Merge branch 'mailbox-for-next' of git://git.linaro.org/landing-teams/working/fujitsu...
[deliverable/linux.git] / drivers / staging / iio / accel / sca3000_core.c
1 /*
2 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
9 *
10 * See industrialio/accels/sca3000.h for comments.
11 */
12
13 #include <linux/interrupt.h>
14 #include <linux/fs.h>
15 #include <linux/device.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/sysfs.h>
20 #include <linux/module.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/events.h>
24 #include <linux/iio/buffer.h>
25
26 #include "sca3000.h"
27
28 enum sca3000_variant {
29 d01,
30 e02,
31 e04,
32 e05,
33 };
34
35 /*
36 * Note where option modes are not defined, the chip simply does not
37 * support any.
38 * Other chips in the sca3000 series use i2c and are not included here.
39 *
40 * Some of these devices are only listed in the family data sheet and
41 * do not actually appear to be available.
42 */
43 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
44 [d01] = {
45 .scale = 7357,
46 .temp_output = true,
47 .measurement_mode_freq = 250,
48 .option_mode_1 = SCA3000_OP_MODE_BYPASS,
49 .option_mode_1_freq = 250,
50 .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
51 .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
52 },
53 [e02] = {
54 .scale = 9810,
55 .measurement_mode_freq = 125,
56 .option_mode_1 = SCA3000_OP_MODE_NARROW,
57 .option_mode_1_freq = 63,
58 .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
59 .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
60 },
61 [e04] = {
62 .scale = 19620,
63 .measurement_mode_freq = 100,
64 .option_mode_1 = SCA3000_OP_MODE_NARROW,
65 .option_mode_1_freq = 50,
66 .option_mode_2 = SCA3000_OP_MODE_WIDE,
67 .option_mode_2_freq = 400,
68 .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
69 .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
70 },
71 [e05] = {
72 .scale = 61313,
73 .measurement_mode_freq = 200,
74 .option_mode_1 = SCA3000_OP_MODE_NARROW,
75 .option_mode_1_freq = 50,
76 .option_mode_2 = SCA3000_OP_MODE_WIDE,
77 .option_mode_2_freq = 400,
78 .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
79 .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
80 },
81 };
82
83 int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
84 {
85 st->tx[0] = SCA3000_WRITE_REG(address);
86 st->tx[1] = val;
87 return spi_write(st->us, st->tx, 2);
88 }
89
90 int sca3000_read_data_short(struct sca3000_state *st,
91 u8 reg_address_high,
92 int len)
93 {
94 struct spi_transfer xfer[2] = {
95 {
96 .len = 1,
97 .tx_buf = st->tx,
98 }, {
99 .len = len,
100 .rx_buf = st->rx,
101 }
102 };
103 st->tx[0] = SCA3000_READ_REG(reg_address_high);
104
105 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
106 }
107
108 /**
109 * sca3000_reg_lock_on() test if the ctrl register lock is on
110 *
111 * Lock must be held.
112 **/
113 static int sca3000_reg_lock_on(struct sca3000_state *st)
114 {
115 int ret;
116
117 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_STATUS, 1);
118 if (ret < 0)
119 return ret;
120
121 return !(st->rx[0] & SCA3000_LOCKED);
122 }
123
124 /**
125 * __sca3000_unlock_reg_lock() unlock the control registers
126 *
127 * Note the device does not appear to support doing this in a single transfer.
128 * This should only ever be used as part of ctrl reg read.
129 * Lock must be held before calling this
130 **/
131 static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
132 {
133 struct spi_transfer xfer[3] = {
134 {
135 .len = 2,
136 .cs_change = 1,
137 .tx_buf = st->tx,
138 }, {
139 .len = 2,
140 .cs_change = 1,
141 .tx_buf = st->tx + 2,
142 }, {
143 .len = 2,
144 .tx_buf = st->tx + 4,
145 },
146 };
147 st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
148 st->tx[1] = 0x00;
149 st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
150 st->tx[3] = 0x50;
151 st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
152 st->tx[5] = 0xA0;
153
154 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
155 }
156
157 /**
158 * sca3000_write_ctrl_reg() write to a lock protect ctrl register
159 * @sel: selects which registers we wish to write to
160 * @val: the value to be written
161 *
162 * Certain control registers are protected against overwriting by the lock
163 * register and use a shared write address. This function allows writing of
164 * these registers.
165 * Lock must be held.
166 **/
167 static int sca3000_write_ctrl_reg(struct sca3000_state *st,
168 u8 sel,
169 uint8_t val)
170 {
171 int ret;
172
173 ret = sca3000_reg_lock_on(st);
174 if (ret < 0)
175 goto error_ret;
176 if (ret) {
177 ret = __sca3000_unlock_reg_lock(st);
178 if (ret)
179 goto error_ret;
180 }
181
182 /* Set the control select register */
183 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_SEL, sel);
184 if (ret)
185 goto error_ret;
186
187 /* Write the actual value into the register */
188 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_DATA, val);
189
190 error_ret:
191 return ret;
192 }
193
194 /**
195 * sca3000_read_ctrl_reg() read from lock protected control register.
196 *
197 * Lock must be held.
198 **/
199 static int sca3000_read_ctrl_reg(struct sca3000_state *st,
200 u8 ctrl_reg)
201 {
202 int ret;
203
204 ret = sca3000_reg_lock_on(st);
205 if (ret < 0)
206 goto error_ret;
207 if (ret) {
208 ret = __sca3000_unlock_reg_lock(st);
209 if (ret)
210 goto error_ret;
211 }
212 /* Set the control select register */
213 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_SEL, ctrl_reg);
214 if (ret)
215 goto error_ret;
216 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_CTRL_DATA, 1);
217 if (ret)
218 goto error_ret;
219 return st->rx[0];
220 error_ret:
221 return ret;
222 }
223
224 /**
225 * sca3000_show_rev() - sysfs interface to read the chip revision number
226 **/
227 static ssize_t sca3000_show_rev(struct device *dev,
228 struct device_attribute *attr,
229 char *buf)
230 {
231 int len = 0, ret;
232 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
233 struct sca3000_state *st = iio_priv(indio_dev);
234
235 mutex_lock(&st->lock);
236 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_REVID, 1);
237 if (ret < 0)
238 goto error_ret;
239 len += sprintf(buf + len,
240 "major=%d, minor=%d\n",
241 st->rx[0] & SCA3000_REVID_MAJOR_MASK,
242 st->rx[0] & SCA3000_REVID_MINOR_MASK);
243 error_ret:
244 mutex_unlock(&st->lock);
245
246 return ret ? ret : len;
247 }
248
249 /**
250 * sca3000_show_available_measurement_modes() display available modes
251 *
252 * This is all read from chip specific data in the driver. Not all
253 * of the sca3000 series support modes other than normal.
254 **/
255 static ssize_t
256 sca3000_show_available_measurement_modes(struct device *dev,
257 struct device_attribute *attr,
258 char *buf)
259 {
260 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
261 struct sca3000_state *st = iio_priv(indio_dev);
262 int len = 0;
263
264 len += sprintf(buf + len, "0 - normal mode");
265 switch (st->info->option_mode_1) {
266 case SCA3000_OP_MODE_NARROW:
267 len += sprintf(buf + len, ", 1 - narrow mode");
268 break;
269 case SCA3000_OP_MODE_BYPASS:
270 len += sprintf(buf + len, ", 1 - bypass mode");
271 break;
272 }
273 switch (st->info->option_mode_2) {
274 case SCA3000_OP_MODE_WIDE:
275 len += sprintf(buf + len, ", 2 - wide mode");
276 break;
277 }
278 /* always supported */
279 len += sprintf(buf + len, " 3 - motion detection\n");
280
281 return len;
282 }
283
284 /**
285 * sca3000_show_measurement_mode() sysfs read of current mode
286 **/
287 static ssize_t
288 sca3000_show_measurement_mode(struct device *dev,
289 struct device_attribute *attr,
290 char *buf)
291 {
292 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
293 struct sca3000_state *st = iio_priv(indio_dev);
294 int len = 0, ret;
295
296 mutex_lock(&st->lock);
297 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
298 if (ret)
299 goto error_ret;
300 /* mask bottom 2 bits - only ones that are relevant */
301 st->rx[0] &= 0x03;
302 switch (st->rx[0]) {
303 case SCA3000_MEAS_MODE_NORMAL:
304 len += sprintf(buf + len, "0 - normal mode\n");
305 break;
306 case SCA3000_MEAS_MODE_MOT_DET:
307 len += sprintf(buf + len, "3 - motion detection\n");
308 break;
309 case SCA3000_MEAS_MODE_OP_1:
310 switch (st->info->option_mode_1) {
311 case SCA3000_OP_MODE_NARROW:
312 len += sprintf(buf + len, "1 - narrow mode\n");
313 break;
314 case SCA3000_OP_MODE_BYPASS:
315 len += sprintf(buf + len, "1 - bypass mode\n");
316 break;
317 }
318 break;
319 case SCA3000_MEAS_MODE_OP_2:
320 switch (st->info->option_mode_2) {
321 case SCA3000_OP_MODE_WIDE:
322 len += sprintf(buf + len, "2 - wide mode\n");
323 break;
324 }
325 break;
326 }
327
328 error_ret:
329 mutex_unlock(&st->lock);
330
331 return ret ? ret : len;
332 }
333
334 /**
335 * sca3000_store_measurement_mode() set the current mode
336 **/
337 static ssize_t
338 sca3000_store_measurement_mode(struct device *dev,
339 struct device_attribute *attr,
340 const char *buf,
341 size_t len)
342 {
343 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
344 struct sca3000_state *st = iio_priv(indio_dev);
345 int ret;
346 u8 mask = 0x03;
347 u8 val;
348
349 mutex_lock(&st->lock);
350 ret = kstrtou8(buf, 10, &val);
351 if (ret)
352 goto error_ret;
353 if (val > 3) {
354 ret = -EINVAL;
355 goto error_ret;
356 }
357 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
358 if (ret)
359 goto error_ret;
360 st->rx[0] &= ~mask;
361 st->rx[0] |= (val & mask);
362 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE, st->rx[0]);
363 if (ret)
364 goto error_ret;
365 mutex_unlock(&st->lock);
366
367 return len;
368
369 error_ret:
370 mutex_unlock(&st->lock);
371
372 return ret;
373 }
374
375 /*
376 * Not even vaguely standard attributes so defined here rather than
377 * in the relevant IIO core headers
378 */
379 static IIO_DEVICE_ATTR(measurement_mode_available, S_IRUGO,
380 sca3000_show_available_measurement_modes,
381 NULL, 0);
382
383 static IIO_DEVICE_ATTR(measurement_mode, S_IRUGO | S_IWUSR,
384 sca3000_show_measurement_mode,
385 sca3000_store_measurement_mode,
386 0);
387
388 /* More standard attributes */
389
390 static IIO_DEVICE_ATTR(revision, S_IRUGO, sca3000_show_rev, NULL, 0);
391
392 static const struct iio_event_spec sca3000_event = {
393 .type = IIO_EV_TYPE_MAG,
394 .dir = IIO_EV_DIR_RISING,
395 .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
396 };
397
398 #define SCA3000_CHAN(index, mod) \
399 { \
400 .type = IIO_ACCEL, \
401 .modified = 1, \
402 .channel2 = mod, \
403 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
404 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),\
405 .address = index, \
406 .scan_index = index, \
407 .scan_type = { \
408 .sign = 's', \
409 .realbits = 11, \
410 .storagebits = 16, \
411 .shift = 5, \
412 }, \
413 .event_spec = &sca3000_event, \
414 .num_event_specs = 1, \
415 }
416
417 static const struct iio_chan_spec sca3000_channels[] = {
418 SCA3000_CHAN(0, IIO_MOD_X),
419 SCA3000_CHAN(1, IIO_MOD_Y),
420 SCA3000_CHAN(2, IIO_MOD_Z),
421 };
422
423 static const struct iio_chan_spec sca3000_channels_with_temp[] = {
424 SCA3000_CHAN(0, IIO_MOD_X),
425 SCA3000_CHAN(1, IIO_MOD_Y),
426 SCA3000_CHAN(2, IIO_MOD_Z),
427 {
428 .type = IIO_TEMP,
429 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
430 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
431 BIT(IIO_CHAN_INFO_OFFSET),
432 /* No buffer support */
433 .scan_index = -1,
434 },
435 };
436
437 static u8 sca3000_addresses[3][3] = {
438 [0] = {SCA3000_REG_ADDR_X_MSB, SCA3000_REG_CTRL_SEL_MD_X_TH,
439 SCA3000_MD_CTRL_OR_X},
440 [1] = {SCA3000_REG_ADDR_Y_MSB, SCA3000_REG_CTRL_SEL_MD_Y_TH,
441 SCA3000_MD_CTRL_OR_Y},
442 [2] = {SCA3000_REG_ADDR_Z_MSB, SCA3000_REG_CTRL_SEL_MD_Z_TH,
443 SCA3000_MD_CTRL_OR_Z},
444 };
445
446 static int sca3000_read_raw(struct iio_dev *indio_dev,
447 struct iio_chan_spec const *chan,
448 int *val,
449 int *val2,
450 long mask)
451 {
452 struct sca3000_state *st = iio_priv(indio_dev);
453 int ret;
454 u8 address;
455
456 switch (mask) {
457 case IIO_CHAN_INFO_RAW:
458 mutex_lock(&st->lock);
459 if (chan->type == IIO_ACCEL) {
460 if (st->mo_det_use_count) {
461 mutex_unlock(&st->lock);
462 return -EBUSY;
463 }
464 address = sca3000_addresses[chan->address][0];
465 ret = sca3000_read_data_short(st, address, 2);
466 if (ret < 0) {
467 mutex_unlock(&st->lock);
468 return ret;
469 }
470 *val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
471 *val = ((*val) << (sizeof(*val) * 8 - 13)) >>
472 (sizeof(*val) * 8 - 13);
473 } else {
474 /* get the temperature when available */
475 ret = sca3000_read_data_short(st,
476 SCA3000_REG_ADDR_TEMP_MSB,
477 2);
478 if (ret < 0) {
479 mutex_unlock(&st->lock);
480 return ret;
481 }
482 *val = ((st->rx[0] & 0x3F) << 3) |
483 ((st->rx[1] & 0xE0) >> 5);
484 }
485 mutex_unlock(&st->lock);
486 return IIO_VAL_INT;
487 case IIO_CHAN_INFO_SCALE:
488 *val = 0;
489 if (chan->type == IIO_ACCEL)
490 *val2 = st->info->scale;
491 else /* temperature */
492 *val2 = 555556;
493 return IIO_VAL_INT_PLUS_MICRO;
494 case IIO_CHAN_INFO_OFFSET:
495 *val = -214;
496 *val2 = 600000;
497 return IIO_VAL_INT_PLUS_MICRO;
498 default:
499 return -EINVAL;
500 }
501 }
502
503 /**
504 * sca3000_read_av_freq() sysfs function to get available frequencies
505 *
506 * The later modes are only relevant to the ring buffer - and depend on current
507 * mode. Note that data sheet gives rather wide tolerances for these so integer
508 * division will give good enough answer and not all chips have them specified
509 * at all.
510 **/
511 static ssize_t sca3000_read_av_freq(struct device *dev,
512 struct device_attribute *attr,
513 char *buf)
514 {
515 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
516 struct sca3000_state *st = iio_priv(indio_dev);
517 int len = 0, ret, val;
518
519 mutex_lock(&st->lock);
520 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
521 val = st->rx[0];
522 mutex_unlock(&st->lock);
523 if (ret)
524 goto error_ret;
525
526 switch (val & 0x03) {
527 case SCA3000_MEAS_MODE_NORMAL:
528 len += sprintf(buf + len, "%d %d %d\n",
529 st->info->measurement_mode_freq,
530 st->info->measurement_mode_freq / 2,
531 st->info->measurement_mode_freq / 4);
532 break;
533 case SCA3000_MEAS_MODE_OP_1:
534 len += sprintf(buf + len, "%d %d %d\n",
535 st->info->option_mode_1_freq,
536 st->info->option_mode_1_freq / 2,
537 st->info->option_mode_1_freq / 4);
538 break;
539 case SCA3000_MEAS_MODE_OP_2:
540 len += sprintf(buf + len, "%d %d %d\n",
541 st->info->option_mode_2_freq,
542 st->info->option_mode_2_freq / 2,
543 st->info->option_mode_2_freq / 4);
544 break;
545 }
546 return len;
547 error_ret:
548 return ret;
549 }
550
551 /**
552 * __sca3000_get_base_freq() obtain mode specific base frequency
553 *
554 * lock must be held
555 **/
556 static inline int __sca3000_get_base_freq(struct sca3000_state *st,
557 const struct sca3000_chip_info *info,
558 int *base_freq)
559 {
560 int ret;
561
562 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
563 if (ret)
564 goto error_ret;
565 switch (0x03 & st->rx[0]) {
566 case SCA3000_MEAS_MODE_NORMAL:
567 *base_freq = info->measurement_mode_freq;
568 break;
569 case SCA3000_MEAS_MODE_OP_1:
570 *base_freq = info->option_mode_1_freq;
571 break;
572 case SCA3000_MEAS_MODE_OP_2:
573 *base_freq = info->option_mode_2_freq;
574 break;
575 }
576 error_ret:
577 return ret;
578 }
579
580 /**
581 * sca3000_read_frequency() sysfs interface to get the current frequency
582 **/
583 static ssize_t sca3000_read_frequency(struct device *dev,
584 struct device_attribute *attr,
585 char *buf)
586 {
587 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
588 struct sca3000_state *st = iio_priv(indio_dev);
589 int ret, len = 0, base_freq = 0, val;
590
591 mutex_lock(&st->lock);
592 ret = __sca3000_get_base_freq(st, st->info, &base_freq);
593 if (ret)
594 goto error_ret_mut;
595 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
596 mutex_unlock(&st->lock);
597 if (ret)
598 goto error_ret;
599 val = ret;
600 if (base_freq > 0)
601 switch (val & 0x03) {
602 case 0x00:
603 case 0x03:
604 len = sprintf(buf, "%d\n", base_freq);
605 break;
606 case 0x01:
607 len = sprintf(buf, "%d\n", base_freq / 2);
608 break;
609 case 0x02:
610 len = sprintf(buf, "%d\n", base_freq / 4);
611 break;
612 }
613
614 return len;
615 error_ret_mut:
616 mutex_unlock(&st->lock);
617 error_ret:
618 return ret;
619 }
620
621 /**
622 * sca3000_set_frequency() sysfs interface to set the current frequency
623 **/
624 static ssize_t sca3000_set_frequency(struct device *dev,
625 struct device_attribute *attr,
626 const char *buf,
627 size_t len)
628 {
629 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
630 struct sca3000_state *st = iio_priv(indio_dev);
631 int ret, base_freq = 0;
632 int ctrlval;
633 int val;
634
635 ret = kstrtoint(buf, 10, &val);
636 if (ret)
637 return ret;
638
639 mutex_lock(&st->lock);
640 /* What mode are we in? */
641 ret = __sca3000_get_base_freq(st, st->info, &base_freq);
642 if (ret)
643 goto error_free_lock;
644
645 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
646 if (ret < 0)
647 goto error_free_lock;
648 ctrlval = ret;
649 /* clear the bits */
650 ctrlval &= ~0x03;
651
652 if (val == base_freq / 2) {
653 ctrlval |= SCA3000_OUT_CTRL_BUF_DIV_2;
654 } else if (val == base_freq / 4) {
655 ctrlval |= SCA3000_OUT_CTRL_BUF_DIV_4;
656 } else if (val != base_freq) {
657 ret = -EINVAL;
658 goto error_free_lock;
659 }
660 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
661 ctrlval);
662 error_free_lock:
663 mutex_unlock(&st->lock);
664
665 return ret ? ret : len;
666 }
667
668 /*
669 * Should only really be registered if ring buffer support is compiled in.
670 * Does no harm however and doing it right would add a fair bit of complexity
671 */
672 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
673
674 static IIO_DEV_ATTR_SAMP_FREQ(S_IWUSR | S_IRUGO,
675 sca3000_read_frequency,
676 sca3000_set_frequency);
677
678 /**
679 * sca3000_read_thresh() - query of a threshold
680 **/
681 static int sca3000_read_thresh(struct iio_dev *indio_dev,
682 const struct iio_chan_spec *chan,
683 enum iio_event_type type,
684 enum iio_event_direction dir,
685 enum iio_event_info info,
686 int *val, int *val2)
687 {
688 int ret, i;
689 struct sca3000_state *st = iio_priv(indio_dev);
690 int num = chan->channel2;
691
692 mutex_lock(&st->lock);
693 ret = sca3000_read_ctrl_reg(st, sca3000_addresses[num][1]);
694 mutex_unlock(&st->lock);
695 if (ret < 0)
696 return ret;
697 *val = 0;
698 if (num == 1)
699 for_each_set_bit(i, (unsigned long *)&ret,
700 ARRAY_SIZE(st->info->mot_det_mult_y))
701 *val += st->info->mot_det_mult_y[i];
702 else
703 for_each_set_bit(i, (unsigned long *)&ret,
704 ARRAY_SIZE(st->info->mot_det_mult_xz))
705 *val += st->info->mot_det_mult_xz[i];
706
707 return IIO_VAL_INT;
708 }
709
710 /**
711 * sca3000_write_thresh() control of threshold
712 **/
713 static int sca3000_write_thresh(struct iio_dev *indio_dev,
714 const struct iio_chan_spec *chan,
715 enum iio_event_type type,
716 enum iio_event_direction dir,
717 enum iio_event_info info,
718 int val, int val2)
719 {
720 struct sca3000_state *st = iio_priv(indio_dev);
721 int num = chan->channel2;
722 int ret;
723 int i;
724 u8 nonlinear = 0;
725
726 if (num == 1) {
727 i = ARRAY_SIZE(st->info->mot_det_mult_y);
728 while (i > 0)
729 if (val >= st->info->mot_det_mult_y[--i]) {
730 nonlinear |= (1 << i);
731 val -= st->info->mot_det_mult_y[i];
732 }
733 } else {
734 i = ARRAY_SIZE(st->info->mot_det_mult_xz);
735 while (i > 0)
736 if (val >= st->info->mot_det_mult_xz[--i]) {
737 nonlinear |= (1 << i);
738 val -= st->info->mot_det_mult_xz[i];
739 }
740 }
741
742 mutex_lock(&st->lock);
743 ret = sca3000_write_ctrl_reg(st, sca3000_addresses[num][1], nonlinear);
744 mutex_unlock(&st->lock);
745
746 return ret;
747 }
748
749 static struct attribute *sca3000_attributes[] = {
750 &iio_dev_attr_revision.dev_attr.attr,
751 &iio_dev_attr_measurement_mode_available.dev_attr.attr,
752 &iio_dev_attr_measurement_mode.dev_attr.attr,
753 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
754 &iio_dev_attr_sampling_frequency.dev_attr.attr,
755 NULL,
756 };
757
758 static const struct attribute_group sca3000_attribute_group = {
759 .attrs = sca3000_attributes,
760 };
761
762 /**
763 * sca3000_event_handler() - handling ring and non ring events
764 *
765 * Ring related interrupt handler. Depending on event, push to
766 * the ring buffer event chrdev or the event one.
767 *
768 * This function is complicated by the fact that the devices can signify ring
769 * and non ring events via the same interrupt line and they can only
770 * be distinguished via a read of the relevant status register.
771 **/
772 static irqreturn_t sca3000_event_handler(int irq, void *private)
773 {
774 struct iio_dev *indio_dev = private;
775 struct sca3000_state *st = iio_priv(indio_dev);
776 int ret, val;
777 s64 last_timestamp = iio_get_time_ns();
778
779 /*
780 * Could lead if badly timed to an extra read of status reg,
781 * but ensures no interrupt is missed.
782 */
783 mutex_lock(&st->lock);
784 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_STATUS, 1);
785 val = st->rx[0];
786 mutex_unlock(&st->lock);
787 if (ret)
788 goto done;
789
790 sca3000_ring_int_process(val, indio_dev->buffer);
791
792 if (val & SCA3000_INT_STATUS_FREE_FALL)
793 iio_push_event(indio_dev,
794 IIO_MOD_EVENT_CODE(IIO_ACCEL,
795 0,
796 IIO_MOD_X_AND_Y_AND_Z,
797 IIO_EV_TYPE_MAG,
798 IIO_EV_DIR_FALLING),
799 last_timestamp);
800
801 if (val & SCA3000_INT_STATUS_Y_TRIGGER)
802 iio_push_event(indio_dev,
803 IIO_MOD_EVENT_CODE(IIO_ACCEL,
804 0,
805 IIO_MOD_Y,
806 IIO_EV_TYPE_MAG,
807 IIO_EV_DIR_RISING),
808 last_timestamp);
809
810 if (val & SCA3000_INT_STATUS_X_TRIGGER)
811 iio_push_event(indio_dev,
812 IIO_MOD_EVENT_CODE(IIO_ACCEL,
813 0,
814 IIO_MOD_X,
815 IIO_EV_TYPE_MAG,
816 IIO_EV_DIR_RISING),
817 last_timestamp);
818
819 if (val & SCA3000_INT_STATUS_Z_TRIGGER)
820 iio_push_event(indio_dev,
821 IIO_MOD_EVENT_CODE(IIO_ACCEL,
822 0,
823 IIO_MOD_Z,
824 IIO_EV_TYPE_MAG,
825 IIO_EV_DIR_RISING),
826 last_timestamp);
827
828 done:
829 return IRQ_HANDLED;
830 }
831
832 /**
833 * sca3000_read_event_config() what events are enabled
834 **/
835 static int sca3000_read_event_config(struct iio_dev *indio_dev,
836 const struct iio_chan_spec *chan,
837 enum iio_event_type type,
838 enum iio_event_direction dir)
839 {
840 struct sca3000_state *st = iio_priv(indio_dev);
841 int ret;
842 u8 protect_mask = 0x03;
843 int num = chan->channel2;
844
845 /* read current value of mode register */
846 mutex_lock(&st->lock);
847 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
848 if (ret)
849 goto error_ret;
850
851 if ((st->rx[0] & protect_mask) != SCA3000_MEAS_MODE_MOT_DET) {
852 ret = 0;
853 } else {
854 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
855 if (ret < 0)
856 goto error_ret;
857 /* only supporting logical or's for now */
858 ret = !!(ret & sca3000_addresses[num][2]);
859 }
860 error_ret:
861 mutex_unlock(&st->lock);
862
863 return ret;
864 }
865
866 /**
867 * sca3000_query_free_fall_mode() is free fall mode enabled
868 **/
869 static ssize_t sca3000_query_free_fall_mode(struct device *dev,
870 struct device_attribute *attr,
871 char *buf)
872 {
873 int ret;
874 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
875 struct sca3000_state *st = iio_priv(indio_dev);
876 int val;
877
878 mutex_lock(&st->lock);
879 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
880 val = st->rx[0];
881 mutex_unlock(&st->lock);
882 if (ret < 0)
883 return ret;
884 return sprintf(buf, "%d\n", !!(val & SCA3000_FREE_FALL_DETECT));
885 }
886
887 /**
888 * sca3000_set_free_fall_mode() simple on off control for free fall int
889 *
890 * In these chips the free fall detector should send an interrupt if
891 * the device falls more than 25cm. This has not been tested due
892 * to fragile wiring.
893 **/
894 static ssize_t sca3000_set_free_fall_mode(struct device *dev,
895 struct device_attribute *attr,
896 const char *buf,
897 size_t len)
898 {
899 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
900 struct sca3000_state *st = iio_priv(indio_dev);
901 u8 val;
902 int ret;
903 u8 protect_mask = SCA3000_FREE_FALL_DETECT;
904
905 mutex_lock(&st->lock);
906 ret = kstrtou8(buf, 10, &val);
907 if (ret)
908 goto error_ret;
909
910 /* read current value of mode register */
911 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
912 if (ret)
913 goto error_ret;
914
915 /* if off and should be on */
916 if (val && !(st->rx[0] & protect_mask))
917 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
918 (st->rx[0] | SCA3000_FREE_FALL_DETECT));
919 /* if on and should be off */
920 else if (!val && (st->rx[0] & protect_mask))
921 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
922 (st->rx[0] & ~protect_mask));
923 error_ret:
924 mutex_unlock(&st->lock);
925
926 return ret ? ret : len;
927 }
928
929 /**
930 * sca3000_write_event_config() simple on off control for motion detector
931 *
932 * This is a per axis control, but enabling any will result in the
933 * motion detector unit being enabled.
934 * N.B. enabling motion detector stops normal data acquisition.
935 * There is a complexity in knowing which mode to return to when
936 * this mode is disabled. Currently normal mode is assumed.
937 **/
938 static int sca3000_write_event_config(struct iio_dev *indio_dev,
939 const struct iio_chan_spec *chan,
940 enum iio_event_type type,
941 enum iio_event_direction dir,
942 int state)
943 {
944 struct sca3000_state *st = iio_priv(indio_dev);
945 int ret, ctrlval;
946 u8 protect_mask = 0x03;
947 int num = chan->channel2;
948
949 mutex_lock(&st->lock);
950 /*
951 * First read the motion detector config to find out if
952 * this axis is on
953 */
954 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
955 if (ret < 0)
956 goto exit_point;
957 ctrlval = ret;
958 /* if off and should be on */
959 if (state && !(ctrlval & sca3000_addresses[num][2])) {
960 ret = sca3000_write_ctrl_reg(st,
961 SCA3000_REG_CTRL_SEL_MD_CTRL,
962 ctrlval |
963 sca3000_addresses[num][2]);
964 if (ret)
965 goto exit_point;
966 st->mo_det_use_count++;
967 } else if (!state && (ctrlval & sca3000_addresses[num][2])) {
968 ret = sca3000_write_ctrl_reg(st,
969 SCA3000_REG_CTRL_SEL_MD_CTRL,
970 ctrlval &
971 ~(sca3000_addresses[num][2]));
972 if (ret)
973 goto exit_point;
974 st->mo_det_use_count--;
975 }
976
977 /* read current value of mode register */
978 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
979 if (ret)
980 goto exit_point;
981 /* if off and should be on */
982 if ((st->mo_det_use_count) &&
983 ((st->rx[0] & protect_mask) != SCA3000_MEAS_MODE_MOT_DET))
984 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
985 (st->rx[0] & ~protect_mask)
986 | SCA3000_MEAS_MODE_MOT_DET);
987 /* if on and should be off */
988 else if (!(st->mo_det_use_count) &&
989 ((st->rx[0] & protect_mask) == SCA3000_MEAS_MODE_MOT_DET))
990 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
991 (st->rx[0] & ~protect_mask));
992 exit_point:
993 mutex_unlock(&st->lock);
994
995 return ret;
996 }
997
998 /* Free fall detector related event attribute */
999 static IIO_DEVICE_ATTR_NAMED(accel_xayaz_mag_falling_en,
1000 in_accel_x & y & z_mag_falling_en,
1001 S_IRUGO | S_IWUSR,
1002 sca3000_query_free_fall_mode,
1003 sca3000_set_free_fall_mode,
1004 0);
1005
1006 static IIO_CONST_ATTR_NAMED(accel_xayaz_mag_falling_period,
1007 in_accel_x & y & z_mag_falling_period,
1008 "0.226");
1009
1010 static struct attribute *sca3000_event_attributes[] = {
1011 &iio_dev_attr_accel_xayaz_mag_falling_en.dev_attr.attr,
1012 &iio_const_attr_accel_xayaz_mag_falling_period.dev_attr.attr,
1013 NULL,
1014 };
1015
1016 static struct attribute_group sca3000_event_attribute_group = {
1017 .attrs = sca3000_event_attributes,
1018 .name = "events",
1019 };
1020
1021 /**
1022 * sca3000_clean_setup() get the device into a predictable state
1023 *
1024 * Devices use flash memory to store many of the register values
1025 * and hence can come up in somewhat unpredictable states.
1026 * Hence reset everything on driver load.
1027 **/
1028 static int sca3000_clean_setup(struct sca3000_state *st)
1029 {
1030 int ret;
1031
1032 mutex_lock(&st->lock);
1033 /* Ensure all interrupts have been acknowledged */
1034 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_STATUS, 1);
1035 if (ret)
1036 goto error_ret;
1037
1038 /* Turn off all motion detection channels */
1039 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1040 if (ret < 0)
1041 goto error_ret;
1042 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1043 ret & SCA3000_MD_CTRL_PROT_MASK);
1044 if (ret)
1045 goto error_ret;
1046
1047 /* Disable ring buffer */
1048 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1049 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1050 (ret & SCA3000_OUT_CTRL_PROT_MASK)
1051 | SCA3000_OUT_CTRL_BUF_X_EN
1052 | SCA3000_OUT_CTRL_BUF_Y_EN
1053 | SCA3000_OUT_CTRL_BUF_Z_EN
1054 | SCA3000_OUT_CTRL_BUF_DIV_4);
1055 if (ret)
1056 goto error_ret;
1057 /* Enable interrupts, relevant to mode and set up as active low */
1058 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
1059 if (ret)
1060 goto error_ret;
1061 ret = sca3000_write_reg(st,
1062 SCA3000_REG_ADDR_INT_MASK,
1063 (ret & SCA3000_INT_MASK_PROT_MASK)
1064 | SCA3000_INT_MASK_ACTIVE_LOW);
1065 if (ret)
1066 goto error_ret;
1067 /*
1068 * Select normal measurement mode, free fall off, ring off
1069 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1070 * as that occurs in one of the example on the datasheet
1071 */
1072 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
1073 if (ret)
1074 goto error_ret;
1075 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
1076 (st->rx[0] & SCA3000_MODE_PROT_MASK));
1077 st->bpse = 11;
1078
1079 error_ret:
1080 mutex_unlock(&st->lock);
1081 return ret;
1082 }
1083
1084 static const struct iio_info sca3000_info = {
1085 .attrs = &sca3000_attribute_group,
1086 .read_raw = &sca3000_read_raw,
1087 .event_attrs = &sca3000_event_attribute_group,
1088 .read_event_value = &sca3000_read_thresh,
1089 .write_event_value = &sca3000_write_thresh,
1090 .read_event_config = &sca3000_read_event_config,
1091 .write_event_config = &sca3000_write_event_config,
1092 .driver_module = THIS_MODULE,
1093 };
1094
1095 static int sca3000_probe(struct spi_device *spi)
1096 {
1097 int ret;
1098 struct sca3000_state *st;
1099 struct iio_dev *indio_dev;
1100
1101 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1102 if (!indio_dev)
1103 return -ENOMEM;
1104
1105 st = iio_priv(indio_dev);
1106 spi_set_drvdata(spi, indio_dev);
1107 st->us = spi;
1108 mutex_init(&st->lock);
1109 st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1110 ->driver_data];
1111
1112 indio_dev->dev.parent = &spi->dev;
1113 indio_dev->name = spi_get_device_id(spi)->name;
1114 indio_dev->info = &sca3000_info;
1115 if (st->info->temp_output) {
1116 indio_dev->channels = sca3000_channels_with_temp;
1117 indio_dev->num_channels =
1118 ARRAY_SIZE(sca3000_channels_with_temp);
1119 } else {
1120 indio_dev->channels = sca3000_channels;
1121 indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1122 }
1123 indio_dev->modes = INDIO_DIRECT_MODE;
1124
1125 sca3000_configure_ring(indio_dev);
1126 ret = iio_device_register(indio_dev);
1127 if (ret < 0)
1128 return ret;
1129
1130 if (spi->irq) {
1131 ret = request_threaded_irq(spi->irq,
1132 NULL,
1133 &sca3000_event_handler,
1134 IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1135 "sca3000",
1136 indio_dev);
1137 if (ret)
1138 goto error_unregister_dev;
1139 }
1140 sca3000_register_ring_funcs(indio_dev);
1141 ret = sca3000_clean_setup(st);
1142 if (ret)
1143 goto error_free_irq;
1144 return 0;
1145
1146 error_free_irq:
1147 if (spi->irq)
1148 free_irq(spi->irq, indio_dev);
1149 error_unregister_dev:
1150 iio_device_unregister(indio_dev);
1151 return ret;
1152 }
1153
1154 static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1155 {
1156 int ret;
1157
1158 mutex_lock(&st->lock);
1159 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
1160 if (ret)
1161 goto error_ret;
1162 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_INT_MASK,
1163 (st->rx[0] &
1164 ~(SCA3000_INT_MASK_RING_THREE_QUARTER |
1165 SCA3000_INT_MASK_RING_HALF |
1166 SCA3000_INT_MASK_ALL_INTS)));
1167 error_ret:
1168 mutex_unlock(&st->lock);
1169 return ret;
1170 }
1171
1172 static int sca3000_remove(struct spi_device *spi)
1173 {
1174 struct iio_dev *indio_dev = spi_get_drvdata(spi);
1175 struct sca3000_state *st = iio_priv(indio_dev);
1176
1177 /* Must ensure no interrupts can be generated after this! */
1178 sca3000_stop_all_interrupts(st);
1179 if (spi->irq)
1180 free_irq(spi->irq, indio_dev);
1181 iio_device_unregister(indio_dev);
1182 sca3000_unconfigure_ring(indio_dev);
1183
1184 return 0;
1185 }
1186
1187 static const struct spi_device_id sca3000_id[] = {
1188 {"sca3000_d01", d01},
1189 {"sca3000_e02", e02},
1190 {"sca3000_e04", e04},
1191 {"sca3000_e05", e05},
1192 {}
1193 };
1194 MODULE_DEVICE_TABLE(spi, sca3000_id);
1195
1196 static struct spi_driver sca3000_driver = {
1197 .driver = {
1198 .name = "sca3000",
1199 },
1200 .probe = sca3000_probe,
1201 .remove = sca3000_remove,
1202 .id_table = sca3000_id,
1203 };
1204 module_spi_driver(sca3000_driver);
1205
1206 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1207 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1208 MODULE_LICENSE("GPL v2");
This page took 0.060791 seconds and 5 git commands to generate.