Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / staging / lustre / lustre / ptlrpc / lproc_ptlrpc.c
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36 #define DEBUG_SUBSYSTEM S_CLASS
37
38 #include "../include/obd_support.h"
39 #include "../include/obd.h"
40 #include "../include/lprocfs_status.h"
41 #include "../include/lustre/lustre_idl.h"
42 #include "../include/lustre_net.h"
43 #include "../include/obd_class.h"
44 #include "ptlrpc_internal.h"
45
46 static struct ll_rpc_opcode {
47 __u32 opcode;
48 const char *opname;
49 } ll_rpc_opcode_table[LUSTRE_MAX_OPCODES] = {
50 { OST_REPLY, "ost_reply" },
51 { OST_GETATTR, "ost_getattr" },
52 { OST_SETATTR, "ost_setattr" },
53 { OST_READ, "ost_read" },
54 { OST_WRITE, "ost_write" },
55 { OST_CREATE, "ost_create" },
56 { OST_DESTROY, "ost_destroy" },
57 { OST_GET_INFO, "ost_get_info" },
58 { OST_CONNECT, "ost_connect" },
59 { OST_DISCONNECT, "ost_disconnect" },
60 { OST_PUNCH, "ost_punch" },
61 { OST_OPEN, "ost_open" },
62 { OST_CLOSE, "ost_close" },
63 { OST_STATFS, "ost_statfs" },
64 { 14, NULL }, /* formerly OST_SAN_READ */
65 { 15, NULL }, /* formerly OST_SAN_WRITE */
66 { OST_SYNC, "ost_sync" },
67 { OST_SET_INFO, "ost_set_info" },
68 { OST_QUOTACHECK, "ost_quotacheck" },
69 { OST_QUOTACTL, "ost_quotactl" },
70 { OST_QUOTA_ADJUST_QUNIT, "ost_quota_adjust_qunit" },
71 { MDS_GETATTR, "mds_getattr" },
72 { MDS_GETATTR_NAME, "mds_getattr_lock" },
73 { MDS_CLOSE, "mds_close" },
74 { MDS_REINT, "mds_reint" },
75 { MDS_READPAGE, "mds_readpage" },
76 { MDS_CONNECT, "mds_connect" },
77 { MDS_DISCONNECT, "mds_disconnect" },
78 { MDS_GETSTATUS, "mds_getstatus" },
79 { MDS_STATFS, "mds_statfs" },
80 { MDS_PIN, "mds_pin" },
81 { MDS_UNPIN, "mds_unpin" },
82 { MDS_SYNC, "mds_sync" },
83 { MDS_DONE_WRITING, "mds_done_writing" },
84 { MDS_SET_INFO, "mds_set_info" },
85 { MDS_QUOTACHECK, "mds_quotacheck" },
86 { MDS_QUOTACTL, "mds_quotactl" },
87 { MDS_GETXATTR, "mds_getxattr" },
88 { MDS_SETXATTR, "mds_setxattr" },
89 { MDS_WRITEPAGE, "mds_writepage" },
90 { MDS_IS_SUBDIR, "mds_is_subdir" },
91 { MDS_GET_INFO, "mds_get_info" },
92 { MDS_HSM_STATE_GET, "mds_hsm_state_get" },
93 { MDS_HSM_STATE_SET, "mds_hsm_state_set" },
94 { MDS_HSM_ACTION, "mds_hsm_action" },
95 { MDS_HSM_PROGRESS, "mds_hsm_progress" },
96 { MDS_HSM_REQUEST, "mds_hsm_request" },
97 { MDS_HSM_CT_REGISTER, "mds_hsm_ct_register" },
98 { MDS_HSM_CT_UNREGISTER, "mds_hsm_ct_unregister" },
99 { MDS_SWAP_LAYOUTS, "mds_swap_layouts" },
100 { LDLM_ENQUEUE, "ldlm_enqueue" },
101 { LDLM_CONVERT, "ldlm_convert" },
102 { LDLM_CANCEL, "ldlm_cancel" },
103 { LDLM_BL_CALLBACK, "ldlm_bl_callback" },
104 { LDLM_CP_CALLBACK, "ldlm_cp_callback" },
105 { LDLM_GL_CALLBACK, "ldlm_gl_callback" },
106 { LDLM_SET_INFO, "ldlm_set_info" },
107 { MGS_CONNECT, "mgs_connect" },
108 { MGS_DISCONNECT, "mgs_disconnect" },
109 { MGS_EXCEPTION, "mgs_exception" },
110 { MGS_TARGET_REG, "mgs_target_reg" },
111 { MGS_TARGET_DEL, "mgs_target_del" },
112 { MGS_SET_INFO, "mgs_set_info" },
113 { MGS_CONFIG_READ, "mgs_config_read" },
114 { OBD_PING, "obd_ping" },
115 { OBD_LOG_CANCEL, "llog_cancel" },
116 { OBD_QC_CALLBACK, "obd_quota_callback" },
117 { OBD_IDX_READ, "dt_index_read" },
118 { LLOG_ORIGIN_HANDLE_CREATE, "llog_origin_handle_open" },
119 { LLOG_ORIGIN_HANDLE_NEXT_BLOCK, "llog_origin_handle_next_block" },
120 { LLOG_ORIGIN_HANDLE_READ_HEADER, "llog_origin_handle_read_header" },
121 { LLOG_ORIGIN_HANDLE_WRITE_REC, "llog_origin_handle_write_rec" },
122 { LLOG_ORIGIN_HANDLE_CLOSE, "llog_origin_handle_close" },
123 { LLOG_ORIGIN_CONNECT, "llog_origin_connect" },
124 { LLOG_CATINFO, "llog_catinfo" },
125 { LLOG_ORIGIN_HANDLE_PREV_BLOCK, "llog_origin_handle_prev_block" },
126 { LLOG_ORIGIN_HANDLE_DESTROY, "llog_origin_handle_destroy" },
127 { QUOTA_DQACQ, "quota_acquire" },
128 { QUOTA_DQREL, "quota_release" },
129 { SEQ_QUERY, "seq_query" },
130 { SEC_CTX_INIT, "sec_ctx_init" },
131 { SEC_CTX_INIT_CONT, "sec_ctx_init_cont" },
132 { SEC_CTX_FINI, "sec_ctx_fini" },
133 { FLD_QUERY, "fld_query" },
134 { UPDATE_OBJ, "update_obj" },
135 };
136
137 static struct ll_eopcode {
138 __u32 opcode;
139 const char *opname;
140 } ll_eopcode_table[EXTRA_LAST_OPC] = {
141 { LDLM_GLIMPSE_ENQUEUE, "ldlm_glimpse_enqueue" },
142 { LDLM_PLAIN_ENQUEUE, "ldlm_plain_enqueue" },
143 { LDLM_EXTENT_ENQUEUE, "ldlm_extent_enqueue" },
144 { LDLM_FLOCK_ENQUEUE, "ldlm_flock_enqueue" },
145 { LDLM_IBITS_ENQUEUE, "ldlm_ibits_enqueue" },
146 { MDS_REINT_SETATTR, "mds_reint_setattr" },
147 { MDS_REINT_CREATE, "mds_reint_create" },
148 { MDS_REINT_LINK, "mds_reint_link" },
149 { MDS_REINT_UNLINK, "mds_reint_unlink" },
150 { MDS_REINT_RENAME, "mds_reint_rename" },
151 { MDS_REINT_OPEN, "mds_reint_open" },
152 { MDS_REINT_SETXATTR, "mds_reint_setxattr" },
153 { BRW_READ_BYTES, "read_bytes" },
154 { BRW_WRITE_BYTES, "write_bytes" },
155 };
156
157 const char *ll_opcode2str(__u32 opcode)
158 {
159 /* When one of the assertions below fail, chances are that:
160 * 1) A new opcode was added in include/lustre/lustre_idl.h,
161 * but is missing from the table above.
162 * or 2) The opcode space was renumbered or rearranged,
163 * and the opcode_offset() function in
164 * ptlrpc_internal.h needs to be modified.
165 */
166 __u32 offset = opcode_offset(opcode);
167
168 LASSERTF(offset < LUSTRE_MAX_OPCODES,
169 "offset %u >= LUSTRE_MAX_OPCODES %u\n",
170 offset, LUSTRE_MAX_OPCODES);
171 LASSERTF(ll_rpc_opcode_table[offset].opcode == opcode,
172 "ll_rpc_opcode_table[%u].opcode %u != opcode %u\n",
173 offset, ll_rpc_opcode_table[offset].opcode, opcode);
174 return ll_rpc_opcode_table[offset].opname;
175 }
176
177 static const char *ll_eopcode2str(__u32 opcode)
178 {
179 LASSERT(ll_eopcode_table[opcode].opcode == opcode);
180 return ll_eopcode_table[opcode].opname;
181 }
182
183 static void
184 ptlrpc_ldebugfs_register(struct dentry *root, char *dir,
185 char *name,
186 struct dentry **debugfs_root_ret,
187 struct lprocfs_stats **stats_ret)
188 {
189 struct dentry *svc_debugfs_entry;
190 struct lprocfs_stats *svc_stats;
191 int i, rc;
192 unsigned int svc_counter_config = LPROCFS_CNTR_AVGMINMAX |
193 LPROCFS_CNTR_STDDEV;
194
195 LASSERT(*debugfs_root_ret == NULL);
196 LASSERT(*stats_ret == NULL);
197
198 svc_stats = lprocfs_alloc_stats(EXTRA_MAX_OPCODES+LUSTRE_MAX_OPCODES,
199 0);
200 if (svc_stats == NULL)
201 return;
202
203 if (dir != NULL) {
204 svc_debugfs_entry = ldebugfs_register(dir, root, NULL, NULL);
205 if (IS_ERR(svc_debugfs_entry)) {
206 lprocfs_free_stats(&svc_stats);
207 return;
208 }
209 } else {
210 svc_debugfs_entry = root;
211 }
212
213 lprocfs_counter_init(svc_stats, PTLRPC_REQWAIT_CNTR,
214 svc_counter_config, "req_waittime", "usec");
215 lprocfs_counter_init(svc_stats, PTLRPC_REQQDEPTH_CNTR,
216 svc_counter_config, "req_qdepth", "reqs");
217 lprocfs_counter_init(svc_stats, PTLRPC_REQACTIVE_CNTR,
218 svc_counter_config, "req_active", "reqs");
219 lprocfs_counter_init(svc_stats, PTLRPC_TIMEOUT,
220 svc_counter_config, "req_timeout", "sec");
221 lprocfs_counter_init(svc_stats, PTLRPC_REQBUF_AVAIL_CNTR,
222 svc_counter_config, "reqbuf_avail", "bufs");
223 for (i = 0; i < EXTRA_LAST_OPC; i++) {
224 char *units;
225
226 switch (i) {
227 case BRW_WRITE_BYTES:
228 case BRW_READ_BYTES:
229 units = "bytes";
230 break;
231 default:
232 units = "reqs";
233 break;
234 }
235 lprocfs_counter_init(svc_stats, PTLRPC_LAST_CNTR + i,
236 svc_counter_config,
237 ll_eopcode2str(i), units);
238 }
239 for (i = 0; i < LUSTRE_MAX_OPCODES; i++) {
240 __u32 opcode = ll_rpc_opcode_table[i].opcode;
241
242 lprocfs_counter_init(svc_stats,
243 EXTRA_MAX_OPCODES + i, svc_counter_config,
244 ll_opcode2str(opcode), "usec");
245 }
246
247 rc = ldebugfs_register_stats(svc_debugfs_entry, name, svc_stats);
248 if (rc < 0) {
249 if (dir != NULL)
250 ldebugfs_remove(&svc_debugfs_entry);
251 lprocfs_free_stats(&svc_stats);
252 } else {
253 if (dir != NULL)
254 *debugfs_root_ret = svc_debugfs_entry;
255 *stats_ret = svc_stats;
256 }
257 }
258
259 static int
260 ptlrpc_lprocfs_req_history_len_seq_show(struct seq_file *m, void *v)
261 {
262 struct ptlrpc_service *svc = m->private;
263 struct ptlrpc_service_part *svcpt;
264 int total = 0;
265 int i;
266
267 ptlrpc_service_for_each_part(svcpt, i, svc)
268 total += svcpt->scp_hist_nrqbds;
269
270 seq_printf(m, "%d\n", total);
271 return 0;
272 }
273
274 LPROC_SEQ_FOPS_RO(ptlrpc_lprocfs_req_history_len);
275
276 static int
277 ptlrpc_lprocfs_req_history_max_seq_show(struct seq_file *m, void *n)
278 {
279 struct ptlrpc_service *svc = m->private;
280 struct ptlrpc_service_part *svcpt;
281 int total = 0;
282 int i;
283
284 ptlrpc_service_for_each_part(svcpt, i, svc)
285 total += svc->srv_hist_nrqbds_cpt_max;
286
287 seq_printf(m, "%d\n", total);
288 return 0;
289 }
290
291 static ssize_t
292 ptlrpc_lprocfs_req_history_max_seq_write(struct file *file,
293 const char __user *buffer,
294 size_t count, loff_t *off)
295 {
296 struct ptlrpc_service *svc = ((struct seq_file *)file->private_data)->private;
297 int bufpages;
298 int val;
299 int rc;
300
301 rc = lprocfs_write_helper(buffer, count, &val);
302 if (rc < 0)
303 return rc;
304
305 if (val < 0)
306 return -ERANGE;
307
308 /* This sanity check is more of an insanity check; we can still
309 * hose a kernel by allowing the request history to grow too
310 * far. */
311 bufpages = (svc->srv_buf_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
312 if (val > totalram_pages / (2 * bufpages))
313 return -ERANGE;
314
315 spin_lock(&svc->srv_lock);
316
317 if (val == 0)
318 svc->srv_hist_nrqbds_cpt_max = 0;
319 else
320 svc->srv_hist_nrqbds_cpt_max = max(1, (val / svc->srv_ncpts));
321
322 spin_unlock(&svc->srv_lock);
323
324 return count;
325 }
326
327 LPROC_SEQ_FOPS(ptlrpc_lprocfs_req_history_max);
328
329 static ssize_t threads_min_show(struct kobject *kobj, struct attribute *attr,
330 char *buf)
331 {
332 struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
333 srv_kobj);
334
335 return sprintf(buf, "%d\n", svc->srv_nthrs_cpt_init * svc->srv_ncpts);
336 }
337
338 static ssize_t threads_min_store(struct kobject *kobj, struct attribute *attr,
339 const char *buffer, size_t count)
340 {
341 struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
342 srv_kobj);
343 unsigned long val;
344 int rc = kstrtoul(buffer, 10, &val);
345
346 if (rc < 0)
347 return rc;
348
349 if (val / svc->srv_ncpts < PTLRPC_NTHRS_INIT)
350 return -ERANGE;
351
352 spin_lock(&svc->srv_lock);
353 if (val > svc->srv_nthrs_cpt_limit * svc->srv_ncpts) {
354 spin_unlock(&svc->srv_lock);
355 return -ERANGE;
356 }
357
358 svc->srv_nthrs_cpt_init = val / svc->srv_ncpts;
359
360 spin_unlock(&svc->srv_lock);
361
362 return count;
363 }
364 LUSTRE_RW_ATTR(threads_min);
365
366 static ssize_t threads_started_show(struct kobject *kobj,
367 struct attribute *attr,
368 char *buf)
369 {
370 struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
371 srv_kobj);
372 struct ptlrpc_service_part *svcpt;
373 int total = 0;
374 int i;
375
376 ptlrpc_service_for_each_part(svcpt, i, svc)
377 total += svcpt->scp_nthrs_running;
378
379 return sprintf(buf, "%d\n", total);
380 }
381 LUSTRE_RO_ATTR(threads_started);
382
383 static ssize_t threads_max_show(struct kobject *kobj, struct attribute *attr,
384 char *buf)
385 {
386 struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
387 srv_kobj);
388
389 return sprintf(buf, "%d\n", svc->srv_nthrs_cpt_limit * svc->srv_ncpts);
390 }
391
392 static ssize_t threads_max_store(struct kobject *kobj, struct attribute *attr,
393 const char *buffer, size_t count)
394 {
395 struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
396 srv_kobj);
397 unsigned long val;
398 int rc = kstrtoul(buffer, 10, &val);
399
400 if (rc < 0)
401 return rc;
402
403 if (val / svc->srv_ncpts < PTLRPC_NTHRS_INIT)
404 return -ERANGE;
405
406 spin_lock(&svc->srv_lock);
407 if (val < svc->srv_nthrs_cpt_init * svc->srv_ncpts) {
408 spin_unlock(&svc->srv_lock);
409 return -ERANGE;
410 }
411
412 svc->srv_nthrs_cpt_limit = val / svc->srv_ncpts;
413
414 spin_unlock(&svc->srv_lock);
415
416 return count;
417 }
418 LUSTRE_RW_ATTR(threads_max);
419
420 /**
421 * \addtogoup nrs
422 * @{
423 */
424
425 /**
426 * Translates \e ptlrpc_nrs_pol_state values to human-readable strings.
427 *
428 * \param[in] state The policy state
429 */
430 static const char *nrs_state2str(enum ptlrpc_nrs_pol_state state)
431 {
432 switch (state) {
433 default:
434 LBUG();
435 case NRS_POL_STATE_INVALID:
436 return "invalid";
437 case NRS_POL_STATE_STOPPED:
438 return "stopped";
439 case NRS_POL_STATE_STOPPING:
440 return "stopping";
441 case NRS_POL_STATE_STARTING:
442 return "starting";
443 case NRS_POL_STATE_STARTED:
444 return "started";
445 }
446 }
447
448 /**
449 * Obtains status information for \a policy.
450 *
451 * Information is copied in \a info.
452 *
453 * \param[in] policy The policy
454 * \param[out] info Holds returned status information
455 */
456 static void nrs_policy_get_info_locked(struct ptlrpc_nrs_policy *policy,
457 struct ptlrpc_nrs_pol_info *info)
458 {
459 LASSERT(policy != NULL);
460 LASSERT(info != NULL);
461 assert_spin_locked(&policy->pol_nrs->nrs_lock);
462
463 memcpy(info->pi_name, policy->pol_desc->pd_name, NRS_POL_NAME_MAX);
464
465 info->pi_fallback = !!(policy->pol_flags & PTLRPC_NRS_FL_FALLBACK);
466 info->pi_state = policy->pol_state;
467 /**
468 * XXX: These are accessed without holding
469 * ptlrpc_service_part::scp_req_lock.
470 */
471 info->pi_req_queued = policy->pol_req_queued;
472 info->pi_req_started = policy->pol_req_started;
473 }
474
475 /**
476 * Reads and prints policy status information for all policies of a PTLRPC
477 * service.
478 */
479 static int ptlrpc_lprocfs_nrs_seq_show(struct seq_file *m, void *n)
480 {
481 struct ptlrpc_service *svc = m->private;
482 struct ptlrpc_service_part *svcpt;
483 struct ptlrpc_nrs *nrs;
484 struct ptlrpc_nrs_policy *policy;
485 struct ptlrpc_nrs_pol_info *infos;
486 struct ptlrpc_nrs_pol_info tmp;
487 unsigned num_pols;
488 unsigned pol_idx = 0;
489 bool hp = false;
490 int i;
491 int rc = 0;
492
493 /**
494 * Serialize NRS core lprocfs operations with policy registration/
495 * unregistration.
496 */
497 mutex_lock(&nrs_core.nrs_mutex);
498
499 /**
500 * Use the first service partition's regular NRS head in order to obtain
501 * the number of policies registered with NRS heads of this service. All
502 * service partitions will have the same number of policies.
503 */
504 nrs = nrs_svcpt2nrs(svc->srv_parts[0], false);
505
506 spin_lock(&nrs->nrs_lock);
507 num_pols = svc->srv_parts[0]->scp_nrs_reg.nrs_num_pols;
508 spin_unlock(&nrs->nrs_lock);
509
510 infos = kcalloc(num_pols, sizeof(*infos), GFP_NOFS);
511 if (infos == NULL) {
512 rc = -ENOMEM;
513 goto unlock;
514 }
515 again:
516
517 ptlrpc_service_for_each_part(svcpt, i, svc) {
518 nrs = nrs_svcpt2nrs(svcpt, hp);
519 spin_lock(&nrs->nrs_lock);
520
521 pol_idx = 0;
522
523 list_for_each_entry(policy, &nrs->nrs_policy_list,
524 pol_list) {
525 LASSERT(pol_idx < num_pols);
526
527 nrs_policy_get_info_locked(policy, &tmp);
528 /**
529 * Copy values when handling the first service
530 * partition.
531 */
532 if (i == 0) {
533 memcpy(infos[pol_idx].pi_name, tmp.pi_name,
534 NRS_POL_NAME_MAX);
535 memcpy(&infos[pol_idx].pi_state, &tmp.pi_state,
536 sizeof(tmp.pi_state));
537 infos[pol_idx].pi_fallback = tmp.pi_fallback;
538 /**
539 * For the rest of the service partitions
540 * sanity-check the values we get.
541 */
542 } else {
543 LASSERT(strncmp(infos[pol_idx].pi_name,
544 tmp.pi_name,
545 NRS_POL_NAME_MAX) == 0);
546 /**
547 * Not asserting ptlrpc_nrs_pol_info::pi_state,
548 * because it may be different between
549 * instances of the same policy in different
550 * service partitions.
551 */
552 LASSERT(infos[pol_idx].pi_fallback ==
553 tmp.pi_fallback);
554 }
555
556 infos[pol_idx].pi_req_queued += tmp.pi_req_queued;
557 infos[pol_idx].pi_req_started += tmp.pi_req_started;
558
559 pol_idx++;
560 }
561 spin_unlock(&nrs->nrs_lock);
562 }
563
564 /**
565 * Policy status information output is in YAML format.
566 * For example:
567 *
568 * regular_requests:
569 * - name: fifo
570 * state: started
571 * fallback: yes
572 * queued: 0
573 * active: 0
574 *
575 * - name: crrn
576 * state: started
577 * fallback: no
578 * queued: 2015
579 * active: 384
580 *
581 * high_priority_requests:
582 * - name: fifo
583 * state: started
584 * fallback: yes
585 * queued: 0
586 * active: 2
587 *
588 * - name: crrn
589 * state: stopped
590 * fallback: no
591 * queued: 0
592 * active: 0
593 */
594 seq_printf(m, "%s\n",
595 !hp ? "\nregular_requests:" : "high_priority_requests:");
596
597 for (pol_idx = 0; pol_idx < num_pols; pol_idx++) {
598 seq_printf(m, " - name: %s\n"
599 " state: %s\n"
600 " fallback: %s\n"
601 " queued: %-20d\n"
602 " active: %-20d\n\n",
603 infos[pol_idx].pi_name,
604 nrs_state2str(infos[pol_idx].pi_state),
605 infos[pol_idx].pi_fallback ? "yes" : "no",
606 (int)infos[pol_idx].pi_req_queued,
607 (int)infos[pol_idx].pi_req_started);
608 }
609
610 if (!hp && nrs_svc_has_hp(svc)) {
611 memset(infos, 0, num_pols * sizeof(*infos));
612
613 /**
614 * Redo the processing for the service's HP NRS heads' policies.
615 */
616 hp = true;
617 goto again;
618 }
619
620 kfree(infos);
621 unlock:
622 mutex_unlock(&nrs_core.nrs_mutex);
623
624 return rc;
625 }
626
627 /**
628 * The longest valid command string is the maximum policy name size, plus the
629 * length of the " reg" substring
630 */
631 #define LPROCFS_NRS_WR_MAX_CMD (NRS_POL_NAME_MAX + sizeof(" reg") - 1)
632
633 /**
634 * Starts and stops a given policy on a PTLRPC service.
635 *
636 * Commands consist of the policy name, followed by an optional [reg|hp] token;
637 * if the optional token is omitted, the operation is performed on both the
638 * regular and high-priority (if the service has one) NRS head.
639 */
640 static ssize_t ptlrpc_lprocfs_nrs_seq_write(struct file *file,
641 const char __user *buffer,
642 size_t count, loff_t *off)
643 {
644 struct ptlrpc_service *svc = ((struct seq_file *)file->private_data)->private;
645 enum ptlrpc_nrs_queue_type queue = PTLRPC_NRS_QUEUE_BOTH;
646 char *cmd;
647 char *cmd_copy = NULL;
648 char *token;
649 int rc = 0;
650
651 if (count >= LPROCFS_NRS_WR_MAX_CMD)
652 return -EINVAL;
653
654 cmd = kzalloc(LPROCFS_NRS_WR_MAX_CMD, GFP_NOFS);
655 if (!cmd)
656 return -ENOMEM;
657 /**
658 * strsep() modifies its argument, so keep a copy
659 */
660 cmd_copy = cmd;
661
662 if (copy_from_user(cmd, buffer, count)) {
663 rc = -EFAULT;
664 goto out;
665 }
666
667 cmd[count] = '\0';
668
669 token = strsep(&cmd, " ");
670
671 if (strlen(token) > NRS_POL_NAME_MAX - 1) {
672 rc = -EINVAL;
673 goto out;
674 }
675
676 /**
677 * No [reg|hp] token has been specified
678 */
679 if (cmd == NULL)
680 goto default_queue;
681
682 /**
683 * The second token is either NULL, or an optional [reg|hp] string
684 */
685 if (strcmp(cmd, "reg") == 0)
686 queue = PTLRPC_NRS_QUEUE_REG;
687 else if (strcmp(cmd, "hp") == 0)
688 queue = PTLRPC_NRS_QUEUE_HP;
689 else {
690 rc = -EINVAL;
691 goto out;
692 }
693
694 default_queue:
695
696 if (queue == PTLRPC_NRS_QUEUE_HP && !nrs_svc_has_hp(svc)) {
697 rc = -ENODEV;
698 goto out;
699 } else if (queue == PTLRPC_NRS_QUEUE_BOTH && !nrs_svc_has_hp(svc))
700 queue = PTLRPC_NRS_QUEUE_REG;
701
702 /**
703 * Serialize NRS core lprocfs operations with policy registration/
704 * unregistration.
705 */
706 mutex_lock(&nrs_core.nrs_mutex);
707
708 rc = ptlrpc_nrs_policy_control(svc, queue, token, PTLRPC_NRS_CTL_START,
709 false, NULL);
710
711 mutex_unlock(&nrs_core.nrs_mutex);
712 out:
713 kfree(cmd_copy);
714
715 return rc < 0 ? rc : count;
716 }
717
718 LPROC_SEQ_FOPS(ptlrpc_lprocfs_nrs);
719
720 /** @} nrs */
721
722 struct ptlrpc_srh_iterator {
723 int srhi_idx;
724 __u64 srhi_seq;
725 struct ptlrpc_request *srhi_req;
726 };
727
728 static int
729 ptlrpc_lprocfs_svc_req_history_seek(struct ptlrpc_service_part *svcpt,
730 struct ptlrpc_srh_iterator *srhi,
731 __u64 seq)
732 {
733 struct list_head *e;
734 struct ptlrpc_request *req;
735
736 if (srhi->srhi_req != NULL &&
737 srhi->srhi_seq > svcpt->scp_hist_seq_culled &&
738 srhi->srhi_seq <= seq) {
739 /* If srhi_req was set previously, hasn't been culled and
740 * we're searching for a seq on or after it (i.e. more
741 * recent), search from it onwards.
742 * Since the service history is LRU (i.e. culled reqs will
743 * be near the head), we shouldn't have to do long
744 * re-scans */
745 LASSERTF(srhi->srhi_seq == srhi->srhi_req->rq_history_seq,
746 "%s:%d: seek seq %llu, request seq %llu\n",
747 svcpt->scp_service->srv_name, svcpt->scp_cpt,
748 srhi->srhi_seq, srhi->srhi_req->rq_history_seq);
749 LASSERTF(!list_empty(&svcpt->scp_hist_reqs),
750 "%s:%d: seek offset %llu, request seq %llu, last culled %llu\n",
751 svcpt->scp_service->srv_name, svcpt->scp_cpt,
752 seq, srhi->srhi_seq, svcpt->scp_hist_seq_culled);
753 e = &srhi->srhi_req->rq_history_list;
754 } else {
755 /* search from start */
756 e = svcpt->scp_hist_reqs.next;
757 }
758
759 while (e != &svcpt->scp_hist_reqs) {
760 req = list_entry(e, struct ptlrpc_request, rq_history_list);
761
762 if (req->rq_history_seq >= seq) {
763 srhi->srhi_seq = req->rq_history_seq;
764 srhi->srhi_req = req;
765 return 0;
766 }
767 e = e->next;
768 }
769
770 return -ENOENT;
771 }
772
773 /*
774 * ptlrpc history sequence is used as "position" of seq_file, in some case,
775 * seq_read() will increase "position" to indicate reading the next
776 * element, however, low bits of history sequence are reserved for CPT id
777 * (check the details from comments before ptlrpc_req_add_history), which
778 * means seq_read() might change CPT id of history sequence and never
779 * finish reading of requests on a CPT. To make it work, we have to shift
780 * CPT id to high bits and timestamp to low bits, so seq_read() will only
781 * increase timestamp which can correctly indicate the next position.
782 */
783
784 /* convert seq_file pos to cpt */
785 #define PTLRPC_REQ_POS2CPT(svc, pos) \
786 ((svc)->srv_cpt_bits == 0 ? 0 : \
787 (__u64)(pos) >> (64 - (svc)->srv_cpt_bits))
788
789 /* make up seq_file pos from cpt */
790 #define PTLRPC_REQ_CPT2POS(svc, cpt) \
791 ((svc)->srv_cpt_bits == 0 ? 0 : \
792 (cpt) << (64 - (svc)->srv_cpt_bits))
793
794 /* convert sequence to position */
795 #define PTLRPC_REQ_SEQ2POS(svc, seq) \
796 ((svc)->srv_cpt_bits == 0 ? (seq) : \
797 ((seq) >> (svc)->srv_cpt_bits) | \
798 ((seq) << (64 - (svc)->srv_cpt_bits)))
799
800 /* convert position to sequence */
801 #define PTLRPC_REQ_POS2SEQ(svc, pos) \
802 ((svc)->srv_cpt_bits == 0 ? (pos) : \
803 ((__u64)(pos) << (svc)->srv_cpt_bits) | \
804 ((__u64)(pos) >> (64 - (svc)->srv_cpt_bits)))
805
806 static void *
807 ptlrpc_lprocfs_svc_req_history_start(struct seq_file *s, loff_t *pos)
808 {
809 struct ptlrpc_service *svc = s->private;
810 struct ptlrpc_service_part *svcpt;
811 struct ptlrpc_srh_iterator *srhi;
812 unsigned int cpt;
813 int rc;
814 int i;
815
816 if (sizeof(loff_t) != sizeof(__u64)) { /* can't support */
817 CWARN("Failed to read request history because size of loff_t %d can't match size of u64\n",
818 (int)sizeof(loff_t));
819 return NULL;
820 }
821
822 srhi = kzalloc(sizeof(*srhi), GFP_NOFS);
823 if (!srhi)
824 return NULL;
825
826 srhi->srhi_seq = 0;
827 srhi->srhi_req = NULL;
828
829 cpt = PTLRPC_REQ_POS2CPT(svc, *pos);
830
831 ptlrpc_service_for_each_part(svcpt, i, svc) {
832 if (i < cpt) /* skip */
833 continue;
834 if (i > cpt) /* make up the lowest position for this CPT */
835 *pos = PTLRPC_REQ_CPT2POS(svc, i);
836
837 spin_lock(&svcpt->scp_lock);
838 rc = ptlrpc_lprocfs_svc_req_history_seek(svcpt, srhi,
839 PTLRPC_REQ_POS2SEQ(svc, *pos));
840 spin_unlock(&svcpt->scp_lock);
841 if (rc == 0) {
842 *pos = PTLRPC_REQ_SEQ2POS(svc, srhi->srhi_seq);
843 srhi->srhi_idx = i;
844 return srhi;
845 }
846 }
847
848 kfree(srhi);
849 return NULL;
850 }
851
852 static void
853 ptlrpc_lprocfs_svc_req_history_stop(struct seq_file *s, void *iter)
854 {
855 struct ptlrpc_srh_iterator *srhi = iter;
856
857 kfree(srhi);
858 }
859
860 static void *
861 ptlrpc_lprocfs_svc_req_history_next(struct seq_file *s,
862 void *iter, loff_t *pos)
863 {
864 struct ptlrpc_service *svc = s->private;
865 struct ptlrpc_srh_iterator *srhi = iter;
866 struct ptlrpc_service_part *svcpt;
867 __u64 seq;
868 int rc;
869 int i;
870
871 for (i = srhi->srhi_idx; i < svc->srv_ncpts; i++) {
872 svcpt = svc->srv_parts[i];
873
874 if (i > srhi->srhi_idx) { /* reset iterator for a new CPT */
875 srhi->srhi_req = NULL;
876 seq = srhi->srhi_seq = 0;
877 } else { /* the next sequence */
878 seq = srhi->srhi_seq + (1 << svc->srv_cpt_bits);
879 }
880
881 spin_lock(&svcpt->scp_lock);
882 rc = ptlrpc_lprocfs_svc_req_history_seek(svcpt, srhi, seq);
883 spin_unlock(&svcpt->scp_lock);
884 if (rc == 0) {
885 *pos = PTLRPC_REQ_SEQ2POS(svc, srhi->srhi_seq);
886 srhi->srhi_idx = i;
887 return srhi;
888 }
889 }
890
891 kfree(srhi);
892 return NULL;
893 }
894
895 static int ptlrpc_lprocfs_svc_req_history_show(struct seq_file *s, void *iter)
896 {
897 struct ptlrpc_service *svc = s->private;
898 struct ptlrpc_srh_iterator *srhi = iter;
899 struct ptlrpc_service_part *svcpt;
900 struct ptlrpc_request *req;
901 int rc;
902
903 LASSERT(srhi->srhi_idx < svc->srv_ncpts);
904
905 svcpt = svc->srv_parts[srhi->srhi_idx];
906
907 spin_lock(&svcpt->scp_lock);
908
909 rc = ptlrpc_lprocfs_svc_req_history_seek(svcpt, srhi, srhi->srhi_seq);
910
911 if (rc == 0) {
912 char nidstr[LNET_NIDSTR_SIZE];
913
914 req = srhi->srhi_req;
915
916 libcfs_nid2str_r(req->rq_self, nidstr, sizeof(nidstr));
917 /* Print common req fields.
918 * CAVEAT EMPTOR: we're racing with the service handler
919 * here. The request could contain any old crap, so you
920 * must be just as careful as the service's request
921 * parser. Currently I only print stuff here I know is OK
922 * to look at coz it was set up in request_in_callback()!!! */
923 seq_printf(s, "%lld:%s:%s:x%llu:%d:%s:%lld:%lds(%+lds) ",
924 req->rq_history_seq, nidstr,
925 libcfs_id2str(req->rq_peer), req->rq_xid,
926 req->rq_reqlen, ptlrpc_rqphase2str(req),
927 (s64)req->rq_arrival_time.tv_sec,
928 (long)(req->rq_sent - req->rq_arrival_time.tv_sec),
929 (long)(req->rq_sent - req->rq_deadline));
930 if (svc->srv_ops.so_req_printer == NULL)
931 seq_putc(s, '\n');
932 else
933 svc->srv_ops.so_req_printer(s, srhi->srhi_req);
934 }
935
936 spin_unlock(&svcpt->scp_lock);
937 return rc;
938 }
939
940 static int
941 ptlrpc_lprocfs_svc_req_history_open(struct inode *inode, struct file *file)
942 {
943 static struct seq_operations sops = {
944 .start = ptlrpc_lprocfs_svc_req_history_start,
945 .stop = ptlrpc_lprocfs_svc_req_history_stop,
946 .next = ptlrpc_lprocfs_svc_req_history_next,
947 .show = ptlrpc_lprocfs_svc_req_history_show,
948 };
949 struct seq_file *seqf;
950 int rc;
951
952 rc = seq_open(file, &sops);
953 if (rc)
954 return rc;
955
956 seqf = file->private_data;
957 seqf->private = inode->i_private;
958 return 0;
959 }
960
961 /* See also lprocfs_rd_timeouts */
962 static int ptlrpc_lprocfs_timeouts_seq_show(struct seq_file *m, void *n)
963 {
964 struct ptlrpc_service *svc = m->private;
965 struct ptlrpc_service_part *svcpt;
966 struct dhms ts;
967 time64_t worstt;
968 unsigned int cur;
969 unsigned int worst;
970 int i;
971
972 if (AT_OFF) {
973 seq_printf(m, "adaptive timeouts off, using obd_timeout %u\n",
974 obd_timeout);
975 return 0;
976 }
977
978 ptlrpc_service_for_each_part(svcpt, i, svc) {
979 cur = at_get(&svcpt->scp_at_estimate);
980 worst = svcpt->scp_at_estimate.at_worst_ever;
981 worstt = svcpt->scp_at_estimate.at_worst_time;
982 s2dhms(&ts, ktime_get_real_seconds() - worstt);
983
984 seq_printf(m, "%10s : cur %3u worst %3u (at %lld, "
985 DHMS_FMT" ago) ", "service",
986 cur, worst, (s64)worstt, DHMS_VARS(&ts));
987
988 lprocfs_at_hist_helper(m, &svcpt->scp_at_estimate);
989 }
990
991 return 0;
992 }
993
994 LPROC_SEQ_FOPS_RO(ptlrpc_lprocfs_timeouts);
995
996 static ssize_t high_priority_ratio_show(struct kobject *kobj,
997 struct attribute *attr,
998 char *buf)
999 {
1000 struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
1001 srv_kobj);
1002 return sprintf(buf, "%d\n", svc->srv_hpreq_ratio);
1003 }
1004
1005 static ssize_t high_priority_ratio_store(struct kobject *kobj,
1006 struct attribute *attr,
1007 const char *buffer,
1008 size_t count)
1009 {
1010 struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
1011 srv_kobj);
1012 int rc;
1013 int val;
1014
1015 rc = kstrtoint(buffer, 10, &val);
1016 if (rc < 0)
1017 return rc;
1018
1019 if (val < 0)
1020 return -ERANGE;
1021
1022 spin_lock(&svc->srv_lock);
1023 svc->srv_hpreq_ratio = val;
1024 spin_unlock(&svc->srv_lock);
1025
1026 return count;
1027 }
1028 LUSTRE_RW_ATTR(high_priority_ratio);
1029
1030 static struct attribute *ptlrpc_svc_attrs[] = {
1031 &lustre_attr_threads_min.attr,
1032 &lustre_attr_threads_started.attr,
1033 &lustre_attr_threads_max.attr,
1034 &lustre_attr_high_priority_ratio.attr,
1035 NULL,
1036 };
1037
1038 static void ptlrpc_sysfs_svc_release(struct kobject *kobj)
1039 {
1040 struct ptlrpc_service *svc = container_of(kobj, struct ptlrpc_service,
1041 srv_kobj);
1042
1043 complete(&svc->srv_kobj_unregister);
1044 }
1045
1046 static struct kobj_type ptlrpc_svc_ktype = {
1047 .default_attrs = ptlrpc_svc_attrs,
1048 .sysfs_ops = &lustre_sysfs_ops,
1049 .release = ptlrpc_sysfs_svc_release,
1050 };
1051
1052 void ptlrpc_sysfs_unregister_service(struct ptlrpc_service *svc)
1053 {
1054 /* Let's see if we had a chance at initialization first */
1055 if (svc->srv_kobj.kset) {
1056 kobject_put(&svc->srv_kobj);
1057 wait_for_completion(&svc->srv_kobj_unregister);
1058 }
1059 }
1060
1061 int ptlrpc_sysfs_register_service(struct kset *parent,
1062 struct ptlrpc_service *svc)
1063 {
1064 int rc;
1065
1066 svc->srv_kobj.kset = parent;
1067 init_completion(&svc->srv_kobj_unregister);
1068 rc = kobject_init_and_add(&svc->srv_kobj, &ptlrpc_svc_ktype, NULL,
1069 "%s", svc->srv_name);
1070
1071 return rc;
1072 }
1073
1074 void ptlrpc_ldebugfs_register_service(struct dentry *entry,
1075 struct ptlrpc_service *svc)
1076 {
1077 struct lprocfs_vars lproc_vars[] = {
1078 {.name = "req_buffer_history_len",
1079 .fops = &ptlrpc_lprocfs_req_history_len_fops,
1080 .data = svc},
1081 {.name = "req_buffer_history_max",
1082 .fops = &ptlrpc_lprocfs_req_history_max_fops,
1083 .data = svc},
1084 {.name = "timeouts",
1085 .fops = &ptlrpc_lprocfs_timeouts_fops,
1086 .data = svc},
1087 {.name = "nrs_policies",
1088 .fops = &ptlrpc_lprocfs_nrs_fops,
1089 .data = svc},
1090 {NULL}
1091 };
1092 static const struct file_operations req_history_fops = {
1093 .owner = THIS_MODULE,
1094 .open = ptlrpc_lprocfs_svc_req_history_open,
1095 .read = seq_read,
1096 .llseek = seq_lseek,
1097 .release = lprocfs_seq_release,
1098 };
1099
1100 int rc;
1101
1102 ptlrpc_ldebugfs_register(entry, svc->srv_name,
1103 "stats", &svc->srv_debugfs_entry,
1104 &svc->srv_stats);
1105
1106 if (svc->srv_debugfs_entry == NULL)
1107 return;
1108
1109 ldebugfs_add_vars(svc->srv_debugfs_entry, lproc_vars, NULL);
1110
1111 rc = ldebugfs_seq_create(svc->srv_debugfs_entry, "req_history",
1112 0400, &req_history_fops, svc);
1113 if (rc)
1114 CWARN("Error adding the req_history file\n");
1115 }
1116
1117 void ptlrpc_lprocfs_register_obd(struct obd_device *obddev)
1118 {
1119 ptlrpc_ldebugfs_register(obddev->obd_debugfs_entry, NULL, "stats",
1120 &obddev->obd_svc_debugfs_entry,
1121 &obddev->obd_svc_stats);
1122 }
1123 EXPORT_SYMBOL(ptlrpc_lprocfs_register_obd);
1124
1125 void ptlrpc_lprocfs_rpc_sent(struct ptlrpc_request *req, long amount)
1126 {
1127 struct lprocfs_stats *svc_stats;
1128 __u32 op = lustre_msg_get_opc(req->rq_reqmsg);
1129 int opc = opcode_offset(op);
1130
1131 svc_stats = req->rq_import->imp_obd->obd_svc_stats;
1132 if (svc_stats == NULL || opc <= 0)
1133 return;
1134 LASSERT(opc < LUSTRE_MAX_OPCODES);
1135 if (!(op == LDLM_ENQUEUE || op == MDS_REINT))
1136 lprocfs_counter_add(svc_stats, opc + EXTRA_MAX_OPCODES, amount);
1137 }
1138
1139 void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes)
1140 {
1141 struct lprocfs_stats *svc_stats;
1142 int idx;
1143
1144 if (!req->rq_import)
1145 return;
1146 svc_stats = req->rq_import->imp_obd->obd_svc_stats;
1147 if (!svc_stats)
1148 return;
1149 idx = lustre_msg_get_opc(req->rq_reqmsg);
1150 switch (idx) {
1151 case OST_READ:
1152 idx = BRW_READ_BYTES + PTLRPC_LAST_CNTR;
1153 break;
1154 case OST_WRITE:
1155 idx = BRW_WRITE_BYTES + PTLRPC_LAST_CNTR;
1156 break;
1157 default:
1158 LASSERTF(0, "unsupported opcode %u\n", idx);
1159 break;
1160 }
1161
1162 lprocfs_counter_add(svc_stats, idx, bytes);
1163 }
1164
1165 EXPORT_SYMBOL(ptlrpc_lprocfs_brw);
1166
1167 void ptlrpc_lprocfs_unregister_service(struct ptlrpc_service *svc)
1168 {
1169 if (svc->srv_debugfs_entry != NULL)
1170 ldebugfs_remove(&svc->srv_debugfs_entry);
1171
1172 if (svc->srv_stats)
1173 lprocfs_free_stats(&svc->srv_stats);
1174 }
1175
1176 void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd)
1177 {
1178 if (!IS_ERR_OR_NULL(obd->obd_svc_debugfs_entry))
1179 ldebugfs_remove(&obd->obd_svc_debugfs_entry);
1180
1181 if (obd->obd_svc_stats)
1182 lprocfs_free_stats(&obd->obd_svc_stats);
1183 }
1184 EXPORT_SYMBOL(ptlrpc_lprocfs_unregister_obd);
1185
1186 #undef BUFLEN
1187
1188 int lprocfs_wr_ping(struct file *file, const char __user *buffer,
1189 size_t count, loff_t *off)
1190 {
1191 struct obd_device *obd = ((struct seq_file *)file->private_data)->private;
1192 struct ptlrpc_request *req;
1193 int rc;
1194
1195 rc = lprocfs_climp_check(obd);
1196 if (rc)
1197 return rc;
1198
1199 req = ptlrpc_prep_ping(obd->u.cli.cl_import);
1200 LPROCFS_CLIMP_EXIT(obd);
1201 if (req == NULL)
1202 return -ENOMEM;
1203
1204 req->rq_send_state = LUSTRE_IMP_FULL;
1205
1206 rc = ptlrpc_queue_wait(req);
1207
1208 ptlrpc_req_finished(req);
1209 if (rc >= 0)
1210 return count;
1211 return rc;
1212 }
1213 EXPORT_SYMBOL(lprocfs_wr_ping);
1214
1215 /* Write the connection UUID to this file to attempt to connect to that node.
1216 * The connection UUID is a node's primary NID. For example,
1217 * "echo connection=192.168.0.1@tcp0::instance > .../import".
1218 */
1219 int lprocfs_wr_import(struct file *file, const char __user *buffer,
1220 size_t count, loff_t *off)
1221 {
1222 struct obd_device *obd = ((struct seq_file *)file->private_data)->private;
1223 struct obd_import *imp = obd->u.cli.cl_import;
1224 char *kbuf = NULL;
1225 char *uuid;
1226 char *ptr;
1227 int do_reconn = 1;
1228 const char prefix[] = "connection=";
1229 const int prefix_len = sizeof(prefix) - 1;
1230
1231 if (count > PAGE_CACHE_SIZE - 1 || count <= prefix_len)
1232 return -EINVAL;
1233
1234 kbuf = kzalloc(count + 1, GFP_NOFS);
1235 if (!kbuf)
1236 return -ENOMEM;
1237
1238 if (copy_from_user(kbuf, buffer, count)) {
1239 count = -EFAULT;
1240 goto out;
1241 }
1242
1243 kbuf[count] = 0;
1244
1245 /* only support connection=uuid::instance now */
1246 if (strncmp(prefix, kbuf, prefix_len) != 0) {
1247 count = -EINVAL;
1248 goto out;
1249 }
1250
1251 uuid = kbuf + prefix_len;
1252 ptr = strstr(uuid, "::");
1253 if (ptr) {
1254 __u32 inst;
1255 char *endptr;
1256
1257 *ptr = 0;
1258 do_reconn = 0;
1259 ptr += strlen("::");
1260 inst = simple_strtoul(ptr, &endptr, 10);
1261 if (*endptr) {
1262 CERROR("config: wrong instance # %s\n", ptr);
1263 } else if (inst != imp->imp_connect_data.ocd_instance) {
1264 CDEBUG(D_INFO, "IR: %s is connecting to an obsoleted target(%u/%u), reconnecting...\n",
1265 imp->imp_obd->obd_name,
1266 imp->imp_connect_data.ocd_instance, inst);
1267 do_reconn = 1;
1268 } else {
1269 CDEBUG(D_INFO, "IR: %s has already been connecting to new target(%u)\n",
1270 imp->imp_obd->obd_name, inst);
1271 }
1272 }
1273
1274 if (do_reconn)
1275 ptlrpc_recover_import(imp, uuid, 1);
1276
1277 out:
1278 kfree(kbuf);
1279 return count;
1280 }
1281 EXPORT_SYMBOL(lprocfs_wr_import);
1282
1283 int lprocfs_rd_pinger_recov(struct seq_file *m, void *n)
1284 {
1285 struct obd_device *obd = m->private;
1286 struct obd_import *imp = obd->u.cli.cl_import;
1287 int rc;
1288
1289 rc = lprocfs_climp_check(obd);
1290 if (rc)
1291 return rc;
1292
1293 seq_printf(m, "%d\n", !imp->imp_no_pinger_recover);
1294 LPROCFS_CLIMP_EXIT(obd);
1295
1296 return 0;
1297 }
1298 EXPORT_SYMBOL(lprocfs_rd_pinger_recov);
1299
1300 int lprocfs_wr_pinger_recov(struct file *file, const char __user *buffer,
1301 size_t count, loff_t *off)
1302 {
1303 struct obd_device *obd = ((struct seq_file *)file->private_data)->private;
1304 struct client_obd *cli = &obd->u.cli;
1305 struct obd_import *imp = cli->cl_import;
1306 int rc, val;
1307
1308 rc = lprocfs_write_helper(buffer, count, &val);
1309 if (rc < 0)
1310 return rc;
1311
1312 if (val != 0 && val != 1)
1313 return -ERANGE;
1314
1315 rc = lprocfs_climp_check(obd);
1316 if (rc)
1317 return rc;
1318
1319 spin_lock(&imp->imp_lock);
1320 imp->imp_no_pinger_recover = !val;
1321 spin_unlock(&imp->imp_lock);
1322 LPROCFS_CLIMP_EXIT(obd);
1323
1324 return count;
1325
1326 }
1327 EXPORT_SYMBOL(lprocfs_wr_pinger_recov);
This page took 0.060383 seconds and 6 git commands to generate.