Merge branch 'pm-sleep'
[deliverable/linux.git] / drivers / staging / panel / panel.c
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
27 *
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
34 *
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/module.h>
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63
64 #define LCD_MINOR 156
65 #define KEYPAD_MINOR 185
66
67 #define PANEL_VERSION "0.9.5"
68
69 #define LCD_MAXBYTES 256 /* max burst write */
70
71 #define KEYPAD_BUFFER 64
72
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME (HZ / 50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START (10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY (2)
79
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO (200)
82
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86 #define PNL_PBUSY 0x80 /* inverted input, active low */
87 #define PNL_PACK 0x40 /* direct input, active low */
88 #define PNL_POUTPA 0x20 /* direct input, active high */
89 #define PNL_PSELECD 0x10 /* direct input, active high */
90 #define PNL_PERRORP 0x08 /* direct input, active low */
91
92 #define PNL_PBIDIR 0x20 /* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN 0x10
95 #define PNL_PSELECP 0x08 /* inverted output, active low */
96 #define PNL_PINITP 0x04 /* direct output, active low */
97 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
98 #define PNL_PSTROBE 0x01 /* inverted output */
99
100 #define PNL_PD0 0x01
101 #define PNL_PD1 0x02
102 #define PNL_PD2 0x04
103 #define PNL_PD3 0x08
104 #define PNL_PD4 0x10
105 #define PNL_PD5 0x20
106 #define PNL_PD6 0x40
107 #define PNL_PD7 0x80
108
109 #define PIN_NONE 0
110 #define PIN_STROBE 1
111 #define PIN_D0 2
112 #define PIN_D1 3
113 #define PIN_D2 4
114 #define PIN_D3 5
115 #define PIN_D4 6
116 #define PIN_D5 7
117 #define PIN_D6 8
118 #define PIN_D7 9
119 #define PIN_AUTOLF 14
120 #define PIN_INITP 16
121 #define PIN_SELECP 17
122 #define PIN_NOT_SET 127
123
124 #define LCD_FLAG_S 0x0001
125 #define LCD_FLAG_ID 0x0002
126 #define LCD_FLAG_B 0x0004 /* blink on */
127 #define LCD_FLAG_C 0x0008 /* cursor on */
128 #define LCD_FLAG_D 0x0010 /* display on */
129 #define LCD_FLAG_F 0x0020 /* large font mode */
130 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
131 #define LCD_FLAG_L 0x0080 /* backlight enabled */
132
133 /* LCD commands */
134 #define LCD_CMD_DISPLAY_CLEAR 0x01 /* Clear entire display */
135
136 #define LCD_CMD_ENTRY_MODE 0x04 /* Set entry mode */
137 #define LCD_CMD_CURSOR_INC 0x02 /* Increment cursor */
138
139 #define LCD_CMD_DISPLAY_CTRL 0x08 /* Display control */
140 #define LCD_CMD_DISPLAY_ON 0x04 /* Set display on */
141 #define LCD_CMD_CURSOR_ON 0x02 /* Set cursor on */
142 #define LCD_CMD_BLINK_ON 0x01 /* Set blink on */
143
144 #define LCD_CMD_SHIFT 0x10 /* Shift cursor/display */
145 #define LCD_CMD_DISPLAY_SHIFT 0x08 /* Shift display instead of cursor */
146 #define LCD_CMD_SHIFT_RIGHT 0x04 /* Shift display/cursor to the right */
147
148 #define LCD_CMD_FUNCTION_SET 0x20 /* Set function */
149 #define LCD_CMD_DATA_LEN_8BITS 0x10 /* Set data length to 8 bits */
150 #define LCD_CMD_TWO_LINES 0x08 /* Set to two display lines */
151 #define LCD_CMD_FONT_5X10_DOTS 0x04 /* Set char font to 5x10 dots */
152
153 #define LCD_CMD_SET_CGRAM_ADDR 0x40 /* Set char generator RAM address */
154
155 #define LCD_CMD_SET_DDRAM_ADDR 0x80 /* Set display data RAM address */
156
157 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
158 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
159
160 #define NOT_SET -1
161
162 /* macros to simplify use of the parallel port */
163 #define r_ctr(x) (parport_read_control((x)->port))
164 #define r_dtr(x) (parport_read_data((x)->port))
165 #define r_str(x) (parport_read_status((x)->port))
166 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
167 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
168
169 /* this defines which bits are to be used and which ones to be ignored */
170 /* logical or of the output bits involved in the scan matrix */
171 static __u8 scan_mask_o;
172 /* logical or of the input bits involved in the scan matrix */
173 static __u8 scan_mask_i;
174
175 typedef __u64 pmask_t;
176
177 enum input_type {
178 INPUT_TYPE_STD,
179 INPUT_TYPE_KBD,
180 };
181
182 enum input_state {
183 INPUT_ST_LOW,
184 INPUT_ST_RISING,
185 INPUT_ST_HIGH,
186 INPUT_ST_FALLING,
187 };
188
189 struct logical_input {
190 struct list_head list;
191 pmask_t mask;
192 pmask_t value;
193 enum input_type type;
194 enum input_state state;
195 __u8 rise_time, fall_time;
196 __u8 rise_timer, fall_timer, high_timer;
197
198 union {
199 struct { /* valid when type == INPUT_TYPE_STD */
200 void (*press_fct)(int);
201 void (*release_fct)(int);
202 int press_data;
203 int release_data;
204 } std;
205 struct { /* valid when type == INPUT_TYPE_KBD */
206 /* strings can be non null-terminated */
207 char press_str[sizeof(void *) + sizeof(int)];
208 char repeat_str[sizeof(void *) + sizeof(int)];
209 char release_str[sizeof(void *) + sizeof(int)];
210 } kbd;
211 } u;
212 };
213
214 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
215
216 /* physical contacts history
217 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
218 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
219 * corresponds to the ground.
220 * Within each group, bits are stored in the same order as read on the port :
221 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
222 * So, each __u64 (or pmask_t) is represented like this :
223 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
224 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
225 */
226
227 /* what has just been read from the I/O ports */
228 static pmask_t phys_read;
229 /* previous phys_read */
230 static pmask_t phys_read_prev;
231 /* stabilized phys_read (phys_read|phys_read_prev) */
232 static pmask_t phys_curr;
233 /* previous phys_curr */
234 static pmask_t phys_prev;
235 /* 0 means that at least one logical signal needs be computed */
236 static char inputs_stable;
237
238 /* these variables are specific to the keypad */
239 static struct {
240 bool enabled;
241 } keypad;
242
243 static char keypad_buffer[KEYPAD_BUFFER];
244 static int keypad_buflen;
245 static int keypad_start;
246 static char keypressed;
247 static wait_queue_head_t keypad_read_wait;
248
249 /* lcd-specific variables */
250 static struct {
251 bool enabled;
252 bool initialized;
253 bool must_clear;
254
255 int height;
256 int width;
257 int bwidth;
258 int hwidth;
259 int charset;
260 int proto;
261 int light_tempo;
262
263 /* TODO: use union here? */
264 struct {
265 int e;
266 int rs;
267 int rw;
268 int cl;
269 int da;
270 int bl;
271 } pins;
272
273 /* contains the LCD config state */
274 unsigned long int flags;
275
276 /* Contains the LCD X and Y offset */
277 struct {
278 unsigned long int x;
279 unsigned long int y;
280 } addr;
281
282 /* Current escape sequence and it's length or -1 if outside */
283 struct {
284 char buf[LCD_ESCAPE_LEN + 1];
285 int len;
286 } esc_seq;
287 } lcd;
288
289 /* Needed only for init */
290 static int selected_lcd_type = NOT_SET;
291
292 /*
293 * Bit masks to convert LCD signals to parallel port outputs.
294 * _d_ are values for data port, _c_ are for control port.
295 * [0] = signal OFF, [1] = signal ON, [2] = mask
296 */
297 #define BIT_CLR 0
298 #define BIT_SET 1
299 #define BIT_MSK 2
300 #define BIT_STATES 3
301 /*
302 * one entry for each bit on the LCD
303 */
304 #define LCD_BIT_E 0
305 #define LCD_BIT_RS 1
306 #define LCD_BIT_RW 2
307 #define LCD_BIT_BL 3
308 #define LCD_BIT_CL 4
309 #define LCD_BIT_DA 5
310 #define LCD_BITS 6
311
312 /*
313 * each bit can be either connected to a DATA or CTRL port
314 */
315 #define LCD_PORT_C 0
316 #define LCD_PORT_D 1
317 #define LCD_PORTS 2
318
319 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
320
321 /*
322 * LCD protocols
323 */
324 #define LCD_PROTO_PARALLEL 0
325 #define LCD_PROTO_SERIAL 1
326 #define LCD_PROTO_TI_DA8XX_LCD 2
327
328 /*
329 * LCD character sets
330 */
331 #define LCD_CHARSET_NORMAL 0
332 #define LCD_CHARSET_KS0074 1
333
334 /*
335 * LCD types
336 */
337 #define LCD_TYPE_NONE 0
338 #define LCD_TYPE_CUSTOM 1
339 #define LCD_TYPE_OLD 2
340 #define LCD_TYPE_KS0074 3
341 #define LCD_TYPE_HANTRONIX 4
342 #define LCD_TYPE_NEXCOM 5
343
344 /*
345 * keypad types
346 */
347 #define KEYPAD_TYPE_NONE 0
348 #define KEYPAD_TYPE_OLD 1
349 #define KEYPAD_TYPE_NEW 2
350 #define KEYPAD_TYPE_NEXCOM 3
351
352 /*
353 * panel profiles
354 */
355 #define PANEL_PROFILE_CUSTOM 0
356 #define PANEL_PROFILE_OLD 1
357 #define PANEL_PROFILE_NEW 2
358 #define PANEL_PROFILE_HANTRONIX 3
359 #define PANEL_PROFILE_NEXCOM 4
360 #define PANEL_PROFILE_LARGE 5
361
362 /*
363 * Construct custom config from the kernel's configuration
364 */
365 #define DEFAULT_PARPORT 0
366 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
367 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
368 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD
369 #define DEFAULT_LCD_HEIGHT 2
370 #define DEFAULT_LCD_WIDTH 40
371 #define DEFAULT_LCD_BWIDTH 40
372 #define DEFAULT_LCD_HWIDTH 64
373 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
374 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
375
376 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
377 #define DEFAULT_LCD_PIN_RS PIN_SELECP
378 #define DEFAULT_LCD_PIN_RW PIN_INITP
379 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
380 #define DEFAULT_LCD_PIN_SDA PIN_D0
381 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
382
383 #ifdef CONFIG_PANEL_PARPORT
384 #undef DEFAULT_PARPORT
385 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
386 #endif
387
388 #ifdef CONFIG_PANEL_PROFILE
389 #undef DEFAULT_PROFILE
390 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
391 #endif
392
393 #if DEFAULT_PROFILE == 0 /* custom */
394 #ifdef CONFIG_PANEL_KEYPAD
395 #undef DEFAULT_KEYPAD_TYPE
396 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
397 #endif
398
399 #ifdef CONFIG_PANEL_LCD
400 #undef DEFAULT_LCD_TYPE
401 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
402 #endif
403
404 #ifdef CONFIG_PANEL_LCD_HEIGHT
405 #undef DEFAULT_LCD_HEIGHT
406 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
407 #endif
408
409 #ifdef CONFIG_PANEL_LCD_WIDTH
410 #undef DEFAULT_LCD_WIDTH
411 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
412 #endif
413
414 #ifdef CONFIG_PANEL_LCD_BWIDTH
415 #undef DEFAULT_LCD_BWIDTH
416 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
417 #endif
418
419 #ifdef CONFIG_PANEL_LCD_HWIDTH
420 #undef DEFAULT_LCD_HWIDTH
421 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
422 #endif
423
424 #ifdef CONFIG_PANEL_LCD_CHARSET
425 #undef DEFAULT_LCD_CHARSET
426 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
427 #endif
428
429 #ifdef CONFIG_PANEL_LCD_PROTO
430 #undef DEFAULT_LCD_PROTO
431 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
432 #endif
433
434 #ifdef CONFIG_PANEL_LCD_PIN_E
435 #undef DEFAULT_LCD_PIN_E
436 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
437 #endif
438
439 #ifdef CONFIG_PANEL_LCD_PIN_RS
440 #undef DEFAULT_LCD_PIN_RS
441 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
442 #endif
443
444 #ifdef CONFIG_PANEL_LCD_PIN_RW
445 #undef DEFAULT_LCD_PIN_RW
446 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
447 #endif
448
449 #ifdef CONFIG_PANEL_LCD_PIN_SCL
450 #undef DEFAULT_LCD_PIN_SCL
451 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
452 #endif
453
454 #ifdef CONFIG_PANEL_LCD_PIN_SDA
455 #undef DEFAULT_LCD_PIN_SDA
456 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
457 #endif
458
459 #ifdef CONFIG_PANEL_LCD_PIN_BL
460 #undef DEFAULT_LCD_PIN_BL
461 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
462 #endif
463
464 #endif /* DEFAULT_PROFILE == 0 */
465
466 /* global variables */
467
468 /* Device single-open policy control */
469 static atomic_t lcd_available = ATOMIC_INIT(1);
470 static atomic_t keypad_available = ATOMIC_INIT(1);
471
472 static struct pardevice *pprt;
473
474 static int keypad_initialized;
475
476 static void (*lcd_write_cmd)(int);
477 static void (*lcd_write_data)(int);
478 static void (*lcd_clear_fast)(void);
479
480 static DEFINE_SPINLOCK(pprt_lock);
481 static struct timer_list scan_timer;
482
483 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
484
485 static int parport = DEFAULT_PARPORT;
486 module_param(parport, int, 0000);
487 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
488
489 static int profile = DEFAULT_PROFILE;
490 module_param(profile, int, 0000);
491 MODULE_PARM_DESC(profile,
492 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
493 "4=16x2 nexcom; default=40x2, old kp");
494
495 static int keypad_type = NOT_SET;
496 module_param(keypad_type, int, 0000);
497 MODULE_PARM_DESC(keypad_type,
498 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
499
500 static int lcd_type = NOT_SET;
501 module_param(lcd_type, int, 0000);
502 MODULE_PARM_DESC(lcd_type,
503 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
504
505 static int lcd_height = NOT_SET;
506 module_param(lcd_height, int, 0000);
507 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
508
509 static int lcd_width = NOT_SET;
510 module_param(lcd_width, int, 0000);
511 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
512
513 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
514 module_param(lcd_bwidth, int, 0000);
515 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
516
517 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
518 module_param(lcd_hwidth, int, 0000);
519 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
520
521 static int lcd_charset = NOT_SET;
522 module_param(lcd_charset, int, 0000);
523 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
524
525 static int lcd_proto = NOT_SET;
526 module_param(lcd_proto, int, 0000);
527 MODULE_PARM_DESC(lcd_proto,
528 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
529
530 /*
531 * These are the parallel port pins the LCD control signals are connected to.
532 * Set this to 0 if the signal is not used. Set it to its opposite value
533 * (negative) if the signal is negated. -MAXINT is used to indicate that the
534 * pin has not been explicitly specified.
535 *
536 * WARNING! no check will be performed about collisions with keypad !
537 */
538
539 static int lcd_e_pin = PIN_NOT_SET;
540 module_param(lcd_e_pin, int, 0000);
541 MODULE_PARM_DESC(lcd_e_pin,
542 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
543
544 static int lcd_rs_pin = PIN_NOT_SET;
545 module_param(lcd_rs_pin, int, 0000);
546 MODULE_PARM_DESC(lcd_rs_pin,
547 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
548
549 static int lcd_rw_pin = PIN_NOT_SET;
550 module_param(lcd_rw_pin, int, 0000);
551 MODULE_PARM_DESC(lcd_rw_pin,
552 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
553
554 static int lcd_cl_pin = PIN_NOT_SET;
555 module_param(lcd_cl_pin, int, 0000);
556 MODULE_PARM_DESC(lcd_cl_pin,
557 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
558
559 static int lcd_da_pin = PIN_NOT_SET;
560 module_param(lcd_da_pin, int, 0000);
561 MODULE_PARM_DESC(lcd_da_pin,
562 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
563
564 static int lcd_bl_pin = PIN_NOT_SET;
565 module_param(lcd_bl_pin, int, 0000);
566 MODULE_PARM_DESC(lcd_bl_pin,
567 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
568
569 /* Deprecated module parameters - consider not using them anymore */
570
571 static int lcd_enabled = NOT_SET;
572 module_param(lcd_enabled, int, 0000);
573 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
574
575 static int keypad_enabled = NOT_SET;
576 module_param(keypad_enabled, int, 0000);
577 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
578
579 static const unsigned char *lcd_char_conv;
580
581 /* for some LCD drivers (ks0074) we need a charset conversion table. */
582 static const unsigned char lcd_char_conv_ks0074[256] = {
583 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
584 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
585 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
586 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
587 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
588 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
589 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
590 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
591 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
592 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
593 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
594 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
595 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
596 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
597 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
598 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
599 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
600 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
601 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
602 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
603 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
604 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
605 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
606 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
607 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
608 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
609 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
610 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
611 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
612 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
613 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
614 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
615 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
616 };
617
618 static const char old_keypad_profile[][4][9] = {
619 {"S0", "Left\n", "Left\n", ""},
620 {"S1", "Down\n", "Down\n", ""},
621 {"S2", "Up\n", "Up\n", ""},
622 {"S3", "Right\n", "Right\n", ""},
623 {"S4", "Esc\n", "Esc\n", ""},
624 {"S5", "Ret\n", "Ret\n", ""},
625 {"", "", "", ""}
626 };
627
628 /* signals, press, repeat, release */
629 static const char new_keypad_profile[][4][9] = {
630 {"S0", "Left\n", "Left\n", ""},
631 {"S1", "Down\n", "Down\n", ""},
632 {"S2", "Up\n", "Up\n", ""},
633 {"S3", "Right\n", "Right\n", ""},
634 {"S4s5", "", "Esc\n", "Esc\n"},
635 {"s4S5", "", "Ret\n", "Ret\n"},
636 {"S4S5", "Help\n", "", ""},
637 /* add new signals above this line */
638 {"", "", "", ""}
639 };
640
641 /* signals, press, repeat, release */
642 static const char nexcom_keypad_profile[][4][9] = {
643 {"a-p-e-", "Down\n", "Down\n", ""},
644 {"a-p-E-", "Ret\n", "Ret\n", ""},
645 {"a-P-E-", "Esc\n", "Esc\n", ""},
646 {"a-P-e-", "Up\n", "Up\n", ""},
647 /* add new signals above this line */
648 {"", "", "", ""}
649 };
650
651 static const char (*keypad_profile)[4][9] = old_keypad_profile;
652
653 /* FIXME: this should be converted to a bit array containing signals states */
654 static struct {
655 unsigned char e; /* parallel LCD E (data latch on falling edge) */
656 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
657 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
658 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
659 unsigned char cl; /* serial LCD clock (latch on rising edge) */
660 unsigned char da; /* serial LCD data */
661 } bits;
662
663 static void init_scan_timer(void);
664
665 /* sets data port bits according to current signals values */
666 static int set_data_bits(void)
667 {
668 int val, bit;
669
670 val = r_dtr(pprt);
671 for (bit = 0; bit < LCD_BITS; bit++)
672 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
673
674 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
675 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
676 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
677 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
678 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
679 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
680
681 w_dtr(pprt, val);
682 return val;
683 }
684
685 /* sets ctrl port bits according to current signals values */
686 static int set_ctrl_bits(void)
687 {
688 int val, bit;
689
690 val = r_ctr(pprt);
691 for (bit = 0; bit < LCD_BITS; bit++)
692 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
693
694 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
695 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
696 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
697 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
698 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
699 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
700
701 w_ctr(pprt, val);
702 return val;
703 }
704
705 /* sets ctrl & data port bits according to current signals values */
706 static void panel_set_bits(void)
707 {
708 set_data_bits();
709 set_ctrl_bits();
710 }
711
712 /*
713 * Converts a parallel port pin (from -25 to 25) to data and control ports
714 * masks, and data and control port bits. The signal will be considered
715 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
716 *
717 * Result will be used this way :
718 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
719 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
720 */
721 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
722 {
723 int d_bit, c_bit, inv;
724
725 d_val[0] = 0;
726 c_val[0] = 0;
727 d_val[1] = 0;
728 c_val[1] = 0;
729 d_val[2] = 0xFF;
730 c_val[2] = 0xFF;
731
732 if (pin == 0)
733 return;
734
735 inv = (pin < 0);
736 if (inv)
737 pin = -pin;
738
739 d_bit = 0;
740 c_bit = 0;
741
742 switch (pin) {
743 case PIN_STROBE: /* strobe, inverted */
744 c_bit = PNL_PSTROBE;
745 inv = !inv;
746 break;
747 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
748 d_bit = 1 << (pin - 2);
749 break;
750 case PIN_AUTOLF: /* autofeed, inverted */
751 c_bit = PNL_PAUTOLF;
752 inv = !inv;
753 break;
754 case PIN_INITP: /* init, direct */
755 c_bit = PNL_PINITP;
756 break;
757 case PIN_SELECP: /* select_in, inverted */
758 c_bit = PNL_PSELECP;
759 inv = !inv;
760 break;
761 default: /* unknown pin, ignore */
762 break;
763 }
764
765 if (c_bit) {
766 c_val[2] &= ~c_bit;
767 c_val[!inv] = c_bit;
768 } else if (d_bit) {
769 d_val[2] &= ~d_bit;
770 d_val[!inv] = d_bit;
771 }
772 }
773
774 /* sleeps that many milliseconds with a reschedule */
775 static void long_sleep(int ms)
776 {
777 if (in_interrupt())
778 mdelay(ms);
779 else
780 schedule_timeout_interruptible(msecs_to_jiffies(ms));
781 }
782
783 /*
784 * send a serial byte to the LCD panel. The caller is responsible for locking
785 * if needed.
786 */
787 static void lcd_send_serial(int byte)
788 {
789 int bit;
790
791 /*
792 * the data bit is set on D0, and the clock on STROBE.
793 * LCD reads D0 on STROBE's rising edge.
794 */
795 for (bit = 0; bit < 8; bit++) {
796 bits.cl = BIT_CLR; /* CLK low */
797 panel_set_bits();
798 bits.da = byte & 1;
799 panel_set_bits();
800 udelay(2); /* maintain the data during 2 us before CLK up */
801 bits.cl = BIT_SET; /* CLK high */
802 panel_set_bits();
803 udelay(1); /* maintain the strobe during 1 us */
804 byte >>= 1;
805 }
806 }
807
808 /* turn the backlight on or off */
809 static void lcd_backlight(int on)
810 {
811 if (lcd.pins.bl == PIN_NONE)
812 return;
813
814 /* The backlight is activated by setting the AUTOFEED line to +5V */
815 spin_lock_irq(&pprt_lock);
816 bits.bl = on;
817 panel_set_bits();
818 spin_unlock_irq(&pprt_lock);
819 }
820
821 /* send a command to the LCD panel in serial mode */
822 static void lcd_write_cmd_s(int cmd)
823 {
824 spin_lock_irq(&pprt_lock);
825 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
826 lcd_send_serial(cmd & 0x0F);
827 lcd_send_serial((cmd >> 4) & 0x0F);
828 /* the shortest command takes at least 40 us */
829 usleep_range(40, 100);
830 spin_unlock_irq(&pprt_lock);
831 }
832
833 /* send data to the LCD panel in serial mode */
834 static void lcd_write_data_s(int data)
835 {
836 spin_lock_irq(&pprt_lock);
837 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
838 lcd_send_serial(data & 0x0F);
839 lcd_send_serial((data >> 4) & 0x0F);
840 /* the shortest data takes at least 40 us */
841 usleep_range(40, 100);
842 spin_unlock_irq(&pprt_lock);
843 }
844
845 /* send a command to the LCD panel in 8 bits parallel mode */
846 static void lcd_write_cmd_p8(int cmd)
847 {
848 spin_lock_irq(&pprt_lock);
849 /* present the data to the data port */
850 w_dtr(pprt, cmd);
851 /* maintain the data during 20 us before the strobe */
852 usleep_range(20, 100);
853
854 bits.e = BIT_SET;
855 bits.rs = BIT_CLR;
856 bits.rw = BIT_CLR;
857 set_ctrl_bits();
858
859 usleep_range(40, 100); /* maintain the strobe during 40 us */
860
861 bits.e = BIT_CLR;
862 set_ctrl_bits();
863
864 usleep_range(120, 500); /* the shortest command takes at least 120 us */
865 spin_unlock_irq(&pprt_lock);
866 }
867
868 /* send data to the LCD panel in 8 bits parallel mode */
869 static void lcd_write_data_p8(int data)
870 {
871 spin_lock_irq(&pprt_lock);
872 /* present the data to the data port */
873 w_dtr(pprt, data);
874 /* maintain the data during 20 us before the strobe */
875 usleep_range(20, 100);
876
877 bits.e = BIT_SET;
878 bits.rs = BIT_SET;
879 bits.rw = BIT_CLR;
880 set_ctrl_bits();
881
882 usleep_range(40, 100); /* maintain the strobe during 40 us */
883
884 bits.e = BIT_CLR;
885 set_ctrl_bits();
886
887 usleep_range(45, 100); /* the shortest data takes at least 45 us */
888 spin_unlock_irq(&pprt_lock);
889 }
890
891 /* send a command to the TI LCD panel */
892 static void lcd_write_cmd_tilcd(int cmd)
893 {
894 spin_lock_irq(&pprt_lock);
895 /* present the data to the control port */
896 w_ctr(pprt, cmd);
897 usleep_range(60, 120);
898 spin_unlock_irq(&pprt_lock);
899 }
900
901 /* send data to the TI LCD panel */
902 static void lcd_write_data_tilcd(int data)
903 {
904 spin_lock_irq(&pprt_lock);
905 /* present the data to the data port */
906 w_dtr(pprt, data);
907 usleep_range(60, 120);
908 spin_unlock_irq(&pprt_lock);
909 }
910
911 static void lcd_gotoxy(void)
912 {
913 lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
914 | (lcd.addr.y ? lcd.hwidth : 0)
915 /*
916 * we force the cursor to stay at the end of the
917 * line if it wants to go farther
918 */
919 | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
920 (lcd.hwidth - 1) : lcd.bwidth - 1));
921 }
922
923 static void lcd_print(char c)
924 {
925 if (lcd.addr.x < lcd.bwidth) {
926 if (lcd_char_conv)
927 c = lcd_char_conv[(unsigned char)c];
928 lcd_write_data(c);
929 lcd.addr.x++;
930 }
931 /* prevents the cursor from wrapping onto the next line */
932 if (lcd.addr.x == lcd.bwidth)
933 lcd_gotoxy();
934 }
935
936 /* fills the display with spaces and resets X/Y */
937 static void lcd_clear_fast_s(void)
938 {
939 int pos;
940
941 lcd.addr.x = 0;
942 lcd.addr.y = 0;
943 lcd_gotoxy();
944
945 spin_lock_irq(&pprt_lock);
946 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
947 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
948 lcd_send_serial(' ' & 0x0F);
949 lcd_send_serial((' ' >> 4) & 0x0F);
950 usleep_range(40, 100); /* the shortest data takes at least 40 us */
951 }
952 spin_unlock_irq(&pprt_lock);
953
954 lcd.addr.x = 0;
955 lcd.addr.y = 0;
956 lcd_gotoxy();
957 }
958
959 /* fills the display with spaces and resets X/Y */
960 static void lcd_clear_fast_p8(void)
961 {
962 int pos;
963
964 lcd.addr.x = 0;
965 lcd.addr.y = 0;
966 lcd_gotoxy();
967
968 spin_lock_irq(&pprt_lock);
969 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
970 /* present the data to the data port */
971 w_dtr(pprt, ' ');
972
973 /* maintain the data during 20 us before the strobe */
974 usleep_range(20, 100);
975
976 bits.e = BIT_SET;
977 bits.rs = BIT_SET;
978 bits.rw = BIT_CLR;
979 set_ctrl_bits();
980
981 /* maintain the strobe during 40 us */
982 usleep_range(40, 100);
983
984 bits.e = BIT_CLR;
985 set_ctrl_bits();
986
987 /* the shortest data takes at least 45 us */
988 usleep_range(45, 100);
989 }
990 spin_unlock_irq(&pprt_lock);
991
992 lcd.addr.x = 0;
993 lcd.addr.y = 0;
994 lcd_gotoxy();
995 }
996
997 /* fills the display with spaces and resets X/Y */
998 static void lcd_clear_fast_tilcd(void)
999 {
1000 int pos;
1001
1002 lcd.addr.x = 0;
1003 lcd.addr.y = 0;
1004 lcd_gotoxy();
1005
1006 spin_lock_irq(&pprt_lock);
1007 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1008 /* present the data to the data port */
1009 w_dtr(pprt, ' ');
1010 usleep_range(60, 120);
1011 }
1012
1013 spin_unlock_irq(&pprt_lock);
1014
1015 lcd.addr.x = 0;
1016 lcd.addr.y = 0;
1017 lcd_gotoxy();
1018 }
1019
1020 /* clears the display and resets X/Y */
1021 static void lcd_clear_display(void)
1022 {
1023 lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1024 lcd.addr.x = 0;
1025 lcd.addr.y = 0;
1026 /* we must wait a few milliseconds (15) */
1027 long_sleep(15);
1028 }
1029
1030 static void lcd_init_display(void)
1031 {
1032 lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1033 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1034
1035 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
1036
1037 /* 8bits, 1 line, small fonts; let's do it 3 times */
1038 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1039 long_sleep(10);
1040 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1041 long_sleep(10);
1042 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1043 long_sleep(10);
1044
1045 /* set font height and lines number */
1046 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1047 | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1048 | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1049 );
1050 long_sleep(10);
1051
1052 /* display off, cursor off, blink off */
1053 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1054 long_sleep(10);
1055
1056 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL /* set display mode */
1057 | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1058 | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1059 | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1060 );
1061
1062 lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1063
1064 long_sleep(10);
1065
1066 /* entry mode set : increment, cursor shifting */
1067 lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1068
1069 lcd_clear_display();
1070 }
1071
1072 /*
1073 * These are the file operation function for user access to /dev/lcd
1074 * This function can also be called from inside the kernel, by
1075 * setting file and ppos to NULL.
1076 *
1077 */
1078
1079 static inline int handle_lcd_special_code(void)
1080 {
1081 /* LCD special codes */
1082
1083 int processed = 0;
1084
1085 char *esc = lcd.esc_seq.buf + 2;
1086 int oldflags = lcd.flags;
1087
1088 /* check for display mode flags */
1089 switch (*esc) {
1090 case 'D': /* Display ON */
1091 lcd.flags |= LCD_FLAG_D;
1092 processed = 1;
1093 break;
1094 case 'd': /* Display OFF */
1095 lcd.flags &= ~LCD_FLAG_D;
1096 processed = 1;
1097 break;
1098 case 'C': /* Cursor ON */
1099 lcd.flags |= LCD_FLAG_C;
1100 processed = 1;
1101 break;
1102 case 'c': /* Cursor OFF */
1103 lcd.flags &= ~LCD_FLAG_C;
1104 processed = 1;
1105 break;
1106 case 'B': /* Blink ON */
1107 lcd.flags |= LCD_FLAG_B;
1108 processed = 1;
1109 break;
1110 case 'b': /* Blink OFF */
1111 lcd.flags &= ~LCD_FLAG_B;
1112 processed = 1;
1113 break;
1114 case '+': /* Back light ON */
1115 lcd.flags |= LCD_FLAG_L;
1116 processed = 1;
1117 break;
1118 case '-': /* Back light OFF */
1119 lcd.flags &= ~LCD_FLAG_L;
1120 processed = 1;
1121 break;
1122 case '*':
1123 /* flash back light using the keypad timer */
1124 if (scan_timer.function) {
1125 if (lcd.light_tempo == 0 &&
1126 ((lcd.flags & LCD_FLAG_L) == 0))
1127 lcd_backlight(1);
1128 lcd.light_tempo = FLASH_LIGHT_TEMPO;
1129 }
1130 processed = 1;
1131 break;
1132 case 'f': /* Small Font */
1133 lcd.flags &= ~LCD_FLAG_F;
1134 processed = 1;
1135 break;
1136 case 'F': /* Large Font */
1137 lcd.flags |= LCD_FLAG_F;
1138 processed = 1;
1139 break;
1140 case 'n': /* One Line */
1141 lcd.flags &= ~LCD_FLAG_N;
1142 processed = 1;
1143 break;
1144 case 'N': /* Two Lines */
1145 lcd.flags |= LCD_FLAG_N;
1146 break;
1147 case 'l': /* Shift Cursor Left */
1148 if (lcd.addr.x > 0) {
1149 /* back one char if not at end of line */
1150 if (lcd.addr.x < lcd.bwidth)
1151 lcd_write_cmd(LCD_CMD_SHIFT);
1152 lcd.addr.x--;
1153 }
1154 processed = 1;
1155 break;
1156 case 'r': /* shift cursor right */
1157 if (lcd.addr.x < lcd.width) {
1158 /* allow the cursor to pass the end of the line */
1159 if (lcd.addr.x < (lcd.bwidth - 1))
1160 lcd_write_cmd(LCD_CMD_SHIFT |
1161 LCD_CMD_SHIFT_RIGHT);
1162 lcd.addr.x++;
1163 }
1164 processed = 1;
1165 break;
1166 case 'L': /* shift display left */
1167 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1168 processed = 1;
1169 break;
1170 case 'R': /* shift display right */
1171 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1172 LCD_CMD_SHIFT_RIGHT);
1173 processed = 1;
1174 break;
1175 case 'k': { /* kill end of line */
1176 int x;
1177
1178 for (x = lcd.addr.x; x < lcd.bwidth; x++)
1179 lcd_write_data(' ');
1180
1181 /* restore cursor position */
1182 lcd_gotoxy();
1183 processed = 1;
1184 break;
1185 }
1186 case 'I': /* reinitialize display */
1187 lcd_init_display();
1188 processed = 1;
1189 break;
1190 case 'G': {
1191 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1192 * and '7', representing the numerical ASCII code of the
1193 * redefined character, and <xx...xx> a sequence of 16
1194 * hex digits representing 8 bytes for each character.
1195 * Most LCDs will only use 5 lower bits of the 7 first
1196 * bytes.
1197 */
1198
1199 unsigned char cgbytes[8];
1200 unsigned char cgaddr;
1201 int cgoffset;
1202 int shift;
1203 char value;
1204 int addr;
1205
1206 if (!strchr(esc, ';'))
1207 break;
1208
1209 esc++;
1210
1211 cgaddr = *(esc++) - '0';
1212 if (cgaddr > 7) {
1213 processed = 1;
1214 break;
1215 }
1216
1217 cgoffset = 0;
1218 shift = 0;
1219 value = 0;
1220 while (*esc && cgoffset < 8) {
1221 shift ^= 4;
1222 if (*esc >= '0' && *esc <= '9') {
1223 value |= (*esc - '0') << shift;
1224 } else if (*esc >= 'A' && *esc <= 'Z') {
1225 value |= (*esc - 'A' + 10) << shift;
1226 } else if (*esc >= 'a' && *esc <= 'z') {
1227 value |= (*esc - 'a' + 10) << shift;
1228 } else {
1229 esc++;
1230 continue;
1231 }
1232
1233 if (shift == 0) {
1234 cgbytes[cgoffset++] = value;
1235 value = 0;
1236 }
1237
1238 esc++;
1239 }
1240
1241 lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1242 for (addr = 0; addr < cgoffset; addr++)
1243 lcd_write_data(cgbytes[addr]);
1244
1245 /* ensures that we stop writing to CGRAM */
1246 lcd_gotoxy();
1247 processed = 1;
1248 break;
1249 }
1250 case 'x': /* gotoxy : LxXXX[yYYY]; */
1251 case 'y': /* gotoxy : LyYYY[xXXX]; */
1252 if (!strchr(esc, ';'))
1253 break;
1254
1255 while (*esc) {
1256 if (*esc == 'x') {
1257 esc++;
1258 if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1259 break;
1260 } else if (*esc == 'y') {
1261 esc++;
1262 if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1263 break;
1264 } else {
1265 break;
1266 }
1267 }
1268
1269 lcd_gotoxy();
1270 processed = 1;
1271 break;
1272 }
1273
1274 /* TODO: This indent party here got ugly, clean it! */
1275 /* Check whether one flag was changed */
1276 if (oldflags != lcd.flags) {
1277 /* check whether one of B,C,D flags were changed */
1278 if ((oldflags ^ lcd.flags) &
1279 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1280 /* set display mode */
1281 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1282 | ((lcd.flags & LCD_FLAG_D)
1283 ? LCD_CMD_DISPLAY_ON : 0)
1284 | ((lcd.flags & LCD_FLAG_C)
1285 ? LCD_CMD_CURSOR_ON : 0)
1286 | ((lcd.flags & LCD_FLAG_B)
1287 ? LCD_CMD_BLINK_ON : 0));
1288 /* check whether one of F,N flags was changed */
1289 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1290 lcd_write_cmd(LCD_CMD_FUNCTION_SET
1291 | LCD_CMD_DATA_LEN_8BITS
1292 | ((lcd.flags & LCD_FLAG_F)
1293 ? LCD_CMD_TWO_LINES : 0)
1294 | ((lcd.flags & LCD_FLAG_N)
1295 ? LCD_CMD_FONT_5X10_DOTS
1296 : 0));
1297 /* check whether L flag was changed */
1298 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1299 if (lcd.flags & (LCD_FLAG_L))
1300 lcd_backlight(1);
1301 else if (lcd.light_tempo == 0)
1302 /*
1303 * switch off the light only when the tempo
1304 * lighting is gone
1305 */
1306 lcd_backlight(0);
1307 }
1308 }
1309
1310 return processed;
1311 }
1312
1313 static void lcd_write_char(char c)
1314 {
1315 /* first, we'll test if we're in escape mode */
1316 if ((c != '\n') && lcd.esc_seq.len >= 0) {
1317 /* yes, let's add this char to the buffer */
1318 lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1319 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1320 } else {
1321 /* aborts any previous escape sequence */
1322 lcd.esc_seq.len = -1;
1323
1324 switch (c) {
1325 case LCD_ESCAPE_CHAR:
1326 /* start of an escape sequence */
1327 lcd.esc_seq.len = 0;
1328 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1329 break;
1330 case '\b':
1331 /* go back one char and clear it */
1332 if (lcd.addr.x > 0) {
1333 /*
1334 * check if we're not at the
1335 * end of the line
1336 */
1337 if (lcd.addr.x < lcd.bwidth)
1338 /* back one char */
1339 lcd_write_cmd(LCD_CMD_SHIFT);
1340 lcd.addr.x--;
1341 }
1342 /* replace with a space */
1343 lcd_write_data(' ');
1344 /* back one char again */
1345 lcd_write_cmd(LCD_CMD_SHIFT);
1346 break;
1347 case '\014':
1348 /* quickly clear the display */
1349 lcd_clear_fast();
1350 break;
1351 case '\n':
1352 /*
1353 * flush the remainder of the current line and
1354 * go to the beginning of the next line
1355 */
1356 for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1357 lcd_write_data(' ');
1358 lcd.addr.x = 0;
1359 lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1360 lcd_gotoxy();
1361 break;
1362 case '\r':
1363 /* go to the beginning of the same line */
1364 lcd.addr.x = 0;
1365 lcd_gotoxy();
1366 break;
1367 case '\t':
1368 /* print a space instead of the tab */
1369 lcd_print(' ');
1370 break;
1371 default:
1372 /* simply print this char */
1373 lcd_print(c);
1374 break;
1375 }
1376 }
1377
1378 /*
1379 * now we'll see if we're in an escape mode and if the current
1380 * escape sequence can be understood.
1381 */
1382 if (lcd.esc_seq.len >= 2) {
1383 int processed = 0;
1384
1385 if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1386 /* clear the display */
1387 lcd_clear_fast();
1388 processed = 1;
1389 } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1390 /* cursor to home */
1391 lcd.addr.x = 0;
1392 lcd.addr.y = 0;
1393 lcd_gotoxy();
1394 processed = 1;
1395 }
1396 /* codes starting with ^[[L */
1397 else if ((lcd.esc_seq.len >= 3) &&
1398 (lcd.esc_seq.buf[0] == '[') &&
1399 (lcd.esc_seq.buf[1] == 'L')) {
1400 processed = handle_lcd_special_code();
1401 }
1402
1403 /* LCD special escape codes */
1404 /*
1405 * flush the escape sequence if it's been processed
1406 * or if it is getting too long.
1407 */
1408 if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1409 lcd.esc_seq.len = -1;
1410 } /* escape codes */
1411 }
1412
1413 static ssize_t lcd_write(struct file *file,
1414 const char __user *buf, size_t count, loff_t *ppos)
1415 {
1416 const char __user *tmp = buf;
1417 char c;
1418
1419 for (; count-- > 0; (*ppos)++, tmp++) {
1420 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1421 /*
1422 * let's be a little nice with other processes
1423 * that need some CPU
1424 */
1425 schedule();
1426
1427 if (get_user(c, tmp))
1428 return -EFAULT;
1429
1430 lcd_write_char(c);
1431 }
1432
1433 return tmp - buf;
1434 }
1435
1436 static int lcd_open(struct inode *inode, struct file *file)
1437 {
1438 if (!atomic_dec_and_test(&lcd_available))
1439 return -EBUSY; /* open only once at a time */
1440
1441 if (file->f_mode & FMODE_READ) /* device is write-only */
1442 return -EPERM;
1443
1444 if (lcd.must_clear) {
1445 lcd_clear_display();
1446 lcd.must_clear = false;
1447 }
1448 return nonseekable_open(inode, file);
1449 }
1450
1451 static int lcd_release(struct inode *inode, struct file *file)
1452 {
1453 atomic_inc(&lcd_available);
1454 return 0;
1455 }
1456
1457 static const struct file_operations lcd_fops = {
1458 .write = lcd_write,
1459 .open = lcd_open,
1460 .release = lcd_release,
1461 .llseek = no_llseek,
1462 };
1463
1464 static struct miscdevice lcd_dev = {
1465 .minor = LCD_MINOR,
1466 .name = "lcd",
1467 .fops = &lcd_fops,
1468 };
1469
1470 /* public function usable from the kernel for any purpose */
1471 static void panel_lcd_print(const char *s)
1472 {
1473 const char *tmp = s;
1474 int count = strlen(s);
1475
1476 if (lcd.enabled && lcd.initialized) {
1477 for (; count-- > 0; tmp++) {
1478 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1479 /*
1480 * let's be a little nice with other processes
1481 * that need some CPU
1482 */
1483 schedule();
1484
1485 lcd_write_char(*tmp);
1486 }
1487 }
1488 }
1489
1490 /* initialize the LCD driver */
1491 static void lcd_init(void)
1492 {
1493 switch (selected_lcd_type) {
1494 case LCD_TYPE_OLD:
1495 /* parallel mode, 8 bits */
1496 lcd.proto = LCD_PROTO_PARALLEL;
1497 lcd.charset = LCD_CHARSET_NORMAL;
1498 lcd.pins.e = PIN_STROBE;
1499 lcd.pins.rs = PIN_AUTOLF;
1500
1501 lcd.width = 40;
1502 lcd.bwidth = 40;
1503 lcd.hwidth = 64;
1504 lcd.height = 2;
1505 break;
1506 case LCD_TYPE_KS0074:
1507 /* serial mode, ks0074 */
1508 lcd.proto = LCD_PROTO_SERIAL;
1509 lcd.charset = LCD_CHARSET_KS0074;
1510 lcd.pins.bl = PIN_AUTOLF;
1511 lcd.pins.cl = PIN_STROBE;
1512 lcd.pins.da = PIN_D0;
1513
1514 lcd.width = 16;
1515 lcd.bwidth = 40;
1516 lcd.hwidth = 16;
1517 lcd.height = 2;
1518 break;
1519 case LCD_TYPE_NEXCOM:
1520 /* parallel mode, 8 bits, generic */
1521 lcd.proto = LCD_PROTO_PARALLEL;
1522 lcd.charset = LCD_CHARSET_NORMAL;
1523 lcd.pins.e = PIN_AUTOLF;
1524 lcd.pins.rs = PIN_SELECP;
1525 lcd.pins.rw = PIN_INITP;
1526
1527 lcd.width = 16;
1528 lcd.bwidth = 40;
1529 lcd.hwidth = 64;
1530 lcd.height = 2;
1531 break;
1532 case LCD_TYPE_CUSTOM:
1533 /* customer-defined */
1534 lcd.proto = DEFAULT_LCD_PROTO;
1535 lcd.charset = DEFAULT_LCD_CHARSET;
1536 /* default geometry will be set later */
1537 break;
1538 case LCD_TYPE_HANTRONIX:
1539 /* parallel mode, 8 bits, hantronix-like */
1540 default:
1541 lcd.proto = LCD_PROTO_PARALLEL;
1542 lcd.charset = LCD_CHARSET_NORMAL;
1543 lcd.pins.e = PIN_STROBE;
1544 lcd.pins.rs = PIN_SELECP;
1545
1546 lcd.width = 16;
1547 lcd.bwidth = 40;
1548 lcd.hwidth = 64;
1549 lcd.height = 2;
1550 break;
1551 }
1552
1553 /* Overwrite with module params set on loading */
1554 if (lcd_height != NOT_SET)
1555 lcd.height = lcd_height;
1556 if (lcd_width != NOT_SET)
1557 lcd.width = lcd_width;
1558 if (lcd_bwidth != NOT_SET)
1559 lcd.bwidth = lcd_bwidth;
1560 if (lcd_hwidth != NOT_SET)
1561 lcd.hwidth = lcd_hwidth;
1562 if (lcd_charset != NOT_SET)
1563 lcd.charset = lcd_charset;
1564 if (lcd_proto != NOT_SET)
1565 lcd.proto = lcd_proto;
1566 if (lcd_e_pin != PIN_NOT_SET)
1567 lcd.pins.e = lcd_e_pin;
1568 if (lcd_rs_pin != PIN_NOT_SET)
1569 lcd.pins.rs = lcd_rs_pin;
1570 if (lcd_rw_pin != PIN_NOT_SET)
1571 lcd.pins.rw = lcd_rw_pin;
1572 if (lcd_cl_pin != PIN_NOT_SET)
1573 lcd.pins.cl = lcd_cl_pin;
1574 if (lcd_da_pin != PIN_NOT_SET)
1575 lcd.pins.da = lcd_da_pin;
1576 if (lcd_bl_pin != PIN_NOT_SET)
1577 lcd.pins.bl = lcd_bl_pin;
1578
1579 /* this is used to catch wrong and default values */
1580 if (lcd.width <= 0)
1581 lcd.width = DEFAULT_LCD_WIDTH;
1582 if (lcd.bwidth <= 0)
1583 lcd.bwidth = DEFAULT_LCD_BWIDTH;
1584 if (lcd.hwidth <= 0)
1585 lcd.hwidth = DEFAULT_LCD_HWIDTH;
1586 if (lcd.height <= 0)
1587 lcd.height = DEFAULT_LCD_HEIGHT;
1588
1589 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1590 lcd_write_cmd = lcd_write_cmd_s;
1591 lcd_write_data = lcd_write_data_s;
1592 lcd_clear_fast = lcd_clear_fast_s;
1593
1594 if (lcd.pins.cl == PIN_NOT_SET)
1595 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1596 if (lcd.pins.da == PIN_NOT_SET)
1597 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1598
1599 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1600 lcd_write_cmd = lcd_write_cmd_p8;
1601 lcd_write_data = lcd_write_data_p8;
1602 lcd_clear_fast = lcd_clear_fast_p8;
1603
1604 if (lcd.pins.e == PIN_NOT_SET)
1605 lcd.pins.e = DEFAULT_LCD_PIN_E;
1606 if (lcd.pins.rs == PIN_NOT_SET)
1607 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1608 if (lcd.pins.rw == PIN_NOT_SET)
1609 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1610 } else {
1611 lcd_write_cmd = lcd_write_cmd_tilcd;
1612 lcd_write_data = lcd_write_data_tilcd;
1613 lcd_clear_fast = lcd_clear_fast_tilcd;
1614 }
1615
1616 if (lcd.pins.bl == PIN_NOT_SET)
1617 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1618
1619 if (lcd.pins.e == PIN_NOT_SET)
1620 lcd.pins.e = PIN_NONE;
1621 if (lcd.pins.rs == PIN_NOT_SET)
1622 lcd.pins.rs = PIN_NONE;
1623 if (lcd.pins.rw == PIN_NOT_SET)
1624 lcd.pins.rw = PIN_NONE;
1625 if (lcd.pins.bl == PIN_NOT_SET)
1626 lcd.pins.bl = PIN_NONE;
1627 if (lcd.pins.cl == PIN_NOT_SET)
1628 lcd.pins.cl = PIN_NONE;
1629 if (lcd.pins.da == PIN_NOT_SET)
1630 lcd.pins.da = PIN_NONE;
1631
1632 if (lcd.charset == NOT_SET)
1633 lcd.charset = DEFAULT_LCD_CHARSET;
1634
1635 if (lcd.charset == LCD_CHARSET_KS0074)
1636 lcd_char_conv = lcd_char_conv_ks0074;
1637 else
1638 lcd_char_conv = NULL;
1639
1640 if (lcd.pins.bl != PIN_NONE)
1641 init_scan_timer();
1642
1643 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1644 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1645 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1646 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1647 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1648 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1649 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1650 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1651 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1652 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1653 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1654 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1655
1656 /*
1657 * before this line, we must NOT send anything to the display.
1658 * Since lcd_init_display() needs to write data, we have to
1659 * enable mark the LCD initialized just before.
1660 */
1661 lcd.initialized = true;
1662 lcd_init_display();
1663
1664 /* display a short message */
1665 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1666 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1667 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1668 #endif
1669 #else
1670 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1671 PANEL_VERSION);
1672 #endif
1673 lcd.addr.x = 0;
1674 lcd.addr.y = 0;
1675 /* clear the display on the next device opening */
1676 lcd.must_clear = true;
1677 lcd_gotoxy();
1678 }
1679
1680 /*
1681 * These are the file operation function for user access to /dev/keypad
1682 */
1683
1684 static ssize_t keypad_read(struct file *file,
1685 char __user *buf, size_t count, loff_t *ppos)
1686 {
1687 unsigned i = *ppos;
1688 char __user *tmp = buf;
1689
1690 if (keypad_buflen == 0) {
1691 if (file->f_flags & O_NONBLOCK)
1692 return -EAGAIN;
1693
1694 if (wait_event_interruptible(keypad_read_wait,
1695 keypad_buflen != 0))
1696 return -EINTR;
1697 }
1698
1699 for (; count-- > 0 && (keypad_buflen > 0);
1700 ++i, ++tmp, --keypad_buflen) {
1701 put_user(keypad_buffer[keypad_start], tmp);
1702 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1703 }
1704 *ppos = i;
1705
1706 return tmp - buf;
1707 }
1708
1709 static int keypad_open(struct inode *inode, struct file *file)
1710 {
1711 if (!atomic_dec_and_test(&keypad_available))
1712 return -EBUSY; /* open only once at a time */
1713
1714 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1715 return -EPERM;
1716
1717 keypad_buflen = 0; /* flush the buffer on opening */
1718 return 0;
1719 }
1720
1721 static int keypad_release(struct inode *inode, struct file *file)
1722 {
1723 atomic_inc(&keypad_available);
1724 return 0;
1725 }
1726
1727 static const struct file_operations keypad_fops = {
1728 .read = keypad_read, /* read */
1729 .open = keypad_open, /* open */
1730 .release = keypad_release, /* close */
1731 .llseek = default_llseek,
1732 };
1733
1734 static struct miscdevice keypad_dev = {
1735 .minor = KEYPAD_MINOR,
1736 .name = "keypad",
1737 .fops = &keypad_fops,
1738 };
1739
1740 static void keypad_send_key(const char *string, int max_len)
1741 {
1742 /* send the key to the device only if a process is attached to it. */
1743 if (!atomic_read(&keypad_available)) {
1744 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1745 keypad_buffer[(keypad_start + keypad_buflen++) %
1746 KEYPAD_BUFFER] = *string++;
1747 }
1748 wake_up_interruptible(&keypad_read_wait);
1749 }
1750 }
1751
1752 /* this function scans all the bits involving at least one logical signal,
1753 * and puts the results in the bitfield "phys_read" (one bit per established
1754 * contact), and sets "phys_read_prev" to "phys_read".
1755 *
1756 * Note: to debounce input signals, we will only consider as switched a signal
1757 * which is stable across 2 measures. Signals which are different between two
1758 * reads will be kept as they previously were in their logical form (phys_prev).
1759 * A signal which has just switched will have a 1 in
1760 * (phys_read ^ phys_read_prev).
1761 */
1762 static void phys_scan_contacts(void)
1763 {
1764 int bit, bitval;
1765 char oldval;
1766 char bitmask;
1767 char gndmask;
1768
1769 phys_prev = phys_curr;
1770 phys_read_prev = phys_read;
1771 phys_read = 0; /* flush all signals */
1772
1773 /* keep track of old value, with all outputs disabled */
1774 oldval = r_dtr(pprt) | scan_mask_o;
1775 /* activate all keyboard outputs (active low) */
1776 w_dtr(pprt, oldval & ~scan_mask_o);
1777
1778 /* will have a 1 for each bit set to gnd */
1779 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1780 /* disable all matrix signals */
1781 w_dtr(pprt, oldval);
1782
1783 /* now that all outputs are cleared, the only active input bits are
1784 * directly connected to the ground
1785 */
1786
1787 /* 1 for each grounded input */
1788 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1789
1790 /* grounded inputs are signals 40-44 */
1791 phys_read |= (pmask_t) gndmask << 40;
1792
1793 if (bitmask != gndmask) {
1794 /*
1795 * since clearing the outputs changed some inputs, we know
1796 * that some input signals are currently tied to some outputs.
1797 * So we'll scan them.
1798 */
1799 for (bit = 0; bit < 8; bit++) {
1800 bitval = BIT(bit);
1801
1802 if (!(scan_mask_o & bitval)) /* skip unused bits */
1803 continue;
1804
1805 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1806 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1807 phys_read |= (pmask_t) bitmask << (5 * bit);
1808 }
1809 w_dtr(pprt, oldval); /* disable all outputs */
1810 }
1811 /*
1812 * this is easy: use old bits when they are flapping,
1813 * use new ones when stable
1814 */
1815 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1816 (phys_read & ~(phys_read ^ phys_read_prev));
1817 }
1818
1819 static inline int input_state_high(struct logical_input *input)
1820 {
1821 #if 0
1822 /* FIXME:
1823 * this is an invalid test. It tries to catch
1824 * transitions from single-key to multiple-key, but
1825 * doesn't take into account the contacts polarity.
1826 * The only solution to the problem is to parse keys
1827 * from the most complex to the simplest combinations,
1828 * and mark them as 'caught' once a combination
1829 * matches, then unmatch it for all other ones.
1830 */
1831
1832 /* try to catch dangerous transitions cases :
1833 * someone adds a bit, so this signal was a false
1834 * positive resulting from a transition. We should
1835 * invalidate the signal immediately and not call the
1836 * release function.
1837 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1838 */
1839 if (((phys_prev & input->mask) == input->value) &&
1840 ((phys_curr & input->mask) > input->value)) {
1841 input->state = INPUT_ST_LOW; /* invalidate */
1842 return 1;
1843 }
1844 #endif
1845
1846 if ((phys_curr & input->mask) == input->value) {
1847 if ((input->type == INPUT_TYPE_STD) &&
1848 (input->high_timer == 0)) {
1849 input->high_timer++;
1850 if (input->u.std.press_fct)
1851 input->u.std.press_fct(input->u.std.press_data);
1852 } else if (input->type == INPUT_TYPE_KBD) {
1853 /* will turn on the light */
1854 keypressed = 1;
1855
1856 if (input->high_timer == 0) {
1857 char *press_str = input->u.kbd.press_str;
1858
1859 if (press_str[0]) {
1860 int s = sizeof(input->u.kbd.press_str);
1861
1862 keypad_send_key(press_str, s);
1863 }
1864 }
1865
1866 if (input->u.kbd.repeat_str[0]) {
1867 char *repeat_str = input->u.kbd.repeat_str;
1868
1869 if (input->high_timer >= KEYPAD_REP_START) {
1870 int s = sizeof(input->u.kbd.repeat_str);
1871
1872 input->high_timer -= KEYPAD_REP_DELAY;
1873 keypad_send_key(repeat_str, s);
1874 }
1875 /* we will need to come back here soon */
1876 inputs_stable = 0;
1877 }
1878
1879 if (input->high_timer < 255)
1880 input->high_timer++;
1881 }
1882 return 1;
1883 }
1884
1885 /* else signal falling down. Let's fall through. */
1886 input->state = INPUT_ST_FALLING;
1887 input->fall_timer = 0;
1888
1889 return 0;
1890 }
1891
1892 static inline void input_state_falling(struct logical_input *input)
1893 {
1894 #if 0
1895 /* FIXME !!! same comment as in input_state_high */
1896 if (((phys_prev & input->mask) == input->value) &&
1897 ((phys_curr & input->mask) > input->value)) {
1898 input->state = INPUT_ST_LOW; /* invalidate */
1899 return;
1900 }
1901 #endif
1902
1903 if ((phys_curr & input->mask) == input->value) {
1904 if (input->type == INPUT_TYPE_KBD) {
1905 /* will turn on the light */
1906 keypressed = 1;
1907
1908 if (input->u.kbd.repeat_str[0]) {
1909 char *repeat_str = input->u.kbd.repeat_str;
1910
1911 if (input->high_timer >= KEYPAD_REP_START) {
1912 int s = sizeof(input->u.kbd.repeat_str);
1913
1914 input->high_timer -= KEYPAD_REP_DELAY;
1915 keypad_send_key(repeat_str, s);
1916 }
1917 /* we will need to come back here soon */
1918 inputs_stable = 0;
1919 }
1920
1921 if (input->high_timer < 255)
1922 input->high_timer++;
1923 }
1924 input->state = INPUT_ST_HIGH;
1925 } else if (input->fall_timer >= input->fall_time) {
1926 /* call release event */
1927 if (input->type == INPUT_TYPE_STD) {
1928 void (*release_fct)(int) = input->u.std.release_fct;
1929
1930 if (release_fct)
1931 release_fct(input->u.std.release_data);
1932 } else if (input->type == INPUT_TYPE_KBD) {
1933 char *release_str = input->u.kbd.release_str;
1934
1935 if (release_str[0]) {
1936 int s = sizeof(input->u.kbd.release_str);
1937
1938 keypad_send_key(release_str, s);
1939 }
1940 }
1941
1942 input->state = INPUT_ST_LOW;
1943 } else {
1944 input->fall_timer++;
1945 inputs_stable = 0;
1946 }
1947 }
1948
1949 static void panel_process_inputs(void)
1950 {
1951 struct list_head *item;
1952 struct logical_input *input;
1953
1954 keypressed = 0;
1955 inputs_stable = 1;
1956 list_for_each(item, &logical_inputs) {
1957 input = list_entry(item, struct logical_input, list);
1958
1959 switch (input->state) {
1960 case INPUT_ST_LOW:
1961 if ((phys_curr & input->mask) != input->value)
1962 break;
1963 /* if all needed ones were already set previously,
1964 * this means that this logical signal has been
1965 * activated by the releasing of another combined
1966 * signal, so we don't want to match.
1967 * eg: AB -(release B)-> A -(release A)-> 0 :
1968 * don't match A.
1969 */
1970 if ((phys_prev & input->mask) == input->value)
1971 break;
1972 input->rise_timer = 0;
1973 input->state = INPUT_ST_RISING;
1974 /* no break here, fall through */
1975 case INPUT_ST_RISING:
1976 if ((phys_curr & input->mask) != input->value) {
1977 input->state = INPUT_ST_LOW;
1978 break;
1979 }
1980 if (input->rise_timer < input->rise_time) {
1981 inputs_stable = 0;
1982 input->rise_timer++;
1983 break;
1984 }
1985 input->high_timer = 0;
1986 input->state = INPUT_ST_HIGH;
1987 /* no break here, fall through */
1988 case INPUT_ST_HIGH:
1989 if (input_state_high(input))
1990 break;
1991 /* no break here, fall through */
1992 case INPUT_ST_FALLING:
1993 input_state_falling(input);
1994 }
1995 }
1996 }
1997
1998 static void panel_scan_timer(void)
1999 {
2000 if (keypad.enabled && keypad_initialized) {
2001 if (spin_trylock_irq(&pprt_lock)) {
2002 phys_scan_contacts();
2003
2004 /* no need for the parport anymore */
2005 spin_unlock_irq(&pprt_lock);
2006 }
2007
2008 if (!inputs_stable || phys_curr != phys_prev)
2009 panel_process_inputs();
2010 }
2011
2012 if (lcd.enabled && lcd.initialized) {
2013 if (keypressed) {
2014 if (lcd.light_tempo == 0 &&
2015 ((lcd.flags & LCD_FLAG_L) == 0))
2016 lcd_backlight(1);
2017 lcd.light_tempo = FLASH_LIGHT_TEMPO;
2018 } else if (lcd.light_tempo > 0) {
2019 lcd.light_tempo--;
2020 if (lcd.light_tempo == 0 &&
2021 ((lcd.flags & LCD_FLAG_L) == 0))
2022 lcd_backlight(0);
2023 }
2024 }
2025
2026 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2027 }
2028
2029 static void init_scan_timer(void)
2030 {
2031 if (scan_timer.function)
2032 return; /* already started */
2033
2034 setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2035 scan_timer.expires = jiffies + INPUT_POLL_TIME;
2036 add_timer(&scan_timer);
2037 }
2038
2039 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2040 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2041 * corresponding to out and in bits respectively.
2042 * returns 1 if ok, 0 if error (in which case, nothing is written).
2043 */
2044 static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
2045 char *imask, char *omask)
2046 {
2047 static char sigtab[10] = "EeSsPpAaBb";
2048 char im, om;
2049 pmask_t m, v;
2050
2051 om = 0ULL;
2052 im = 0ULL;
2053 m = 0ULL;
2054 v = 0ULL;
2055 while (*name) {
2056 int in, out, bit, neg;
2057
2058 for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2059 in++)
2060 ;
2061
2062 if (in >= sizeof(sigtab))
2063 return 0; /* input name not found */
2064 neg = (in & 1); /* odd (lower) names are negated */
2065 in >>= 1;
2066 im |= BIT(in);
2067
2068 name++;
2069 if (isdigit(*name)) {
2070 out = *name - '0';
2071 om |= BIT(out);
2072 } else if (*name == '-') {
2073 out = 8;
2074 } else {
2075 return 0; /* unknown bit name */
2076 }
2077
2078 bit = (out * 5) + in;
2079
2080 m |= 1ULL << bit;
2081 if (!neg)
2082 v |= 1ULL << bit;
2083 name++;
2084 }
2085 *mask = m;
2086 *value = v;
2087 if (imask)
2088 *imask |= im;
2089 if (omask)
2090 *omask |= om;
2091 return 1;
2092 }
2093
2094 /* tries to bind a key to the signal name <name>. The key will send the
2095 * strings <press>, <repeat>, <release> for these respective events.
2096 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2097 */
2098 static struct logical_input *panel_bind_key(const char *name, const char *press,
2099 const char *repeat,
2100 const char *release)
2101 {
2102 struct logical_input *key;
2103
2104 key = kzalloc(sizeof(*key), GFP_KERNEL);
2105 if (!key)
2106 return NULL;
2107
2108 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2109 &scan_mask_o)) {
2110 kfree(key);
2111 return NULL;
2112 }
2113
2114 key->type = INPUT_TYPE_KBD;
2115 key->state = INPUT_ST_LOW;
2116 key->rise_time = 1;
2117 key->fall_time = 1;
2118
2119 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2120 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2121 strncpy(key->u.kbd.release_str, release,
2122 sizeof(key->u.kbd.release_str));
2123 list_add(&key->list, &logical_inputs);
2124 return key;
2125 }
2126
2127 #if 0
2128 /* tries to bind a callback function to the signal name <name>. The function
2129 * <press_fct> will be called with the <press_data> arg when the signal is
2130 * activated, and so on for <release_fct>/<release_data>
2131 * Returns the pointer to the new signal if ok, NULL if the signal could not
2132 * be bound.
2133 */
2134 static struct logical_input *panel_bind_callback(char *name,
2135 void (*press_fct)(int),
2136 int press_data,
2137 void (*release_fct)(int),
2138 int release_data)
2139 {
2140 struct logical_input *callback;
2141
2142 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2143 if (!callback)
2144 return NULL;
2145
2146 memset(callback, 0, sizeof(struct logical_input));
2147 if (!input_name2mask(name, &callback->mask, &callback->value,
2148 &scan_mask_i, &scan_mask_o))
2149 return NULL;
2150
2151 callback->type = INPUT_TYPE_STD;
2152 callback->state = INPUT_ST_LOW;
2153 callback->rise_time = 1;
2154 callback->fall_time = 1;
2155 callback->u.std.press_fct = press_fct;
2156 callback->u.std.press_data = press_data;
2157 callback->u.std.release_fct = release_fct;
2158 callback->u.std.release_data = release_data;
2159 list_add(&callback->list, &logical_inputs);
2160 return callback;
2161 }
2162 #endif
2163
2164 static void keypad_init(void)
2165 {
2166 int keynum;
2167
2168 init_waitqueue_head(&keypad_read_wait);
2169 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2170
2171 /* Let's create all known keys */
2172
2173 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2174 panel_bind_key(keypad_profile[keynum][0],
2175 keypad_profile[keynum][1],
2176 keypad_profile[keynum][2],
2177 keypad_profile[keynum][3]);
2178 }
2179
2180 init_scan_timer();
2181 keypad_initialized = 1;
2182 }
2183
2184 /**************************************************/
2185 /* device initialization */
2186 /**************************************************/
2187
2188 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2189 void *unused)
2190 {
2191 if (lcd.enabled && lcd.initialized) {
2192 switch (code) {
2193 case SYS_DOWN:
2194 panel_lcd_print
2195 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2196 break;
2197 case SYS_HALT:
2198 panel_lcd_print
2199 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2200 break;
2201 case SYS_POWER_OFF:
2202 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2203 break;
2204 default:
2205 break;
2206 }
2207 }
2208 return NOTIFY_DONE;
2209 }
2210
2211 static struct notifier_block panel_notifier = {
2212 panel_notify_sys,
2213 NULL,
2214 0
2215 };
2216
2217 static void panel_attach(struct parport *port)
2218 {
2219 struct pardev_cb panel_cb;
2220
2221 if (port->number != parport)
2222 return;
2223
2224 if (pprt) {
2225 pr_err("%s: port->number=%d parport=%d, already registered!\n",
2226 __func__, port->number, parport);
2227 return;
2228 }
2229
2230 memset(&panel_cb, 0, sizeof(panel_cb));
2231 panel_cb.private = &pprt;
2232 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
2233
2234 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
2235 if (!pprt) {
2236 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2237 __func__, port->number, parport);
2238 return;
2239 }
2240
2241 if (parport_claim(pprt)) {
2242 pr_err("could not claim access to parport%d. Aborting.\n",
2243 parport);
2244 goto err_unreg_device;
2245 }
2246
2247 /* must init LCD first, just in case an IRQ from the keypad is
2248 * generated at keypad init
2249 */
2250 if (lcd.enabled) {
2251 lcd_init();
2252 if (misc_register(&lcd_dev))
2253 goto err_unreg_device;
2254 }
2255
2256 if (keypad.enabled) {
2257 keypad_init();
2258 if (misc_register(&keypad_dev))
2259 goto err_lcd_unreg;
2260 }
2261 register_reboot_notifier(&panel_notifier);
2262 return;
2263
2264 err_lcd_unreg:
2265 if (lcd.enabled)
2266 misc_deregister(&lcd_dev);
2267 err_unreg_device:
2268 parport_unregister_device(pprt);
2269 pprt = NULL;
2270 }
2271
2272 static void panel_detach(struct parport *port)
2273 {
2274 if (port->number != parport)
2275 return;
2276
2277 if (!pprt) {
2278 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2279 __func__, port->number, parport);
2280 return;
2281 }
2282 if (scan_timer.function)
2283 del_timer_sync(&scan_timer);
2284
2285 if (pprt) {
2286 if (keypad.enabled) {
2287 misc_deregister(&keypad_dev);
2288 keypad_initialized = 0;
2289 }
2290
2291 if (lcd.enabled) {
2292 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2293 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2294 misc_deregister(&lcd_dev);
2295 lcd.initialized = false;
2296 }
2297
2298 /* TODO: free all input signals */
2299 parport_release(pprt);
2300 parport_unregister_device(pprt);
2301 pprt = NULL;
2302 unregister_reboot_notifier(&panel_notifier);
2303 }
2304 }
2305
2306 static struct parport_driver panel_driver = {
2307 .name = "panel",
2308 .match_port = panel_attach,
2309 .detach = panel_detach,
2310 .devmodel = true,
2311 };
2312
2313 /* init function */
2314 static int __init panel_init_module(void)
2315 {
2316 int selected_keypad_type = NOT_SET, err;
2317
2318 /* take care of an eventual profile */
2319 switch (profile) {
2320 case PANEL_PROFILE_CUSTOM:
2321 /* custom profile */
2322 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2323 selected_lcd_type = DEFAULT_LCD_TYPE;
2324 break;
2325 case PANEL_PROFILE_OLD:
2326 /* 8 bits, 2*16, old keypad */
2327 selected_keypad_type = KEYPAD_TYPE_OLD;
2328 selected_lcd_type = LCD_TYPE_OLD;
2329
2330 /* TODO: This two are a little hacky, sort it out later */
2331 if (lcd_width == NOT_SET)
2332 lcd_width = 16;
2333 if (lcd_hwidth == NOT_SET)
2334 lcd_hwidth = 16;
2335 break;
2336 case PANEL_PROFILE_NEW:
2337 /* serial, 2*16, new keypad */
2338 selected_keypad_type = KEYPAD_TYPE_NEW;
2339 selected_lcd_type = LCD_TYPE_KS0074;
2340 break;
2341 case PANEL_PROFILE_HANTRONIX:
2342 /* 8 bits, 2*16 hantronix-like, no keypad */
2343 selected_keypad_type = KEYPAD_TYPE_NONE;
2344 selected_lcd_type = LCD_TYPE_HANTRONIX;
2345 break;
2346 case PANEL_PROFILE_NEXCOM:
2347 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2348 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2349 selected_lcd_type = LCD_TYPE_NEXCOM;
2350 break;
2351 case PANEL_PROFILE_LARGE:
2352 /* 8 bits, 2*40, old keypad */
2353 selected_keypad_type = KEYPAD_TYPE_OLD;
2354 selected_lcd_type = LCD_TYPE_OLD;
2355 break;
2356 }
2357
2358 /*
2359 * Overwrite selection with module param values (both keypad and lcd),
2360 * where the deprecated params have lower prio.
2361 */
2362 if (keypad_enabled != NOT_SET)
2363 selected_keypad_type = keypad_enabled;
2364 if (keypad_type != NOT_SET)
2365 selected_keypad_type = keypad_type;
2366
2367 keypad.enabled = (selected_keypad_type > 0);
2368
2369 if (lcd_enabled != NOT_SET)
2370 selected_lcd_type = lcd_enabled;
2371 if (lcd_type != NOT_SET)
2372 selected_lcd_type = lcd_type;
2373
2374 lcd.enabled = (selected_lcd_type > 0);
2375
2376 if (lcd.enabled) {
2377 /*
2378 * Init lcd struct with load-time values to preserve exact
2379 * current functionality (at least for now).
2380 */
2381 lcd.height = lcd_height;
2382 lcd.width = lcd_width;
2383 lcd.bwidth = lcd_bwidth;
2384 lcd.hwidth = lcd_hwidth;
2385 lcd.charset = lcd_charset;
2386 lcd.proto = lcd_proto;
2387 lcd.pins.e = lcd_e_pin;
2388 lcd.pins.rs = lcd_rs_pin;
2389 lcd.pins.rw = lcd_rw_pin;
2390 lcd.pins.cl = lcd_cl_pin;
2391 lcd.pins.da = lcd_da_pin;
2392 lcd.pins.bl = lcd_bl_pin;
2393
2394 /* Leave it for now, just in case */
2395 lcd.esc_seq.len = -1;
2396 }
2397
2398 switch (selected_keypad_type) {
2399 case KEYPAD_TYPE_OLD:
2400 keypad_profile = old_keypad_profile;
2401 break;
2402 case KEYPAD_TYPE_NEW:
2403 keypad_profile = new_keypad_profile;
2404 break;
2405 case KEYPAD_TYPE_NEXCOM:
2406 keypad_profile = nexcom_keypad_profile;
2407 break;
2408 default:
2409 keypad_profile = NULL;
2410 break;
2411 }
2412
2413 if (!lcd.enabled && !keypad.enabled) {
2414 /* no device enabled, let's exit */
2415 pr_err("driver version " PANEL_VERSION " disabled.\n");
2416 return -ENODEV;
2417 }
2418
2419 err = parport_register_driver(&panel_driver);
2420 if (err) {
2421 pr_err("could not register with parport. Aborting.\n");
2422 return err;
2423 }
2424
2425 if (pprt)
2426 pr_info("driver version " PANEL_VERSION
2427 " registered on parport%d (io=0x%lx).\n", parport,
2428 pprt->port->base);
2429 else
2430 pr_info("driver version " PANEL_VERSION
2431 " not yet registered\n");
2432 return 0;
2433 }
2434
2435 static void __exit panel_cleanup_module(void)
2436 {
2437 parport_unregister_driver(&panel_driver);
2438 }
2439
2440 module_init(panel_init_module);
2441 module_exit(panel_cleanup_module);
2442 MODULE_AUTHOR("Willy Tarreau");
2443 MODULE_LICENSE("GPL");
2444
2445 /*
2446 * Local variables:
2447 * c-indent-level: 4
2448 * tab-width: 8
2449 * End:
2450 */
This page took 0.273628 seconds and 6 git commands to generate.