31 * . Redistributions in binary form must reproduce the above copyright notice,
32 * this list of conditions and the following Disclaimer in the documentation
33 * and/or other materials provided with the distribution.
34 *
35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
38 *
39 * Disclaimer
40 *
41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52 * DAMAGE.
53 *
54 */
55
56 #include <linux/pci.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
61
62 #include <linux/sched.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/ctype.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/in.h>
70 #include <linux/delay.h>
71 #include <linux/bitops.h>
72 #include <linux/io.h>
73
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_arp.h>
78 #include <linux/ioport.h>
79 #include <linux/crc32.h>
80 #include <linux/random.h>
81 #include <linux/phy.h>
82
83 #include "et131x.h"
84
85 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
86 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
87 MODULE_LICENSE("Dual BSD/GPL");
88 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
89 "for the ET1310 by Agere Systems");
90
91 /* EEPROM defines */
92 #define MAX_NUM_REGISTER_POLLS 1000
93 #define MAX_NUM_WRITE_RETRIES 2
94
95 /* MAC defines */
96 #define COUNTER_WRAP_16_BIT 0x10000
97 #define COUNTER_WRAP_12_BIT 0x1000
98
99 /* PCI defines */
100 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
101 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
102
103 /* ISR defines */
104 /*
105 * For interrupts, normal running is:
106 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
107 * watchdog_interrupt & txdma_xfer_done
108 *
109 * In both cases, when flow control is enabled for either Tx or bi-direction,
110 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
111 * buffer rings are running low.
112 */
113 #define INT_MASK_DISABLE 0xffffffff
114
115 /* NOTE: Masking out MAC_STAT Interrupt for now...
116 * #define INT_MASK_ENABLE 0xfff6bf17
117 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
118 */
119 #define INT_MASK_ENABLE 0xfffebf17
120 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
121
122 /* General defines */
123 /* Packet and header sizes */
124 #define NIC_MIN_PACKET_SIZE 60
125
126 /* Multicast list size */
127 #define NIC_MAX_MCAST_LIST 128
128
129 /* Supported Filters */
130 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
131 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
132 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
133 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
134 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
135
136 /* Tx Timeout */
137 #define ET131X_TX_TIMEOUT (1 * HZ)
138 #define NIC_SEND_HANG_THRESHOLD 0
139
140 /* MP_TCB flags */
141 #define fMP_DEST_MULTI 0x00000001
142 #define fMP_DEST_BROAD 0x00000002
143
144 /* MP_ADAPTER flags */
145 #define fMP_ADAPTER_RECV_LOOKASIDE 0x00000004
146 #define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
147
148 /* MP_SHARED flags */
149 #define fMP_ADAPTER_LOWER_POWER 0x00200000
150
151 #define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
152 #define fMP_ADAPTER_HARDWARE_ERROR 0x04000000
153
154 #define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
155
156 /* Some offsets in PCI config space that are actually used. */
157 #define ET1310_PCI_MAC_ADDRESS 0xA4
158 #define ET1310_PCI_EEPROM_STATUS 0xB2
159 #define ET1310_PCI_ACK_NACK 0xC0
160 #define ET1310_PCI_REPLAY 0xC2
161 #define ET1310_PCI_L0L1LATENCY 0xCF
162
163 /* PCI Product IDs */
164 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
165 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
166
167 /* Define order of magnitude converter */
168 #define NANO_IN_A_MICRO 1000
169
170 #define PARM_RX_NUM_BUFS_DEF 4
171 #define PARM_RX_TIME_INT_DEF 10
172 #define PARM_RX_MEM_END_DEF 0x2bc
173 #define PARM_TX_TIME_INT_DEF 40
174 #define PARM_TX_NUM_BUFS_DEF 4
175 #define PARM_DMA_CACHE_DEF 0
176
177 /* RX defines */
178 #define USE_FBR0 1
179 #define FBR_CHUNKS 32
180 #define MAX_DESC_PER_RING_RX 1024
181
182 /* number of RFDs - default and min */
183 #ifdef USE_FBR0
184 #define RFD_LOW_WATER_MARK 40
185 #define NIC_DEFAULT_NUM_RFD 1024
186 #define NUM_FBRS 2
187 #else
188 #define RFD_LOW_WATER_MARK 20
189 #define NIC_DEFAULT_NUM_RFD 256
190 #define NUM_FBRS 1
191 #endif
192
193 #define NIC_MIN_NUM_RFD 64
194 #define NUM_PACKETS_HANDLED 256
195
196 #define ALCATEL_MULTICAST_PKT 0x01000000
197 #define ALCATEL_BROADCAST_PKT 0x02000000
198
199 /* typedefs for Free Buffer Descriptors */
200 struct fbr_desc {
201 u32 addr_lo;
202 u32 addr_hi;
203 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
204 };
205
206 /* Packet Status Ring Descriptors
207 *
208 * Word 0:
209 *
210 * top 16 bits are from the Alcatel Status Word as enumerated in
211 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
212 *
213 * 0: hp hash pass
214 * 1: ipa IP checksum assist
215 * 2: ipp IP checksum pass
216 * 3: tcpa TCP checksum assist
217 * 4: tcpp TCP checksum pass
218 * 5: wol WOL Event
219 * 6: rxmac_error RXMAC Error Indicator
220 * 7: drop Drop packet
221 * 8: ft Frame Truncated
222 * 9: jp Jumbo Packet
223 * 10: vp VLAN Packet
224 * 11-15: unused
225 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
226 * 17: asw_RX_DV_event short receive event detected
227 * 18: asw_false_carrier_event bad carrier since last good packet
228 * 19: asw_code_err one or more nibbles signalled as errors
229 * 20: asw_CRC_err CRC error
230 * 21: asw_len_chk_err frame length field incorrect
231 * 22: asw_too_long frame length > 1518 bytes
232 * 23: asw_OK valid CRC + no code error
233 * 24: asw_multicast has a multicast address
234 * 25: asw_broadcast has a broadcast address
235 * 26: asw_dribble_nibble spurious bits after EOP
236 * 27: asw_control_frame is a control frame
237 * 28: asw_pause_frame is a pause frame
238 * 29: asw_unsupported_op unsupported OP code
239 * 30: asw_VLAN_tag VLAN tag detected
240 * 31: asw_long_evt Rx long event
241 *
242 * Word 1:
243 * 0-15: length length in bytes
244 * 16-25: bi Buffer Index
245 * 26-27: ri Ring Index
246 * 28-31: reserved
247 */
248
249 struct pkt_stat_desc {
250 u32 word0;
251 u32 word1;
252 };
253
254 /* Typedefs for the RX DMA status word */
255
256 /*
257 * rx status word 0 holds part of the status bits of the Rx DMA engine
258 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
259 * which contains the Free Buffer ring 0 and 1 available offset.
260 *
261 * bit 0-9 FBR1 offset
262 * bit 10 Wrap flag for FBR1
263 * bit 16-25 FBR0 offset
264 * bit 26 Wrap flag for FBR0
265 */
266
267 /*
268 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
269 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
270 * which contains the Packet Status Ring available offset.
271 *
272 * bit 0-15 reserved
273 * bit 16-27 PSRoffset
274 * bit 28 PSRwrap
275 * bit 29-31 unused
276 */
277
278 /*
279 * struct rx_status_block is a structure representing the status of the Rx
280 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
281 */
282 struct rx_status_block {
283 u32 word0;
284 u32 word1;
285 };
286
287 /*
288 * Structure for look-up table holding free buffer ring pointers, addresses
289 * and state.
290 */
291 struct fbr_lookup {
292 void *virt[MAX_DESC_PER_RING_RX];
293 void *buffer1[MAX_DESC_PER_RING_RX];
294 void *buffer2[MAX_DESC_PER_RING_RX];
295 u32 bus_high[MAX_DESC_PER_RING_RX];
296 u32 bus_low[MAX_DESC_PER_RING_RX];
297 void *ring_virtaddr;
298 dma_addr_t ring_physaddr;
299 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
300 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
301 u64 real_physaddr;
302 u64 offset;
303 u32 local_full;
304 u32 num_entries;
305 u32 buffsize;
306 };
307
308 /*
309 * struct rx_ring is the sructure representing the adaptor's local
310 * reference(s) to the rings
311 *
312 ******************************************************************************
313 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
314 * and index 1 to refer to FRB0
315 ******************************************************************************
316 */
317 struct rx_ring {
318 struct fbr_lookup *fbr[NUM_FBRS];
319 void *ps_ring_virtaddr;
320 dma_addr_t ps_ring_physaddr;
321 u32 local_psr_full;
322 u32 psr_num_entries;
323
324 struct rx_status_block *rx_status_block;
325 dma_addr_t rx_status_bus;
326
327 /* RECV */
328 struct list_head recv_list;
329 u32 num_ready_recv;
330
331 u32 num_rfd;
332
333 bool unfinished_receives;
334
335 /* lookaside lists */
336 struct kmem_cache *recv_lookaside;
337 };
338
339 /* TX defines */
340 /*
341 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
342 *
343 * 0-15: length of packet
344 * 16-27: VLAN tag
345 * 28: VLAN CFI
346 * 29-31: VLAN priority
347 *
348 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
349 *
350 * 0: last packet in the sequence
351 * 1: first packet in the sequence
352 * 2: interrupt the processor when this pkt sent
353 * 3: Control word - no packet data
354 * 4: Issue half-duplex backpressure : XON/XOFF
355 * 5: send pause frame
356 * 6: Tx frame has error
357 * 7: append CRC
358 * 8: MAC override
359 * 9: pad packet
360 * 10: Packet is a Huge packet
361 * 11: append VLAN tag
362 * 12: IP checksum assist
363 * 13: TCP checksum assist
364 * 14: UDP checksum assist
365 */
366
367 /* struct tx_desc represents each descriptor on the ring */
368 struct tx_desc {
369 u32 addr_hi;
370 u32 addr_lo;
371 u32 len_vlan; /* control words how to xmit the */
372 u32 flags; /* data (detailed above) */
373 };
374
375 /*
376 * The status of the Tx DMA engine it sits in free memory, and is pointed to
377 * by 0x101c / 0x1020. This is a DMA10 type
378 */
379
380 /* TCB (Transmit Control Block: Host Side) */
381 struct tcb {
382 struct tcb *next; /* Next entry in ring */
383 u32 flags; /* Our flags for the packet */
384 u32 count; /* Used to spot stuck/lost packets */
385 u32 stale; /* Used to spot stuck/lost packets */
386 struct sk_buff *skb; /* Network skb we are tied to */
387 u32 index; /* Ring indexes */
388 u32 index_start;
389 };
390
391 /* Structure representing our local reference(s) to the ring */
392 struct tx_ring {
393 /* TCB (Transmit Control Block) memory and lists */
394 struct tcb *tcb_ring;
395
396 /* List of TCBs that are ready to be used */
397 struct tcb *tcb_qhead;
398 struct tcb *tcb_qtail;
399
400 /* list of TCBs that are currently being sent. NOTE that access to all
401 * three of these (including used) are controlled via the
402 * TCBSendQLock. This lock should be secured prior to incementing /
403 * decrementing used, or any queue manipulation on send_head /
404 * tail
405 */
406 struct tcb *send_head;
407 struct tcb *send_tail;
408 int used;
409
410 /* The actual descriptor ring */
411 struct tx_desc *tx_desc_ring;
412 dma_addr_t tx_desc_ring_pa;
413
414 /* send_idx indicates where we last wrote to in the descriptor ring. */
415 u32 send_idx;
416
417 /* The location of the write-back status block */
418 u32 *tx_status;
419 dma_addr_t tx_status_pa;
420
421 /* Packets since the last IRQ: used for interrupt coalescing */
422 int since_irq;
423 };
424
425 /*
426 * Do not change these values: if changed, then change also in respective
427 * TXdma and Rxdma engines
428 */
429 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
430 #define NUM_TCB 64
431
432 /*
433 * These values are all superseded by registry entries to facilitate tuning.
434 * Once the desired performance has been achieved, the optimal registry values
435 * should be re-populated to these #defines:
436 */
437 #define TX_ERROR_PERIOD 1000
438
439 #define LO_MARK_PERCENT_FOR_PSR 15
440 #define LO_MARK_PERCENT_FOR_RX 15
441
442 /* RFD (Receive Frame Descriptor) */
443 struct rfd {
444 struct list_head list_node;
445 struct sk_buff *skb;
446 u32 len; /* total size of receive frame */
447 u16 bufferindex;
448 u8 ringindex;
449 };
450
451 /* Flow Control */
452 #define FLOW_BOTH 0
453 #define FLOW_TXONLY 1
454 #define FLOW_RXONLY 2
455 #define FLOW_NONE 3
456
457 /* Struct to define some device statistics */
458 struct ce_stats {
459 /* MIB II variables
460 *
461 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
462 * MUST have 32, then we'll need another way to perform atomic
463 * operations
464 */
465 u32 unicast_pkts_rcvd;
466 atomic_t unicast_pkts_xmtd;
467 u32 multicast_pkts_rcvd;
468 atomic_t multicast_pkts_xmtd;
469 u32 broadcast_pkts_rcvd;
470 atomic_t broadcast_pkts_xmtd;
471 u32 rcvd_pkts_dropped;
472
473 /* Tx Statistics. */
474 u32 tx_underflows;
475
476 u32 tx_collisions;
477 u32 tx_excessive_collisions;
478 u32 tx_first_collisions;
479 u32 tx_late_collisions;
480 u32 tx_max_pkt_errs;
481 u32 tx_deferred;
482
483 /* Rx Statistics. */
484 u32 rx_overflows;
485
486 u32 rx_length_errs;
487 u32 rx_align_errs;
488 u32 rx_crc_errs;
489 u32 rx_code_violations;
490 u32 rx_other_errs;
491
492 u32 synchronous_iterations;
493 u32 interrupt_status;
494 };
495
496 /* The private adapter structure */
497 struct et131x_adapter {
498 struct net_device *netdev;
499 struct pci_dev *pdev;
500 struct mii_bus *mii_bus;
501 struct phy_device *phydev;
502 struct work_struct task;
503
504 /* Flags that indicate current state of the adapter */
505 u32 flags;
506
507 /* local link state, to determine if a state change has occurred */
508 int link;
509
510 /* Configuration */
511 u8 rom_addr[ETH_ALEN];
512 u8 addr[ETH_ALEN];
513 bool has_eeprom;
514 u8 eeprom_data[2];
515
516 /* Spinlocks */
517 spinlock_t lock;
518
519 spinlock_t tcb_send_qlock;
520 spinlock_t tcb_ready_qlock;
521 spinlock_t send_hw_lock;
522
523 spinlock_t rcv_lock;
524 spinlock_t rcv_pend_lock;
525 spinlock_t fbr_lock;
526
527 spinlock_t phy_lock;
528
529 /* Packet Filter and look ahead size */
530 u32 packet_filter;
531
532 /* multicast list */
533 u32 multicast_addr_count;
534 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
535
536 /* Pointer to the device's PCI register space */
537 struct address_map __iomem *regs;
538
539 /* Registry parameters */
540 u8 wanted_flow; /* Flow we want for 802.3x flow control */
541 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
542
543 /* Derived from the registry: */
544 u8 flowcontrol; /* flow control validated by the far-end */
545
546 /* Minimize init-time */
547 struct timer_list error_timer;
548
549 /* variable putting the phy into coma mode when boot up with no cable
550 * plugged in after 5 seconds
551 */
552 u8 boot_coma;
553
554 /* Next two used to save power information at power down. This
555 * information will be used during power up to set up parts of Power
556 * Management in JAGCore
557 */
558 u16 pdown_speed;
559 u8 pdown_duplex;
560
561 /* Tx Memory Variables */
562 struct tx_ring tx_ring;
563
564 /* Rx Memory Variables */
565 struct rx_ring rx_ring;
566
567 /* Stats */
568 struct ce_stats stats;
569
570 struct net_device_stats net_stats;
571 };
572
573 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
574 {
575 u32 reg;
576 int i;
577
578 /*
579 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
580 * bits 7,1:0 both equal to 1, at least once after reset.
581 * Subsequent operations need only to check that bits 1:0 are equal
582 * to 1 prior to starting a single byte read/write
583 */
584
585 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
586 /* Read registers grouped in DWORD1 */
587 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
588 return -EIO;
589
590 /* I2C idle and Phy Queue Avail both true */
591 if ((reg & 0x3000) == 0x3000) {
592 if (status)
593 *status = reg;
594 return reg & 0xFF;
595 }
596 }
597 return -ETIMEDOUT;
598 }
599
600
601 /**
602 * eeprom_write - Write a byte to the ET1310's EEPROM
603 * @adapter: pointer to our private adapter structure
604 * @addr: the address to write
605 * @data: the value to write
606 *
607 * Returns 1 for a successful write.
608 */
609 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
610 {
611 struct pci_dev *pdev = adapter->pdev;
612 int index = 0;
613 int retries;
614 int err = 0;
615 int i2c_wack = 0;
616 int writeok = 0;
617 u32 status;
618 u32 val = 0;
619
620 /*
621 * For an EEPROM, an I2C single byte write is defined as a START
622 * condition followed by the device address, EEPROM address, one byte
623 * of data and a STOP condition. The STOP condition will trigger the
624 * EEPROM's internally timed write cycle to the nonvolatile memory.
625 * All inputs are disabled during this write cycle and the EEPROM will
626 * not respond to any access until the internal write is complete.
627 */
628
629 err = eeprom_wait_ready(pdev, NULL);
630 if (err)
631 return err;
632
633 /*
634 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
635 * and bits 1:0 both =0. Bit 5 should be set according to the
636 * type of EEPROM being accessed (1=two byte addressing, 0=one
637 * byte addressing).
638 */
639 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
640 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
641 return -EIO;
642
643 i2c_wack = 1;
644
645 /* Prepare EEPROM address for Step 3 */
646
647 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
648 /* Write the address to the LBCIF Address Register */
649 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
650 break;
651 /*
652 * Write the data to the LBCIF Data Register (the I2C write
653 * will begin).
654 */
655 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
656 break;
657 /*
658 * Monitor bit 1:0 of the LBCIF Status Register. When bits
659 * 1:0 are both equal to 1, the I2C write has completed and the
660 * internal write cycle of the EEPROM is about to start.
661 * (bits 1:0 = 01 is a legal state while waiting from both
662 * equal to 1, but bits 1:0 = 10 is invalid and implies that
663 * something is broken).
664 */
665 err = eeprom_wait_ready(pdev, &status);
666 if (err < 0)
667 return 0;
668
669 /*
670 * Check bit 3 of the LBCIF Status Register. If equal to 1,
671 * an error has occurred.Don't break here if we are revision
672 * 1, this is so we do a blind write for load bug.
673 */
674 if ((status & LBCIF_STATUS_GENERAL_ERROR)
675 && adapter->pdev->revision == 0)
676 break;
677
678 /*
679 * Check bit 2 of the LBCIF Status Register. If equal to 1 an
680 * ACK error has occurred on the address phase of the write.
681 * This could be due to an actual hardware failure or the
682 * EEPROM may still be in its internal write cycle from a
683 * previous write. This write operation was ignored and must be
684 *repeated later.
685 */
686 if (status & LBCIF_STATUS_ACK_ERROR) {
687 /*
688 * This could be due to an actual hardware failure
689 * or the EEPROM may still be in its internal write
690 * cycle from a previous write. This write operation
691 * was ignored and must be repeated later.
692 */
693 udelay(10);
694 continue;
695 }
696
697 writeok = 1;
698 break;
699 }
700
701 /*
702 * Set bit 6 of the LBCIF Control Register = 0.
703 */
704 udelay(10);
705
706 while (i2c_wack) {
707 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
708 LBCIF_CONTROL_LBCIF_ENABLE))
709 writeok = 0;
710
711 /* Do read until internal ACK_ERROR goes away meaning write
712 * completed
713 */
714 do {
715 pci_write_config_dword(pdev,
716 LBCIF_ADDRESS_REGISTER,
717 addr);
718 do {
719 pci_read_config_dword(pdev,
720 LBCIF_DATA_REGISTER, &val);
721 } while ((val & 0x00010000) == 0);
722 } while (val & 0x00040000);
723
724 if ((val & 0xFF00) != 0xC000 || index == 10000)
725 break;
726 index++;
727 }
728 return writeok ? 0 : -EIO;
729 }
730
731 /**
732 * eeprom_read - Read a byte from the ET1310's EEPROM
733 * @adapter: pointer to our private adapter structure
734 * @addr: the address from which to read
735 * @pdata: a pointer to a byte in which to store the value of the read
736 * @eeprom_id: the ID of the EEPROM
737 * @addrmode: how the EEPROM is to be accessed
738 *
739 * Returns 1 for a successful read
740 */
741 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
742 {
743 struct pci_dev *pdev = adapter->pdev;
744 int err;
745 u32 status;
746
747 /*
748 * A single byte read is similar to the single byte write, with the
749 * exception of the data flow:
750 */
751
752 err = eeprom_wait_ready(pdev, NULL);
753 if (err)
754 return err;
755 /*
756 * Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
757 * and bits 1:0 both =0. Bit 5 should be set according to the type
758 * of EEPROM being accessed (1=two byte addressing, 0=one byte
759 * addressing).
760 */
761 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
762 LBCIF_CONTROL_LBCIF_ENABLE))
763 return -EIO;
764 /*
765 * Write the address to the LBCIF Address Register (I2C read will
766 * begin).
767 */
768 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
769 return -EIO;
770 /*
771 * Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
772 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
773 * has occurred).
774 */
775 err = eeprom_wait_ready(pdev, &status);
776 if (err < 0)
777 return err;
778 /*
779 * Regardless of error status, read data byte from LBCIF Data
780 * Register.
781 */
782 *pdata = err;
783 /*
784 * Check bit 2 of the LBCIF Status Register. If = 1,
785 * then an error has occurred.
786 */
787 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
788 }
789
790 static int et131x_init_eeprom(struct et131x_adapter *adapter)
791 {
792 struct pci_dev *pdev = adapter->pdev;
793 u8 eestatus;
794
795 /* We first need to check the EEPROM Status code located at offset
796 * 0xB2 of config space
797 */
798 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
799 &eestatus);
800
801 /* THIS IS A WORKAROUND:
802 * I need to call this function twice to get my card in a
803 * LG M1 Express Dual running. I tried also a msleep before this
804 * function, because I thought there could be some time condidions
805 * but it didn't work. Call the whole function twice also work.
806 */
807 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
808 dev_err(&pdev->dev,
809 "Could not read PCI config space for EEPROM Status\n");
810 return -EIO;
811 }
812
813 /* Determine if the error(s) we care about are present. If they are
814 * present we need to fail.
815 */
816 if (eestatus & 0x4C) {
817 int write_failed = 0;
818 if (pdev->revision == 0x01) {
819 int i;
820 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
821
822 /* Re-write the first 4 bytes if we have an eeprom
823 * present and the revision id is 1, this fixes the
824 * corruption seen with 1310 B Silicon
825 */
826 for (i = 0; i < 3; i++)
827 if (eeprom_write(adapter, i, eedata[i]) < 0)
828 write_failed = 1;
829 }
830 if (pdev->revision != 0x01 || write_failed) {
831 dev_err(&pdev->dev,
832 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
833
834 /* This error could mean that there was an error
835 * reading the eeprom or that the eeprom doesn't exist.
836 * We will treat each case the same and not try to
837 * gather additional information that normally would
838 * come from the eeprom, like MAC Address
839 */
840 adapter->has_eeprom = 0;
841 return -EIO;
842 }
843 }
844 adapter->has_eeprom = 1;
845
846 /* Read the EEPROM for information regarding LED behavior. Refer to
847 * ET1310_phy.c, et131x_xcvr_init(), for its use.
848 */
849 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
850 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
851
852 if (adapter->eeprom_data[0] != 0xcd)
853 /* Disable all optional features */
854 adapter->eeprom_data[1] = 0x00;
855
856 return 0;
857 }
858
859 /**
860 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
861 * @adapter: pointer to our adapter structure
862 */
863 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
864 {
865 /* Setup the receive dma configuration register for normal operation */
866 u32 csr = 0x2000; /* FBR1 enable */
867
868 if (adapter->rx_ring.fbr[0]->buffsize == 4096)
869 csr |= 0x0800;
870 else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
871 csr |= 0x1000;
872 else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
873 csr |= 0x1800;
874 #ifdef USE_FBR0
875 csr |= 0x0400; /* FBR0 enable */
876 if (adapter->rx_ring.fbr[1]->buffsize == 256)
877 csr |= 0x0100;
878 else if (adapter->rx_ring.fbr[1]->buffsize == 512)
879 csr |= 0x0200;
880 else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
881 csr |= 0x0300;
882 #endif
883 writel(csr, &adapter->regs->rxdma.csr);
884
885 csr = readl(&adapter->regs->rxdma.csr);
886 if ((csr & 0x00020000) != 0) {
887 udelay(5);
888 csr = readl(&adapter->regs->rxdma.csr);
889 if ((csr & 0x00020000) != 0) {
890 dev_err(&adapter->pdev->dev,
891 "RX Dma failed to exit halt state. CSR 0x%08x\n",
892 csr);
893 }
894 }
895 }
896
897 /**
898 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
899 * @adapter: pointer to our adapter structure
900 */
901 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
902 {
903 u32 csr;
904 /* Setup the receive dma configuration register */
905 writel(0x00002001, &adapter->regs->rxdma.csr);
906 csr = readl(&adapter->regs->rxdma.csr);
907 if ((csr & 0x00020000) == 0) { /* Check halt status (bit 17) */
908 udelay(5);
909 csr = readl(&adapter->regs->rxdma.csr);
910 if ((csr & 0x00020000) == 0)
911 dev_err(&adapter->pdev->dev,
912 "RX Dma failed to enter halt state. CSR 0x%08x\n",
913 csr);
914 }
915 }
916
917 /**
918 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
919 * @adapter: pointer to our adapter structure
920 *
921 * Mainly used after a return to the D0 (full-power) state from a lower state.
922 */
923 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
924 {
925 /* Setup the transmit dma configuration register for normal
926 * operation
927 */
928 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
929 &adapter->regs->txdma.csr);
930 }
931
932 static inline void add_10bit(u32 *v, int n)
933 {
934 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
935 }
936
937 static inline void add_12bit(u32 *v, int n)
938 {
939 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
940 }
941
942 /**
943 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
944 * @adapter: pointer to our adapter structure
945 */
946 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
947 {
948 struct mac_regs __iomem *macregs = &adapter->regs->mac;
949 u32 station1;
950 u32 station2;
951 u32 ipg;
952
953 /* First we need to reset everything. Write to MAC configuration
954 * register 1 to perform reset.
955 */
956 writel(0xC00F0000, &macregs->cfg1);
957
958 /* Next lets configure the MAC Inter-packet gap register */
959 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
960 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
961 writel(ipg, &macregs->ipg);
962
963 /* Next lets configure the MAC Half Duplex register */
964 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
965 writel(0x00A1F037, &macregs->hfdp);
966
967 /* Next lets configure the MAC Interface Control register */
968 writel(0, &macregs->if_ctrl);
969
970 /* Let's move on to setting up the mii management configuration */
971 writel(0x07, &macregs->mii_mgmt_cfg); /* Clock reset 0x7 */
972
973 /* Next lets configure the MAC Station Address register. These
974 * values are read from the EEPROM during initialization and stored
975 * in the adapter structure. We write what is stored in the adapter
976 * structure to the MAC Station Address registers high and low. This
977 * station address is used for generating and checking pause control
978 * packets.
979 */
980 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
981 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
982 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
983 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
984 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
985 adapter->addr[2];
986 writel(station1, &macregs->station_addr_1);
987 writel(station2, &macregs->station_addr_2);
988
989 /* Max ethernet packet in bytes that will be passed by the mac without
990 * being truncated. Allow the MAC to pass 4 more than our max packet
991 * size. This is 4 for the Ethernet CRC.
992 *
993 * Packets larger than (registry_jumbo_packet) that do not contain a
994 * VLAN ID will be dropped by the Rx function.
995 */
996 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
997
998 /* clear out MAC config reset */
999 writel(0, &macregs->cfg1);
1000 }
1001
1002 /**
1003 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1004 * @adapter: pointer to our adapter structure
1005 */
1006 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1007 {
1008 int32_t delay = 0;
1009 struct mac_regs __iomem *mac = &adapter->regs->mac;
1010 struct phy_device *phydev = adapter->phydev;
1011 u32 cfg1;
1012 u32 cfg2;
1013 u32 ifctrl;
1014 u32 ctl;
1015
1016 ctl = readl(&adapter->regs->txmac.ctl);
1017 cfg1 = readl(&mac->cfg1);
1018 cfg2 = readl(&mac->cfg2);
1019 ifctrl = readl(&mac->if_ctrl);
1020
1021 /* Set up the if mode bits */
1022 cfg2 &= ~0x300;
1023 if (phydev && phydev->speed == SPEED_1000) {
1024 cfg2 |= 0x200;
1025 /* Phy mode bit */
1026 ifctrl &= ~(1 << 24);
1027 } else {
1028 cfg2 |= 0x100;
1029 ifctrl |= (1 << 24);
1030 }
1031
1032 /* We need to enable Rx/Tx */
1033 cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1034 /* Initialize loop back to off */
1035 cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1036 if (adapter->flowcontrol == FLOW_RXONLY ||
1037 adapter->flowcontrol == FLOW_BOTH)
1038 cfg1 |= CFG1_RX_FLOW;
1039 writel(cfg1, &mac->cfg1);
1040
1041 /* Now we need to initialize the MAC Configuration 2 register */
1042 /* preamble 7, check length, huge frame off, pad crc, crc enable
1043 full duplex off */
1044 cfg2 |= 0x7016;
1045 cfg2 &= ~0x0021;
1046
1047 /* Turn on duplex if needed */
1048 if (phydev && phydev->duplex == DUPLEX_FULL)
1049 cfg2 |= 0x01;
1050
1051 ifctrl &= ~(1 << 26);
1052 if (phydev && phydev->duplex == DUPLEX_HALF)
1053 ifctrl |= (1<<26); /* Enable ghd */
1054
1055 writel(ifctrl, &mac->if_ctrl);
1056 writel(cfg2, &mac->cfg2);
1057
1058 do {
1059 udelay(10);
1060 delay++;
1061 cfg1 = readl(&mac->cfg1);
1062 } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1063
1064 if (delay == 100) {
1065 dev_warn(&adapter->pdev->dev,
1066 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1067 cfg1);
1068 }
1069
1070 /* Enable txmac */
1071 ctl |= 0x09; /* TX mac enable, FC disable */
1072 writel(ctl, &adapter->regs->txmac.ctl);
1073
1074 /* Ready to start the RXDMA/TXDMA engine */
1075 if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1076 et131x_rx_dma_enable(adapter);
1077 et131x_tx_dma_enable(adapter);
1078 }
1079 }
1080
1081 /**
1082 * et1310_in_phy_coma - check if the device is in phy coma
1083 * @adapter: pointer to our adapter structure
1084 *
1085 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1086 */
1087 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1088 {
1089 u32 pmcsr;
1090
1091 pmcsr = readl(&adapter->regs->global.pm_csr);
1092
1093 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1094 }
1095
1096 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1097 {
1098 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1099 u32 hash1 = 0;
1100 u32 hash2 = 0;
1101 u32 hash3 = 0;
1102 u32 hash4 = 0;
1103 u32 pm_csr;
1104
1105 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1106 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1107 * specified) then we should pass NO multi-cast addresses to the
1108 * driver.
1109 */
1110 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1111 int i;
1112
1113 /* Loop through our multicast array and set up the device */
1114 for (i = 0; i < adapter->multicast_addr_count; i++) {
1115 u32 result;
1116
1117 result = ether_crc(6, adapter->multicast_list[i]);
1118
1119 result = (result & 0x3F800000) >> 23;
1120
1121 if (result < 32) {
1122 hash1 |= (1 << result);
1123 } else if ((31 < result) && (result < 64)) {
1124 result -= 32;
1125 hash2 |= (1 << result);
1126 } else if ((63 < result) && (result < 96)) {
1127 result -= 64;
1128 hash3 |= (1 << result);
1129 } else {
1130 result -= 96;
1131 hash4 |= (1 << result);
1132 }
1133 }
1134 }
1135
1136 /* Write out the new hash to the device */
1137 pm_csr = readl(&adapter->regs->global.pm_csr);
1138 if (!et1310_in_phy_coma(adapter)) {
1139 writel(hash1, &rxmac->multi_hash1);
1140 writel(hash2, &rxmac->multi_hash2);
1141 writel(hash3, &rxmac->multi_hash3);
1142 writel(hash4, &rxmac->multi_hash4);
1143 }
1144 }
1145
1146 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1147 {
1148 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1149 u32 uni_pf1;
1150 u32 uni_pf2;
1151 u32 uni_pf3;
1152 u32 pm_csr;
1153
1154 /* Set up unicast packet filter reg 3 to be the first two octets of
1155 * the MAC address for both address
1156 *
1157 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1158 * MAC address for second address
1159 *
1160 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1161 * MAC address for first address
1162 */
1163 uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1164 (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1165 (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1166 adapter->addr[1];
1167
1168 uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1169 (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1170 (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1171 adapter->addr[5];
1172
1173 uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1174 (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1175 (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1176 adapter->addr[5];
1177
1178 pm_csr = readl(&adapter->regs->global.pm_csr);
1179 if (!et1310_in_phy_coma(adapter)) {
1180 writel(uni_pf1, &rxmac->uni_pf_addr1);
1181 writel(uni_pf2, &rxmac->uni_pf_addr2);
1182 writel(uni_pf3, &rxmac->uni_pf_addr3);
1183 }
1184 }
1185
1186 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1187 {
1188 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1189 struct phy_device *phydev = adapter->phydev;
1190 u32 sa_lo;
1191 u32 sa_hi = 0;
1192 u32 pf_ctrl = 0;
1193
1194 /* Disable the MAC while it is being configured (also disable WOL) */
1195 writel(0x8, &rxmac->ctrl);
1196
1197 /* Initialize WOL to disabled. */
1198 writel(0, &rxmac->crc0);
1199 writel(0, &rxmac->crc12);
1200 writel(0, &rxmac->crc34);
1201
1202 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1203 * its default Values of 0x00000000 because there are not WOL masks
1204 * as of this time.
1205 */
1206 writel(0, &rxmac->mask0_word0);
1207 writel(0, &rxmac->mask0_word1);
1208 writel(0, &rxmac->mask0_word2);
1209 writel(0, &rxmac->mask0_word3);
1210
1211 writel(0, &rxmac->mask1_word0);
1212 writel(0, &rxmac->mask1_word1);
1213 writel(0, &rxmac->mask1_word2);
1214 writel(0, &rxmac->mask1_word3);
1215
1216 writel(0, &rxmac->mask2_word0);
1217 writel(0, &rxmac->mask2_word1);
1218 writel(0, &rxmac->mask2_word2);
1219 writel(0, &rxmac->mask2_word3);
1220
1221 writel(0, &rxmac->mask3_word0);
1222 writel(0, &rxmac->mask3_word1);
1223 writel(0, &rxmac->mask3_word2);
1224 writel(0, &rxmac->mask3_word3);
1225
1226 writel(0, &rxmac->mask4_word0);
1227 writel(0, &rxmac->mask4_word1);
1228 writel(0, &rxmac->mask4_word2);
1229 writel(0, &rxmac->mask4_word3);
1230
1231 /* Lets setup the WOL Source Address */
1232 sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1233 (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1234 (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1235 adapter->addr[5];
1236 writel(sa_lo, &rxmac->sa_lo);
1237
1238 sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1239 adapter->addr[1];
1240 writel(sa_hi, &rxmac->sa_hi);
1241
1242 /* Disable all Packet Filtering */
1243 writel(0, &rxmac->pf_ctrl);
1244
1245 /* Let's initialize the Unicast Packet filtering address */
1246 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1247 et1310_setup_device_for_unicast(adapter);
1248 pf_ctrl |= 4; /* Unicast filter */
1249 } else {
1250 writel(0, &rxmac->uni_pf_addr1);
1251 writel(0, &rxmac->uni_pf_addr2);
1252 writel(0, &rxmac->uni_pf_addr3);
1253 }
1254
1255 /* Let's initialize the Multicast hash */
1256 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1257 pf_ctrl |= 2; /* Multicast filter */
1258 et1310_setup_device_for_multicast(adapter);
1259 }
1260
1261 /* Runt packet filtering. Didn't work in version A silicon. */
1262 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1263 pf_ctrl |= 8; /* Fragment filter */
1264
1265 if (adapter->registry_jumbo_packet > 8192)
1266 /* In order to transmit jumbo packets greater than 8k, the
1267 * FIFO between RxMAC and RxDMA needs to be reduced in size
1268 * to (16k - Jumbo packet size). In order to implement this,
1269 * we must use "cut through" mode in the RxMAC, which chops
1270 * packets down into segments which are (max_size * 16). In
1271 * this case we selected 256 bytes, since this is the size of
1272 * the PCI-Express TLP's that the 1310 uses.
1273 *
1274 * seg_en on, fc_en off, size 0x10
1275 */
1276 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1277 else
1278 writel(0, &rxmac->mcif_ctrl_max_seg);
1279
1280 /* Initialize the MCIF water marks */
1281 writel(0, &rxmac->mcif_water_mark);
1282
1283 /* Initialize the MIF control */
1284 writel(0, &rxmac->mif_ctrl);
1285
1286 /* Initialize the Space Available Register */
1287 writel(0, &rxmac->space_avail);
1288
1289 /* Initialize the the mif_ctrl register
1290 * bit 3: Receive code error. One or more nibbles were signaled as
1291 * errors during the reception of the packet. Clear this
1292 * bit in Gigabit, set it in 100Mbit. This was derived
1293 * experimentally at UNH.
1294 * bit 4: Receive CRC error. The packet's CRC did not match the
1295 * internally generated CRC.
1296 * bit 5: Receive length check error. Indicates that frame length
1297 * field value in the packet does not match the actual data
1298 * byte length and is not a type field.
1299 * bit 16: Receive frame truncated.
1300 * bit 17: Drop packet enable
1301 */
1302 if (phydev && phydev->speed == SPEED_100)
1303 writel(0x30038, &rxmac->mif_ctrl);
1304 else
1305 writel(0x30030, &rxmac->mif_ctrl);
1306
1307 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1308 * filter is always enabled since it is where the runt packets are
1309 * supposed to be dropped. For version A silicon, runt packet
1310 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1311 * but we still leave the packet filter on.
1312 */
1313 writel(pf_ctrl, &rxmac->pf_ctrl);
1314 writel(0x9, &rxmac->ctrl);
1315 }
1316
1317 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1318 {
1319 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1320
1321 /* We need to update the Control Frame Parameters
1322 * cfpt - control frame pause timer set to 64 (0x40)
1323 * cfep - control frame extended pause timer set to 0x0
1324 */
1325 if (adapter->flowcontrol == FLOW_NONE)
1326 writel(0, &txmac->cf_param);
1327 else
1328 writel(0x40, &txmac->cf_param);
1329 }
1330
1331 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1332 {
1333 struct macstat_regs __iomem *macstat =
1334 &adapter->regs->macstat;
1335
1336 /* Next we need to initialize all the macstat registers to zero on
1337 * the device.
1338 */
1339 writel(0, &macstat->txrx_0_64_byte_frames);
1340 writel(0, &macstat->txrx_65_127_byte_frames);
1341 writel(0, &macstat->txrx_128_255_byte_frames);
1342 writel(0, &macstat->txrx_256_511_byte_frames);
1343 writel(0, &macstat->txrx_512_1023_byte_frames);
1344 writel(0, &macstat->txrx_1024_1518_byte_frames);
1345 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1346
1347 writel(0, &macstat->rx_bytes);
1348 writel(0, &macstat->rx_packets);
1349 writel(0, &macstat->rx_fcs_errs);
1350 writel(0, &macstat->rx_multicast_packets);
1351 writel(0, &macstat->rx_broadcast_packets);
1352 writel(0, &macstat->rx_control_frames);
1353 writel(0, &macstat->rx_pause_frames);
1354 writel(0, &macstat->rx_unknown_opcodes);
1355 writel(0, &macstat->rx_align_errs);
1356 writel(0, &macstat->rx_frame_len_errs);
1357 writel(0, &macstat->rx_code_errs);
1358 writel(0, &macstat->rx_carrier_sense_errs);
1359 writel(0, &macstat->rx_undersize_packets);
1360 writel(0, &macstat->rx_oversize_packets);
1361 writel(0, &macstat->rx_fragment_packets);
1362 writel(0, &macstat->rx_jabbers);
1363 writel(0, &macstat->rx_drops);
1364
1365 writel(0, &macstat->tx_bytes);
1366 writel(0, &macstat->tx_packets);
1367 writel(0, &macstat->tx_multicast_packets);
1368 writel(0, &macstat->tx_broadcast_packets);
1369 writel(0, &macstat->tx_pause_frames);
1370 writel(0, &macstat->tx_deferred);
1371 writel(0, &macstat->tx_excessive_deferred);
1372 writel(0, &macstat->tx_single_collisions);
1373 writel(0, &macstat->tx_multiple_collisions);
1374 writel(0, &macstat->tx_late_collisions);
1375 writel(0, &macstat->tx_excessive_collisions);
1376 writel(0, &macstat->tx_total_collisions);
1377 writel(0, &macstat->tx_pause_honored_frames);
1378 writel(0, &macstat->tx_drops);
1379 writel(0, &macstat->tx_jabbers);
1380 writel(0, &macstat->tx_fcs_errs);
1381 writel(0, &macstat->tx_control_frames);
1382 writel(0, &macstat->tx_oversize_frames);
1383 writel(0, &macstat->tx_undersize_frames);
1384 writel(0, &macstat->tx_fragments);
1385 writel(0, &macstat->carry_reg1);
1386 writel(0, &macstat->carry_reg2);
1387
1388 /* Unmask any counters that we want to track the overflow of.
1389 * Initially this will be all counters. It may become clear later
1390 * that we do not need to track all counters.
1391 */
1392 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1393 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1394 }
1395
1396 /**
1397 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1398 * @adapter: pointer to our private adapter structure
1399 * @addr: the address of the transceiver
1400 * @reg: the register to read
1401 * @value: pointer to a 16-bit value in which the value will be stored
1402 *
1403 * Returns 0 on success, errno on failure (as defined in errno.h)
1404 */
1405 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1406 u8 reg, u16 *value)
1407 {
1408 struct mac_regs __iomem *mac = &adapter->regs->mac;
1409 int status = 0;
1410 u32 delay = 0;
1411 u32 mii_addr;
1412 u32 mii_cmd;
1413 u32 mii_indicator;
1414
1415 /* Save a local copy of the registers we are dealing with so we can
1416 * set them back
1417 */
1418 mii_addr = readl(&mac->mii_mgmt_addr);
1419 mii_cmd = readl(&mac->mii_mgmt_cmd);
1420
1421 /* Stop the current operation */
1422 writel(0, &mac->mii_mgmt_cmd);
1423
1424 /* Set up the register we need to read from on the correct PHY */
1425 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1426
1427 writel(0x1, &mac->mii_mgmt_cmd);
1428
1429 do {
1430 udelay(50);
1431 delay++;
1432 mii_indicator = readl(&mac->mii_mgmt_indicator);
1433 } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1434
1435 /* If we hit the max delay, we could not read the register */
1436 if (delay == 50) {
1437 dev_warn(&adapter->pdev->dev,
1438 "reg 0x%08x could not be read\n", reg);
1439 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1440 mii_indicator);
1441
1442 status = -EIO;
1443 }
1444
1445 /* If we hit here we were able to read the register and we need to
1446 * return the value to the caller */
1447 *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1448
1449 /* Stop the read operation */
1450 writel(0, &mac->mii_mgmt_cmd);
1451
1452 /* set the registers we touched back to the state at which we entered
1453 * this function
1454 */
1455 writel(mii_addr, &mac->mii_mgmt_addr);
1456 writel(mii_cmd, &mac->mii_mgmt_cmd);
1457
1458 return status;
1459 }
1460
1461 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1462 {
1463 struct phy_device *phydev = adapter->phydev;
1464
1465 if (!phydev)
1466 return -EIO;
1467
1468 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1469 }
1470
1471 /**
1472 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1473 * @adapter: pointer to our private adapter structure
1474 * @reg: the register to read
1475 * @value: 16-bit value to write
1476 *
1477 * FIXME: one caller in netdev still
1478 *
1479 * Return 0 on success, errno on failure (as defined in errno.h)
1480 */
1481 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1482 {
1483 struct mac_regs __iomem *mac = &adapter->regs->mac;
1484 struct phy_device *phydev = adapter->phydev;
1485 int status = 0;
1486 u8 addr;
1487 u32 delay = 0;
1488 u32 mii_addr;
1489 u32 mii_cmd;
1490 u32 mii_indicator;
1491
1492 if (!phydev)
1493 return -EIO;
1494
1495 addr = phydev->addr;
1496
1497 /* Save a local copy of the registers we are dealing with so we can
1498 * set them back
1499 */
1500 mii_addr = readl(&mac->mii_mgmt_addr);
1501 mii_cmd = readl(&mac->mii_mgmt_cmd);
1502
1503 /* Stop the current operation */
1504 writel(0, &mac->mii_mgmt_cmd);
1505
1506 /* Set up the register we need to write to on the correct PHY */
1507 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1508
1509 /* Add the value to write to the registers to the mac */
1510 writel(value, &mac->mii_mgmt_ctrl);
1511
1512 do {
1513 udelay(50);
1514 delay++;
1515 mii_indicator = readl(&mac->mii_mgmt_indicator);
1516 } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1517
1518 /* If we hit the max delay, we could not write the register */
1519 if (delay == 100) {
1520 u16 tmp;
1521
1522 dev_warn(&adapter->pdev->dev,
1523 "reg 0x%08x could not be written", reg);
1524 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1525 mii_indicator);
1526 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1527 readl(&mac->mii_mgmt_cmd));
1528
1529 et131x_mii_read(adapter, reg, &tmp);
1530
1531 status = -EIO;
1532 }
1533 /* Stop the write operation */
1534 writel(0, &mac->mii_mgmt_cmd);
1535
1536 /*
1537 * set the registers we touched back to the state at which we entered
1538 * this function
1539 */
1540 writel(mii_addr, &mac->mii_mgmt_addr);
1541 writel(mii_cmd, &mac->mii_mgmt_cmd);
1542
1543 return status;
1544 }
1545
1546 /* Still used from _mac for BIT_READ */
1547 static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1548 u16 action, u16 regnum, u16 bitnum,
1549 u8 *value)
1550 {
1551 u16 reg;
1552 u16 mask = 0x0001 << bitnum;
1553
1554 /* Read the requested register */
1555 et131x_mii_read(adapter, regnum, &reg);
1556
1557 switch (action) {
1558 case TRUEPHY_BIT_READ:
1559 *value = (reg & mask) >> bitnum;
1560 break;
1561
1562 case TRUEPHY_BIT_SET:
1563 et131x_mii_write(adapter, regnum, reg | mask);
1564 break;
1565
1566 case TRUEPHY_BIT_CLEAR:
1567 et131x_mii_write(adapter, regnum, reg & ~mask);
1568 break;
1569
1570 default:
1571 break;
1572 }
1573 }
1574
1575 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1576 {
1577 struct phy_device *phydev = adapter->phydev;
1578
1579 if (phydev->duplex == DUPLEX_HALF) {
1580 adapter->flowcontrol = FLOW_NONE;
1581 } else {
1582 char remote_pause, remote_async_pause;
1583
1584 et1310_phy_access_mii_bit(adapter,
1585 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1586 et1310_phy_access_mii_bit(adapter,
1587 TRUEPHY_BIT_READ, 5, 11,
1588 &remote_async_pause);
1589
1590 if ((remote_pause == TRUEPHY_BIT_SET) &&
1591 (remote_async_pause == TRUEPHY_BIT_SET)) {
1592 adapter->flowcontrol = adapter->wanted_flow;
1593 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1594 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1595 if (adapter->wanted_flow == FLOW_BOTH)
1596 adapter->flowcontrol = FLOW_BOTH;
1597 else
1598 adapter->flowcontrol = FLOW_NONE;
1599 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1600 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1601 adapter->flowcontrol = FLOW_NONE;
1602 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1603 remote_async_pause == TRUEPHY_SET_BIT) */
1604 if (adapter->wanted_flow == FLOW_BOTH)
1605 adapter->flowcontrol = FLOW_RXONLY;
1606 else
1607 adapter->flowcontrol = FLOW_NONE;
1608 }
1609 }
1610 }
1611
1612 /**
1613 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1614 * @adapter: pointer to the adapter structure
1615 */
1616 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1617 {
1618 struct ce_stats *stats = &adapter->stats;
1619 struct macstat_regs __iomem *macstat =
1620 &adapter->regs->macstat;
1621
1622 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1623 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1624 stats->tx_deferred += readl(&macstat->tx_deferred);
1625 stats->tx_excessive_collisions +=
1626 readl(&macstat->tx_multiple_collisions);
1627 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1628 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1629 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1630
1631 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1632 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1633 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1634 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1635 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1636 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1637 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1638 }
1639
1640 /**
1641 * et1310_handle_macstat_interrupt
1642 * @adapter: pointer to the adapter structure
1643 *
1644 * One of the MACSTAT counters has wrapped. Update the local copy of
1645 * the statistics held in the adapter structure, checking the "wrap"
1646 * bit for each counter.
1647 */
1648 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1649 {
1650 u32 carry_reg1;
1651 u32 carry_reg2;
1652
1653 /* Read the interrupt bits from the register(s). These are Clear On
1654 * Write.
1655 */
1656 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1657 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1658
1659 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1660 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1661
1662 /* We need to do update the host copy of all the MAC_STAT counters.
1663 * For each counter, check it's overflow bit. If the overflow bit is
1664 * set, then increment the host version of the count by one complete
1665 * revolution of the counter. This routine is called when the counter
1666 * block indicates that one of the counters has wrapped.
1667 */
1668 if (carry_reg1 & (1 << 14))
1669 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1670 if (carry_reg1 & (1 << 8))
1671 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1672 if (carry_reg1 & (1 << 7))
1673 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1674 if (carry_reg1 & (1 << 2))
1675 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1676 if (carry_reg1 & (1 << 6))
1677 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1678 if (carry_reg1 & (1 << 3))
1679 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1680 if (carry_reg1 & (1 << 0))
1681 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1682 if (carry_reg2 & (1 << 16))
1683 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1684 if (carry_reg2 & (1 << 15))
1685 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1686 if (carry_reg2 & (1 << 6))
1687 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1688 if (carry_reg2 & (1 << 8))
1689 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1690 if (carry_reg2 & (1 << 5))
1691 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1692 if (carry_reg2 & (1 << 4))
1693 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1694 if (carry_reg2 & (1 << 2))
1695 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1696 }
1697
1698 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1699 {
1700 struct net_device *netdev = bus->priv;
1701 struct et131x_adapter *adapter = netdev_priv(netdev);
1702 u16 value;
1703 int ret;
1704
1705 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1706
1707 if (ret < 0)
1708 return ret;
1709 else
1710 return value;
1711 }
1712
1713 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1714 int reg, u16 value)
1715 {
1716 struct net_device *netdev = bus->priv;
1717 struct et131x_adapter *adapter = netdev_priv(netdev);
1718
1719 return et131x_mii_write(adapter, reg, value);
1720 }
1721
1722 static int et131x_mdio_reset(struct mii_bus *bus)
1723 {
1724 struct net_device *netdev = bus->priv;
1725 struct et131x_adapter *adapter = netdev_priv(netdev);
1726
1727 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1728
1729 return 0;
1730 }
1731
1732 /**
1733 * et1310_phy_power_down - PHY power control
1734 * @adapter: device to control
1735 * @down: true for off/false for back on
1736 *
1737 * one hundred, ten, one thousand megs
1738 * How would you like to have your LAN accessed
1739 * Can't you see that this code processed
1740 * Phy power, phy power..
1741 */
1742 static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1743 {
1744 u16 data;
1745
1746 et131x_mii_read(adapter, MII_BMCR, &data);
1747 data &= ~BMCR_PDOWN;
1748 if (down)
1749 data |= BMCR_PDOWN;
1750 et131x_mii_write(adapter, MII_BMCR, data);
1751 }
1752
1753 /**
1754 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1755 * @adapter: pointer to our private adapter structure
1756 *
1757 */
1758 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1759 {
1760 u16 imr;
1761 u16 isr;
1762 u16 lcr2;
1763
1764 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1765 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1766
1767 /* Set the link status interrupt only. Bad behavior when link status
1768 * and auto neg are set, we run into a nested interrupt problem
1769 */
1770 imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1771 ET_PHY_INT_MASK_LINKSTAT &
1772 ET_PHY_INT_MASK_ENABLE);
1773
1774 et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1775
1776 /* Set the LED behavior such that LED 1 indicates speed (off =
1777 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1778 * link and activity (on for link, blink off for activity).
1779 *
1780 * NOTE: Some customizations have been added here for specific
1781 * vendors; The LED behavior is now determined by vendor data in the
1782 * EEPROM. However, the above description is the default.
1783 */
1784 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1785 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1786
1787 lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1788 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1789
1790 if ((adapter->eeprom_data[1] & 0x8) == 0)
1791 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1792 else
1793 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1794
1795 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1796 }
1797 }
1798
1799 /**
1800 * et131x_configure_global_regs - configure JAGCore global regs
1801 * @adapter: pointer to our adapter structure
1802 *
1803 * Used to configure the global registers on the JAGCore
1804 */
1805 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1806 {
1807 struct global_regs __iomem *regs = &adapter->regs->global;
1808
1809 writel(0, &regs->rxq_start_addr);
1810 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1811
1812 if (adapter->registry_jumbo_packet < 2048) {
1813 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1814 * block of RAM that the driver can split between Tx
1815 * and Rx as it desires. Our default is to split it
1816 * 50/50:
1817 */
1818 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1819 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1820 } else if (adapter->registry_jumbo_packet < 8192) {
1821 /* For jumbo packets > 2k but < 8k, split 50-50. */
1822 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1823 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1824 } else {
1825 /* 9216 is the only packet size greater than 8k that
1826 * is available. The Tx buffer has to be big enough
1827 * for one whole packet on the Tx side. We'll make
1828 * the Tx 9408, and give the rest to Rx
1829 */
1830 writel(0x01b3, &regs->rxq_end_addr);
1831 writel(0x01b4, &regs->txq_start_addr);
1832 }
1833
1834 /* Initialize the loopback register. Disable all loopbacks. */
1835 writel(0, &regs->loopback);
1836
1837 /* MSI Register */
1838 writel(0, &regs->msi_config);
1839
1840 /* By default, disable the watchdog timer. It will be enabled when
1841 * a packet is queued.
1842 */
1843 writel(0, &regs->watchdog_timer);
1844 }
1845
1846 /**
1847 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1848 * @adapter: pointer to our adapter structure
1849 */
1850 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1851 {
1852 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1853 struct rx_ring *rx_local = &adapter->rx_ring;
1854 struct fbr_desc *fbr_entry;
1855 u32 entry;
1856 u32 psr_num_des;
1857 unsigned long flags;
1858
1859 /* Halt RXDMA to perform the reconfigure. */
1860 et131x_rx_dma_disable(adapter);
1861
1862 /* Load the completion writeback physical address
1863 *
1864 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1865 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1866 * are ever returned, make sure the high part is retrieved here
1867 * before storing the adjusted address.
1868 */
1869 writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1870 &rx_dma->dma_wb_base_hi);
1871 writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1872
1873 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1874
1875 /* Set the address and parameters of the packet status ring into the
1876 * 1310's registers
1877 */
1878 writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1879 &rx_dma->psr_base_hi);
1880 writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1881 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1882 writel(0, &rx_dma->psr_full_offset);
1883
1884 psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1885 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1886 &rx_dma->psr_min_des);
1887
1888 spin_lock_irqsave(&adapter->rcv_lock, flags);
1889
1890 /* These local variables track the PSR in the adapter structure */
1891 rx_local->local_psr_full = 0;
1892
1893 /* Now's the best time to initialize FBR1 contents */
1894 fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1895 for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1896 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1897 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1898 fbr_entry->word2 = entry;
1899 fbr_entry++;
1900 }
1901
1902 /* Set the address and parameters of Free buffer ring 1 (and 0 if
1903 * required) into the 1310's registers
1904 */
1905 writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1906 &rx_dma->fbr1_base_hi);
1907 writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1908 writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1909 writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1910
1911 /* This variable tracks the free buffer ring 1 full position, so it
1912 * has to match the above.
1913 */
1914 rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1915 writel(
1916 ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1917 &rx_dma->fbr1_min_des);
1918
1919 #ifdef USE_FBR0
1920 /* Now's the best time to initialize FBR0 contents */
1921 fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1922 for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1923 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1924 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1925 fbr_entry->word2 = entry;
1926 fbr_entry++;
1927 }
1928
1929 writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1930 &rx_dma->fbr0_base_hi);
1931 writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1932 writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1933 writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1934
1935 /* This variable tracks the free buffer ring 0 full position, so it
1936 * has to match the above.
1937 */
1938 rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1939 writel(
1940 ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1941 &rx_dma->fbr0_min_des);
1942 #endif
1943
1944 /* Program the number of packets we will receive before generating an
1945 * interrupt.
1946 * For version B silicon, this value gets updated once autoneg is
1947 *complete.
1948 */
1949 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1950
1951 /* The "time_done" is not working correctly to coalesce interrupts
1952 * after a given time period, but rather is giving us an interrupt
1953 * regardless of whether we have received packets.
1954 * This value gets updated once autoneg is complete.
1955 */
1956 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1957
1958 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1959 }
1960
1961 /**
1962 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1963 * @adapter: pointer to our private adapter structure
1964 *
1965 * Configure the transmit engine with the ring buffers we have created
1966 * and prepare it for use.
1967 */
1968 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1969 {
1970 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1971
1972 /* Load the hardware with the start of the transmit descriptor ring. */
1973 writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1974 &txdma->pr_base_hi);
1975 writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1976 &txdma->pr_base_lo);
1977
1978 /* Initialise the transmit DMA engine */
1979 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1980
1981 /* Load the completion writeback physical address */
1982 writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
1983 &txdma->dma_wb_base_hi);
1984 writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
1985
1986 *adapter->tx_ring.tx_status = 0;
1987
1988 writel(0, &txdma->service_request);
1989 adapter->tx_ring.send_idx = 0;
1990 }
1991
1992 /**
1993 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1994 * @adapter: pointer to our private adapter structure
1995 *
1996 * Returns 0 on success, errno on failure (as defined in errno.h)
1997 */
1998 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1999 {
2000 /* Configure the JAGCore */
2001 et131x_configure_global_regs(adapter);
2002
2003 et1310_config_mac_regs1(adapter);
2004
2005 /* Configure the MMC registers */
2006 /* All we need to do is initialize the Memory Control Register */
2007 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2008
2009 et1310_config_rxmac_regs(adapter);
2010 et1310_config_txmac_regs(adapter);
2011
2012 et131x_config_rx_dma_regs(adapter);
2013 et131x_config_tx_dma_regs(adapter);
2014
2015 et1310_config_macstat_regs(adapter);
2016
2017 et1310_phy_power_down(adapter, 0);
2018 et131x_xcvr_init(adapter);
2019 }
2020
2021 /**
2022 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2023 * @adapter: pointer to our private adapter structure
2024 */
2025 static void et131x_soft_reset(struct et131x_adapter *adapter)
2026 {
2027 /* Disable MAC Core */
2028 writel(0xc00f0000, &adapter->regs->mac.cfg1);
2029
2030 /* Set everything to a reset value */
2031 writel(0x7F, &adapter->regs->global.sw_reset);
2032 writel(0x000f0000, &adapter->regs->mac.cfg1);
2033 writel(0x00000000, &adapter->regs->mac.cfg1);
2034 }
2035
2036 /**
2037 * et131x_enable_interrupts - enable interrupt
2038 * @adapter: et131x device
2039 *
2040 * Enable the appropriate interrupts on the ET131x according to our
2041 * configuration
2042 */
2043 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
2044 {
2045 u32 mask;
2046
2047 /* Enable all global interrupts */
2048 if (adapter->flowcontrol == FLOW_TXONLY ||
2049 adapter->flowcontrol == FLOW_BOTH)
2050 mask = INT_MASK_ENABLE;
2051 else
2052 mask = INT_MASK_ENABLE_NO_FLOW;
2053
2054 writel(mask, &adapter->regs->global.int_mask);
2055 }
2056
2057 /**
2058 * et131x_disable_interrupts - interrupt disable
2059 * @adapter: et131x device
2060 *
2061 * Block all interrupts from the et131x device at the device itself
2062 */
2063 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
2064 {
2065 /* Disable all global interrupts */
2066 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2067 }
2068
2069 /**
2070 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2071 * @adapter: pointer to our adapter structure
2072 */
2073 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2074 {
2075 /* Setup the tramsmit dma configuration register */
2076 writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2077 &adapter->regs->txdma.csr);
2078 }
2079
2080 /**
2081 * et131x_enable_txrx - Enable tx/rx queues
2082 * @netdev: device to be enabled
2083 */
2084 static void et131x_enable_txrx(struct net_device *netdev)
2085 {
2086 struct et131x_adapter *adapter = netdev_priv(netdev);
2087
2088 /* Enable the Tx and Rx DMA engines (if not already enabled) */
2089 et131x_rx_dma_enable(adapter);
2090 et131x_tx_dma_enable(adapter);
2091
2092 /* Enable device interrupts */
2093 if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2094 et131x_enable_interrupts(adapter);
2095
2096 /* We're ready to move some data, so start the queue */
2097 netif_start_queue(netdev);
2098 }
2099
2100 /**
2101 * et131x_disable_txrx - Disable tx/rx queues
2102 * @netdev: device to be disabled
2103 */
2104 static void et131x_disable_txrx(struct net_device *netdev)
2105 {
2106 struct et131x_adapter *adapter = netdev_priv(netdev);
2107
2108 /* First thing is to stop the queue */
2109 netif_stop_queue(netdev);
2110
2111 /* Stop the Tx and Rx DMA engines */
2112 et131x_rx_dma_disable(adapter);
2113 et131x_tx_dma_disable(adapter);
2114
2115 /* Disable device interrupts */
2116 et131x_disable_interrupts(adapter);
2117 }
2118
2119 /**
2120 * et131x_init_send - Initialize send data structures
2121 * @adapter: pointer to our private adapter structure
2122 */
2123 static void et131x_init_send(struct et131x_adapter *adapter)
2124 {
2125 struct tcb *tcb;
2126 u32 ct;
2127 struct tx_ring *tx_ring;
2128
2129 /* Setup some convenience pointers */
2130 tx_ring = &adapter->tx_ring;
2131 tcb = adapter->tx_ring.tcb_ring;
2132
2133 tx_ring->tcb_qhead = tcb;
2134
2135 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2136
2137 /* Go through and set up each TCB */
2138 for (ct = 0; ct++ < NUM_TCB; tcb++)
2139 /* Set the link pointer in HW TCB to the next TCB in the
2140 * chain
2141 */
2142 tcb->next = tcb + 1;
2143
2144 /* Set the tail pointer */
2145 tcb--;
2146 tx_ring->tcb_qtail = tcb;
2147 tcb->next = NULL;
2148 /* Curr send queue should now be empty */
2149 tx_ring->send_head = NULL;
2150 tx_ring->send_tail = NULL;
2151 }
2152
2153 /**
2154 * et1310_enable_phy_coma - called when network cable is unplugged
2155 * @adapter: pointer to our adapter structure
2156 *
2157 * driver receive an phy status change interrupt while in D0 and check that
2158 * phy_status is down.
2159 *
2160 * -- gate off JAGCore;
2161 * -- set gigE PHY in Coma mode
2162 * -- wake on phy_interrupt; Perform software reset JAGCore,
2163 * re-initialize jagcore and gigE PHY
2164 *
2165 * Add D0-ASPM-PhyLinkDown Support:
2166 * -- while in D0, when there is a phy_interrupt indicating phy link
2167 * down status, call the MPSetPhyComa routine to enter this active
2168 * state power saving mode
2169 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2170 * indicating linkup status, call the MPDisablePhyComa routine to
2171 * restore JAGCore and gigE PHY
2172 */
2173 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2174 {
2175 unsigned long flags;
2176 u32 pmcsr;
2177
2178 pmcsr = readl(&adapter->regs->global.pm_csr);
2179
2180 /* Save the GbE PHY speed and duplex modes. Need to restore this
2181 * when cable is plugged back in
2182 */
2183 /*
2184 * TODO - when PM is re-enabled, check if we need to
2185 * perform a similar task as this -
2186 * adapter->pdown_speed = adapter->ai_force_speed;
2187 * adapter->pdown_duplex = adapter->ai_force_duplex;
2188 */
2189
2190 /* Stop sending packets. */
2191 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2192 adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2193 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2194
2195 /* Wait for outstanding Receive packets */
2196
2197 et131x_disable_txrx(adapter->netdev);
2198
2199 /* Gate off JAGCore 3 clock domains */
2200 pmcsr &= ~ET_PMCSR_INIT;
2201 writel(pmcsr, &adapter->regs->global.pm_csr);
2202
2203 /* Program gigE PHY in to Coma mode */
2204 pmcsr |= ET_PM_PHY_SW_COMA;
2205 writel(pmcsr, &adapter->regs->global.pm_csr);
2206 }
2207
2208 /**
2209 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2210 * @adapter: pointer to our adapter structure
2211 */
2212 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2213 {
2214 u32 pmcsr;
2215
2216 pmcsr = readl(&adapter->regs->global.pm_csr);
2217
2218 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2219 pmcsr |= ET_PMCSR_INIT;
2220 pmcsr &= ~ET_PM_PHY_SW_COMA;
2221 writel(pmcsr, &adapter->regs->global.pm_csr);
2222
2223 /* Restore the GbE PHY speed and duplex modes;
2224 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2225 */
2226 /* TODO - when PM is re-enabled, check if we need to
2227 * perform a similar task as this -
2228 * adapter->ai_force_speed = adapter->pdown_speed;
2229 * adapter->ai_force_duplex = adapter->pdown_duplex;
2230 */
2231
2232 /* Re-initialize the send structures */
2233 et131x_init_send(adapter);
2234
2235 /* Bring the device back to the state it was during init prior to
2236 * autonegotiation being complete. This way, when we get the auto-neg
2237 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2238 */
2239 et131x_soft_reset(adapter);
2240
2241 /* setup et1310 as per the documentation ?? */
2242 et131x_adapter_setup(adapter);
2243
2244 /* Allow Tx to restart */
2245 adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2246
2247 et131x_enable_txrx(adapter->netdev);
2248 }
2249
2250 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2251 {
2252 u32 tmp_free_buff_ring = *free_buff_ring;
2253 tmp_free_buff_ring++;
2254 /* This works for all cases where limit < 1024. The 1023 case
2255 works because 1023++ is 1024 which means the if condition is not
2256 taken but the carry of the bit into the wrap bit toggles the wrap
2257 value correctly */
2258 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2259 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2260 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2261 }
2262 /* For the 1023 case */
2263 tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2264 *free_buff_ring = tmp_free_buff_ring;
2265 return tmp_free_buff_ring;
2266 }
2267
2268 /**
2269 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2270 * @adapter: pointer to our adapter structure
2271 * @phys_addr: pointer to Physical address
2272 * @offset: pointer to the offset variable
2273 * @mask: correct mask
2274 */
2275 static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2276 u64 *phys_addr, u64 *offset,
2277 u64 mask)
2278 {
2279 u64 new_addr = *phys_addr & ~mask;
2280
2281 *offset = 0;
2282
2283 if (new_addr != *phys_addr) {
2284 /* Move to next aligned block */
2285 new_addr += mask + 1;
2286 /* Return offset for adjusting virt addr */
2287 *offset = new_addr - *phys_addr;
2288 /* Return new physical address */
2289 *phys_addr = new_addr;
2290 }
2291 }
2292
2293 /**
2294 * et131x_rx_dma_memory_alloc
2295 * @adapter: pointer to our private adapter structure
2296 *
2297 * Returns 0 on success and errno on failure (as defined in errno.h)
2298 *
2299 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2300 * and the Packet Status Ring.
2301 */
2302 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2303 {
2304 u32 i, j;
2305 u32 bufsize;
2306 u32 pktstat_ringsize, fbr_chunksize;
2307 struct rx_ring *rx_ring;
2308
2309 /* Setup some convenience pointers */
2310 rx_ring = &adapter->rx_ring;
2311
2312 /* Alloc memory for the lookup table */
2313 #ifdef USE_FBR0
2314 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2315 #endif
2316 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2317
2318 /* The first thing we will do is configure the sizes of the buffer
2319 * rings. These will change based on jumbo packet support. Larger
2320 * jumbo packets increases the size of each entry in FBR0, and the
2321 * number of entries in FBR0, while at the same time decreasing the
2322 * number of entries in FBR1.
2323 *
2324 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2325 * entries are huge in order to accommodate a "jumbo" frame, then it
2326 * will have less entries. Conversely, FBR1 will now be relied upon
2327 * to carry more "normal" frames, thus it's entry size also increases
2328 * and the number of entries goes up too (since it now carries
2329 * "small" + "regular" packets.
2330 *
2331 * In this scheme, we try to maintain 512 entries between the two
2332 * rings. Also, FBR1 remains a constant size - when it's size doubles
2333 * the number of entries halves. FBR0 increases in size, however.
2334 */
2335
2336 if (adapter->registry_jumbo_packet < 2048) {
2337 #ifdef USE_FBR0
2338 rx_ring->fbr[1]->buffsize = 256;
2339 rx_ring->fbr[1]->num_entries = 512;
2340 #endif
2341 rx_ring->fbr[0]->buffsize = 2048;
2342 rx_ring->fbr[0]->num_entries = 512;
2343 } else if (adapter->registry_jumbo_packet < 4096) {
2344 #ifdef USE_FBR0
2345 rx_ring->fbr[1]->buffsize = 512;
2346 rx_ring->fbr[1]->num_entries = 1024;
2347 #endif
2348 rx_ring->fbr[0]->buffsize = 4096;
2349 rx_ring->fbr[0]->num_entries = 512;
2350 } else {
2351 #ifdef USE_FBR0
2352 rx_ring->fbr[1]->buffsize = 1024;
2353 rx_ring->fbr[1]->num_entries = 768;
2354 #endif
2355 rx_ring->fbr[0]->buffsize = 16384;
2356 rx_ring->fbr[0]->num_entries = 128;
2357 }
2358
2359 #ifdef USE_FBR0
2360 adapter->rx_ring.psr_num_entries =
2361 adapter->rx_ring.fbr[1]->num_entries +
2362 adapter->rx_ring.fbr[0]->num_entries;
2363 #else
2364 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2365 #endif
2366
2367 /* Allocate an area of memory for Free Buffer Ring 1 */
2368 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2369 0xfff;
2370 rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2371 bufsize,
2372 &rx_ring->fbr[0]->ring_physaddr,
2373 GFP_KERNEL);
2374 if (!rx_ring->fbr[0]->ring_virtaddr) {
2375 dev_err(&adapter->pdev->dev,
2376 "Cannot alloc memory for Free Buffer Ring 1\n");
2377 return -ENOMEM;
2378 }
2379
2380 /* Save physical address
2381 *
2382 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2383 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2384 * are ever returned, make sure the high part is retrieved here
2385 * before storing the adjusted address.
2386 */
2387 rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2388
2389 /* Align Free Buffer Ring 1 on a 4K boundary */
2390 et131x_align_allocated_memory(adapter,
2391 &rx_ring->fbr[0]->real_physaddr,
2392 &rx_ring->fbr[0]->offset, 0x0FFF);
2393
2394 rx_ring->fbr[0]->ring_virtaddr =
2395 (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2396 rx_ring->fbr[0]->offset);
2397
2398 #ifdef USE_FBR0
2399 /* Allocate an area of memory for Free Buffer Ring 0 */
2400 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2401 0xfff;
2402 rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2403 bufsize,
2404 &rx_ring->fbr[1]->ring_physaddr,
2405 GFP_KERNEL);
2406 if (!rx_ring->fbr[1]->ring_virtaddr) {
2407 dev_err(&adapter->pdev->dev,
2408 "Cannot alloc memory for Free Buffer Ring 0\n");
2409 return -ENOMEM;
2410 }
2411
2412 /* Save physical address
2413 *
2414 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2415 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2416 * are ever returned, make sure the high part is retrieved here before
2417 * storing the adjusted address.
2418 */
2419 rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2420
2421 /* Align Free Buffer Ring 0 on a 4K boundary */
2422 et131x_align_allocated_memory(adapter,
2423 &rx_ring->fbr[1]->real_physaddr,
2424 &rx_ring->fbr[1]->offset, 0x0FFF);
2425
2426 rx_ring->fbr[1]->ring_virtaddr =
2427 (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2428 rx_ring->fbr[1]->offset);
2429 #endif
2430 for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2431 u64 fbr1_tmp_physaddr;
2432 u64 fbr1_offset;
2433 u32 fbr1_align;
2434
2435 /* This code allocates an area of memory big enough for N
2436 * free buffers + (buffer_size - 1) so that the buffers can
2437 * be aligned on 4k boundaries. If each buffer were aligned
2438 * to a buffer_size boundary, the effect would be to double
2439 * the size of FBR0. By allocating N buffers at once, we
2440 * reduce this overhead.
2441 */
2442 if (rx_ring->fbr[0]->buffsize > 4096)
2443 fbr1_align = 4096;
2444 else
2445 fbr1_align = rx_ring->fbr[0]->buffsize;
2446
2447 fbr_chunksize =
2448 (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2449 rx_ring->fbr[0]->mem_virtaddrs[i] =
2450 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2451 &rx_ring->fbr[0]->mem_physaddrs[i],
2452 GFP_KERNEL);
2453
2454 if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2455 dev_err(&adapter->pdev->dev,
2456 "Could not alloc memory\n");
2457 return -ENOMEM;
2458 }
2459
2460 /* See NOTE in "Save Physical Address" comment above */
2461 fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2462
2463 et131x_align_allocated_memory(adapter,
2464 &fbr1_tmp_physaddr,
2465 &fbr1_offset, (fbr1_align - 1));
2466
2467 for (j = 0; j < FBR_CHUNKS; j++) {
2468 u32 index = (i * FBR_CHUNKS) + j;
2469
2470 /* Save the Virtual address of this index for quick
2471 * access later
2472 */
2473 rx_ring->fbr[0]->virt[index] =
2474 (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2475 (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2476
2477 /* now store the physical address in the descriptor
2478 * so the device can access it
2479 */
2480 rx_ring->fbr[0]->bus_high[index] =
2481 (u32) (fbr1_tmp_physaddr >> 32);
2482 rx_ring->fbr[0]->bus_low[index] =
2483 (u32) fbr1_tmp_physaddr;
2484
2485 fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2486
2487 rx_ring->fbr[0]->buffer1[index] =
2488 rx_ring->fbr[0]->virt[index];
2489 rx_ring->fbr[0]->buffer2[index] =
2490 rx_ring->fbr[0]->virt[index] - 4;
2491 }
2492 }
2493
2494 #ifdef USE_FBR0
2495 /* Same for FBR0 (if in use) */
2496 for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2497 u64 fbr0_tmp_physaddr;
2498 u64 fbr0_offset;
2499
2500 fbr_chunksize =
2501 ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2502 rx_ring->fbr[1]->mem_virtaddrs[i] =
2503 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2504 &rx_ring->fbr[1]->mem_physaddrs[i],
2505 GFP_KERNEL);
2506
2507 if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2508 dev_err(&adapter->pdev->dev,
2509 "Could not alloc memory\n");
2510 return -ENOMEM;
2511 }
2512
2513 /* See NOTE in "Save Physical Address" comment above */
2514 fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2515
2516 et131x_align_allocated_memory(adapter,
2517 &fbr0_tmp_physaddr,
2518 &fbr0_offset,
2519 rx_ring->fbr[1]->buffsize - 1);
2520
2521 for (j = 0; j < FBR_CHUNKS; j++) {
2522 u32 index = (i * FBR_CHUNKS) + j;
2523
2524 rx_ring->fbr[1]->virt[index] =
2525 (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2526 (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2527
2528 rx_ring->fbr[1]->bus_high[index] =
2529 (u32) (fbr0_tmp_physaddr >> 32);
2530 rx_ring->fbr[1]->bus_low[index] =
2531 (u32) fbr0_tmp_physaddr;
2532
2533 fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2534
2535 rx_ring->fbr[1]->buffer1[index] =
2536 rx_ring->fbr[1]->virt[index];
2537 rx_ring->fbr[1]->buffer2[index] =
2538 rx_ring->fbr[1]->virt[index] - 4;
2539 }
2540 }
2541 #endif
2542
2543 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2544 pktstat_ringsize =
2545 sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2546
2547 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2548 pktstat_ringsize,
2549 &rx_ring->ps_ring_physaddr,
2550 GFP_KERNEL);
2551
2552 if (!rx_ring->ps_ring_virtaddr) {
2553 dev_err(&adapter->pdev->dev,
2554 "Cannot alloc memory for Packet Status Ring\n");
2555 return -ENOMEM;
2556 }
2557 printk(KERN_INFO "Packet Status Ring %lx\n",
2558 (unsigned long) rx_ring->ps_ring_physaddr);
2559
2560 /*
2561 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2562 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2563 * are ever returned, make sure the high part is retrieved here before
2564 * storing the adjusted address.
2565 */
2566
2567 /* Allocate an area of memory for writeback of status information */
2568 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2569 sizeof(struct rx_status_block),
2570 &rx_ring->rx_status_bus,
2571 GFP_KERNEL);
2572 if (!rx_ring->rx_status_block) {
2573 dev_err(&adapter->pdev->dev,
2574 "Cannot alloc memory for Status Block\n");
2575 return -ENOMEM;
2576 }
2577 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2578 printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2579
2580 /* Recv
2581 * kmem_cache_create initializes a lookaside list. After successful
2582 * creation, nonpaged fixed-size blocks can be allocated from and
2583 * freed to the lookaside list.
2584 * RFDs will be allocated from this pool.
2585 */
2586 rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2587 sizeof(struct rfd),
2588 0,
2589 SLAB_CACHE_DMA |
2590 SLAB_HWCACHE_ALIGN,
2591 NULL);
2592
2593 adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2594
2595 /* The RFDs are going to be put on lists later on, so initialize the
2596 * lists now.
2597 */
2598 INIT_LIST_HEAD(&rx_ring->recv_list);
2599 return 0;
2600 }
2601
2602 /**
2603 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2604 * @adapter: pointer to our private adapter structure
2605 */
2606 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2607 {
2608 u32 index;
2609 u32 bufsize;
2610 u32 pktstat_ringsize;
2611 struct rfd *rfd;
2612 struct rx_ring *rx_ring;
2613
2614 /* Setup some convenience pointers */
2615 rx_ring = &adapter->rx_ring;
2616
2617 /* Free RFDs and associated packet descriptors */
2618 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2619
2620 while (!list_empty(&rx_ring->recv_list)) {
2621 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2622 struct rfd, list_node);
2623
2624 list_del(&rfd->list_node);
2625 rfd->skb = NULL;
2626 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2627 }
2628
2629 /* Free Free Buffer Ring 1 */
2630 if (rx_ring->fbr[0]->ring_virtaddr) {
2631 /* First the packet memory */
2632 for (index = 0; index <
2633 (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2634 if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2635 u32 fbr1_align;
2636
2637 if (rx_ring->fbr[0]->buffsize > 4096)
2638 fbr1_align = 4096;
2639 else
2640 fbr1_align = rx_ring->fbr[0]->buffsize;
2641
2642 bufsize =
2643 (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2644 fbr1_align - 1;
2645
2646 dma_free_coherent(&adapter->pdev->dev,
2647 bufsize,
2648 rx_ring->fbr[0]->mem_virtaddrs[index],
2649 rx_ring->fbr[0]->mem_physaddrs[index]);
2650
2651 rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2652 }
2653 }
2654
2655 /* Now the FIFO itself */
2656 rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2657 rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2658
2659 bufsize =
2660 (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2661 0xfff;
2662
2663 dma_free_coherent(&adapter->pdev->dev, bufsize,
2664 rx_ring->fbr[0]->ring_virtaddr,
2665 rx_ring->fbr[0]->ring_physaddr);
2666
2667 rx_ring->fbr[0]->ring_virtaddr = NULL;
2668 }
2669
2670 #ifdef USE_FBR0
2671 /* Now the same for Free Buffer Ring 0 */
2672 if (rx_ring->fbr[1]->ring_virtaddr) {
2673 /* First the packet memory */
2674 for (index = 0; index <
2675 (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2676 if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2677 bufsize =
2678 (rx_ring->fbr[1]->buffsize *
2679 (FBR_CHUNKS + 1)) - 1;
2680
2681 dma_free_coherent(&adapter->pdev->dev,
2682 bufsize,
2683 rx_ring->fbr[1]->mem_virtaddrs[index],
2684 rx_ring->fbr[1]->mem_physaddrs[index]);
2685
2686 rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2687 }
2688 }
2689
2690 /* Now the FIFO itself */
2691 rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2692 rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2693
2694 bufsize =
2695 (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2696 0xfff;
2697
2698 dma_free_coherent(&adapter->pdev->dev,
2699 bufsize,
2700 rx_ring->fbr[1]->ring_virtaddr,
2701 rx_ring->fbr[1]->ring_physaddr);
2702
2703 rx_ring->fbr[1]->ring_virtaddr = NULL;
2704 }
2705 #endif
2706
2707 /* Free Packet Status Ring */
2708 if (rx_ring->ps_ring_virtaddr) {
2709 pktstat_ringsize =
2710 sizeof(struct pkt_stat_desc) *
2711 adapter->rx_ring.psr_num_entries;
2712
2713 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2714 rx_ring->ps_ring_virtaddr,
2715 rx_ring->ps_ring_physaddr);
2716
2717 rx_ring->ps_ring_virtaddr = NULL;
2718 }
2719
2720 /* Free area of memory for the writeback of status information */
2721 if (rx_ring->rx_status_block) {
2722 dma_free_coherent(&adapter->pdev->dev,
2723 sizeof(struct rx_status_block),
2724 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2725 rx_ring->rx_status_block = NULL;
2726 }
2727
2728 /* Destroy the lookaside (RFD) pool */
2729 if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2730 kmem_cache_destroy(rx_ring->recv_lookaside);
2731 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2732 }
2733
2734 /* Free the FBR Lookup Table */
2735 #ifdef USE_FBR0
2736 kfree(rx_ring->fbr[1]);
2737 #endif
2738
2739 kfree(rx_ring->fbr[0]);
2740
2741 /* Reset Counters */
2742 rx_ring->num_ready_recv = 0;
2743 }
2744
2745 /**
2746 * et131x_init_recv - Initialize receive data structures.
2747 * @adapter: pointer to our private adapter structure
2748 *
2749 * Returns 0 on success and errno on failure (as defined in errno.h)
2750 */
2751 static int et131x_init_recv(struct et131x_adapter *adapter)
2752 {
2753 int status = -ENOMEM;
2754 struct rfd *rfd = NULL;
2755 u32 rfdct;
2756 u32 numrfd = 0;
2757 struct rx_ring *rx_ring;
2758
2759 /* Setup some convenience pointers */
2760 rx_ring = &adapter->rx_ring;
2761
2762 /* Setup each RFD */
2763 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2764 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2765 GFP_ATOMIC | GFP_DMA);
2766
2767 if (!rfd) {
2768 dev_err(&adapter->pdev->dev,
2769 "Couldn't alloc RFD out of kmem_cache\n");
2770 status = -ENOMEM;
2771 continue;
2772 }
2773
2774 rfd->skb = NULL;
2775
2776 /* Add this RFD to the recv_list */
2777 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2778
2779 /* Increment both the available RFD's, and the total RFD's. */
2780 rx_ring->num_ready_recv++;
2781 numrfd++;
2782 }
2783
2784 if (numrfd > NIC_MIN_NUM_RFD)
2785 status = 0;
2786
2787 rx_ring->num_rfd = numrfd;
2788
2789 if (status != 0) {
2790 kmem_cache_free(rx_ring->recv_lookaside, rfd);
2791 dev_err(&adapter->pdev->dev,
2792 "Allocation problems in et131x_init_recv\n");
2793 }
2794 return status;
2795 }
2796
2797 /**
2798 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2799 * @adapter: pointer to our adapter structure
2800 */
2801 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2802 {
2803 struct phy_device *phydev = adapter->phydev;
2804
2805 if (!phydev)
2806 return;
2807
2808 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2809 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2810 */
2811 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2812 writel(0, &adapter->regs->rxdma.max_pkt_time);
2813 writel(1, &adapter->regs->rxdma.num_pkt_done);
2814 }
2815 }
2816
2817 /**
2818 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2819 * @adapter: pointer to our adapter
2820 * @rfd: pointer to the RFD
2821 */
2822 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2823 {
2824 struct rx_ring *rx_local = &adapter->rx_ring;
2825 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2826 u16 buff_index = rfd->bufferindex;
2827 u8 ring_index = rfd->ringindex;
2828 unsigned long flags;
2829
2830 /* We don't use any of the OOB data besides status. Otherwise, we
2831 * need to clean up OOB data
2832 */
2833 if (
2834 #ifdef USE_FBR0
2835 (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2836 #endif
2837 (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2838 spin_lock_irqsave(&adapter->fbr_lock, flags);
2839
2840 if (ring_index == 1) {
2841 struct fbr_desc *next = (struct fbr_desc *)
2842 (rx_local->fbr[0]->ring_virtaddr) +
2843 INDEX10(rx_local->fbr[0]->local_full);
2844
2845 /* Handle the Free Buffer Ring advancement here. Write
2846 * the PA / Buffer Index for the returned buffer into
2847 * the oldest (next to be freed)FBR entry
2848 */
2849 next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2850 next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2851 next->word2 = buff_index;
2852
2853 writel(bump_free_buff_ring(
2854 &rx_local->fbr[0]->local_full,
2855 rx_local->fbr[0]->num_entries - 1),
2856 &rx_dma->fbr1_full_offset);
2857 }
2858 #ifdef USE_FBR0
2859 else {
2860 struct fbr_desc *next = (struct fbr_desc *)
2861 rx_local->fbr[1]->ring_virtaddr +
2862 INDEX10(rx_local->fbr[1]->local_full);
2863
2864 /* Handle the Free Buffer Ring advancement here. Write
2865 * the PA / Buffer Index for the returned buffer into
2866 * the oldest (next to be freed) FBR entry
2867 */
2868 next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2869 next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2870 next->word2 = buff_index;
2871
2872 writel(bump_free_buff_ring(
2873 &rx_local->fbr[1]->local_full,
2874 rx_local->fbr[1]->num_entries - 1),
2875 &rx_dma->fbr0_full_offset);
2876 }
2877 #endif
2878 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2879 } else {
2880 dev_err(&adapter->pdev->dev,
2881 "%s illegal Buffer Index returned\n", __func__);
2882 }
2883
2884 /* The processing on this RFD is done, so put it back on the tail of
2885 * our list
2886 */
2887 spin_lock_irqsave(&adapter->rcv_lock, flags);
2888 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2889 rx_local->num_ready_recv++;
2890 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2891
2892 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2893 }
2894
2895 /**
2896 * nic_rx_pkts - Checks the hardware for available packets
2897 * @adapter: pointer to our adapter
2898 *
2899 * Returns rfd, a pointer to our MPRFD.
2900 *
2901 * Checks the hardware for available packets, using completion ring
2902 * If packets are available, it gets an RFD from the recv_list, attaches
2903 * the packet to it, puts the RFD in the RecvPendList, and also returns
2904 * the pointer to the RFD.
2905 */
2906 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2907 {
2908 struct rx_ring *rx_local = &adapter->rx_ring;
2909 struct rx_status_block *status;
2910 struct pkt_stat_desc *psr;
2911 struct rfd *rfd;
2912 u32 i;
2913 u8 *buf;
2914 unsigned long flags;
2915 struct list_head *element;
2916 u8 ring_index;
2917 u16 buff_index;
2918 u32 len;
2919 u32 word0;
2920 u32 word1;
2921
2922 /* RX Status block is written by the DMA engine prior to every
2923 * interrupt. It contains the next to be used entry in the Packet
2924 * Status Ring, and also the two Free Buffer rings.
2925 */
2926 status = rx_local->rx_status_block;
2927 word1 = status->word1 >> 16; /* Get the useful bits */
2928
2929 /* Check the PSR and wrap bits do not match */
2930 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2931 /* Looks like this ring is not updated yet */
2932 return NULL;
2933
2934 /* The packet status ring indicates that data is available. */
2935 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2936 (rx_local->local_psr_full & 0xFFF);
2937
2938 /* Grab any information that is required once the PSR is
2939 * advanced, since we can no longer rely on the memory being
2940 * accurate
2941 */
2942 len = psr->word1 & 0xFFFF;
2943 ring_index = (psr->word1 >> 26) & 0x03;
2944 buff_index = (psr->word1 >> 16) & 0x3FF;
2945 word0 = psr->word0;
2946
2947 /* Indicate that we have used this PSR entry. */
2948 /* FIXME wrap 12 */
2949 add_12bit(&rx_local->local_psr_full, 1);
2950 if (
2951 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2952 /* Clear psr full and toggle the wrap bit */
2953 rx_local->local_psr_full &= ~0xFFF;
2954 rx_local->local_psr_full ^= 0x1000;
2955 }
2956
2957 writel(rx_local->local_psr_full,
2958 &adapter->regs->rxdma.psr_full_offset);
2959
2960 #ifndef USE_FBR0
2961 if (ring_index != 1)
2962 return NULL;
2963 #endif
2964
2965 #ifdef USE_FBR0
2966 if (ring_index > 1 ||
2967 (ring_index == 0 &&
2968 buff_index > rx_local->fbr[1]->num_entries - 1) ||
2969 (ring_index == 1 &&
2970 buff_index > rx_local->fbr[0]->num_entries - 1))
2971 #else
2972 if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
2973 #endif
2974 {
2975 /* Illegal buffer or ring index cannot be used by S/W*/
2976 dev_err(&adapter->pdev->dev,
2977 "NICRxPkts PSR Entry %d indicates "
2978 "length of %d and/or bad bi(%d)\n",
2979 rx_local->local_psr_full & 0xFFF,
2980 len, buff_index);
2981 return NULL;
2982 }
2983
2984 /* Get and fill the RFD. */
2985 spin_lock_irqsave(&adapter->rcv_lock, flags);
2986
2987 rfd = NULL;
2988 element = rx_local->recv_list.next;
2989 rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2990
2991 if (rfd == NULL) {
2992 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2993 return NULL;
2994 }
2995
2996 list_del(&rfd->list_node);
2997 rx_local->num_ready_recv--;
2998
2999 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3000
3001 rfd->bufferindex = buff_index;
3002 rfd->ringindex = ring_index;
3003
3004 /* In V1 silicon, there is a bug which screws up filtering of
3005 * runt packets. Therefore runt packet filtering is disabled
3006 * in the MAC and the packets are dropped here. They are
3007 * also counted here.
3008 */
3009 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3010 adapter->stats.rx_other_errs++;
3011 len = 0;
3012 }
3013
3014 if (len) {
3015 /* Determine if this is a multicast packet coming in */
3016 if ((word0 & ALCATEL_MULTICAST_PKT) &&
3017 !(word0 & ALCATEL_BROADCAST_PKT)) {
3018 /* Promiscuous mode and Multicast mode are
3019 * not mutually exclusive as was first
3020 * thought. I guess Promiscuous is just
3021 * considered a super-set of the other
3022 * filters. Generally filter is 0x2b when in
3023 * promiscuous mode.
3024 */
3025 if ((adapter->packet_filter &
3026 ET131X_PACKET_TYPE_MULTICAST)
3027 && !(adapter->packet_filter &
3028 ET131X_PACKET_TYPE_PROMISCUOUS)
3029 && !(adapter->packet_filter &
3030 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3031 /*
3032 * Note - ring_index for fbr[] array is reversed
3033 * 1 for FBR0 etc
3034 */
3035 buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3036 virt[buff_index];
3037
3038 /* Loop through our list to see if the
3039 * destination address of this packet
3040 * matches one in our list.
3041 */
3042 for (i = 0; i < adapter->multicast_addr_count;
3043 i++) {
3044 if (buf[0] ==
3045 adapter->multicast_list[i][0]
3046 && buf[1] ==
3047 adapter->multicast_list[i][1]
3048 && buf[2] ==
3049 adapter->multicast_list[i][2]
3050 && buf[3] ==
3051 adapter->multicast_list[i][3]
3052 && buf[4] ==
3053 adapter->multicast_list[i][4]
3054 && buf[5] ==
3055 adapter->multicast_list[i][5]) {
3056 break;
3057 }
3058 }
3059
3060 /* If our index is equal to the number
3061 * of Multicast address we have, then
3062 * this means we did not find this
3063 * packet's matching address in our
3064 * list. Set the len to zero,
3065 * so we free our RFD when we return
3066 * from this function.
3067 */
3068 if (i == adapter->multicast_addr_count)
3069 len = 0;
3070 }
3071
3072 if (len > 0)
3073 adapter->stats.multicast_pkts_rcvd++;
3074 } else if (word0 & ALCATEL_BROADCAST_PKT)
3075 adapter->stats.broadcast_pkts_rcvd++;
3076 else
3077 /* Not sure what this counter measures in
3078 * promiscuous mode. Perhaps we should check
3079 * the MAC address to see if it is directed
3080 * to us in promiscuous mode.
3081 */
3082 adapter->stats.unicast_pkts_rcvd++;
3083 }
3084
3085 if (len > 0) {
3086 struct sk_buff *skb = NULL;
3087
3088 /*rfd->len = len - 4; */
3089 rfd->len = len;
3090
3091 skb = dev_alloc_skb(rfd->len + 2);
3092 if (!skb) {
3093 dev_err(&adapter->pdev->dev,
3094 "Couldn't alloc an SKB for Rx\n");
3095 return NULL;
3096 }
3097
3098 adapter->net_stats.rx_bytes += rfd->len;
3099
3100 /*
3101 * Note - ring_index for fbr[] array is reversed,
3102 * 1 for FBR0 etc
3103 */
3104 memcpy(skb_put(skb, rfd->len),
3105 rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3106 rfd->len);
3107
3108 skb->dev = adapter->netdev;
3109 skb->protocol = eth_type_trans(skb, adapter->netdev);
3110 skb->ip_summed = CHECKSUM_NONE;
3111
3112 netif_rx_ni(skb);
3113 } else {
3114 rfd->len = 0;
3115 }
3116
3117 nic_return_rfd(adapter, rfd);
3118 return rfd;
3119 }
3120
3121 /**
3122 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3123 * @adapter: pointer to our adapter
3124 *
3125 * Assumption, Rcv spinlock has been acquired.
3126 */
3127 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3128 {
3129 struct rfd *rfd = NULL;
3130 u32 count = 0;
3131 bool done = true;
3132
3133 /* Process up to available RFD's */
3134 while (count < NUM_PACKETS_HANDLED) {
3135 if (list_empty(&adapter->rx_ring.recv_list)) {
3136 WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3137 done = false;
3138 break;
3139 }
3140
3141 rfd = nic_rx_pkts(adapter);
3142
3143 if (rfd == NULL)
3144 break;
3145
3146 /* Do not receive any packets until a filter has been set.
3147 * Do not receive any packets until we have link.
3148 * If length is zero, return the RFD in order to advance the
3149 * Free buffer ring.
3150 */
3151 if (!adapter->packet_filter ||
3152 !netif_carrier_ok(adapter->netdev) ||
3153 rfd->len == 0)
3154 continue;
3155
3156 /* Increment the number of packets we received */
3157 adapter->net_stats.rx_packets++;
3158
3159 /* Set the status on the packet, either resources or success */
3160 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3161 dev_warn(&adapter->pdev->dev,
3162 "RFD's are running out\n");
3163 }
3164 count++;
3165 }
3166
3167 if (count == NUM_PACKETS_HANDLED || !done) {
3168 adapter->rx_ring.unfinished_receives = true;
3169 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3170 &adapter->regs->global.watchdog_timer);
3171 } else
3172 /* Watchdog timer will disable itself if appropriate. */
3173 adapter->rx_ring.unfinished_receives = false;
3174 }
3175
3176 /**
3177 * et131x_tx_dma_memory_alloc
3178 * @adapter: pointer to our private adapter structure
3179 *
3180 * Returns 0 on success and errno on failure (as defined in errno.h).
3181 *
3182 * Allocates memory that will be visible both to the device and to the CPU.
3183 * The OS will pass us packets, pointers to which we will insert in the Tx
3184 * Descriptor queue. The device will read this queue to find the packets in
3185 * memory. The device will update the "status" in memory each time it xmits a
3186 * packet.
3187 */
3188 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3189 {
3190 int desc_size = 0;
3191 struct tx_ring *tx_ring = &adapter->tx_ring;
3192
3193 /* Allocate memory for the TCB's (Transmit Control Block) */
3194 adapter->tx_ring.tcb_ring =
3195 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3196 if (!adapter->tx_ring.tcb_ring) {
3197 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3198 return -ENOMEM;
3199 }
3200
3201 /* Allocate enough memory for the Tx descriptor ring, and allocate
3202 * some extra so that the ring can be aligned on a 4k boundary.
3203 */
3204 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3205 tx_ring->tx_desc_ring =
3206 (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3207 desc_size,
3208 &tx_ring->tx_desc_ring_pa,
3209 GFP_KERNEL);
3210 if (!adapter->tx_ring.tx_desc_ring) {
3211 dev_err(&adapter->pdev->dev,
3212 "Cannot alloc memory for Tx Ring\n");
3213 return -ENOMEM;
3214 }
3215
3216 /* Save physical address
3217 *
3218 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3219 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3220 * are ever returned, make sure the high part is retrieved here before
3221 * storing the adjusted address.
3222 */
3223 /* Allocate memory for the Tx status block */
3224 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3225 sizeof(u32),
3226 &tx_ring->tx_status_pa,
3227 GFP_KERNEL);
3228 if (!adapter->tx_ring.tx_status_pa) {
3229 dev_err(&adapter->pdev->dev,
3230 "Cannot alloc memory for Tx status block\n");
3231 return -ENOMEM;
3232 }
3233 return 0;
3234 }
3235
3236 /**
3237 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3238 * @adapter: pointer to our private adapter structure
3239 *
3240 * Returns 0 on success and errno on failure (as defined in errno.h).
3241 */
3242 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3243 {
3244 int desc_size = 0;
3245
3246 if (adapter->tx_ring.tx_desc_ring) {
3247 /* Free memory relating to Tx rings here */
3248 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3249 + 4096 - 1;
3250 dma_free_coherent(&adapter->pdev->dev,
3251 desc_size,
3252 adapter->tx_ring.tx_desc_ring,
3253 adapter->tx_ring.tx_desc_ring_pa);
3254 adapter->tx_ring.tx_desc_ring = NULL;
3255 }
3256
3257 /* Free memory for the Tx status block */
3258 if (adapter->tx_ring.tx_status) {
3259 dma_free_coherent(&adapter->pdev->dev,
3260 sizeof(u32),
3261 adapter->tx_ring.tx_status,
3262 adapter->tx_ring.tx_status_pa);
3263
3264 adapter->tx_ring.tx_status = NULL;
3265 }
3266 /* Free the memory for the tcb structures */
3267 kfree(adapter->tx_ring.tcb_ring);
3268 }
3269
3270 /**
3271 * nic_send_packet - NIC specific send handler for version B silicon.
3272 * @adapter: pointer to our adapter
3273 * @tcb: pointer to struct tcb
3274 *
3275 * Returns 0 or errno.
3276 */
3277 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3278 {
3279 u32 i;
3280 struct tx_desc desc[24]; /* 24 x 16 byte */
3281 u32 frag = 0;
3282 u32 thiscopy, remainder;
3283 struct sk_buff *skb = tcb->skb;
3284 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3285 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3286 unsigned long flags;
3287 struct phy_device *phydev = adapter->phydev;
3288
3289 /* Part of the optimizations of this send routine restrict us to
3290 * sending 24 fragments at a pass. In practice we should never see
3291 * more than 5 fragments.
3292 *
3293 * NOTE: The older version of this function (below) can handle any
3294 * number of fragments. If needed, we can call this function,
3295 * although it is less efficient.
3296 */
3297 if (nr_frags > 23)
3298 return -EIO;
3299
3300 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3301
3302 for (i = 0; i < nr_frags; i++) {
3303 /* If there is something in this element, lets get a
3304 * descriptor from the ring and get the necessary data
3305 */
3306 if (i == 0) {
3307 /* If the fragments are smaller than a standard MTU,
3308 * then map them to a single descriptor in the Tx
3309 * Desc ring. However, if they're larger, as is
3310 * possible with support for jumbo packets, then
3311 * split them each across 2 descriptors.
3312 *
3313 * This will work until we determine why the hardware
3314 * doesn't seem to like large fragments.
3315 */
3316 if ((skb->len - skb->data_len) <= 1514) {
3317 desc[frag].addr_hi = 0;
3318 /* Low 16bits are length, high is vlan and
3319 unused currently so zero */
3320 desc[frag].len_vlan =
3321 skb->len - skb->data_len;
3322
3323 /* NOTE: Here, the dma_addr_t returned from
3324 * dma_map_single() is implicitly cast as a
3325 * u32. Although dma_addr_t can be
3326 * 64-bit, the address returned by
3327 * dma_map_single() is always 32-bit
3328 * addressable (as defined by the pci/dma
3329 * subsystem)
3330 */
3331 desc[frag++].addr_lo =
3332 dma_map_single(&adapter->pdev->dev,
3333 skb->data,
3334 skb->len -
3335 skb->data_len,
3336 DMA_TO_DEVICE);
3337 } else {
3338 desc[frag].addr_hi = 0;
3339 desc[frag].len_vlan =
3340 (skb->len - skb->data_len) / 2;
3341
3342 /* NOTE: Here, the dma_addr_t returned from
3343 * dma_map_single() is implicitly cast as a
3344 * u32. Although dma_addr_t can be
3345 * 64-bit, the address returned by
3346 * dma_map_single() is always 32-bit
3347 * addressable (as defined by the pci/dma
3348 * subsystem)
3349 */
3350 desc[frag++].addr_lo =
3351 dma_map_single(&adapter->pdev->dev,
3352 skb->data,
3353 ((skb->len -
3354 skb->data_len) / 2),
3355 DMA_TO_DEVICE);
3356 desc[frag].addr_hi = 0;
3357
3358 desc[frag].len_vlan =
3359 (skb->len - skb->data_len) / 2;
3360
3361 /* NOTE: Here, the dma_addr_t returned from
3362 * dma_map_single() is implicitly cast as a
3363 * u32. Although dma_addr_t can be
3364 * 64-bit, the address returned by
3365 * dma_map_single() is always 32-bit
3366 * addressable (as defined by the pci/dma
3367 * subsystem)
3368 */
3369 desc[frag++].addr_lo =
3370 dma_map_single(&adapter->pdev->dev,
3371 skb->data +
3372 ((skb->len -
3373 skb->data_len) / 2),
3374 ((skb->len -
3375 skb->data_len) / 2),
3376 DMA_TO_DEVICE);
3377 }
3378 } else {
3379 desc[frag].addr_hi = 0;
3380 desc[frag].len_vlan =
3381 frags[i - 1].size;
3382
3383 /* NOTE: Here, the dma_addr_t returned from
3384 * dma_map_page() is implicitly cast as a u32.
3385 * Although dma_addr_t can be 64-bit, the address
3386 * returned by dma_map_page() is always 32-bit
3387 * addressable (as defined by the pci/dma subsystem)
3388 */
3389 desc[frag++].addr_lo = skb_frag_dma_map(
3390 &adapter->pdev->dev,
3391 &frags[i - 1],
3392 0,
3393 frags[i - 1].size,
3394 DMA_TO_DEVICE);
3395 }
3396 }
3397
3398 if (phydev && phydev->speed == SPEED_1000) {
3399 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3400 /* Last element & Interrupt flag */
3401 desc[frag - 1].flags = 0x5;
3402 adapter->tx_ring.since_irq = 0;
3403 } else { /* Last element */
3404 desc[frag - 1].flags = 0x1;
3405 }
3406 } else
3407 desc[frag - 1].flags = 0x5;
3408
3409 desc[0].flags |= 2; /* First element flag */
3410
3411 tcb->index_start = adapter->tx_ring.send_idx;
3412 tcb->stale = 0;
3413
3414 spin_lock_irqsave(&adapter->send_hw_lock, flags);
3415
3416 thiscopy = NUM_DESC_PER_RING_TX -
3417 INDEX10(adapter->tx_ring.send_idx);
3418
3419 if (thiscopy >= frag) {
3420 remainder = 0;
3421 thiscopy = frag;
3422 } else {
3423 remainder = frag - thiscopy;
3424 }
3425
3426 memcpy(adapter->tx_ring.tx_desc_ring +
3427 INDEX10(adapter->tx_ring.send_idx), desc,
3428 sizeof(struct tx_desc) * thiscopy);
3429
3430 add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3431
3432 if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3433 INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3434 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3435 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3436 }
3437
3438 if (remainder) {
3439 memcpy(adapter->tx_ring.tx_desc_ring,
3440 desc + thiscopy,
3441 sizeof(struct tx_desc) * remainder);
3442
3443 add_10bit(&adapter->tx_ring.send_idx, remainder);
3444 }
3445
3446 if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3447 if (adapter->tx_ring.send_idx)
3448 tcb->index = NUM_DESC_PER_RING_TX - 1;
3449 else
3450 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3451 } else
3452 tcb->index = adapter->tx_ring.send_idx - 1;
3453
3454 spin_lock(&adapter->tcb_send_qlock);
3455
3456 if (adapter->tx_ring.send_tail)
3457 adapter->tx_ring.send_tail->next = tcb;
3458 else
3459 adapter->tx_ring.send_head = tcb;
3460
3461 adapter->tx_ring.send_tail = tcb;
3462
3463 WARN_ON(tcb->next != NULL);
3464
3465 adapter->tx_ring.used++;
3466
3467 spin_unlock(&adapter->tcb_send_qlock);
3468
3469 /* Write the new write pointer back to the device. */
3470 writel(adapter->tx_ring.send_idx,
3471 &adapter->regs->txdma.service_request);
3472
3473 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
3474 * timer to wake us up if this packet isn't followed by N more.
3475 */
3476 if (phydev && phydev->speed == SPEED_1000) {
3477 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3478 &adapter->regs->global.watchdog_timer);
3479 }
3480 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3481
3482 return 0;
3483 }
3484
3485 /**
3486 * send_packet - Do the work to send a packet
3487 * @skb: the packet(s) to send
3488 * @adapter: a pointer to the device's private adapter structure
3489 *
3490 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3491 *
3492 * Assumption: Send spinlock has been acquired
3493 */
3494 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3495 {
3496 int status;
3497 struct tcb *tcb = NULL;
3498 u16 *shbufva;
3499 unsigned long flags;
3500
3501 /* All packets must have at least a MAC address and a protocol type */
3502 if (skb->len < ETH_HLEN)
3503 return -EIO;
3504
3505 /* Get a TCB for this packet */
3506 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3507
3508 tcb = adapter->tx_ring.tcb_qhead;
3509
3510 if (tcb == NULL) {
3511 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3512 return -ENOMEM;
3513 }
3514
3515 adapter->tx_ring.tcb_qhead = tcb->next;
3516
3517 if (adapter->tx_ring.tcb_qhead == NULL)
3518 adapter->tx_ring.tcb_qtail = NULL;
3519
3520 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3521
3522 tcb->skb = skb;
3523
3524 if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3525 shbufva = (u16 *) skb->data;
3526
3527 if ((shbufva[0] == 0xffff) &&
3528 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3529 tcb->flags |= fMP_DEST_BROAD;
3530 } else if ((shbufva[0] & 0x3) == 0x0001) {
3531 tcb->flags |= fMP_DEST_MULTI;
3532 }
3533 }
3534
3535 tcb->next = NULL;
3536
3537 /* Call the NIC specific send handler. */
3538 status = nic_send_packet(adapter, tcb);
3539
3540 if (status != 0) {
3541 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3542
3543 if (adapter->tx_ring.tcb_qtail)
3544 adapter->tx_ring.tcb_qtail->next = tcb;
3545 else
3546 /* Apparently ready Q is empty. */
3547 adapter->tx_ring.tcb_qhead = tcb;
3548
3549 adapter->tx_ring.tcb_qtail = tcb;
3550 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3551 return status;
3552 }
3553 WARN_ON(adapter->tx_ring.used > NUM_TCB);
3554 return 0;
3555 }
3556
3557 /**
3558 * et131x_send_packets - This function is called by the OS to send packets
3559 * @skb: the packet(s) to send
3560 * @netdev:device on which to TX the above packet(s)
3561 *
3562 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3563 */
3564 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3565 {
3566 int status = 0;
3567 struct et131x_adapter *adapter = netdev_priv(netdev);
3568
3569 /* Send these packets
3570 *
3571 * NOTE: The Linux Tx entry point is only given one packet at a time
3572 * to Tx, so the PacketCount and it's array used makes no sense here
3573 */
3574
3575 /* TCB is not available */
3576 if (adapter->tx_ring.used >= NUM_TCB) {
3577 /* NOTE: If there's an error on send, no need to queue the
3578 * packet under Linux; if we just send an error up to the
3579 * netif layer, it will resend the skb to us.
3580 */
3581 status = -ENOMEM;
3582 } else {
3583 /* We need to see if the link is up; if it's not, make the
3584 * netif layer think we're good and drop the packet
3585 */
3586 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3587 !netif_carrier_ok(netdev)) {
3588 dev_kfree_skb_any(skb);
3589 skb = NULL;
3590
3591 adapter->net_stats.tx_dropped++;
3592 } else {
3593 status = send_packet(skb, adapter);
3594 if (status != 0 && status != -ENOMEM) {
3595 /* On any other error, make netif think we're
3596 * OK and drop the packet
3597 */
3598 dev_kfree_skb_any(skb);
3599 skb = NULL;
3600 adapter->net_stats.tx_dropped++;
3601 }
3602 }
3603 }
3604 return status;
3605 }
3606
3607 /**
3608 * free_send_packet - Recycle a struct tcb
3609 * @adapter: pointer to our adapter
3610 * @tcb: pointer to struct tcb
3611 *
3612 * Complete the packet if necessary
3613 * Assumption - Send spinlock has been acquired
3614 */
3615 static inline void free_send_packet(struct et131x_adapter *adapter,
3616 struct tcb *tcb)
3617 {
3618 unsigned long flags;
3619 struct tx_desc *desc = NULL;
3620 struct net_device_stats *stats = &adapter->net_stats;
3621
3622 if (tcb->flags & fMP_DEST_BROAD)
3623 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3624 else if (tcb->flags & fMP_DEST_MULTI)
3625 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3626 else
3627 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3628
3629 if (tcb->skb) {
3630 stats->tx_bytes += tcb->skb->len;
3631
3632 /* Iterate through the TX descriptors on the ring
3633 * corresponding to this packet and umap the fragments
3634 * they point to
3635 */
3636 do {
3637 desc = (struct tx_desc *)
3638 (adapter->tx_ring.tx_desc_ring +
3639 INDEX10(tcb->index_start));
3640
3641 dma_unmap_single(&adapter->pdev->dev,
3642 desc->addr_lo,
3643 desc->len_vlan, DMA_TO_DEVICE);
3644
3645 add_10bit(&tcb->index_start, 1);
3646 if (INDEX10(tcb->index_start) >=
3647 NUM_DESC_PER_RING_TX) {
3648 tcb->index_start &= ~ET_DMA10_MASK;
3649 tcb->index_start ^= ET_DMA10_WRAP;
3650 }
3651 } while (desc != (adapter->tx_ring.tx_desc_ring +
3652 INDEX10(tcb->index)));
3653
3654 dev_kfree_skb_any(tcb->skb);
3655 }
3656
3657 memset(tcb, 0, sizeof(struct tcb));
3658
3659 /* Add the TCB to the Ready Q */
3660 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3661
3662 adapter->net_stats.tx_packets++;
3663
3664 if (adapter->tx_ring.tcb_qtail)
3665 adapter->tx_ring.tcb_qtail->next = tcb;
3666 else
3667 /* Apparently ready Q is empty. */
3668 adapter->tx_ring.tcb_qhead = tcb;
3669
3670 adapter->tx_ring.tcb_qtail = tcb;
3671
3672 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3673 WARN_ON(adapter->tx_ring.used < 0);
3674 }
3675
3676 /**
3677 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3678 * @adapter: pointer to our adapter
3679 *
3680 * Assumption - Send spinlock has been acquired
3681 */
3682 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3683 {
3684 struct tcb *tcb;
3685 unsigned long flags;
3686 u32 freed = 0;
3687
3688 /* Any packets being sent? Check the first TCB on the send list */
3689 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3690
3691 tcb = adapter->tx_ring.send_head;
3692
3693 while (tcb != NULL && freed < NUM_TCB) {
3694 struct tcb *next = tcb->next;
3695
3696 adapter->tx_ring.send_head = next;
3697
3698 if (next == NULL)
3699 adapter->tx_ring.send_tail = NULL;
3700
3701 adapter->tx_ring.used--;
3702
3703 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3704
3705 freed++;
3706 free_send_packet(adapter, tcb);
3707
3708 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3709
3710 tcb = adapter->tx_ring.send_head;
3711 }
3712
3713 WARN_ON(freed == NUM_TCB);
3714
3715 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3716
3717 adapter->tx_ring.used = 0;
3718 }
3719
3720 /**
3721 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3722 * @adapter: pointer to our adapter
3723 *
3724 * Re-claim the send resources, complete sends and get more to send from
3725 * the send wait queue.
3726 *
3727 * Assumption - Send spinlock has been acquired
3728 */
3729 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3730 {
3731 unsigned long flags;
3732 u32 serviced;
3733 struct tcb *tcb;
3734 u32 index;
3735
3736 serviced = readl(&adapter->regs->txdma.new_service_complete);
3737 index = INDEX10(serviced);
3738
3739 /* Has the ring wrapped? Process any descriptors that do not have
3740 * the same "wrap" indicator as the current completion indicator
3741 */
3742 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3743
3744 tcb = adapter->tx_ring.send_head;
3745
3746 while (tcb &&
3747 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3748 index < INDEX10(tcb->index)) {
3749 adapter->tx_ring.used--;
3750 adapter->tx_ring.send_head = tcb->next;
3751 if (tcb->next == NULL)
3752 adapter->tx_ring.send_tail = NULL;
3753
3754 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3755 free_send_packet(adapter, tcb);
3756 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3757
3758 /* Goto the next packet */
3759 tcb = adapter->tx_ring.send_head;
3760 }
3761 while (tcb &&
3762 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3763 && index > (tcb->index & ET_DMA10_MASK)) {
3764 adapter->tx_ring.used--;
3765 adapter->tx_ring.send_head = tcb->next;
3766 if (tcb->next == NULL)
3767 adapter->tx_ring.send_tail = NULL;
3768
3769 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3770 free_send_packet(adapter, tcb);
3771 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3772
3773 /* Goto the next packet */
3774 tcb = adapter->tx_ring.send_head;
3775 }
3776
3777 /* Wake up the queue when we hit a low-water mark */
3778 if (adapter->tx_ring.used <= NUM_TCB / 3)
3779 netif_wake_queue(adapter->netdev);
3780
3781 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3782 }
3783
3784 static int et131x_get_settings(struct net_device *netdev,
3785 struct ethtool_cmd *cmd)
3786 {
3787 struct et131x_adapter *adapter = netdev_priv(netdev);
3788
3789 return phy_ethtool_gset(adapter->phydev, cmd);
3790 }
3791
3792 static int et131x_set_settings(struct net_device *netdev,
3793 struct ethtool_cmd *cmd)
3794 {
3795 struct et131x_adapter *adapter = netdev_priv(netdev);
3796
3797 return phy_ethtool_sset(adapter->phydev, cmd);
3798 }
3799
3800 static int et131x_get_regs_len(struct net_device *netdev)
3801 {
3802 #define ET131X_REGS_LEN 256
3803 return ET131X_REGS_LEN * sizeof(u32);
3804 }
3805
3806 static void et131x_get_regs(struct net_device *netdev,
3807 struct ethtool_regs *regs, void *regs_data)
3808 {
3809 struct et131x_adapter *adapter = netdev_priv(netdev);
3810 struct address_map __iomem *aregs = adapter->regs;
3811 u32 *regs_buff = regs_data;
3812 u32 num = 0;
3813
3814 memset(regs_data, 0, et131x_get_regs_len(netdev));
3815
3816 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3817 adapter->pdev->device;
3818
3819 /* PHY regs */
3820 et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3821 et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3822 et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3823 et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3824 et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3825 et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3826 et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3827 /* Autoneg next page transmit reg */
3828 et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3829 /* Link partner next page reg */
3830 et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3831 et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3832 et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3833 et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3834 et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3835 et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3836 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3837 (u16 *)&regs_buff[num++]);
3838 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3839 (u16 *)&regs_buff[num++]);
3840 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3841 (u16 *)&regs_buff[num++]);
3842 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3843 (u16 *)&regs_buff[num++]);
3844 et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3845 et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3846 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3847 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3848 (u16 *)&regs_buff[num++]);
3849 et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3850 et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3851 et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3852
3853 /* Global regs */
3854 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3855 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3856 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3857 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3858 regs_buff[num++] = readl(&aregs->global.pm_csr);
3859 regs_buff[num++] = adapter->stats.interrupt_status;
3860 regs_buff[num++] = readl(&aregs->global.int_mask);
3861 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3862 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3863 regs_buff[num++] = readl(&aregs->global.sw_reset);
3864 regs_buff[num++] = readl(&aregs->global.slv_timer);
3865 regs_buff[num++] = readl(&aregs->global.msi_config);
3866 regs_buff[num++] = readl(&aregs->global.loopback);
3867 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3868
3869 /* TXDMA regs */
3870 regs_buff[num++] = readl(&aregs->txdma.csr);
3871 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3872 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3873 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3874 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3875 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3876 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3877 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3878 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3879 regs_buff[num++] = readl(&aregs->txdma.service_request);
3880 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3881 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3882 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3883 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3884 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3885 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3886 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3887 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3888 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3889 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3890 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3891 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3892 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3893 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3894 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3895 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3896
3897 /* RXDMA regs */
3898 regs_buff[num++] = readl(&aregs->rxdma.csr);
3899 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3900 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3901 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3902 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3903 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3904 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3905 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3906 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3907 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3908 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3909 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3910 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3911 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3912 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3913 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3914 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3915 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3916 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3917 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3918 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3919 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3920 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3921 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3922 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3923 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3924 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3925 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3926 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3927 }
3928
3929 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3930 static void et131x_get_drvinfo(struct net_device *netdev,
3931 struct ethtool_drvinfo *info)
3932 {
3933 struct et131x_adapter *adapter = netdev_priv(netdev);
3934
3935 strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3936 strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3937 strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3938 }
3939
3940 static struct ethtool_ops et131x_ethtool_ops = {
3941 .get_settings = et131x_get_settings,
3942 .set_settings = et131x_set_settings,
3943 .get_drvinfo = et131x_get_drvinfo,
3944 .get_regs_len = et131x_get_regs_len,
3945 .get_regs = et131x_get_regs,
3946 .get_link = ethtool_op_get_link,
3947 };
3948
3949 static void et131x_set_ethtool_ops(struct net_device *netdev)
3950 {
3951 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3952 }
3953
3954 /**
3955 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3956 * @adapter: pointer to our private adapter structure
3957 */
3958 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3959 {
3960 /* If have our default mac from init and no mac address from
3961 * EEPROM then we need to generate the last octet and set it on the
3962 * device
3963 */
3964 if (adapter->rom_addr[0] == 0x00 &&
3965 adapter->rom_addr[1] == 0x00 &&
3966 adapter->rom_addr[2] == 0x00 &&
3967 adapter->rom_addr[3] == 0x00 &&
3968 adapter->rom_addr[4] == 0x00 &&
3969 adapter->rom_addr[5] == 0x00) {
3970 /*
3971 * We need to randomly generate the last octet so we
3972 * decrease our chances of setting the mac address to
3973 * same as another one of our cards in the system
3974 */
3975 get_random_bytes(&adapter->addr[5], 1);
3976 /*
3977 * We have the default value in the register we are
3978 * working with so we need to copy the current
3979 * address into the permanent address
3980 */
3981 memcpy(adapter->rom_addr,
3982 adapter->addr, ETH_ALEN);
3983 } else {
3984 /* We do not have an override address, so set the
3985 * current address to the permanent address and add
3986 * it to the device
3987 */
3988 memcpy(adapter->addr,
3989 adapter->rom_addr, ETH_ALEN);
3990 }
3991 }
3992
3993 /**
3994 * et131x_pci_init - initial PCI setup
3995 * @adapter: pointer to our private adapter structure
3996 * @pdev: our PCI device
3997 *
3998 * Perform the initial setup of PCI registers and if possible initialise
3999 * the MAC address. At this point the I/O registers have yet to be mapped
4000 */
4001 static int et131x_pci_init(struct et131x_adapter *adapter,
4002 struct pci_dev *pdev)
4003 {
4004 int cap = pci_pcie_cap(pdev);
4005 u16 max_payload;
4006 u16 ctl;
4007 int i, rc;
4008
4009 rc = et131x_init_eeprom(adapter);
4010 if (rc < 0)
4011 goto out;
4012
4013 if (!cap) {
4014 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
4015 goto err_out;
4016 }
4017
4018 /* Let's set up the PORT LOGIC Register. First we need to know what
4019 * the max_payload_size is
4020 */
4021 if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCAP, &max_payload)) {
4022 dev_err(&pdev->dev,
4023 "Could not read PCI config space for Max Payload Size\n");
4024 goto err_out;
4025 }
4026
4027 /* Program the Ack/Nak latency and replay timers */
4028 max_payload &= 0x07;
4029
4030 if (max_payload < 2) {
4031 static const u16 acknak[2] = { 0x76, 0xD0 };
4032 static const u16 replay[2] = { 0x1E0, 0x2ED };
4033
4034 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4035 acknak[max_payload])) {
4036 dev_err(&pdev->dev,
4037 "Could not write PCI config space for ACK/NAK\n");
4038 goto err_out;
4039 }
4040 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4041 replay[max_payload])) {
4042 dev_err(&pdev->dev,
4043 "Could not write PCI config space for Replay Timer\n");
4044 goto err_out;
4045 }
4046 }
4047
4048 /* l0s and l1 latency timers. We are using default values.
4049 * Representing 001 for L0s and 010 for L1
4050 */
4051 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4052 dev_err(&pdev->dev,
4053 "Could not write PCI config space for Latency Timers\n");
4054 goto err_out;
4055 }
4056
4057 /* Change the max read size to 2k */
4058 if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl)) {
4059 dev_err(&pdev->dev,
4060 "Could not read PCI config space for Max read size\n");
4061 goto err_out;
4062 }
4063
4064 ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | (0x04 << 12);
4065
4066 if (pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl)) {
4067 dev_err(&pdev->dev,
4068 "Could not write PCI config space for Max read size\n");
4069 goto err_out;
4070 }
4071
4072 /* Get MAC address from config space if an eeprom exists, otherwise
4073 * the MAC address there will not be valid
4074 */
4075 if (!adapter->has_eeprom) {
4076 et131x_hwaddr_init(adapter);
4077 return 0;
4078 }
4079
4080 for (i = 0; i < ETH_ALEN; i++) {
4081 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4082 adapter->rom_addr + i)) {
4083 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4084 goto err_out;
4085 }
4086 }
4087 memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4088 out:
4089 return rc;
4090 err_out:
4091 rc = -EIO;
4092 goto out;
4093 }
4094
4095 /**
4096 * et131x_error_timer_handler
4097 * @data: timer-specific variable; here a pointer to our adapter structure
4098 *
4099 * The routine called when the error timer expires, to track the number of
4100 * recurring errors.
4101 */
4102 static void et131x_error_timer_handler(unsigned long data)
4103 {
4104 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4105 struct phy_device *phydev = adapter->phydev;
4106
4107 if (et1310_in_phy_coma(adapter)) {
4108 /* Bring the device immediately out of coma, to
4109 * prevent it from sleeping indefinitely, this
4110 * mechanism could be improved! */
4111 et1310_disable_phy_coma(adapter);
4112 adapter->boot_coma = 20;
4113 } else {
4114 et1310_update_macstat_host_counters(adapter);
4115 }
4116
4117 if (!phydev->link && adapter->boot_coma < 11)
4118 adapter->boot_coma++;
4119
4120 if (adapter->boot_coma == 10) {
4121 if (!phydev->link) {
4122 if (!et1310_in_phy_coma(adapter)) {
4123 /* NOTE - This was originally a 'sync with
4124 * interrupt'. How to do that under Linux?
4125 */
4126 et131x_enable_interrupts(adapter);
4127 et1310_enable_phy_coma(adapter);
4128 }
4129 }
4130 }
4131
4132 /* This is a periodic timer, so reschedule */
4133 mod_timer(&adapter->error_timer, jiffies +
4134 TX_ERROR_PERIOD * HZ / 1000);
4135 }
4136
4137 /**
4138 * et131x_adapter_memory_alloc
4139 * @adapter: pointer to our private adapter structure
4140 *
4141 * Returns 0 on success, errno on failure (as defined in errno.h).
4142 *
4143 * Allocate all the memory blocks for send, receive and others.
4144 */
4145 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4146 {
4147 int status;
4148
4149 /* Allocate memory for the Tx Ring */
4150 status = et131x_tx_dma_memory_alloc(adapter);
4151 if (status != 0) {
4152 dev_err(&adapter->pdev->dev,
4153 "et131x_tx_dma_memory_alloc FAILED\n");
4154 return status;
4155 }
4156 /* Receive buffer memory allocation */
4157 status = et131x_rx_dma_memory_alloc(adapter);
4158 if (status != 0) {
4159 dev_err(&adapter->pdev->dev,
4160 "et131x_rx_dma_memory_alloc FAILED\n");
4161 et131x_tx_dma_memory_free(adapter);
4162 return status;
4163 }
4164
4165 /* Init receive data structures */
4166 status = et131x_init_recv(adapter);
4167 if (status != 0) {
4168 dev_err(&adapter->pdev->dev,
4169 "et131x_init_recv FAILED\n");
4170 et131x_tx_dma_memory_free(adapter);
4171 et131x_rx_dma_memory_free(adapter);
4172 }
4173 return status;
4174 }
4175
4176 /**
4177 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4178 * @adapter: pointer to our private adapter structure
4179 */
4180 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4181 {
4182 /* Free DMA memory */
4183 et131x_tx_dma_memory_free(adapter);
4184 et131x_rx_dma_memory_free(adapter);
4185 }
4186
4187 static void et131x_adjust_link(struct net_device *netdev)
4188 {
4189 struct et131x_adapter *adapter = netdev_priv(netdev);
4190 struct phy_device *phydev = adapter->phydev;
4191
4192 if (netif_carrier_ok(netdev)) {
4193 adapter->boot_coma = 20;
4194
4195 if (phydev && phydev->speed == SPEED_10) {
4196 /*
4197 * NOTE - Is there a way to query this without
4198 * TruePHY?
4199 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4200 * EMI_TRUEPHY_A13O) {
4201 */
4202 u16 register18;
4203
4204 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4205 &register18);
4206 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4207 register18 | 0x4);
4208 et131x_mii_write(adapter, PHY_INDEX_REG,
4209 register18 | 0x8402);
4210 et131x_mii_write(adapter, PHY_DATA_REG,
4211 register18 | 511);
4212 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4213 register18);
4214 }
4215
4216 et1310_config_flow_control(adapter);
4217
4218 if (phydev && phydev->speed == SPEED_1000 &&
4219 adapter->registry_jumbo_packet > 2048) {
4220 u16 reg;
4221
4222 et131x_mii_read(adapter, PHY_CONFIG, &reg);
4223 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4224 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4225 et131x_mii_write(adapter, PHY_CONFIG, reg);
4226 }
4227
4228 et131x_set_rx_dma_timer(adapter);
4229 et1310_config_mac_regs2(adapter);
4230 }
4231
4232 if (phydev && phydev->link != adapter->link) {
4233 /*
4234 * Check to see if we are in coma mode and if
4235 * so, disable it because we will not be able
4236 * to read PHY values until we are out.
4237 */
4238 if (et1310_in_phy_coma(adapter))
4239 et1310_disable_phy_coma(adapter);
4240
4241 if (phydev->link) {
4242 adapter->boot_coma = 20;
4243 } else {
4244 dev_warn(&adapter->pdev->dev,
4245 "Link down - cable problem ?\n");
4246 adapter->boot_coma = 0;
4247
4248 if (phydev->speed == SPEED_10) {
4249 /* NOTE - Is there a way to query this without
4250 * TruePHY?
4251 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4252 * EMI_TRUEPHY_A13O)
4253 */
4254 u16 register18;
4255
4256 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4257 &register18);
4258 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4259 register18 | 0x4);
4260 et131x_mii_write(adapter, PHY_INDEX_REG,
4261 register18 | 0x8402);
4262 et131x_mii_write(adapter, PHY_DATA_REG,
4263 register18 | 511);
4264 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4265 register18);
4266 }
4267
4268 /* Free the packets being actively sent & stopped */
4269 et131x_free_busy_send_packets(adapter);
4270
4271 /* Re-initialize the send structures */
4272 et131x_init_send(adapter);
4273
4274 /*
4275 * Bring the device back to the state it was during
4276 * init prior to autonegotiation being complete. This
4277 * way, when we get the auto-neg complete interrupt,
4278 * we can complete init by calling config_mac_regs2.
4279 */
4280 et131x_soft_reset(adapter);
4281
4282 /* Setup ET1310 as per the documentation */
4283 et131x_adapter_setup(adapter);
4284
4285 /* perform reset of tx/rx */
4286 et131x_disable_txrx(netdev);
4287 et131x_enable_txrx(netdev);
4288 }
4289
4290 adapter->link = phydev->link;
4291
4292 phy_print_status(phydev);
4293 }
4294 }
4295
4296 static int et131x_mii_probe(struct net_device *netdev)
4297 {
4298 struct et131x_adapter *adapter = netdev_priv(netdev);
4299 struct phy_device *phydev = NULL;
4300
4301 phydev = phy_find_first(adapter->mii_bus);
4302 if (!phydev) {
4303 dev_err(&adapter->pdev->dev, "no PHY found\n");
4304 return -ENODEV;
4305 }
4306
4307 phydev = phy_connect(netdev, dev_name(&phydev->dev),
4308 &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4309
4310 if (IS_ERR(phydev)) {
4311 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4312 return PTR_ERR(phydev);
4313 }
4314
4315 phydev->supported &= (SUPPORTED_10baseT_Half
4316 | SUPPORTED_10baseT_Full
4317 | SUPPORTED_100baseT_Half
4318 | SUPPORTED_100baseT_Full
4319 | SUPPORTED_Autoneg
4320 | SUPPORTED_MII
4321 | SUPPORTED_TP);
4322
4323 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4324 phydev->supported |= SUPPORTED_1000baseT_Full;
4325
4326 phydev->advertising = phydev->supported;
4327 adapter->phydev = phydev;
4328
4329 dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4330 "(mii_bus:phy_addr=%s)\n",
4331 phydev->drv->name, dev_name(&phydev->dev));
4332
4333 return 0;
4334 }
4335
4336 /**
4337 * et131x_adapter_init
4338 * @adapter: pointer to the private adapter struct
4339 * @pdev: pointer to the PCI device
4340 *
4341 * Initialize the data structures for the et131x_adapter object and link
4342 * them together with the platform provided device structures.
4343 */
4344 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4345 struct pci_dev *pdev)
4346 {
4347 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4348
4349 struct et131x_adapter *adapter;
4350
4351 /* Allocate private adapter struct and copy in relevant information */
4352 adapter = netdev_priv(netdev);
4353 adapter->pdev = pci_dev_get(pdev);
4354 adapter->netdev = netdev;
4355
4356 /* Initialize spinlocks here */
4357 spin_lock_init(&adapter->lock);
4358 spin_lock_init(&adapter->tcb_send_qlock);
4359 spin_lock_init(&adapter->tcb_ready_qlock);
4360 spin_lock_init(&adapter->send_hw_lock);
4361 spin_lock_init(&adapter->rcv_lock);
4362 spin_lock_init(&adapter->rcv_pend_lock);
4363 spin_lock_init(&adapter->fbr_lock);
4364 spin_lock_init(&adapter->phy_lock);
4365
4366 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
4367
4368 /* Set the MAC address to a default */
4369 memcpy(adapter->addr, default_mac, ETH_ALEN);
4370
4371 return adapter;
4372 }
4373
4374 /**
4375 * et131x_pci_remove
4376 * @pdev: a pointer to the device's pci_dev structure
4377 *
4378 * Registered in the pci_driver structure, this function is called when the
4379 * PCI subsystem detects that a PCI device which matches the information
4380 * contained in the pci_device_id table has been removed.
4381 */
4382 static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4383 {
4384 struct net_device *netdev = pci_get_drvdata(pdev);
4385 struct et131x_adapter *adapter = netdev_priv(netdev);
4386
4387 unregister_netdev(netdev);
4388 phy_disconnect(adapter->phydev);
4389 mdiobus_unregister(adapter->mii_bus);
4390 kfree(adapter->mii_bus->irq);
4391 mdiobus_free(adapter->mii_bus);
4392
4393 et131x_adapter_memory_free(adapter);
4394 iounmap(adapter->regs);
4395 pci_dev_put(pdev);
4396
4397 free_netdev(netdev);
4398 pci_release_regions(pdev);
4399 pci_disable_device(pdev);
4400 }
4401
4402 /**
4403 * et131x_up - Bring up a device for use.
4404 * @netdev: device to be opened
4405 */
4406 static void et131x_up(struct net_device *netdev)
4407 {
4408 struct et131x_adapter *adapter = netdev_priv(netdev);
4409
4410 et131x_enable_txrx(netdev);
4411 phy_start(adapter->phydev);
4412 }
4413
4414 /**
4415 * et131x_down - Bring down the device
4416 * @netdev: device to be brought down
4417 */
4418 static void et131x_down(struct net_device *netdev)
4419 {
4420 struct et131x_adapter *adapter = netdev_priv(netdev);
4421
4422 /* Save the timestamp for the TX watchdog, prevent a timeout */
4423 netdev->trans_start = jiffies;
4424
4425 phy_stop(adapter->phydev);
4426 et131x_disable_txrx(netdev);
4427 }
4428
4429 #ifdef CONFIG_PM_SLEEP
4430 static int et131x_suspend(struct device *dev)
4431 {
4432 struct pci_dev *pdev = to_pci_dev(dev);
4433 struct net_device *netdev = pci_get_drvdata(pdev);
4434
4435 if (netif_running(netdev)) {
4436 netif_device_detach(netdev);
4437 et131x_down(netdev);
4438 pci_save_state(pdev);
4439 }
4440
4441 return 0;
4442 }
4443
4444 static int et131x_resume(struct device *dev)
4445 {
4446 struct pci_dev *pdev = to_pci_dev(dev);
4447 struct net_device *netdev = pci_get_drvdata(pdev);
4448
4449 if (netif_running(netdev)) {
4450 pci_restore_state(pdev);
4451 et131x_up(netdev);
4452 netif_device_attach(netdev);
4453 }
4454
4455 return 0;
4456 }
4457
4458 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4459 #define ET131X_PM_OPS (&et131x_pm_ops)
4460 #else
4461 #define ET131X_PM_OPS NULL
4462 #endif
4463
4464 /**
4465 * et131x_isr - The Interrupt Service Routine for the driver.
4466 * @irq: the IRQ on which the interrupt was received.
4467 * @dev_id: device-specific info (here a pointer to a net_device struct)
4468 *
4469 * Returns a value indicating if the interrupt was handled.
4470 */
4471 irqreturn_t et131x_isr(int irq, void *dev_id)
4472 {
4473 bool handled = true;
4474 struct net_device *netdev = (struct net_device *)dev_id;
4475 struct et131x_adapter *adapter = NULL;
4476 u32 status;
4477
4478 if (!netif_device_present(netdev)) {
4479 handled = false;
4480 goto out;
4481 }
4482
4483 adapter = netdev_priv(netdev);
4484
4485 /* If the adapter is in low power state, then it should not
4486 * recognize any interrupt
4487 */
4488
4489 /* Disable Device Interrupts */
4490 et131x_disable_interrupts(adapter);
4491
4492 /* Get a copy of the value in the interrupt status register
4493 * so we can process the interrupting section
4494 */
4495 status = readl(&adapter->regs->global.int_status);
4496
4497 if (adapter->flowcontrol == FLOW_TXONLY ||
4498 adapter->flowcontrol == FLOW_BOTH) {
4499 status &= ~INT_MASK_ENABLE;
4500 } else {
4501 status &= ~INT_MASK_ENABLE_NO_FLOW;
4502 }
4503
4504 /* Make sure this is our interrupt */
4505 if (!status) {
4506 handled = false;
4507 et131x_enable_interrupts(adapter);
4508 goto out;
4509 }
4510
4511 /* This is our interrupt, so process accordingly */
4512
4513 if (status & ET_INTR_WATCHDOG) {
4514 struct tcb *tcb = adapter->tx_ring.send_head;
4515
4516 if (tcb)
4517 if (++tcb->stale > 1)
4518 status |= ET_INTR_TXDMA_ISR;
4519
4520 if (adapter->rx_ring.unfinished_receives)
4521 status |= ET_INTR_RXDMA_XFR_DONE;
4522 else if (tcb == NULL)
4523 writel(0, &adapter->regs->global.watchdog_timer);
4524
4525 status &= ~ET_INTR_WATCHDOG;
4526 }
4527
4528 if (status == 0) {
4529 /* This interrupt has in some way been "handled" by
4530 * the ISR. Either it was a spurious Rx interrupt, or
4531 * it was a Tx interrupt that has been filtered by
4532 * the ISR.
4533 */
4534 et131x_enable_interrupts(adapter);
4535 goto out;
4536 }
4537
4538 /* We need to save the interrupt status value for use in our
4539 * DPC. We will clear the software copy of that in that
4540 * routine.
4541 */
4542 adapter->stats.interrupt_status = status;
4543
4544 /* Schedule the ISR handler as a bottom-half task in the
4545 * kernel's tq_immediate queue, and mark the queue for
4546 * execution
4547 */
4548 schedule_work(&adapter->task);
4549 out:
4550 return IRQ_RETVAL(handled);
4551 }
4552
4553 /**
4554 * et131x_isr_handler - The ISR handler
4555 * @p_adapter, a pointer to the device's private adapter structure
4556 *
4557 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4558 * work actually gets done.
4559 */
4560 static void et131x_isr_handler(struct work_struct *work)
4561 {
4562 struct et131x_adapter *adapter =
4563 container_of(work, struct et131x_adapter, task);
4564 u32 status = adapter->stats.interrupt_status;
4565 struct address_map __iomem *iomem = adapter->regs;
4566
4567 /*
4568 * These first two are by far the most common. Once handled, we clear
4569 * their two bits in the status word. If the word is now zero, we
4570 * exit.
4571 */
4572 /* Handle all the completed Transmit interrupts */
4573 if (status & ET_INTR_TXDMA_ISR)
4574 et131x_handle_send_interrupt(adapter);
4575
4576 /* Handle all the completed Receives interrupts */
4577 if (status & ET_INTR_RXDMA_XFR_DONE)
4578 et131x_handle_recv_interrupt(adapter);
4579
4580 status &= 0xffffffd7;
4581
4582 if (status) {
4583 /* Handle the TXDMA Error interrupt */
4584 if (status & ET_INTR_TXDMA_ERR) {
4585 u32 txdma_err;
4586
4587 /* Following read also clears the register (COR) */
4588 txdma_err = readl(&iomem->txdma.tx_dma_error);
4589
4590 dev_warn(&adapter->pdev->dev,
4591 "TXDMA_ERR interrupt, error = %d\n",
4592 txdma_err);
4593 }
4594
4595 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4596 if (status &
4597 (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4598 /*
4599 * This indicates the number of unused buffers in
4600 * RXDMA free buffer ring 0 is <= the limit you
4601 * programmed. Free buffer resources need to be
4602 * returned. Free buffers are consumed as packets
4603 * are passed from the network to the host. The host
4604 * becomes aware of the packets from the contents of
4605 * the packet status ring. This ring is queried when
4606 * the packet done interrupt occurs. Packets are then
4607 * passed to the OS. When the OS is done with the
4608 * packets the resources can be returned to the
4609 * ET1310 for re-use. This interrupt is one method of
4610 * returning resources.
4611 */
4612
4613 /* If the user has flow control on, then we will
4614 * send a pause packet, otherwise just exit
4615 */
4616 if (adapter->flowcontrol == FLOW_TXONLY ||
4617 adapter->flowcontrol == FLOW_BOTH) {
4618 u32 pm_csr;
4619
4620 /* Tell the device to send a pause packet via
4621 * the back pressure register (bp req and
4622 * bp xon/xoff)
4623 */
4624 pm_csr = readl(&iomem->global.pm_csr);
4625 if (!et1310_in_phy_coma(adapter))
4626 writel(3, &iomem->txmac.bp_ctrl);
4627 }
4628 }
4629
4630 /* Handle Packet Status Ring Low Interrupt */
4631 if (status & ET_INTR_RXDMA_STAT_LOW) {
4632
4633 /*
4634 * Same idea as with the two Free Buffer Rings.
4635 * Packets going from the network to the host each
4636 * consume a free buffer resource and a packet status
4637 * resource. These resoures are passed to the OS.
4638 * When the OS is done with the resources, they need
4639 * to be returned to the ET1310. This is one method
4640 * of returning the resources.
4641 */
4642 }
4643
4644 /* Handle RXDMA Error Interrupt */
4645 if (status & ET_INTR_RXDMA_ERR) {
4646 /*
4647 * The rxdma_error interrupt is sent when a time-out
4648 * on a request issued by the JAGCore has occurred or
4649 * a completion is returned with an un-successful
4650 * status. In both cases the request is considered
4651 * complete. The JAGCore will automatically re-try the
4652 * request in question. Normally information on events
4653 * like these are sent to the host using the "Advanced
4654 * Error Reporting" capability. This interrupt is
4655 * another way of getting similar information. The
4656 * only thing required is to clear the interrupt by
4657 * reading the ISR in the global resources. The
4658 * JAGCore will do a re-try on the request. Normally
4659 * you should never see this interrupt. If you start
4660 * to see this interrupt occurring frequently then
4661 * something bad has occurred. A reset might be the
4662 * thing to do.
4663 */
4664 /* TRAP();*/
4665
4666 dev_warn(&adapter->pdev->dev,
4667 "RxDMA_ERR interrupt, error %x\n",
4668 readl(&iomem->txmac.tx_test));
4669 }
4670
4671 /* Handle the Wake on LAN Event */
4672 if (status & ET_INTR_WOL) {
4673 /*
4674 * This is a secondary interrupt for wake on LAN.
4675 * The driver should never see this, if it does,
4676 * something serious is wrong. We will TRAP the
4677 * message when we are in DBG mode, otherwise we
4678 * will ignore it.
4679 */
4680 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4681 }
4682
4683 /* Let's move on to the TxMac */
4684 if (status & ET_INTR_TXMAC) {
4685 u32 err = readl(&iomem->txmac.err);
4686
4687 /*
4688 * When any of the errors occur and TXMAC generates
4689 * an interrupt to report these errors, it usually
4690 * means that TXMAC has detected an error in the data
4691 * stream retrieved from the on-chip Tx Q. All of
4692 * these errors are catastrophic and TXMAC won't be
4693 * able to recover data when these errors occur. In
4694 * a nutshell, the whole Tx path will have to be reset
4695 * and re-configured afterwards.
4696 */
4697 dev_warn(&adapter->pdev->dev,
4698 "TXMAC interrupt, error 0x%08x\n",
4699 err);
4700
4701 /* If we are debugging, we want to see this error,
4702 * otherwise we just want the device to be reset and
4703 * continue
4704 */
4705 }
4706
4707 /* Handle RXMAC Interrupt */
4708 if (status & ET_INTR_RXMAC) {
4709 /*
4710 * These interrupts are catastrophic to the device,
4711 * what we need to do is disable the interrupts and
4712 * set the flag to cause us to reset so we can solve
4713 * this issue.
4714 */
4715 /* MP_SET_FLAG( adapter,
4716 fMP_ADAPTER_HARDWARE_ERROR); */
4717
4718 dev_warn(&adapter->pdev->dev,
4719 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4720 readl(&iomem->rxmac.err_reg));
4721
4722 dev_warn(&adapter->pdev->dev,
4723 "Enable 0x%08x, Diag 0x%08x\n",
4724 readl(&iomem->rxmac.ctrl),
4725 readl(&iomem->rxmac.rxq_diag));
4726
4727 /*
4728 * If we are debugging, we want to see this error,
4729 * otherwise we just want the device to be reset and
4730 * continue
4731 */
4732 }
4733
4734 /* Handle MAC_STAT Interrupt */
4735 if (status & ET_INTR_MAC_STAT) {
4736 /*
4737 * This means at least one of the un-masked counters
4738 * in the MAC_STAT block has rolled over. Use this
4739 * to maintain the top, software managed bits of the
4740 * counter(s).
4741 */
4742 et1310_handle_macstat_interrupt(adapter);
4743 }
4744
4745 /* Handle SLV Timeout Interrupt */
4746 if (status & ET_INTR_SLV_TIMEOUT) {
4747 /*
4748 * This means a timeout has occurred on a read or
4749 * write request to one of the JAGCore registers. The
4750 * Global Resources block has terminated the request
4751 * and on a read request, returned a "fake" value.
4752 * The most likely reasons are: Bad Address or the
4753 * addressed module is in a power-down state and
4754 * can't respond.
4755 */
4756 }
4757 }
4758 et131x_enable_interrupts(adapter);
4759 }
4760
4761 /**
4762 * et131x_stats - Return the current device statistics.
4763 * @netdev: device whose stats are being queried
4764 *
4765 * Returns 0 on success, errno on failure (as defined in errno.h)
4766 */
4767 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4768 {
4769 struct et131x_adapter *adapter = netdev_priv(netdev);
4770 struct net_device_stats *stats = &adapter->net_stats;
4771 struct ce_stats *devstat = &adapter->stats;
4772
4773 stats->rx_errors = devstat->rx_length_errs +
4774 devstat->rx_align_errs +
4775 devstat->rx_crc_errs +
4776 devstat->rx_code_violations +
4777 devstat->rx_other_errs;
4778 stats->tx_errors = devstat->tx_max_pkt_errs;
4779 stats->multicast = devstat->multicast_pkts_rcvd;
4780 stats->collisions = devstat->tx_collisions;
4781
4782 stats->rx_length_errors = devstat->rx_length_errs;
4783 stats->rx_over_errors = devstat->rx_overflows;
4784 stats->rx_crc_errors = devstat->rx_crc_errs;
4785
4786 /* NOTE: These stats don't have corresponding values in CE_STATS,
4787 * so we're going to have to update these directly from within the
4788 * TX/RX code
4789 */
4790 /* stats->rx_bytes = 20; devstat->; */
4791 /* stats->tx_bytes = 20; devstat->; */
4792 /* stats->rx_dropped = devstat->; */
4793 /* stats->tx_dropped = devstat->; */
4794
4795 /* NOTE: Not used, can't find analogous statistics */
4796 /* stats->rx_frame_errors = devstat->; */
4797 /* stats->rx_fifo_errors = devstat->; */
4798 /* stats->rx_missed_errors = devstat->; */
4799
4800 /* stats->tx_aborted_errors = devstat->; */
4801 /* stats->tx_carrier_errors = devstat->; */
4802 /* stats->tx_fifo_errors = devstat->; */
4803 /* stats->tx_heartbeat_errors = devstat->; */
4804 /* stats->tx_window_errors = devstat->; */
4805 return stats;
4806 }
4807
4808 /**
4809 * et131x_open - Open the device for use.
4810 * @netdev: device to be opened
4811 *
4812 * Returns 0 on success, errno on failure (as defined in errno.h)
4813 */
4814 static int et131x_open(struct net_device *netdev)
4815 {
4816 struct et131x_adapter *adapter = netdev_priv(netdev);
4817 struct pci_dev *pdev = adapter->pdev;
4818 unsigned int irq = pdev->irq;
4819 int result;
4820
4821 /* Start the timer to track NIC errors */
4822 init_timer(&adapter->error_timer);
4823 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4824 adapter->error_timer.function = et131x_error_timer_handler;
4825 adapter->error_timer.data = (unsigned long)adapter;
4826 add_timer(&adapter->error_timer);
4827
4828 result = request_irq(irq, et131x_isr,
4829 IRQF_SHARED, netdev->name, netdev);
4830 if (result) {
4831 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4832 return result;
4833 }
4834
4835 adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4836
4837 et131x_up(netdev);
4838
4839 return result;
4840 }
4841
4842 /**
4843 * et131x_close - Close the device
4844 * @netdev: device to be closed
4845 *
4846 * Returns 0 on success, errno on failure (as defined in errno.h)
4847 */
4848 static int et131x_close(struct net_device *netdev)
4849 {
4850 struct et131x_adapter *adapter = netdev_priv(netdev);
4851
4852 et131x_down(netdev);
4853
4854 adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4855 free_irq(adapter->pdev->irq, netdev);
4856
4857 /* Stop the error timer */
4858 return del_timer_sync(&adapter->error_timer);
4859 }
4860
4861 /**
4862 * et131x_ioctl - The I/O Control handler for the driver
4863 * @netdev: device on which the control request is being made
4864 * @reqbuf: a pointer to the IOCTL request buffer
4865 * @cmd: the IOCTL command code
4866 *
4867 * Returns 0 on success, errno on failure (as defined in errno.h)
4868 */
4869 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4870 int cmd)
4871 {
4872 struct et131x_adapter *adapter = netdev_priv(netdev);
4873
4874 if (!adapter->phydev)
4875 return -EINVAL;
4876
4877 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4878 }
4879
4880 /**
4881 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4882 * @adapter: pointer to our private adapter structure
4883 *
4884 * FIXME: lot of dups with MAC code
4885 *
4886 * Returns 0 on success, errno on failure
4887 */
4888 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4889 {
4890 int filter = adapter->packet_filter;
4891 int status = 0;
4892 u32 ctrl;
4893 u32 pf_ctrl;
4894
4895 ctrl = readl(&adapter->regs->rxmac.ctrl);
4896 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4897
4898 /* Default to disabled packet filtering. Enable it in the individual
4899 * case statements that require the device to filter something
4900 */
4901 ctrl |= 0x04;
4902
4903 /* Set us to be in promiscuous mode so we receive everything, this
4904 * is also true when we get a packet filter of 0
4905 */
4906 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4907 pf_ctrl &= ~7; /* Clear filter bits */
4908 else {
4909 /*
4910 * Set us up with Multicast packet filtering. Three cases are
4911 * possible - (1) we have a multi-cast list, (2) we receive ALL
4912 * multicast entries or (3) we receive none.
4913 */
4914 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4915 pf_ctrl &= ~2; /* Multicast filter bit */
4916 else {
4917 et1310_setup_device_for_multicast(adapter);
4918 pf_ctrl |= 2;
4919 ctrl &= ~0x04;
4920 }
4921
4922 /* Set us up with Unicast packet filtering */
4923 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4924 et1310_setup_device_for_unicast(adapter);
4925 pf_ctrl |= 4;
4926 ctrl &= ~0x04;
4927 }
4928
4929 /* Set us up with Broadcast packet filtering */
4930 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4931 pf_ctrl |= 1; /* Broadcast filter bit */
4932 ctrl &= ~0x04;
4933 } else
4934 pf_ctrl &= ~1;
4935
4936 /* Setup the receive mac configuration registers - Packet
4937 * Filter control + the enable / disable for packet filter
4938 * in the control reg.
4939 */
4940 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4941 writel(ctrl, &adapter->regs->rxmac.ctrl);
4942 }
4943 return status;
4944 }
4945
4946 /**
4947 * et131x_multicast - The handler to configure multicasting on the interface
4948 * @netdev: a pointer to a net_device struct representing the device
4949 */
4950 static void et131x_multicast(struct net_device *netdev)
4951 {
4952 struct et131x_adapter *adapter = netdev_priv(netdev);
4953 int packet_filter;
4954 unsigned long flags;
4955 struct netdev_hw_addr *ha;
4956 int i;
4957
4958 spin_lock_irqsave(&adapter->lock, flags);
4959
4960 /* Before we modify the platform-independent filter flags, store them
4961 * locally. This allows us to determine if anything's changed and if
4962 * we even need to bother the hardware
4963 */
4964 packet_filter = adapter->packet_filter;
4965
4966 /* Clear the 'multicast' flag locally; because we only have a single
4967 * flag to check multicast, and multiple multicast addresses can be
4968 * set, this is the easiest way to determine if more than one
4969 * multicast address is being set.
4970 */
4971 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4972
4973 /* Check the net_device flags and set the device independent flags
4974 * accordingly
4975 */
4976
4977 if (netdev->flags & IFF_PROMISC)
4978 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4979 else
4980 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4981
4982 if (netdev->flags & IFF_ALLMULTI)
4983 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4984
4985 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4986 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4987
4988 if (netdev_mc_count(netdev) < 1) {
4989 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4990 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4991 } else
4992 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4993
4994 /* Set values in the private adapter struct */
4995 i = 0;
4996 netdev_for_each_mc_addr(ha, netdev) {
4997 if (i == NIC_MAX_MCAST_LIST)
4998 break;
4999 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
5000 }
5001 adapter->multicast_addr_count = i;
5002
5003 /* Are the new flags different from the previous ones? If not, then no
5004 * action is required
5005 *
5006 * NOTE - This block will always update the multicast_list with the
5007 * hardware, even if the addresses aren't the same.
5008 */
5009 if (packet_filter != adapter->packet_filter) {
5010 /* Call the device's filter function */
5011 et131x_set_packet_filter(adapter);
5012 }
5013 spin_unlock_irqrestore(&adapter->lock, flags);
5014 }
5015
5016 /**
5017 * et131x_tx - The handler to tx a packet on the device
5018 * @skb: data to be Tx'd
5019 * @netdev: device on which data is to be Tx'd
5020 *
5021 * Returns 0 on success, errno on failure (as defined in errno.h)
5022 */
5023 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5024 {
5025 int status = 0;
5026 struct et131x_adapter *adapter = netdev_priv(netdev);
5027
5028 /* stop the queue if it's getting full */
5029 if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5030 !netif_queue_stopped(netdev))
5031 netif_stop_queue(netdev);
5032
5033 /* Save the timestamp for the TX timeout watchdog */
5034 netdev->trans_start = jiffies;
5035
5036 /* Call the device-specific data Tx routine */
5037 status = et131x_send_packets(skb, netdev);
5038
5039 /* Check status and manage the netif queue if necessary */
5040 if (status != 0) {
5041 if (status == -ENOMEM)
5042 status = NETDEV_TX_BUSY;
5043 else
5044 status = NETDEV_TX_OK;
5045 }
5046 return status;
5047 }
5048
5049 /**
5050 * et131x_tx_timeout - Timeout handler
5051 * @netdev: a pointer to a net_device struct representing the device
5052 *
5053 * The handler called when a Tx request times out. The timeout period is
5054 * specified by the 'tx_timeo" element in the net_device structure (see
5055 * et131x_alloc_device() to see how this value is set).
5056 */
5057 static void et131x_tx_timeout(struct net_device *netdev)
5058 {
5059 struct et131x_adapter *adapter = netdev_priv(netdev);
5060 struct tcb *tcb;
5061 unsigned long flags;
5062
5063 /* If the device is closed, ignore the timeout */
5064 if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5065 return;
5066
5067 /* Any nonrecoverable hardware error?
5068 * Checks adapter->flags for any failure in phy reading
5069 */
5070 if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5071 return;
5072
5073 /* Hardware failure? */
5074 if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5075 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5076 return;
5077 }
5078
5079 /* Is send stuck? */
5080 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5081
5082 tcb = adapter->tx_ring.send_head;
5083
5084 if (tcb != NULL) {
5085 tcb->count++;
5086
5087 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5088 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5089 flags);
5090
5091 dev_warn(&adapter->pdev->dev,
5092 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
5093 tcb->index,
5094 tcb->flags);
5095
5096 adapter->net_stats.tx_errors++;
5097
5098 /* perform reset of tx/rx */
5099 et131x_disable_txrx(netdev);
5100 et131x_enable_txrx(netdev);
5101 return;
5102 }
5103 }
5104
5105 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5106 }
5107
5108 /**
5109 * et131x_change_mtu - The handler called to change the MTU for the device
5110 * @netdev: device whose MTU is to be changed
5111 * @new_mtu: the desired MTU
5112 *
5113 * Returns 0 on success, errno on failure (as defined in errno.h)
5114 */
5115 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5116 {
5117 int result = 0;
5118 struct et131x_adapter *adapter = netdev_priv(netdev);
5119
5120 /* Make sure the requested MTU is valid */
5121 if (new_mtu < 64 || new_mtu > 9216)
5122 return -EINVAL;
5123
5124 et131x_disable_txrx(netdev);
5125 et131x_handle_send_interrupt(adapter);
5126 et131x_handle_recv_interrupt(adapter);
5127
5128 /* Set the new MTU */
5129 netdev->mtu = new_mtu;
5130
5131 /* Free Rx DMA memory */
5132 et131x_adapter_memory_free(adapter);
5133
5134 /* Set the config parameter for Jumbo Packet support */
5135 adapter->registry_jumbo_packet = new_mtu + 14;
5136 et131x_soft_reset(adapter);
5137
5138 /* Alloc and init Rx DMA memory */
5139 result = et131x_adapter_memory_alloc(adapter);
5140 if (result != 0) {
5141 dev_warn(&adapter->pdev->dev,
5142 "Change MTU failed; couldn't re-alloc DMA memory\n");
5143 return result;
5144 }
5145
5146 et131x_init_send(adapter);
5147
5148 et131x_hwaddr_init(adapter);
5149 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5150
5151 /* Init the device with the new settings */
5152 et131x_adapter_setup(adapter);
5153
5154 et131x_enable_txrx(netdev);
5155
5156 return result;
5157 }
5158
5159 /**
5160 * et131x_set_mac_addr - handler to change the MAC address for the device
5161 * @netdev: device whose MAC is to be changed
5162 * @new_mac: the desired MAC address
5163 *
5164 * Returns 0 on success, errno on failure (as defined in errno.h)
5165 *
5166 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5167 */
5168 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5169 {
5170 int result = 0;
5171 struct et131x_adapter *adapter = netdev_priv(netdev);
5172 struct sockaddr *address = new_mac;
5173
5174 /* begin blux */
5175
5176 if (adapter == NULL)
5177 return -ENODEV;
5178
5179 /* Make sure the requested MAC is valid */
5180 if (!is_valid_ether_addr(address->sa_data))
5181 return -EADDRNOTAVAIL;
5182
5183 et131x_disable_txrx(netdev);
5184 et131x_handle_send_interrupt(adapter);
5185 et131x_handle_recv_interrupt(adapter);
5186
5187 /* Set the new MAC */
5188 /* netdev->set_mac_address = &new_mac; */
5189
5190 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5191
5192 printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5193 netdev->name, netdev->dev_addr);
5194
5195 /* Free Rx DMA memory */
5196 et131x_adapter_memory_free(adapter);
5197
5198 et131x_soft_reset(adapter);
5199
5200 /* Alloc and init Rx DMA memory */
5201 result = et131x_adapter_memory_alloc(adapter);
5202 if (result != 0) {
5203 dev_err(&adapter->pdev->dev,
5204 "Change MAC failed; couldn't re-alloc DMA memory\n");
5205 return result;
5206 }
5207
5208 et131x_init_send(adapter);
5209
5210 et131x_hwaddr_init(adapter);
5211
5212 /* Init the device with the new settings */
5213 et131x_adapter_setup(adapter);
5214
5215 et131x_enable_txrx(netdev);
5216
5217 return result;
5218 }
5219
5220 static const struct net_device_ops et131x_netdev_ops = {
5221 .ndo_open = et131x_open,
5222 .ndo_stop = et131x_close,
5223 .ndo_start_xmit = et131x_tx,
5224 .ndo_set_rx_mode = et131x_multicast,
5225 .ndo_tx_timeout = et131x_tx_timeout,
5226 .ndo_change_mtu = et131x_change_mtu,
5227 .ndo_set_mac_address = et131x_set_mac_addr,
5228 .ndo_validate_addr = eth_validate_addr,
5229 .ndo_get_stats = et131x_stats,
5230 .ndo_do_ioctl = et131x_ioctl,
5231 };
5232
5233 /**
5234 * et131x_pci_setup - Perform device initialization
5235 * @pdev: a pointer to the device's pci_dev structure
5236 * @ent: this device's entry in the pci_device_id table
5237 *
5238 * Returns 0 on success, errno on failure (as defined in errno.h)
5239 *
5240 * Registered in the pci_driver structure, this function is called when the
5241 * PCI subsystem finds a new PCI device which matches the information
5242 * contained in the pci_device_id table. This routine is the equivalent to
5243 * a device insertion routine.
5244 */
5245 static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5246 const struct pci_device_id *ent)
5247 {
5248 struct net_device *netdev;
5249 struct et131x_adapter *adapter;
5250 int rc;
5251 int ii;
5252
5253 rc = pci_enable_device(pdev);
5254 if (rc < 0) {
5255 dev_err(&pdev->dev, "pci_enable_device() failed\n");
5256 goto out;
5257 }
5258
5259 /* Perform some basic PCI checks */
5260 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5261 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5262 rc = -ENODEV;
5263 goto err_disable;
5264 }
5265
5266 rc = pci_request_regions(pdev, DRIVER_NAME);
5267 if (rc < 0) {
5268 dev_err(&pdev->dev, "Can't get PCI resources\n");
5269 goto err_disable;
5270 }
5271
5272 pci_set_master(pdev);
5273
5274 /* Check the DMA addressing support of this device */
5275 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5276 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5277 if (rc < 0) {
5278 dev_err(&pdev->dev,
5279 "Unable to obtain 64 bit DMA for consistent allocations\n");
5280 goto err_release_res;
5281 }
5282 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5283 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5284 if (rc < 0) {
5285 dev_err(&pdev->dev,
5286 "Unable to obtain 32 bit DMA for consistent allocations\n");
5287 goto err_release_res;
5288 }
5289 } else {
5290 dev_err(&pdev->dev, "No usable DMA addressing method\n");
5291 rc = -EIO;
5292 goto err_release_res;
5293 }
5294
5295 /* Allocate netdev and private adapter structs */
5296 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5297 if (!netdev) {
5298 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5299 rc = -ENOMEM;
5300 goto err_release_res;
5301 }
5302
5303 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5304 netdev->netdev_ops = &et131x_netdev_ops;
5305
5306 SET_NETDEV_DEV(netdev, &pdev->dev);
5307 et131x_set_ethtool_ops(netdev);
5308
5309 adapter = et131x_adapter_init(netdev, pdev);
5310
5311 rc = et131x_pci_init(adapter, pdev);
5312 if (rc < 0)
5313 goto err_free_dev;
5314
5315 /* Map the bus-relative registers to system virtual memory */
5316 adapter->regs = pci_ioremap_bar(pdev, 0);
5317 if (!adapter->regs) {
5318 dev_err(&pdev->dev, "Cannot map device registers\n");
5319 rc = -ENOMEM;
5320 goto err_free_dev;
5321 }
5322
5323 /* If Phy COMA mode was enabled when we went down, disable it here. */
5324 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
5325
5326 /* Issue a global reset to the et1310 */
5327 et131x_soft_reset(adapter);
5328
5329 /* Disable all interrupts (paranoid) */
5330 et131x_disable_interrupts(adapter);
5331
5332 /* Allocate DMA memory */
5333 rc = et131x_adapter_memory_alloc(adapter);
5334 if (rc < 0) {
5335 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5336 goto err_iounmap;
5337 }
5338
5339 /* Init send data structures */
5340 et131x_init_send(adapter);
5341
5342 /* Set up the task structure for the ISR's deferred handler */
5343 INIT_WORK(&adapter->task, et131x_isr_handler);
5344
5345 /* Copy address into the net_device struct */
5346 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5347
5348 /* Init variable for counting how long we do not have link status */
5349 adapter->boot_coma = 0;
5350 et1310_disable_phy_coma(adapter);
5351
5352 rc = -ENOMEM;
5353
5354 /* Setup the mii_bus struct */
5355 adapter->mii_bus = mdiobus_alloc();
5356 if (!adapter->mii_bus) {
5357 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5358 goto err_mem_free;
5359 }
5360
5361 adapter->mii_bus->name = "et131x_eth_mii";
5362 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5363 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5364 adapter->mii_bus->priv = netdev;
5365 adapter->mii_bus->read = et131x_mdio_read;
5366 adapter->mii_bus->write = et131x_mdio_write;
5367 adapter->mii_bus->reset = et131x_mdio_reset;
5368 adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5369 if (!adapter->mii_bus->irq) {
5370 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5371 goto err_mdio_free;
5372 }
5373
5374 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5375 adapter->mii_bus->irq[ii] = PHY_POLL;
5376
5377 rc = mdiobus_register(adapter->mii_bus);
5378 if (rc < 0) {
5379 dev_err(&pdev->dev, "failed to register MII bus\n");
5380 goto err_mdio_free_irq;
5381 }
5382
5383 rc = et131x_mii_probe(netdev);
5384 if (rc < 0) {
5385 dev_err(&pdev->dev, "failed to probe MII bus\n");
5386 goto err_mdio_unregister;
5387 }
5388
5389 /* Setup et1310 as per the documentation */
5390 et131x_adapter_setup(adapter);
5391
5392 /* We can enable interrupts now
5393 *
5394 * NOTE - Because registration of interrupt handler is done in the
5395 * device's open(), defer enabling device interrupts to that
5396 * point
5397 */
5398
5399 /* Register the net_device struct with the Linux network layer */
5400 rc = register_netdev(netdev);
5401 if (rc < 0) {
5402 dev_err(&pdev->dev, "register_netdev() failed\n");
5403 goto err_phy_disconnect;
5404 }
5405
5406 /* Register the net_device struct with the PCI subsystem. Save a copy
5407 * of the PCI config space for this device now that the device has
5408 * been initialized, just in case it needs to be quickly restored.
5409 */
5410 pci_set_drvdata(pdev, netdev);
5411 out:
5412 return rc;
5413
5414 err_phy_disconnect:
5415 phy_disconnect(adapter->phydev);
5416 err_mdio_unregister:
5417 mdiobus_unregister(adapter->mii_bus);
5418 err_mdio_free_irq:
5419 kfree(adapter->mii_bus->irq);
5420 err_mdio_free:
5421 mdiobus_free(adapter->mii_bus);
5422 err_mem_free:
5423 et131x_adapter_memory_free(adapter);
5424 err_iounmap:
5425 iounmap(adapter->regs);
5426 err_free_dev:
5427 pci_dev_put(pdev);
5428 free_netdev(netdev);
5429 err_release_res:
5430 pci_release_regions(pdev);
5431 err_disable:
5432 pci_disable_device(pdev);
5433 goto out;
5434 }
5435
5436 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5437 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5438 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5439 {0,}
5440 };
5441 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5442
5443 static struct pci_driver et131x_driver = {
5444 .name = DRIVER_NAME,
5445 .id_table = et131x_pci_table,
5446 .probe = et131x_pci_setup,
5447 .remove = __devexit_p(et131x_pci_remove),
5448 .driver.pm = ET131X_PM_OPS,
5449 };
5450
5451 /**
5452 * et131x_init_module - The "main" entry point called on driver initialization
5453 *
5454 * Returns 0 on success, errno on failure (as defined in errno.h)
5455 */
5456 static int __init et131x_init_module(void)
5457 {
5458 return pci_register_driver(&et131x_driver);
5459 }
5460
5461 /**
5462 * et131x_cleanup_module - The entry point called on driver cleanup
5463 */
5464 static void __exit et131x_cleanup_module(void)
5465 {
5466 pci_unregister_driver(&et131x_driver);
5467 }
5468
5469 module_init(et131x_init_module);
5470 module_exit(et131x_cleanup_module);
5471
This page took 0.137687 seconds and 4 git commands to generate.