Merge tag 'upstream-4.6-rc1' of git://git.infradead.org/linux-ubifs
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / chip.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 /*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66
67 #define NUM_IB_PORTS 1
68
69 uint kdeth_qp;
70 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
71 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
72
73 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
74 module_param(num_vls, uint, S_IRUGO);
75 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
76
77 /*
78 * Default time to aggregate two 10K packets from the idle state
79 * (timer not running). The timer starts at the end of the first packet,
80 * so only the time for one 10K packet and header plus a bit extra is needed.
81 * 10 * 1024 + 64 header byte = 10304 byte
82 * 10304 byte / 12.5 GB/s = 824.32ns
83 */
84 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
85 module_param(rcv_intr_timeout, uint, S_IRUGO);
86 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
87
88 uint rcv_intr_count = 16; /* same as qib */
89 module_param(rcv_intr_count, uint, S_IRUGO);
90 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
91
92 ushort link_crc_mask = SUPPORTED_CRCS;
93 module_param(link_crc_mask, ushort, S_IRUGO);
94 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
95
96 uint loopback;
97 module_param_named(loopback, loopback, uint, S_IRUGO);
98 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
99
100 /* Other driver tunables */
101 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
102 static ushort crc_14b_sideband = 1;
103 static uint use_flr = 1;
104 uint quick_linkup; /* skip LNI */
105
106 struct flag_table {
107 u64 flag; /* the flag */
108 char *str; /* description string */
109 u16 extra; /* extra information */
110 u16 unused0;
111 u32 unused1;
112 };
113
114 /* str must be a string constant */
115 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
116 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
117
118 /* Send Error Consequences */
119 #define SEC_WRITE_DROPPED 0x1
120 #define SEC_PACKET_DROPPED 0x2
121 #define SEC_SC_HALTED 0x4 /* per-context only */
122 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */
123
124 #define MIN_KERNEL_KCTXTS 2
125 #define FIRST_KERNEL_KCTXT 1
126 #define NUM_MAP_REGS 32
127
128 /* Bit offset into the GUID which carries HFI id information */
129 #define GUID_HFI_INDEX_SHIFT 39
130
131 /* extract the emulation revision */
132 #define emulator_rev(dd) ((dd)->irev >> 8)
133 /* parallel and serial emulation versions are 3 and 4 respectively */
134 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
135 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
136
137 /* RSM fields */
138
139 /* packet type */
140 #define IB_PACKET_TYPE 2ull
141 #define QW_SHIFT 6ull
142 /* QPN[7..1] */
143 #define QPN_WIDTH 7ull
144
145 /* LRH.BTH: QW 0, OFFSET 48 - for match */
146 #define LRH_BTH_QW 0ull
147 #define LRH_BTH_BIT_OFFSET 48ull
148 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
149 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
150 #define LRH_BTH_SELECT
151 #define LRH_BTH_MASK 3ull
152 #define LRH_BTH_VALUE 2ull
153
154 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
155 #define LRH_SC_QW 0ull
156 #define LRH_SC_BIT_OFFSET 56ull
157 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
158 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
159 #define LRH_SC_MASK 128ull
160 #define LRH_SC_VALUE 0ull
161
162 /* SC[n..0] QW 0, OFFSET 60 - for select */
163 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
164
165 /* QPN[m+n:1] QW 1, OFFSET 1 */
166 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
167
168 /* defines to build power on SC2VL table */
169 #define SC2VL_VAL( \
170 num, \
171 sc0, sc0val, \
172 sc1, sc1val, \
173 sc2, sc2val, \
174 sc3, sc3val, \
175 sc4, sc4val, \
176 sc5, sc5val, \
177 sc6, sc6val, \
178 sc7, sc7val) \
179 ( \
180 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
181 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
182 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
183 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
184 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
185 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
186 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
187 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
188 )
189
190 #define DC_SC_VL_VAL( \
191 range, \
192 e0, e0val, \
193 e1, e1val, \
194 e2, e2val, \
195 e3, e3val, \
196 e4, e4val, \
197 e5, e5val, \
198 e6, e6val, \
199 e7, e7val, \
200 e8, e8val, \
201 e9, e9val, \
202 e10, e10val, \
203 e11, e11val, \
204 e12, e12val, \
205 e13, e13val, \
206 e14, e14val, \
207 e15, e15val) \
208 ( \
209 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
210 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
211 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
212 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
213 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
214 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
215 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
216 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
217 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
218 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
219 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
220 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
221 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
222 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
223 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
224 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
225 )
226
227 /* all CceStatus sub-block freeze bits */
228 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
229 | CCE_STATUS_RXE_FROZE_SMASK \
230 | CCE_STATUS_TXE_FROZE_SMASK \
231 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
232 /* all CceStatus sub-block TXE pause bits */
233 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
234 | CCE_STATUS_TXE_PAUSED_SMASK \
235 | CCE_STATUS_SDMA_PAUSED_SMASK)
236 /* all CceStatus sub-block RXE pause bits */
237 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
238
239 /*
240 * CCE Error flags.
241 */
242 static struct flag_table cce_err_status_flags[] = {
243 /* 0*/ FLAG_ENTRY0("CceCsrParityErr",
244 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
245 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
246 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
247 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
248 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
249 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
250 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
251 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
252 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
253 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
254 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
255 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
256 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
257 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
258 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
259 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
260 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
261 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
262 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
263 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
264 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
265 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
266 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
267 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
268 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
269 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
270 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
271 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
272 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
273 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
274 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
275 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
276 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
277 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
278 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
279 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
280 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
281 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
282 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
283 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
284 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
285 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
286 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
287 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
288 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
289 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
290 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
291 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
292 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
293 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
294 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
295 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
296 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
297 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
298 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
299 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
300 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
301 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
302 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
303 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
304 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
305 /*31*/ FLAG_ENTRY0("LATriggered",
306 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
307 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
308 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
309 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
310 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
311 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
312 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
313 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
314 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
315 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
316 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
317 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
318 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
319 /*38*/ FLAG_ENTRY0("CceIntMapCorErr",
320 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
321 /*39*/ FLAG_ENTRY0("CceIntMapUncErr",
322 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
323 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
324 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
325 /*41-63 reserved*/
326 };
327
328 /*
329 * Misc Error flags
330 */
331 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
332 static struct flag_table misc_err_status_flags[] = {
333 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
334 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
335 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
336 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
337 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
338 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
339 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
340 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
341 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
342 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
343 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
344 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
345 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
346 };
347
348 /*
349 * TXE PIO Error flags and consequences
350 */
351 static struct flag_table pio_err_status_flags[] = {
352 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
353 SEC_WRITE_DROPPED,
354 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
355 /* 1*/ FLAG_ENTRY("PioWriteAddrParity",
356 SEC_SPC_FREEZE,
357 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
358 /* 2*/ FLAG_ENTRY("PioCsrParity",
359 SEC_SPC_FREEZE,
360 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
361 /* 3*/ FLAG_ENTRY("PioSbMemFifo0",
362 SEC_SPC_FREEZE,
363 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
364 /* 4*/ FLAG_ENTRY("PioSbMemFifo1",
365 SEC_SPC_FREEZE,
366 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
367 /* 5*/ FLAG_ENTRY("PioPccFifoParity",
368 SEC_SPC_FREEZE,
369 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
370 /* 6*/ FLAG_ENTRY("PioPecFifoParity",
371 SEC_SPC_FREEZE,
372 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
373 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
374 SEC_SPC_FREEZE,
375 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
376 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
377 SEC_SPC_FREEZE,
378 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
379 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
380 SEC_SPC_FREEZE,
381 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
382 /*10*/ FLAG_ENTRY("PioSmPktResetParity",
383 SEC_SPC_FREEZE,
384 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
385 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
386 SEC_SPC_FREEZE,
387 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
388 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
389 SEC_SPC_FREEZE,
390 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
391 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
392 0,
393 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
394 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
395 0,
396 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
397 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
398 SEC_SPC_FREEZE,
399 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
400 /*16*/ FLAG_ENTRY("PioPpmcPblFifo",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
403 /*17*/ FLAG_ENTRY("PioInitSmIn",
404 0,
405 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
406 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
407 SEC_SPC_FREEZE,
408 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
409 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
412 /*20*/ FLAG_ENTRY("PioHostAddrMemCor",
413 0,
414 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
415 /*21*/ FLAG_ENTRY("PioWriteDataParity",
416 SEC_SPC_FREEZE,
417 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
418 /*22*/ FLAG_ENTRY("PioStateMachine",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
421 /*23*/ FLAG_ENTRY("PioWriteQwValidParity",
422 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
424 /*24*/ FLAG_ENTRY("PioBlockQwCountParity",
425 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
427 /*25*/ FLAG_ENTRY("PioVlfVlLenParity",
428 SEC_SPC_FREEZE,
429 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
430 /*26*/ FLAG_ENTRY("PioVlfSopParity",
431 SEC_SPC_FREEZE,
432 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
433 /*27*/ FLAG_ENTRY("PioVlFifoParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
436 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
439 /*29*/ FLAG_ENTRY("PioPpmcSopLen",
440 SEC_SPC_FREEZE,
441 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
442 /*30-31 reserved*/
443 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
444 SEC_SPC_FREEZE,
445 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
446 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
449 /*34*/ FLAG_ENTRY("PioPccSopHeadParity",
450 SEC_SPC_FREEZE,
451 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
452 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
453 SEC_SPC_FREEZE,
454 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
455 /*36-63 reserved*/
456 };
457
458 /* TXE PIO errors that cause an SPC freeze */
459 #define ALL_PIO_FREEZE_ERR \
460 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
461 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
462 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
463 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
489
490 /*
491 * TXE SDMA Error flags
492 */
493 static struct flag_table sdma_err_status_flags[] = {
494 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
495 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
496 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
497 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
498 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
499 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
500 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
501 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
502 /*04-63 reserved*/
503 };
504
505 /* TXE SDMA errors that cause an SPC freeze */
506 #define ALL_SDMA_FREEZE_ERR \
507 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
508 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
509 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
510
511 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
512 #define PORT_DISCARD_EGRESS_ERRS \
513 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
514 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
515 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
516
517 /*
518 * TXE Egress Error flags
519 */
520 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
521 static struct flag_table egress_err_status_flags[] = {
522 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
523 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
524 /* 2 reserved */
525 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
526 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
527 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
528 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
529 /* 6 reserved */
530 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
531 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
532 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
533 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
534 /* 9-10 reserved */
535 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
536 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
537 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
538 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
539 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
540 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
541 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
542 SEES(TX_SDMA0_DISALLOWED_PACKET)),
543 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
544 SEES(TX_SDMA1_DISALLOWED_PACKET)),
545 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
546 SEES(TX_SDMA2_DISALLOWED_PACKET)),
547 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
548 SEES(TX_SDMA3_DISALLOWED_PACKET)),
549 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
550 SEES(TX_SDMA4_DISALLOWED_PACKET)),
551 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
552 SEES(TX_SDMA5_DISALLOWED_PACKET)),
553 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
554 SEES(TX_SDMA6_DISALLOWED_PACKET)),
555 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
556 SEES(TX_SDMA7_DISALLOWED_PACKET)),
557 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
558 SEES(TX_SDMA8_DISALLOWED_PACKET)),
559 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
560 SEES(TX_SDMA9_DISALLOWED_PACKET)),
561 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
562 SEES(TX_SDMA10_DISALLOWED_PACKET)),
563 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
564 SEES(TX_SDMA11_DISALLOWED_PACKET)),
565 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
566 SEES(TX_SDMA12_DISALLOWED_PACKET)),
567 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
568 SEES(TX_SDMA13_DISALLOWED_PACKET)),
569 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
570 SEES(TX_SDMA14_DISALLOWED_PACKET)),
571 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
572 SEES(TX_SDMA15_DISALLOWED_PACKET)),
573 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
574 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
575 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
576 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
577 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
578 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
579 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
580 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
581 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
582 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
583 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
584 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
585 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
586 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
587 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
588 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
589 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
590 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
591 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
592 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
593 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
594 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
595 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
596 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
597 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
598 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
599 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
600 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
601 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
602 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
603 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
604 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
605 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
606 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
607 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
608 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
609 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
610 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
611 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
612 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
613 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
614 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
615 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
616 };
617
618 /*
619 * TXE Egress Error Info flags
620 */
621 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
622 static struct flag_table egress_err_info_flags[] = {
623 /* 0*/ FLAG_ENTRY0("Reserved", 0ull),
624 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
625 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
626 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
627 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
628 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
629 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
630 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
631 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
632 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
633 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
634 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
635 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
636 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
637 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
638 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
639 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
640 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
641 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
642 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
643 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
644 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
645 };
646
647 /* TXE Egress errors that cause an SPC freeze */
648 #define ALL_TXE_EGRESS_FREEZE_ERR \
649 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
650 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
651 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
652 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
653 | SEES(TX_LAUNCH_CSR_PARITY) \
654 | SEES(TX_SBRD_CTL_CSR_PARITY) \
655 | SEES(TX_CONFIG_PARITY) \
656 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
657 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
658 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
659 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
660 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
661 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
662 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
663 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
664 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
665 | SEES(TX_CREDIT_RETURN_PARITY))
666
667 /*
668 * TXE Send error flags
669 */
670 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
671 static struct flag_table send_err_status_flags[] = {
672 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
673 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
674 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
675 };
676
677 /*
678 * TXE Send Context Error flags and consequences
679 */
680 static struct flag_table sc_err_status_flags[] = {
681 /* 0*/ FLAG_ENTRY("InconsistentSop",
682 SEC_PACKET_DROPPED | SEC_SC_HALTED,
683 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
684 /* 1*/ FLAG_ENTRY("DisallowedPacket",
685 SEC_PACKET_DROPPED | SEC_SC_HALTED,
686 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
687 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
688 SEC_WRITE_DROPPED | SEC_SC_HALTED,
689 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
690 /* 3*/ FLAG_ENTRY("WriteOverflow",
691 SEC_WRITE_DROPPED | SEC_SC_HALTED,
692 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
693 /* 4*/ FLAG_ENTRY("WriteOutOfBounds",
694 SEC_WRITE_DROPPED | SEC_SC_HALTED,
695 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
696 /* 5-63 reserved*/
697 };
698
699 /*
700 * RXE Receive Error flags
701 */
702 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
703 static struct flag_table rxe_err_status_flags[] = {
704 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
705 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
706 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
707 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
708 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
709 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
710 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
711 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
712 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
713 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
714 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
715 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
716 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
717 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
718 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
719 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
720 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
721 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
722 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
723 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
724 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
725 RXES(RBUF_BLOCK_LIST_READ_UNC)),
726 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
727 RXES(RBUF_BLOCK_LIST_READ_COR)),
728 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
729 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
730 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
731 RXES(RBUF_CSR_QENT_CNT_PARITY)),
732 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
733 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
734 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
735 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
736 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
737 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
738 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
739 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
740 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
741 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
742 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
743 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
744 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
745 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
746 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
747 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
748 RXES(RBUF_FL_INITDONE_PARITY)),
749 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
750 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
751 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
752 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
753 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
754 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
755 RXES(LOOKUP_DES_PART1_UNC_COR)),
756 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
757 RXES(LOOKUP_DES_PART2_PARITY)),
758 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
759 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
760 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
761 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
762 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
763 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
764 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
765 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
766 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
767 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
768 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
769 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
770 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
771 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
772 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
773 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
774 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
775 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
776 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
777 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
778 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
779 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
780 };
781
782 /* RXE errors that will trigger an SPC freeze */
783 #define ALL_RXE_FREEZE_ERR \
784 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
785 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
786 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
787 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
828
829 #define RXE_FREEZE_ABORT_MASK \
830 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
831 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
832 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
833
834 /*
835 * DCC Error Flags
836 */
837 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
838 static struct flag_table dcc_err_flags[] = {
839 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
840 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
841 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
842 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
843 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
844 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
845 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
846 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
847 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
848 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
849 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
850 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
851 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
852 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
853 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
854 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
855 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
856 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
857 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
858 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
859 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
860 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
861 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
862 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
863 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
864 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
865 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
866 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
867 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
868 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
869 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
870 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
871 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
872 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
873 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
874 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
875 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
876 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
877 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
878 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
879 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
880 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
881 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
882 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
883 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
884 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
885 };
886
887 /*
888 * LCB error flags
889 */
890 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
891 static struct flag_table lcb_err_flags[] = {
892 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
893 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
894 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
895 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
896 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
897 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
898 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
899 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
900 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
901 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
902 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
903 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
904 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
905 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
906 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
907 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
908 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
909 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
910 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
911 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
912 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
913 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
914 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
915 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
916 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
917 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
918 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
919 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
920 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
921 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
922 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
923 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
924 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
925 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
926 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
927 LCBE(REDUNDANT_FLIT_PARITY_ERR))
928 };
929
930 /*
931 * DC8051 Error Flags
932 */
933 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
934 static struct flag_table dc8051_err_flags[] = {
935 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
936 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
937 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
938 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
939 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
940 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
941 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
942 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
943 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
944 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
945 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
946 };
947
948 /*
949 * DC8051 Information Error flags
950 *
951 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
952 */
953 static struct flag_table dc8051_info_err_flags[] = {
954 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
955 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
956 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
957 FLAG_ENTRY0("Serdes internal loopback failure",
958 FAILED_SERDES_INTERNAL_LOOPBACK),
959 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
960 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
961 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
962 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
963 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
964 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
965 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
966 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
967 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT)
968 };
969
970 /*
971 * DC8051 Information Host Information flags
972 *
973 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
974 */
975 static struct flag_table dc8051_info_host_msg_flags[] = {
976 FLAG_ENTRY0("Host request done", 0x0001),
977 FLAG_ENTRY0("BC SMA message", 0x0002),
978 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
979 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
980 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
981 FLAG_ENTRY0("External device config request", 0x0020),
982 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
983 FLAG_ENTRY0("LinkUp achieved", 0x0080),
984 FLAG_ENTRY0("Link going down", 0x0100),
985 };
986
987 static u32 encoded_size(u32 size);
988 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
989 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
990 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
991 u8 *continuous);
992 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
993 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
994 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
995 u8 *remote_tx_rate, u16 *link_widths);
996 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
997 u8 *flag_bits, u16 *link_widths);
998 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
999 u8 *device_rev);
1000 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1001 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1002 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1003 u8 *tx_polarity_inversion,
1004 u8 *rx_polarity_inversion, u8 *max_rate);
1005 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1006 unsigned int context, u64 err_status);
1007 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1008 static void handle_dcc_err(struct hfi1_devdata *dd,
1009 unsigned int context, u64 err_status);
1010 static void handle_lcb_err(struct hfi1_devdata *dd,
1011 unsigned int context, u64 err_status);
1012 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1013 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1014 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1015 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1016 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1017 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1018 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1019 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1020 static void set_partition_keys(struct hfi1_pportdata *);
1021 static const char *link_state_name(u32 state);
1022 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1023 u32 state);
1024 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1025 u64 *out_data);
1026 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1027 static int thermal_init(struct hfi1_devdata *dd);
1028
1029 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1030 int msecs);
1031 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1032 static void handle_temp_err(struct hfi1_devdata *);
1033 static void dc_shutdown(struct hfi1_devdata *);
1034 static void dc_start(struct hfi1_devdata *);
1035
1036 /*
1037 * Error interrupt table entry. This is used as input to the interrupt
1038 * "clear down" routine used for all second tier error interrupt register.
1039 * Second tier interrupt registers have a single bit representing them
1040 * in the top-level CceIntStatus.
1041 */
1042 struct err_reg_info {
1043 u32 status; /* status CSR offset */
1044 u32 clear; /* clear CSR offset */
1045 u32 mask; /* mask CSR offset */
1046 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 const char *desc;
1048 };
1049
1050 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1051 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1052 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1053
1054 /*
1055 * Helpers for building HFI and DC error interrupt table entries. Different
1056 * helpers are needed because of inconsistent register names.
1057 */
1058 #define EE(reg, handler, desc) \
1059 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1060 handler, desc }
1061 #define DC_EE1(reg, handler, desc) \
1062 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1063 #define DC_EE2(reg, handler, desc) \
1064 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1065
1066 /*
1067 * Table of the "misc" grouping of error interrupts. Each entry refers to
1068 * another register containing more information.
1069 */
1070 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1071 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1072 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1073 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1074 /* 3*/ { 0, 0, 0, NULL }, /* reserved */
1075 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1076 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1077 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1078 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1079 /* the rest are reserved */
1080 };
1081
1082 /*
1083 * Index into the Various section of the interrupt sources
1084 * corresponding to the Critical Temperature interrupt.
1085 */
1086 #define TCRIT_INT_SOURCE 4
1087
1088 /*
1089 * SDMA error interrupt entry - refers to another register containing more
1090 * information.
1091 */
1092 static const struct err_reg_info sdma_eng_err =
1093 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1094
1095 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1096 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1097 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1098 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1099 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1100 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1101 /* rest are reserved */
1102 };
1103
1104 /*
1105 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1106 * register can not be derived from the MTU value because 10K is not
1107 * a power of 2. Therefore, we need a constant. Everything else can
1108 * be calculated.
1109 */
1110 #define DCC_CFG_PORT_MTU_CAP_10240 7
1111
1112 /*
1113 * Table of the DC grouping of error interrupts. Each entry refers to
1114 * another register containing more information.
1115 */
1116 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1117 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1118 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1119 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1120 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1121 /* the rest are reserved */
1122 };
1123
1124 struct cntr_entry {
1125 /*
1126 * counter name
1127 */
1128 char *name;
1129
1130 /*
1131 * csr to read for name (if applicable)
1132 */
1133 u64 csr;
1134
1135 /*
1136 * offset into dd or ppd to store the counter's value
1137 */
1138 int offset;
1139
1140 /*
1141 * flags
1142 */
1143 u8 flags;
1144
1145 /*
1146 * accessor for stat element, context either dd or ppd
1147 */
1148 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1149 int mode, u64 data);
1150 };
1151
1152 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1153 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1154
1155 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1156 { \
1157 name, \
1158 csr, \
1159 offset, \
1160 flags, \
1161 accessor \
1162 }
1163
1164 /* 32bit RXE */
1165 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1166 CNTR_ELEM(#name, \
1167 (counter * 8 + RCV_COUNTER_ARRAY32), \
1168 0, flags | CNTR_32BIT, \
1169 port_access_u32_csr)
1170
1171 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1172 CNTR_ELEM(#name, \
1173 (counter * 8 + RCV_COUNTER_ARRAY32), \
1174 0, flags | CNTR_32BIT, \
1175 dev_access_u32_csr)
1176
1177 /* 64bit RXE */
1178 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1179 CNTR_ELEM(#name, \
1180 (counter * 8 + RCV_COUNTER_ARRAY64), \
1181 0, flags, \
1182 port_access_u64_csr)
1183
1184 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1185 CNTR_ELEM(#name, \
1186 (counter * 8 + RCV_COUNTER_ARRAY64), \
1187 0, flags, \
1188 dev_access_u64_csr)
1189
1190 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1191 #define OVR_ELM(ctx) \
1192 CNTR_ELEM("RcvHdrOvr" #ctx, \
1193 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1194 0, CNTR_NORMAL, port_access_u64_csr)
1195
1196 /* 32bit TXE */
1197 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1198 CNTR_ELEM(#name, \
1199 (counter * 8 + SEND_COUNTER_ARRAY32), \
1200 0, flags | CNTR_32BIT, \
1201 port_access_u32_csr)
1202
1203 /* 64bit TXE */
1204 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1205 CNTR_ELEM(#name, \
1206 (counter * 8 + SEND_COUNTER_ARRAY64), \
1207 0, flags, \
1208 port_access_u64_csr)
1209
1210 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1211 CNTR_ELEM(#name,\
1212 counter * 8 + SEND_COUNTER_ARRAY64, \
1213 0, \
1214 flags, \
1215 dev_access_u64_csr)
1216
1217 /* CCE */
1218 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220 (counter * 8 + CCE_COUNTER_ARRAY32), \
1221 0, flags | CNTR_32BIT, \
1222 dev_access_u32_csr)
1223
1224 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1225 CNTR_ELEM(#name, \
1226 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1227 0, flags | CNTR_32BIT, \
1228 dev_access_u32_csr)
1229
1230 /* DC */
1231 #define DC_PERF_CNTR(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 counter, \
1234 0, \
1235 flags, \
1236 dev_access_u64_csr)
1237
1238 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1239 CNTR_ELEM(#name, \
1240 counter, \
1241 0, \
1242 flags, \
1243 dc_access_lcb_cntr)
1244
1245 /* ibp counters */
1246 #define SW_IBP_CNTR(name, cntr) \
1247 CNTR_ELEM(#name, \
1248 0, \
1249 0, \
1250 CNTR_SYNTH, \
1251 access_ibp_##cntr)
1252
1253 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1254 {
1255 if (dd->flags & HFI1_PRESENT) {
1256 return readq((void __iomem *)dd->kregbase + offset);
1257 }
1258 return -1;
1259 }
1260
1261 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1262 {
1263 if (dd->flags & HFI1_PRESENT)
1264 writeq(value, (void __iomem *)dd->kregbase + offset);
1265 }
1266
1267 void __iomem *get_csr_addr(
1268 struct hfi1_devdata *dd,
1269 u32 offset)
1270 {
1271 return (void __iomem *)dd->kregbase + offset;
1272 }
1273
1274 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1275 int mode, u64 value)
1276 {
1277 u64 ret;
1278
1279 if (mode == CNTR_MODE_R) {
1280 ret = read_csr(dd, csr);
1281 } else if (mode == CNTR_MODE_W) {
1282 write_csr(dd, csr, value);
1283 ret = value;
1284 } else {
1285 dd_dev_err(dd, "Invalid cntr register access mode");
1286 return 0;
1287 }
1288
1289 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1290 return ret;
1291 }
1292
1293 /* Dev Access */
1294 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1295 void *context, int vl, int mode, u64 data)
1296 {
1297 struct hfi1_devdata *dd = context;
1298 u64 csr = entry->csr;
1299
1300 if (entry->flags & CNTR_SDMA) {
1301 if (vl == CNTR_INVALID_VL)
1302 return 0;
1303 csr += 0x100 * vl;
1304 } else {
1305 if (vl != CNTR_INVALID_VL)
1306 return 0;
1307 }
1308 return read_write_csr(dd, csr, mode, data);
1309 }
1310
1311 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1312 void *context, int idx, int mode, u64 data)
1313 {
1314 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1315
1316 if (dd->per_sdma && idx < dd->num_sdma)
1317 return dd->per_sdma[idx].err_cnt;
1318 return 0;
1319 }
1320
1321 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1322 void *context, int idx, int mode, u64 data)
1323 {
1324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1325
1326 if (dd->per_sdma && idx < dd->num_sdma)
1327 return dd->per_sdma[idx].sdma_int_cnt;
1328 return 0;
1329 }
1330
1331 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1332 void *context, int idx, int mode, u64 data)
1333 {
1334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1335
1336 if (dd->per_sdma && idx < dd->num_sdma)
1337 return dd->per_sdma[idx].idle_int_cnt;
1338 return 0;
1339 }
1340
1341 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1342 void *context, int idx, int mode,
1343 u64 data)
1344 {
1345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1346
1347 if (dd->per_sdma && idx < dd->num_sdma)
1348 return dd->per_sdma[idx].progress_int_cnt;
1349 return 0;
1350 }
1351
1352 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1353 int vl, int mode, u64 data)
1354 {
1355 struct hfi1_devdata *dd = context;
1356
1357 u64 val = 0;
1358 u64 csr = entry->csr;
1359
1360 if (entry->flags & CNTR_VL) {
1361 if (vl == CNTR_INVALID_VL)
1362 return 0;
1363 csr += 8 * vl;
1364 } else {
1365 if (vl != CNTR_INVALID_VL)
1366 return 0;
1367 }
1368
1369 val = read_write_csr(dd, csr, mode, data);
1370 return val;
1371 }
1372
1373 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1374 int vl, int mode, u64 data)
1375 {
1376 struct hfi1_devdata *dd = context;
1377 u32 csr = entry->csr;
1378 int ret = 0;
1379
1380 if (vl != CNTR_INVALID_VL)
1381 return 0;
1382 if (mode == CNTR_MODE_R)
1383 ret = read_lcb_csr(dd, csr, &data);
1384 else if (mode == CNTR_MODE_W)
1385 ret = write_lcb_csr(dd, csr, data);
1386
1387 if (ret) {
1388 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1389 return 0;
1390 }
1391
1392 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1393 return data;
1394 }
1395
1396 /* Port Access */
1397 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1398 int vl, int mode, u64 data)
1399 {
1400 struct hfi1_pportdata *ppd = context;
1401
1402 if (vl != CNTR_INVALID_VL)
1403 return 0;
1404 return read_write_csr(ppd->dd, entry->csr, mode, data);
1405 }
1406
1407 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1408 void *context, int vl, int mode, u64 data)
1409 {
1410 struct hfi1_pportdata *ppd = context;
1411 u64 val;
1412 u64 csr = entry->csr;
1413
1414 if (entry->flags & CNTR_VL) {
1415 if (vl == CNTR_INVALID_VL)
1416 return 0;
1417 csr += 8 * vl;
1418 } else {
1419 if (vl != CNTR_INVALID_VL)
1420 return 0;
1421 }
1422 val = read_write_csr(ppd->dd, csr, mode, data);
1423 return val;
1424 }
1425
1426 /* Software defined */
1427 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1428 u64 data)
1429 {
1430 u64 ret;
1431
1432 if (mode == CNTR_MODE_R) {
1433 ret = *cntr;
1434 } else if (mode == CNTR_MODE_W) {
1435 *cntr = data;
1436 ret = data;
1437 } else {
1438 dd_dev_err(dd, "Invalid cntr sw access mode");
1439 return 0;
1440 }
1441
1442 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1443
1444 return ret;
1445 }
1446
1447 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1448 int vl, int mode, u64 data)
1449 {
1450 struct hfi1_pportdata *ppd = context;
1451
1452 if (vl != CNTR_INVALID_VL)
1453 return 0;
1454 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1455 }
1456
1457 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1458 int vl, int mode, u64 data)
1459 {
1460 struct hfi1_pportdata *ppd = context;
1461
1462 if (vl != CNTR_INVALID_VL)
1463 return 0;
1464 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1465 }
1466
1467 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1468 void *context, int vl, int mode,
1469 u64 data)
1470 {
1471 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1472
1473 if (vl != CNTR_INVALID_VL)
1474 return 0;
1475 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1476 }
1477
1478 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1479 void *context, int vl, int mode, u64 data)
1480 {
1481 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1482 u64 zero = 0;
1483 u64 *counter;
1484
1485 if (vl == CNTR_INVALID_VL)
1486 counter = &ppd->port_xmit_discards;
1487 else if (vl >= 0 && vl < C_VL_COUNT)
1488 counter = &ppd->port_xmit_discards_vl[vl];
1489 else
1490 counter = &zero;
1491
1492 return read_write_sw(ppd->dd, counter, mode, data);
1493 }
1494
1495 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1496 void *context, int vl, int mode,
1497 u64 data)
1498 {
1499 struct hfi1_pportdata *ppd = context;
1500
1501 if (vl != CNTR_INVALID_VL)
1502 return 0;
1503
1504 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1505 mode, data);
1506 }
1507
1508 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1509 void *context, int vl, int mode, u64 data)
1510 {
1511 struct hfi1_pportdata *ppd = context;
1512
1513 if (vl != CNTR_INVALID_VL)
1514 return 0;
1515
1516 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1517 mode, data);
1518 }
1519
1520 u64 get_all_cpu_total(u64 __percpu *cntr)
1521 {
1522 int cpu;
1523 u64 counter = 0;
1524
1525 for_each_possible_cpu(cpu)
1526 counter += *per_cpu_ptr(cntr, cpu);
1527 return counter;
1528 }
1529
1530 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1531 u64 __percpu *cntr,
1532 int vl, int mode, u64 data)
1533 {
1534 u64 ret = 0;
1535
1536 if (vl != CNTR_INVALID_VL)
1537 return 0;
1538
1539 if (mode == CNTR_MODE_R) {
1540 ret = get_all_cpu_total(cntr) - *z_val;
1541 } else if (mode == CNTR_MODE_W) {
1542 /* A write can only zero the counter */
1543 if (data == 0)
1544 *z_val = get_all_cpu_total(cntr);
1545 else
1546 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1547 } else {
1548 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1549 return 0;
1550 }
1551
1552 return ret;
1553 }
1554
1555 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1556 void *context, int vl, int mode, u64 data)
1557 {
1558 struct hfi1_devdata *dd = context;
1559
1560 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1561 mode, data);
1562 }
1563
1564 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1565 void *context, int vl, int mode, u64 data)
1566 {
1567 struct hfi1_devdata *dd = context;
1568
1569 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1570 mode, data);
1571 }
1572
1573 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1574 void *context, int vl, int mode, u64 data)
1575 {
1576 struct hfi1_devdata *dd = context;
1577
1578 return dd->verbs_dev.n_piowait;
1579 }
1580
1581 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1582 void *context, int vl, int mode, u64 data)
1583 {
1584 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1585
1586 return dd->verbs_dev.n_piodrain;
1587 }
1588
1589 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1590 void *context, int vl, int mode, u64 data)
1591 {
1592 struct hfi1_devdata *dd = context;
1593
1594 return dd->verbs_dev.n_txwait;
1595 }
1596
1597 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1598 void *context, int vl, int mode, u64 data)
1599 {
1600 struct hfi1_devdata *dd = context;
1601
1602 return dd->verbs_dev.n_kmem_wait;
1603 }
1604
1605 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1606 void *context, int vl, int mode, u64 data)
1607 {
1608 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1609
1610 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1611 mode, data);
1612 }
1613
1614 /* Software counters for the error status bits within MISC_ERR_STATUS */
1615 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1616 void *context, int vl, int mode,
1617 u64 data)
1618 {
1619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1620
1621 return dd->misc_err_status_cnt[12];
1622 }
1623
1624 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1625 void *context, int vl, int mode,
1626 u64 data)
1627 {
1628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1629
1630 return dd->misc_err_status_cnt[11];
1631 }
1632
1633 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1634 void *context, int vl, int mode,
1635 u64 data)
1636 {
1637 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1638
1639 return dd->misc_err_status_cnt[10];
1640 }
1641
1642 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1643 void *context, int vl,
1644 int mode, u64 data)
1645 {
1646 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1647
1648 return dd->misc_err_status_cnt[9];
1649 }
1650
1651 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1652 void *context, int vl, int mode,
1653 u64 data)
1654 {
1655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1656
1657 return dd->misc_err_status_cnt[8];
1658 }
1659
1660 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1661 const struct cntr_entry *entry,
1662 void *context, int vl, int mode, u64 data)
1663 {
1664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1665
1666 return dd->misc_err_status_cnt[7];
1667 }
1668
1669 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1670 void *context, int vl,
1671 int mode, u64 data)
1672 {
1673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1674
1675 return dd->misc_err_status_cnt[6];
1676 }
1677
1678 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1679 void *context, int vl, int mode,
1680 u64 data)
1681 {
1682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1683
1684 return dd->misc_err_status_cnt[5];
1685 }
1686
1687 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1688 void *context, int vl, int mode,
1689 u64 data)
1690 {
1691 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1692
1693 return dd->misc_err_status_cnt[4];
1694 }
1695
1696 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1697 void *context, int vl,
1698 int mode, u64 data)
1699 {
1700 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1701
1702 return dd->misc_err_status_cnt[3];
1703 }
1704
1705 static u64 access_misc_csr_write_bad_addr_err_cnt(
1706 const struct cntr_entry *entry,
1707 void *context, int vl, int mode, u64 data)
1708 {
1709 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1710
1711 return dd->misc_err_status_cnt[2];
1712 }
1713
1714 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1715 void *context, int vl,
1716 int mode, u64 data)
1717 {
1718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1719
1720 return dd->misc_err_status_cnt[1];
1721 }
1722
1723 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1724 void *context, int vl, int mode,
1725 u64 data)
1726 {
1727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728
1729 return dd->misc_err_status_cnt[0];
1730 }
1731
1732 /*
1733 * Software counter for the aggregate of
1734 * individual CceErrStatus counters
1735 */
1736 static u64 access_sw_cce_err_status_aggregated_cnt(
1737 const struct cntr_entry *entry,
1738 void *context, int vl, int mode, u64 data)
1739 {
1740 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1741
1742 return dd->sw_cce_err_status_aggregate;
1743 }
1744
1745 /*
1746 * Software counters corresponding to each of the
1747 * error status bits within CceErrStatus
1748 */
1749 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1750 void *context, int vl, int mode,
1751 u64 data)
1752 {
1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755 return dd->cce_err_status_cnt[40];
1756 }
1757
1758 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1759 void *context, int vl, int mode,
1760 u64 data)
1761 {
1762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764 return dd->cce_err_status_cnt[39];
1765 }
1766
1767 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1768 void *context, int vl, int mode,
1769 u64 data)
1770 {
1771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773 return dd->cce_err_status_cnt[38];
1774 }
1775
1776 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1777 void *context, int vl, int mode,
1778 u64 data)
1779 {
1780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781
1782 return dd->cce_err_status_cnt[37];
1783 }
1784
1785 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1786 void *context, int vl, int mode,
1787 u64 data)
1788 {
1789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790
1791 return dd->cce_err_status_cnt[36];
1792 }
1793
1794 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1795 const struct cntr_entry *entry,
1796 void *context, int vl, int mode, u64 data)
1797 {
1798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799
1800 return dd->cce_err_status_cnt[35];
1801 }
1802
1803 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1804 const struct cntr_entry *entry,
1805 void *context, int vl, int mode, u64 data)
1806 {
1807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808
1809 return dd->cce_err_status_cnt[34];
1810 }
1811
1812 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1813 void *context, int vl,
1814 int mode, u64 data)
1815 {
1816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817
1818 return dd->cce_err_status_cnt[33];
1819 }
1820
1821 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1822 void *context, int vl, int mode,
1823 u64 data)
1824 {
1825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826
1827 return dd->cce_err_status_cnt[32];
1828 }
1829
1830 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1831 void *context, int vl, int mode, u64 data)
1832 {
1833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1834
1835 return dd->cce_err_status_cnt[31];
1836 }
1837
1838 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1839 void *context, int vl, int mode,
1840 u64 data)
1841 {
1842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1843
1844 return dd->cce_err_status_cnt[30];
1845 }
1846
1847 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1848 void *context, int vl, int mode,
1849 u64 data)
1850 {
1851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852
1853 return dd->cce_err_status_cnt[29];
1854 }
1855
1856 static u64 access_pcic_transmit_back_parity_err_cnt(
1857 const struct cntr_entry *entry,
1858 void *context, int vl, int mode, u64 data)
1859 {
1860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861
1862 return dd->cce_err_status_cnt[28];
1863 }
1864
1865 static u64 access_pcic_transmit_front_parity_err_cnt(
1866 const struct cntr_entry *entry,
1867 void *context, int vl, int mode, u64 data)
1868 {
1869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870
1871 return dd->cce_err_status_cnt[27];
1872 }
1873
1874 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1875 void *context, int vl, int mode,
1876 u64 data)
1877 {
1878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879
1880 return dd->cce_err_status_cnt[26];
1881 }
1882
1883 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1884 void *context, int vl, int mode,
1885 u64 data)
1886 {
1887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888
1889 return dd->cce_err_status_cnt[25];
1890 }
1891
1892 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1893 void *context, int vl, int mode,
1894 u64 data)
1895 {
1896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897
1898 return dd->cce_err_status_cnt[24];
1899 }
1900
1901 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1902 void *context, int vl, int mode,
1903 u64 data)
1904 {
1905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906
1907 return dd->cce_err_status_cnt[23];
1908 }
1909
1910 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1911 void *context, int vl,
1912 int mode, u64 data)
1913 {
1914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915
1916 return dd->cce_err_status_cnt[22];
1917 }
1918
1919 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1920 void *context, int vl, int mode,
1921 u64 data)
1922 {
1923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924
1925 return dd->cce_err_status_cnt[21];
1926 }
1927
1928 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1929 const struct cntr_entry *entry,
1930 void *context, int vl, int mode, u64 data)
1931 {
1932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933
1934 return dd->cce_err_status_cnt[20];
1935 }
1936
1937 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1938 void *context, int vl,
1939 int mode, u64 data)
1940 {
1941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942
1943 return dd->cce_err_status_cnt[19];
1944 }
1945
1946 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1947 void *context, int vl, int mode,
1948 u64 data)
1949 {
1950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951
1952 return dd->cce_err_status_cnt[18];
1953 }
1954
1955 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1956 void *context, int vl, int mode,
1957 u64 data)
1958 {
1959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960
1961 return dd->cce_err_status_cnt[17];
1962 }
1963
1964 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1965 void *context, int vl, int mode,
1966 u64 data)
1967 {
1968 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969
1970 return dd->cce_err_status_cnt[16];
1971 }
1972
1973 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1974 void *context, int vl, int mode,
1975 u64 data)
1976 {
1977 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978
1979 return dd->cce_err_status_cnt[15];
1980 }
1981
1982 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1983 void *context, int vl,
1984 int mode, u64 data)
1985 {
1986 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987
1988 return dd->cce_err_status_cnt[14];
1989 }
1990
1991 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
1992 void *context, int vl, int mode,
1993 u64 data)
1994 {
1995 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996
1997 return dd->cce_err_status_cnt[13];
1998 }
1999
2000 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2001 const struct cntr_entry *entry,
2002 void *context, int vl, int mode, u64 data)
2003 {
2004 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005
2006 return dd->cce_err_status_cnt[12];
2007 }
2008
2009 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2010 const struct cntr_entry *entry,
2011 void *context, int vl, int mode, u64 data)
2012 {
2013 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014
2015 return dd->cce_err_status_cnt[11];
2016 }
2017
2018 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2019 const struct cntr_entry *entry,
2020 void *context, int vl, int mode, u64 data)
2021 {
2022 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023
2024 return dd->cce_err_status_cnt[10];
2025 }
2026
2027 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2028 const struct cntr_entry *entry,
2029 void *context, int vl, int mode, u64 data)
2030 {
2031 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032
2033 return dd->cce_err_status_cnt[9];
2034 }
2035
2036 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2037 const struct cntr_entry *entry,
2038 void *context, int vl, int mode, u64 data)
2039 {
2040 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041
2042 return dd->cce_err_status_cnt[8];
2043 }
2044
2045 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2046 void *context, int vl,
2047 int mode, u64 data)
2048 {
2049 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050
2051 return dd->cce_err_status_cnt[7];
2052 }
2053
2054 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2055 const struct cntr_entry *entry,
2056 void *context, int vl, int mode, u64 data)
2057 {
2058 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059
2060 return dd->cce_err_status_cnt[6];
2061 }
2062
2063 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2064 void *context, int vl, int mode,
2065 u64 data)
2066 {
2067 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068
2069 return dd->cce_err_status_cnt[5];
2070 }
2071
2072 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2073 void *context, int vl, int mode,
2074 u64 data)
2075 {
2076 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077
2078 return dd->cce_err_status_cnt[4];
2079 }
2080
2081 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2082 const struct cntr_entry *entry,
2083 void *context, int vl, int mode, u64 data)
2084 {
2085 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086
2087 return dd->cce_err_status_cnt[3];
2088 }
2089
2090 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2091 void *context, int vl,
2092 int mode, u64 data)
2093 {
2094 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095
2096 return dd->cce_err_status_cnt[2];
2097 }
2098
2099 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2100 void *context, int vl,
2101 int mode, u64 data)
2102 {
2103 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104
2105 return dd->cce_err_status_cnt[1];
2106 }
2107
2108 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2109 void *context, int vl, int mode,
2110 u64 data)
2111 {
2112 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113
2114 return dd->cce_err_status_cnt[0];
2115 }
2116
2117 /*
2118 * Software counters corresponding to each of the
2119 * error status bits within RcvErrStatus
2120 */
2121 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2122 void *context, int vl, int mode,
2123 u64 data)
2124 {
2125 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2126
2127 return dd->rcv_err_status_cnt[63];
2128 }
2129
2130 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2131 void *context, int vl,
2132 int mode, u64 data)
2133 {
2134 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2135
2136 return dd->rcv_err_status_cnt[62];
2137 }
2138
2139 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2140 void *context, int vl, int mode,
2141 u64 data)
2142 {
2143 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2144
2145 return dd->rcv_err_status_cnt[61];
2146 }
2147
2148 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2149 void *context, int vl, int mode,
2150 u64 data)
2151 {
2152 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2153
2154 return dd->rcv_err_status_cnt[60];
2155 }
2156
2157 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2158 void *context, int vl,
2159 int mode, u64 data)
2160 {
2161 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2162
2163 return dd->rcv_err_status_cnt[59];
2164 }
2165
2166 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2167 void *context, int vl,
2168 int mode, u64 data)
2169 {
2170 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2171
2172 return dd->rcv_err_status_cnt[58];
2173 }
2174
2175 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2176 void *context, int vl, int mode,
2177 u64 data)
2178 {
2179 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2180
2181 return dd->rcv_err_status_cnt[57];
2182 }
2183
2184 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2185 void *context, int vl, int mode,
2186 u64 data)
2187 {
2188 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2189
2190 return dd->rcv_err_status_cnt[56];
2191 }
2192
2193 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2194 void *context, int vl, int mode,
2195 u64 data)
2196 {
2197 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2198
2199 return dd->rcv_err_status_cnt[55];
2200 }
2201
2202 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2203 const struct cntr_entry *entry,
2204 void *context, int vl, int mode, u64 data)
2205 {
2206 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2207
2208 return dd->rcv_err_status_cnt[54];
2209 }
2210
2211 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2212 const struct cntr_entry *entry,
2213 void *context, int vl, int mode, u64 data)
2214 {
2215 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2216
2217 return dd->rcv_err_status_cnt[53];
2218 }
2219
2220 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2221 void *context, int vl,
2222 int mode, u64 data)
2223 {
2224 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2225
2226 return dd->rcv_err_status_cnt[52];
2227 }
2228
2229 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2230 void *context, int vl,
2231 int mode, u64 data)
2232 {
2233 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234
2235 return dd->rcv_err_status_cnt[51];
2236 }
2237
2238 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2239 void *context, int vl,
2240 int mode, u64 data)
2241 {
2242 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243
2244 return dd->rcv_err_status_cnt[50];
2245 }
2246
2247 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2248 void *context, int vl,
2249 int mode, u64 data)
2250 {
2251 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252
2253 return dd->rcv_err_status_cnt[49];
2254 }
2255
2256 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2257 void *context, int vl,
2258 int mode, u64 data)
2259 {
2260 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261
2262 return dd->rcv_err_status_cnt[48];
2263 }
2264
2265 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2266 void *context, int vl,
2267 int mode, u64 data)
2268 {
2269 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270
2271 return dd->rcv_err_status_cnt[47];
2272 }
2273
2274 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2275 void *context, int vl, int mode,
2276 u64 data)
2277 {
2278 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279
2280 return dd->rcv_err_status_cnt[46];
2281 }
2282
2283 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2284 const struct cntr_entry *entry,
2285 void *context, int vl, int mode, u64 data)
2286 {
2287 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288
2289 return dd->rcv_err_status_cnt[45];
2290 }
2291
2292 static u64 access_rx_lookup_csr_parity_err_cnt(
2293 const struct cntr_entry *entry,
2294 void *context, int vl, int mode, u64 data)
2295 {
2296 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297
2298 return dd->rcv_err_status_cnt[44];
2299 }
2300
2301 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2302 const struct cntr_entry *entry,
2303 void *context, int vl, int mode, u64 data)
2304 {
2305 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306
2307 return dd->rcv_err_status_cnt[43];
2308 }
2309
2310 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2311 const struct cntr_entry *entry,
2312 void *context, int vl, int mode, u64 data)
2313 {
2314 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315
2316 return dd->rcv_err_status_cnt[42];
2317 }
2318
2319 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2320 const struct cntr_entry *entry,
2321 void *context, int vl, int mode, u64 data)
2322 {
2323 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324
2325 return dd->rcv_err_status_cnt[41];
2326 }
2327
2328 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2329 const struct cntr_entry *entry,
2330 void *context, int vl, int mode, u64 data)
2331 {
2332 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333
2334 return dd->rcv_err_status_cnt[40];
2335 }
2336
2337 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2338 const struct cntr_entry *entry,
2339 void *context, int vl, int mode, u64 data)
2340 {
2341 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342
2343 return dd->rcv_err_status_cnt[39];
2344 }
2345
2346 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2347 const struct cntr_entry *entry,
2348 void *context, int vl, int mode, u64 data)
2349 {
2350 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351
2352 return dd->rcv_err_status_cnt[38];
2353 }
2354
2355 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2356 const struct cntr_entry *entry,
2357 void *context, int vl, int mode, u64 data)
2358 {
2359 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360
2361 return dd->rcv_err_status_cnt[37];
2362 }
2363
2364 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2365 const struct cntr_entry *entry,
2366 void *context, int vl, int mode, u64 data)
2367 {
2368 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369
2370 return dd->rcv_err_status_cnt[36];
2371 }
2372
2373 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2374 const struct cntr_entry *entry,
2375 void *context, int vl, int mode, u64 data)
2376 {
2377 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378
2379 return dd->rcv_err_status_cnt[35];
2380 }
2381
2382 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2383 const struct cntr_entry *entry,
2384 void *context, int vl, int mode, u64 data)
2385 {
2386 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387
2388 return dd->rcv_err_status_cnt[34];
2389 }
2390
2391 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2392 const struct cntr_entry *entry,
2393 void *context, int vl, int mode, u64 data)
2394 {
2395 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396
2397 return dd->rcv_err_status_cnt[33];
2398 }
2399
2400 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2401 void *context, int vl, int mode,
2402 u64 data)
2403 {
2404 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405
2406 return dd->rcv_err_status_cnt[32];
2407 }
2408
2409 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2410 void *context, int vl, int mode,
2411 u64 data)
2412 {
2413 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414
2415 return dd->rcv_err_status_cnt[31];
2416 }
2417
2418 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2419 void *context, int vl, int mode,
2420 u64 data)
2421 {
2422 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423
2424 return dd->rcv_err_status_cnt[30];
2425 }
2426
2427 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2428 void *context, int vl, int mode,
2429 u64 data)
2430 {
2431 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432
2433 return dd->rcv_err_status_cnt[29];
2434 }
2435
2436 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2437 void *context, int vl,
2438 int mode, u64 data)
2439 {
2440 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441
2442 return dd->rcv_err_status_cnt[28];
2443 }
2444
2445 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2446 const struct cntr_entry *entry,
2447 void *context, int vl, int mode, u64 data)
2448 {
2449 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450
2451 return dd->rcv_err_status_cnt[27];
2452 }
2453
2454 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2455 const struct cntr_entry *entry,
2456 void *context, int vl, int mode, u64 data)
2457 {
2458 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459
2460 return dd->rcv_err_status_cnt[26];
2461 }
2462
2463 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2464 const struct cntr_entry *entry,
2465 void *context, int vl, int mode, u64 data)
2466 {
2467 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468
2469 return dd->rcv_err_status_cnt[25];
2470 }
2471
2472 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2473 const struct cntr_entry *entry,
2474 void *context, int vl, int mode, u64 data)
2475 {
2476 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477
2478 return dd->rcv_err_status_cnt[24];
2479 }
2480
2481 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2482 const struct cntr_entry *entry,
2483 void *context, int vl, int mode, u64 data)
2484 {
2485 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486
2487 return dd->rcv_err_status_cnt[23];
2488 }
2489
2490 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2491 const struct cntr_entry *entry,
2492 void *context, int vl, int mode, u64 data)
2493 {
2494 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495
2496 return dd->rcv_err_status_cnt[22];
2497 }
2498
2499 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2500 const struct cntr_entry *entry,
2501 void *context, int vl, int mode, u64 data)
2502 {
2503 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504
2505 return dd->rcv_err_status_cnt[21];
2506 }
2507
2508 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2509 const struct cntr_entry *entry,
2510 void *context, int vl, int mode, u64 data)
2511 {
2512 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513
2514 return dd->rcv_err_status_cnt[20];
2515 }
2516
2517 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2518 const struct cntr_entry *entry,
2519 void *context, int vl, int mode, u64 data)
2520 {
2521 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522
2523 return dd->rcv_err_status_cnt[19];
2524 }
2525
2526 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2527 void *context, int vl,
2528 int mode, u64 data)
2529 {
2530 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531
2532 return dd->rcv_err_status_cnt[18];
2533 }
2534
2535 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2536 void *context, int vl,
2537 int mode, u64 data)
2538 {
2539 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540
2541 return dd->rcv_err_status_cnt[17];
2542 }
2543
2544 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2545 const struct cntr_entry *entry,
2546 void *context, int vl, int mode, u64 data)
2547 {
2548 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549
2550 return dd->rcv_err_status_cnt[16];
2551 }
2552
2553 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2554 const struct cntr_entry *entry,
2555 void *context, int vl, int mode, u64 data)
2556 {
2557 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558
2559 return dd->rcv_err_status_cnt[15];
2560 }
2561
2562 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2563 void *context, int vl,
2564 int mode, u64 data)
2565 {
2566 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567
2568 return dd->rcv_err_status_cnt[14];
2569 }
2570
2571 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2572 void *context, int vl,
2573 int mode, u64 data)
2574 {
2575 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576
2577 return dd->rcv_err_status_cnt[13];
2578 }
2579
2580 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2581 void *context, int vl, int mode,
2582 u64 data)
2583 {
2584 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585
2586 return dd->rcv_err_status_cnt[12];
2587 }
2588
2589 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2590 void *context, int vl, int mode,
2591 u64 data)
2592 {
2593 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594
2595 return dd->rcv_err_status_cnt[11];
2596 }
2597
2598 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2599 void *context, int vl, int mode,
2600 u64 data)
2601 {
2602 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603
2604 return dd->rcv_err_status_cnt[10];
2605 }
2606
2607 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2608 void *context, int vl, int mode,
2609 u64 data)
2610 {
2611 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612
2613 return dd->rcv_err_status_cnt[9];
2614 }
2615
2616 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2617 void *context, int vl, int mode,
2618 u64 data)
2619 {
2620 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621
2622 return dd->rcv_err_status_cnt[8];
2623 }
2624
2625 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2626 const struct cntr_entry *entry,
2627 void *context, int vl, int mode, u64 data)
2628 {
2629 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630
2631 return dd->rcv_err_status_cnt[7];
2632 }
2633
2634 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2635 const struct cntr_entry *entry,
2636 void *context, int vl, int mode, u64 data)
2637 {
2638 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639
2640 return dd->rcv_err_status_cnt[6];
2641 }
2642
2643 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2644 void *context, int vl, int mode,
2645 u64 data)
2646 {
2647 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648
2649 return dd->rcv_err_status_cnt[5];
2650 }
2651
2652 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2653 void *context, int vl, int mode,
2654 u64 data)
2655 {
2656 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657
2658 return dd->rcv_err_status_cnt[4];
2659 }
2660
2661 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2662 void *context, int vl, int mode,
2663 u64 data)
2664 {
2665 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666
2667 return dd->rcv_err_status_cnt[3];
2668 }
2669
2670 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2671 void *context, int vl, int mode,
2672 u64 data)
2673 {
2674 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675
2676 return dd->rcv_err_status_cnt[2];
2677 }
2678
2679 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2680 void *context, int vl, int mode,
2681 u64 data)
2682 {
2683 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684
2685 return dd->rcv_err_status_cnt[1];
2686 }
2687
2688 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2689 void *context, int vl, int mode,
2690 u64 data)
2691 {
2692 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693
2694 return dd->rcv_err_status_cnt[0];
2695 }
2696
2697 /*
2698 * Software counters corresponding to each of the
2699 * error status bits within SendPioErrStatus
2700 */
2701 static u64 access_pio_pec_sop_head_parity_err_cnt(
2702 const struct cntr_entry *entry,
2703 void *context, int vl, int mode, u64 data)
2704 {
2705 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2706
2707 return dd->send_pio_err_status_cnt[35];
2708 }
2709
2710 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2711 const struct cntr_entry *entry,
2712 void *context, int vl, int mode, u64 data)
2713 {
2714 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2715
2716 return dd->send_pio_err_status_cnt[34];
2717 }
2718
2719 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2720 const struct cntr_entry *entry,
2721 void *context, int vl, int mode, u64 data)
2722 {
2723 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2724
2725 return dd->send_pio_err_status_cnt[33];
2726 }
2727
2728 static u64 access_pio_current_free_cnt_parity_err_cnt(
2729 const struct cntr_entry *entry,
2730 void *context, int vl, int mode, u64 data)
2731 {
2732 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2733
2734 return dd->send_pio_err_status_cnt[32];
2735 }
2736
2737 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2738 void *context, int vl, int mode,
2739 u64 data)
2740 {
2741 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2742
2743 return dd->send_pio_err_status_cnt[31];
2744 }
2745
2746 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2747 void *context, int vl, int mode,
2748 u64 data)
2749 {
2750 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2751
2752 return dd->send_pio_err_status_cnt[30];
2753 }
2754
2755 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2756 void *context, int vl, int mode,
2757 u64 data)
2758 {
2759 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2760
2761 return dd->send_pio_err_status_cnt[29];
2762 }
2763
2764 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2765 const struct cntr_entry *entry,
2766 void *context, int vl, int mode, u64 data)
2767 {
2768 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2769
2770 return dd->send_pio_err_status_cnt[28];
2771 }
2772
2773 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2774 void *context, int vl, int mode,
2775 u64 data)
2776 {
2777 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2778
2779 return dd->send_pio_err_status_cnt[27];
2780 }
2781
2782 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2783 void *context, int vl, int mode,
2784 u64 data)
2785 {
2786 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2787
2788 return dd->send_pio_err_status_cnt[26];
2789 }
2790
2791 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2792 void *context, int vl,
2793 int mode, u64 data)
2794 {
2795 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2796
2797 return dd->send_pio_err_status_cnt[25];
2798 }
2799
2800 static u64 access_pio_block_qw_count_parity_err_cnt(
2801 const struct cntr_entry *entry,
2802 void *context, int vl, int mode, u64 data)
2803 {
2804 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2805
2806 return dd->send_pio_err_status_cnt[24];
2807 }
2808
2809 static u64 access_pio_write_qw_valid_parity_err_cnt(
2810 const struct cntr_entry *entry,
2811 void *context, int vl, int mode, u64 data)
2812 {
2813 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814
2815 return dd->send_pio_err_status_cnt[23];
2816 }
2817
2818 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2819 void *context, int vl, int mode,
2820 u64 data)
2821 {
2822 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823
2824 return dd->send_pio_err_status_cnt[22];
2825 }
2826
2827 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2828 void *context, int vl,
2829 int mode, u64 data)
2830 {
2831 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832
2833 return dd->send_pio_err_status_cnt[21];
2834 }
2835
2836 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2837 void *context, int vl,
2838 int mode, u64 data)
2839 {
2840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841
2842 return dd->send_pio_err_status_cnt[20];
2843 }
2844
2845 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2846 void *context, int vl,
2847 int mode, u64 data)
2848 {
2849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850
2851 return dd->send_pio_err_status_cnt[19];
2852 }
2853
2854 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2855 const struct cntr_entry *entry,
2856 void *context, int vl, int mode, u64 data)
2857 {
2858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859
2860 return dd->send_pio_err_status_cnt[18];
2861 }
2862
2863 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2864 void *context, int vl, int mode,
2865 u64 data)
2866 {
2867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868
2869 return dd->send_pio_err_status_cnt[17];
2870 }
2871
2872 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2873 void *context, int vl, int mode,
2874 u64 data)
2875 {
2876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877
2878 return dd->send_pio_err_status_cnt[16];
2879 }
2880
2881 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2882 const struct cntr_entry *entry,
2883 void *context, int vl, int mode, u64 data)
2884 {
2885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886
2887 return dd->send_pio_err_status_cnt[15];
2888 }
2889
2890 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2891 const struct cntr_entry *entry,
2892 void *context, int vl, int mode, u64 data)
2893 {
2894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895
2896 return dd->send_pio_err_status_cnt[14];
2897 }
2898
2899 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2900 const struct cntr_entry *entry,
2901 void *context, int vl, int mode, u64 data)
2902 {
2903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904
2905 return dd->send_pio_err_status_cnt[13];
2906 }
2907
2908 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2909 const struct cntr_entry *entry,
2910 void *context, int vl, int mode, u64 data)
2911 {
2912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913
2914 return dd->send_pio_err_status_cnt[12];
2915 }
2916
2917 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2918 const struct cntr_entry *entry,
2919 void *context, int vl, int mode, u64 data)
2920 {
2921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922
2923 return dd->send_pio_err_status_cnt[11];
2924 }
2925
2926 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2927 const struct cntr_entry *entry,
2928 void *context, int vl, int mode, u64 data)
2929 {
2930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931
2932 return dd->send_pio_err_status_cnt[10];
2933 }
2934
2935 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2936 const struct cntr_entry *entry,
2937 void *context, int vl, int mode, u64 data)
2938 {
2939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940
2941 return dd->send_pio_err_status_cnt[9];
2942 }
2943
2944 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2945 const struct cntr_entry *entry,
2946 void *context, int vl, int mode, u64 data)
2947 {
2948 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949
2950 return dd->send_pio_err_status_cnt[8];
2951 }
2952
2953 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2954 const struct cntr_entry *entry,
2955 void *context, int vl, int mode, u64 data)
2956 {
2957 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958
2959 return dd->send_pio_err_status_cnt[7];
2960 }
2961
2962 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2963 void *context, int vl, int mode,
2964 u64 data)
2965 {
2966 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967
2968 return dd->send_pio_err_status_cnt[6];
2969 }
2970
2971 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2972 void *context, int vl, int mode,
2973 u64 data)
2974 {
2975 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976
2977 return dd->send_pio_err_status_cnt[5];
2978 }
2979
2980 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2981 void *context, int vl, int mode,
2982 u64 data)
2983 {
2984 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985
2986 return dd->send_pio_err_status_cnt[4];
2987 }
2988
2989 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
2990 void *context, int vl, int mode,
2991 u64 data)
2992 {
2993 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994
2995 return dd->send_pio_err_status_cnt[3];
2996 }
2997
2998 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
2999 void *context, int vl, int mode,
3000 u64 data)
3001 {
3002 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003
3004 return dd->send_pio_err_status_cnt[2];
3005 }
3006
3007 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3008 void *context, int vl,
3009 int mode, u64 data)
3010 {
3011 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012
3013 return dd->send_pio_err_status_cnt[1];
3014 }
3015
3016 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3017 void *context, int vl, int mode,
3018 u64 data)
3019 {
3020 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021
3022 return dd->send_pio_err_status_cnt[0];
3023 }
3024
3025 /*
3026 * Software counters corresponding to each of the
3027 * error status bits within SendDmaErrStatus
3028 */
3029 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3030 const struct cntr_entry *entry,
3031 void *context, int vl, int mode, u64 data)
3032 {
3033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3034
3035 return dd->send_dma_err_status_cnt[3];
3036 }
3037
3038 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3039 const struct cntr_entry *entry,
3040 void *context, int vl, int mode, u64 data)
3041 {
3042 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3043
3044 return dd->send_dma_err_status_cnt[2];
3045 }
3046
3047 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3048 void *context, int vl, int mode,
3049 u64 data)
3050 {
3051 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3052
3053 return dd->send_dma_err_status_cnt[1];
3054 }
3055
3056 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3057 void *context, int vl, int mode,
3058 u64 data)
3059 {
3060 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3061
3062 return dd->send_dma_err_status_cnt[0];
3063 }
3064
3065 /*
3066 * Software counters corresponding to each of the
3067 * error status bits within SendEgressErrStatus
3068 */
3069 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3070 const struct cntr_entry *entry,
3071 void *context, int vl, int mode, u64 data)
3072 {
3073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074
3075 return dd->send_egress_err_status_cnt[63];
3076 }
3077
3078 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3079 const struct cntr_entry *entry,
3080 void *context, int vl, int mode, u64 data)
3081 {
3082 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083
3084 return dd->send_egress_err_status_cnt[62];
3085 }
3086
3087 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3088 void *context, int vl, int mode,
3089 u64 data)
3090 {
3091 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092
3093 return dd->send_egress_err_status_cnt[61];
3094 }
3095
3096 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3097 void *context, int vl,
3098 int mode, u64 data)
3099 {
3100 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101
3102 return dd->send_egress_err_status_cnt[60];
3103 }
3104
3105 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3106 const struct cntr_entry *entry,
3107 void *context, int vl, int mode, u64 data)
3108 {
3109 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110
3111 return dd->send_egress_err_status_cnt[59];
3112 }
3113
3114 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3115 void *context, int vl, int mode,
3116 u64 data)
3117 {
3118 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119
3120 return dd->send_egress_err_status_cnt[58];
3121 }
3122
3123 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3124 void *context, int vl, int mode,
3125 u64 data)
3126 {
3127 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128
3129 return dd->send_egress_err_status_cnt[57];
3130 }
3131
3132 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3133 void *context, int vl, int mode,
3134 u64 data)
3135 {
3136 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3137
3138 return dd->send_egress_err_status_cnt[56];
3139 }
3140
3141 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3142 void *context, int vl, int mode,
3143 u64 data)
3144 {
3145 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3146
3147 return dd->send_egress_err_status_cnt[55];
3148 }
3149
3150 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3151 void *context, int vl, int mode,
3152 u64 data)
3153 {
3154 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3155
3156 return dd->send_egress_err_status_cnt[54];
3157 }
3158
3159 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3160 void *context, int vl, int mode,
3161 u64 data)
3162 {
3163 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3164
3165 return dd->send_egress_err_status_cnt[53];
3166 }
3167
3168 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3169 void *context, int vl, int mode,
3170 u64 data)
3171 {
3172 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3173
3174 return dd->send_egress_err_status_cnt[52];
3175 }
3176
3177 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3178 void *context, int vl, int mode,
3179 u64 data)
3180 {
3181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182
3183 return dd->send_egress_err_status_cnt[51];
3184 }
3185
3186 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3187 void *context, int vl, int mode,
3188 u64 data)
3189 {
3190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191
3192 return dd->send_egress_err_status_cnt[50];
3193 }
3194
3195 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3196 void *context, int vl, int mode,
3197 u64 data)
3198 {
3199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200
3201 return dd->send_egress_err_status_cnt[49];
3202 }
3203
3204 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3205 void *context, int vl, int mode,
3206 u64 data)
3207 {
3208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209
3210 return dd->send_egress_err_status_cnt[48];
3211 }
3212
3213 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3214 void *context, int vl, int mode,
3215 u64 data)
3216 {
3217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218
3219 return dd->send_egress_err_status_cnt[47];
3220 }
3221
3222 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3223 void *context, int vl, int mode,
3224 u64 data)
3225 {
3226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227
3228 return dd->send_egress_err_status_cnt[46];
3229 }
3230
3231 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3232 void *context, int vl, int mode,
3233 u64 data)
3234 {
3235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236
3237 return dd->send_egress_err_status_cnt[45];
3238 }
3239
3240 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3241 void *context, int vl,
3242 int mode, u64 data)
3243 {
3244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245
3246 return dd->send_egress_err_status_cnt[44];
3247 }
3248
3249 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3250 const struct cntr_entry *entry,
3251 void *context, int vl, int mode, u64 data)
3252 {
3253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254
3255 return dd->send_egress_err_status_cnt[43];
3256 }
3257
3258 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3259 void *context, int vl, int mode,
3260 u64 data)
3261 {
3262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263
3264 return dd->send_egress_err_status_cnt[42];
3265 }
3266
3267 static u64 access_tx_credit_return_partiy_err_cnt(
3268 const struct cntr_entry *entry,
3269 void *context, int vl, int mode, u64 data)
3270 {
3271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272
3273 return dd->send_egress_err_status_cnt[41];
3274 }
3275
3276 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3277 const struct cntr_entry *entry,
3278 void *context, int vl, int mode, u64 data)
3279 {
3280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281
3282 return dd->send_egress_err_status_cnt[40];
3283 }
3284
3285 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3286 const struct cntr_entry *entry,
3287 void *context, int vl, int mode, u64 data)
3288 {
3289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290
3291 return dd->send_egress_err_status_cnt[39];
3292 }
3293
3294 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3295 const struct cntr_entry *entry,
3296 void *context, int vl, int mode, u64 data)
3297 {
3298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299
3300 return dd->send_egress_err_status_cnt[38];
3301 }
3302
3303 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3304 const struct cntr_entry *entry,
3305 void *context, int vl, int mode, u64 data)
3306 {
3307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308
3309 return dd->send_egress_err_status_cnt[37];
3310 }
3311
3312 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3313 const struct cntr_entry *entry,
3314 void *context, int vl, int mode, u64 data)
3315 {
3316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317
3318 return dd->send_egress_err_status_cnt[36];
3319 }
3320
3321 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3322 const struct cntr_entry *entry,
3323 void *context, int vl, int mode, u64 data)
3324 {
3325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326
3327 return dd->send_egress_err_status_cnt[35];
3328 }
3329
3330 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3331 const struct cntr_entry *entry,
3332 void *context, int vl, int mode, u64 data)
3333 {
3334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335
3336 return dd->send_egress_err_status_cnt[34];
3337 }
3338
3339 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3340 const struct cntr_entry *entry,
3341 void *context, int vl, int mode, u64 data)
3342 {
3343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344
3345 return dd->send_egress_err_status_cnt[33];
3346 }
3347
3348 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3349 const struct cntr_entry *entry,
3350 void *context, int vl, int mode, u64 data)
3351 {
3352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353
3354 return dd->send_egress_err_status_cnt[32];
3355 }
3356
3357 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3358 const struct cntr_entry *entry,
3359 void *context, int vl, int mode, u64 data)
3360 {
3361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362
3363 return dd->send_egress_err_status_cnt[31];
3364 }
3365
3366 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3367 const struct cntr_entry *entry,
3368 void *context, int vl, int mode, u64 data)
3369 {
3370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371
3372 return dd->send_egress_err_status_cnt[30];
3373 }
3374
3375 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3376 const struct cntr_entry *entry,
3377 void *context, int vl, int mode, u64 data)
3378 {
3379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380
3381 return dd->send_egress_err_status_cnt[29];
3382 }
3383
3384 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3385 const struct cntr_entry *entry,
3386 void *context, int vl, int mode, u64 data)
3387 {
3388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389
3390 return dd->send_egress_err_status_cnt[28];
3391 }
3392
3393 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3394 const struct cntr_entry *entry,
3395 void *context, int vl, int mode, u64 data)
3396 {
3397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398
3399 return dd->send_egress_err_status_cnt[27];
3400 }
3401
3402 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3403 const struct cntr_entry *entry,
3404 void *context, int vl, int mode, u64 data)
3405 {
3406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407
3408 return dd->send_egress_err_status_cnt[26];
3409 }
3410
3411 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3412 const struct cntr_entry *entry,
3413 void *context, int vl, int mode, u64 data)
3414 {
3415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416
3417 return dd->send_egress_err_status_cnt[25];
3418 }
3419
3420 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3421 const struct cntr_entry *entry,
3422 void *context, int vl, int mode, u64 data)
3423 {
3424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425
3426 return dd->send_egress_err_status_cnt[24];
3427 }
3428
3429 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3430 const struct cntr_entry *entry,
3431 void *context, int vl, int mode, u64 data)
3432 {
3433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434
3435 return dd->send_egress_err_status_cnt[23];
3436 }
3437
3438 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3439 const struct cntr_entry *entry,
3440 void *context, int vl, int mode, u64 data)
3441 {
3442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443
3444 return dd->send_egress_err_status_cnt[22];
3445 }
3446
3447 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3448 const struct cntr_entry *entry,
3449 void *context, int vl, int mode, u64 data)
3450 {
3451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452
3453 return dd->send_egress_err_status_cnt[21];
3454 }
3455
3456 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3457 const struct cntr_entry *entry,
3458 void *context, int vl, int mode, u64 data)
3459 {
3460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461
3462 return dd->send_egress_err_status_cnt[20];
3463 }
3464
3465 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3466 const struct cntr_entry *entry,
3467 void *context, int vl, int mode, u64 data)
3468 {
3469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470
3471 return dd->send_egress_err_status_cnt[19];
3472 }
3473
3474 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3475 const struct cntr_entry *entry,
3476 void *context, int vl, int mode, u64 data)
3477 {
3478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479
3480 return dd->send_egress_err_status_cnt[18];
3481 }
3482
3483 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3484 const struct cntr_entry *entry,
3485 void *context, int vl, int mode, u64 data)
3486 {
3487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488
3489 return dd->send_egress_err_status_cnt[17];
3490 }
3491
3492 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3493 const struct cntr_entry *entry,
3494 void *context, int vl, int mode, u64 data)
3495 {
3496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497
3498 return dd->send_egress_err_status_cnt[16];
3499 }
3500
3501 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3502 void *context, int vl, int mode,
3503 u64 data)
3504 {
3505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506
3507 return dd->send_egress_err_status_cnt[15];
3508 }
3509
3510 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3511 void *context, int vl,
3512 int mode, u64 data)
3513 {
3514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515
3516 return dd->send_egress_err_status_cnt[14];
3517 }
3518
3519 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3520 void *context, int vl, int mode,
3521 u64 data)
3522 {
3523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524
3525 return dd->send_egress_err_status_cnt[13];
3526 }
3527
3528 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3529 void *context, int vl, int mode,
3530 u64 data)
3531 {
3532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533
3534 return dd->send_egress_err_status_cnt[12];
3535 }
3536
3537 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3538 const struct cntr_entry *entry,
3539 void *context, int vl, int mode, u64 data)
3540 {
3541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542
3543 return dd->send_egress_err_status_cnt[11];
3544 }
3545
3546 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3547 void *context, int vl, int mode,
3548 u64 data)
3549 {
3550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551
3552 return dd->send_egress_err_status_cnt[10];
3553 }
3554
3555 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3556 void *context, int vl, int mode,
3557 u64 data)
3558 {
3559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560
3561 return dd->send_egress_err_status_cnt[9];
3562 }
3563
3564 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3565 const struct cntr_entry *entry,
3566 void *context, int vl, int mode, u64 data)
3567 {
3568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569
3570 return dd->send_egress_err_status_cnt[8];
3571 }
3572
3573 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3574 const struct cntr_entry *entry,
3575 void *context, int vl, int mode, u64 data)
3576 {
3577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578
3579 return dd->send_egress_err_status_cnt[7];
3580 }
3581
3582 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3583 void *context, int vl, int mode,
3584 u64 data)
3585 {
3586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587
3588 return dd->send_egress_err_status_cnt[6];
3589 }
3590
3591 static u64 access_tx_incorrect_link_state_err_cnt(
3592 const struct cntr_entry *entry,
3593 void *context, int vl, int mode, u64 data)
3594 {
3595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596
3597 return dd->send_egress_err_status_cnt[5];
3598 }
3599
3600 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3601 void *context, int vl, int mode,
3602 u64 data)
3603 {
3604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605
3606 return dd->send_egress_err_status_cnt[4];
3607 }
3608
3609 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3610 const struct cntr_entry *entry,
3611 void *context, int vl, int mode, u64 data)
3612 {
3613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614
3615 return dd->send_egress_err_status_cnt[3];
3616 }
3617
3618 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3619 void *context, int vl, int mode,
3620 u64 data)
3621 {
3622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623
3624 return dd->send_egress_err_status_cnt[2];
3625 }
3626
3627 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3628 const struct cntr_entry *entry,
3629 void *context, int vl, int mode, u64 data)
3630 {
3631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632
3633 return dd->send_egress_err_status_cnt[1];
3634 }
3635
3636 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3637 const struct cntr_entry *entry,
3638 void *context, int vl, int mode, u64 data)
3639 {
3640 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641
3642 return dd->send_egress_err_status_cnt[0];
3643 }
3644
3645 /*
3646 * Software counters corresponding to each of the
3647 * error status bits within SendErrStatus
3648 */
3649 static u64 access_send_csr_write_bad_addr_err_cnt(
3650 const struct cntr_entry *entry,
3651 void *context, int vl, int mode, u64 data)
3652 {
3653 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3654
3655 return dd->send_err_status_cnt[2];
3656 }
3657
3658 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3659 void *context, int vl,
3660 int mode, u64 data)
3661 {
3662 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3663
3664 return dd->send_err_status_cnt[1];
3665 }
3666
3667 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3668 void *context, int vl, int mode,
3669 u64 data)
3670 {
3671 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3672
3673 return dd->send_err_status_cnt[0];
3674 }
3675
3676 /*
3677 * Software counters corresponding to each of the
3678 * error status bits within SendCtxtErrStatus
3679 */
3680 static u64 access_pio_write_out_of_bounds_err_cnt(
3681 const struct cntr_entry *entry,
3682 void *context, int vl, int mode, u64 data)
3683 {
3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686 return dd->sw_ctxt_err_status_cnt[4];
3687 }
3688
3689 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3690 void *context, int vl, int mode,
3691 u64 data)
3692 {
3693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694
3695 return dd->sw_ctxt_err_status_cnt[3];
3696 }
3697
3698 static u64 access_pio_write_crosses_boundary_err_cnt(
3699 const struct cntr_entry *entry,
3700 void *context, int vl, int mode, u64 data)
3701 {
3702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703
3704 return dd->sw_ctxt_err_status_cnt[2];
3705 }
3706
3707 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3708 void *context, int vl,
3709 int mode, u64 data)
3710 {
3711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712
3713 return dd->sw_ctxt_err_status_cnt[1];
3714 }
3715
3716 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3717 void *context, int vl, int mode,
3718 u64 data)
3719 {
3720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721
3722 return dd->sw_ctxt_err_status_cnt[0];
3723 }
3724
3725 /*
3726 * Software counters corresponding to each of the
3727 * error status bits within SendDmaEngErrStatus
3728 */
3729 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3730 const struct cntr_entry *entry,
3731 void *context, int vl, int mode, u64 data)
3732 {
3733 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3734
3735 return dd->sw_send_dma_eng_err_status_cnt[23];
3736 }
3737
3738 static u64 access_sdma_header_storage_cor_err_cnt(
3739 const struct cntr_entry *entry,
3740 void *context, int vl, int mode, u64 data)
3741 {
3742 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3743
3744 return dd->sw_send_dma_eng_err_status_cnt[22];
3745 }
3746
3747 static u64 access_sdma_packet_tracking_cor_err_cnt(
3748 const struct cntr_entry *entry,
3749 void *context, int vl, int mode, u64 data)
3750 {
3751 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3752
3753 return dd->sw_send_dma_eng_err_status_cnt[21];
3754 }
3755
3756 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3757 void *context, int vl, int mode,
3758 u64 data)
3759 {
3760 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3761
3762 return dd->sw_send_dma_eng_err_status_cnt[20];
3763 }
3764
3765 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3766 void *context, int vl, int mode,
3767 u64 data)
3768 {
3769 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770
3771 return dd->sw_send_dma_eng_err_status_cnt[19];
3772 }
3773
3774 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3775 const struct cntr_entry *entry,
3776 void *context, int vl, int mode, u64 data)
3777 {
3778 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779
3780 return dd->sw_send_dma_eng_err_status_cnt[18];
3781 }
3782
3783 static u64 access_sdma_header_storage_unc_err_cnt(
3784 const struct cntr_entry *entry,
3785 void *context, int vl, int mode, u64 data)
3786 {
3787 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3788
3789 return dd->sw_send_dma_eng_err_status_cnt[17];
3790 }
3791
3792 static u64 access_sdma_packet_tracking_unc_err_cnt(
3793 const struct cntr_entry *entry,
3794 void *context, int vl, int mode, u64 data)
3795 {
3796 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3797
3798 return dd->sw_send_dma_eng_err_status_cnt[16];
3799 }
3800
3801 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3802 void *context, int vl, int mode,
3803 u64 data)
3804 {
3805 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3806
3807 return dd->sw_send_dma_eng_err_status_cnt[15];
3808 }
3809
3810 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3811 void *context, int vl, int mode,
3812 u64 data)
3813 {
3814 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3815
3816 return dd->sw_send_dma_eng_err_status_cnt[14];
3817 }
3818
3819 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3820 void *context, int vl, int mode,
3821 u64 data)
3822 {
3823 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3824
3825 return dd->sw_send_dma_eng_err_status_cnt[13];
3826 }
3827
3828 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3829 void *context, int vl, int mode,
3830 u64 data)
3831 {
3832 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3833
3834 return dd->sw_send_dma_eng_err_status_cnt[12];
3835 }
3836
3837 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3838 void *context, int vl, int mode,
3839 u64 data)
3840 {
3841 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842
3843 return dd->sw_send_dma_eng_err_status_cnt[11];
3844 }
3845
3846 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3847 void *context, int vl, int mode,
3848 u64 data)
3849 {
3850 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851
3852 return dd->sw_send_dma_eng_err_status_cnt[10];
3853 }
3854
3855 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3856 void *context, int vl, int mode,
3857 u64 data)
3858 {
3859 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860
3861 return dd->sw_send_dma_eng_err_status_cnt[9];
3862 }
3863
3864 static u64 access_sdma_packet_desc_overflow_err_cnt(
3865 const struct cntr_entry *entry,
3866 void *context, int vl, int mode, u64 data)
3867 {
3868 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869
3870 return dd->sw_send_dma_eng_err_status_cnt[8];
3871 }
3872
3873 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3874 void *context, int vl,
3875 int mode, u64 data)
3876 {
3877 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878
3879 return dd->sw_send_dma_eng_err_status_cnt[7];
3880 }
3881
3882 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3883 void *context, int vl, int mode, u64 data)
3884 {
3885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887 return dd->sw_send_dma_eng_err_status_cnt[6];
3888 }
3889
3890 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3891 void *context, int vl, int mode,
3892 u64 data)
3893 {
3894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896 return dd->sw_send_dma_eng_err_status_cnt[5];
3897 }
3898
3899 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3900 void *context, int vl, int mode,
3901 u64 data)
3902 {
3903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905 return dd->sw_send_dma_eng_err_status_cnt[4];
3906 }
3907
3908 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3909 const struct cntr_entry *entry,
3910 void *context, int vl, int mode, u64 data)
3911 {
3912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914 return dd->sw_send_dma_eng_err_status_cnt[3];
3915 }
3916
3917 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3918 void *context, int vl, int mode,
3919 u64 data)
3920 {
3921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923 return dd->sw_send_dma_eng_err_status_cnt[2];
3924 }
3925
3926 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3927 void *context, int vl, int mode,
3928 u64 data)
3929 {
3930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931
3932 return dd->sw_send_dma_eng_err_status_cnt[1];
3933 }
3934
3935 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3936 void *context, int vl, int mode,
3937 u64 data)
3938 {
3939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940
3941 return dd->sw_send_dma_eng_err_status_cnt[0];
3942 }
3943
3944 #define def_access_sw_cpu(cntr) \
3945 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
3946 void *context, int vl, int mode, u64 data) \
3947 { \
3948 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3949 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
3950 ppd->ibport_data.rvp.cntr, vl, \
3951 mode, data); \
3952 }
3953
3954 def_access_sw_cpu(rc_acks);
3955 def_access_sw_cpu(rc_qacks);
3956 def_access_sw_cpu(rc_delayed_comp);
3957
3958 #define def_access_ibp_counter(cntr) \
3959 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
3960 void *context, int vl, int mode, u64 data) \
3961 { \
3962 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3963 \
3964 if (vl != CNTR_INVALID_VL) \
3965 return 0; \
3966 \
3967 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
3968 mode, data); \
3969 }
3970
3971 def_access_ibp_counter(loop_pkts);
3972 def_access_ibp_counter(rc_resends);
3973 def_access_ibp_counter(rnr_naks);
3974 def_access_ibp_counter(other_naks);
3975 def_access_ibp_counter(rc_timeouts);
3976 def_access_ibp_counter(pkt_drops);
3977 def_access_ibp_counter(dmawait);
3978 def_access_ibp_counter(rc_seqnak);
3979 def_access_ibp_counter(rc_dupreq);
3980 def_access_ibp_counter(rdma_seq);
3981 def_access_ibp_counter(unaligned);
3982 def_access_ibp_counter(seq_naks);
3983
3984 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
3985 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
3986 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
3987 CNTR_NORMAL),
3988 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
3989 CNTR_NORMAL),
3990 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
3991 RCV_TID_FLOW_GEN_MISMATCH_CNT,
3992 CNTR_NORMAL),
3993 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
3994 CNTR_NORMAL),
3995 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
3996 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
3997 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
3998 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
3999 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4000 CNTR_NORMAL),
4001 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4002 CNTR_NORMAL),
4003 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4004 CNTR_NORMAL),
4005 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4006 CNTR_NORMAL),
4007 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4008 CNTR_NORMAL),
4009 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4010 CNTR_NORMAL),
4011 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4012 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4013 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4014 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4015 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4016 CNTR_SYNTH),
4017 [C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
4018 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4019 CNTR_SYNTH),
4020 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4021 CNTR_SYNTH),
4022 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4023 CNTR_SYNTH),
4024 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4025 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4026 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4027 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4028 CNTR_SYNTH),
4029 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4030 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4031 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4032 CNTR_SYNTH),
4033 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4034 CNTR_SYNTH),
4035 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4036 CNTR_SYNTH),
4037 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4038 CNTR_SYNTH),
4039 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4040 CNTR_SYNTH),
4041 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4042 CNTR_SYNTH),
4043 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4044 CNTR_SYNTH),
4045 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4046 CNTR_SYNTH | CNTR_VL),
4047 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4048 CNTR_SYNTH | CNTR_VL),
4049 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4050 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4051 CNTR_SYNTH | CNTR_VL),
4052 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4053 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4054 CNTR_SYNTH | CNTR_VL),
4055 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4056 CNTR_SYNTH),
4057 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4058 CNTR_SYNTH | CNTR_VL),
4059 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4060 CNTR_SYNTH),
4061 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4062 CNTR_SYNTH | CNTR_VL),
4063 [C_DC_TOTAL_CRC] =
4064 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4065 CNTR_SYNTH),
4066 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4067 CNTR_SYNTH),
4068 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4069 CNTR_SYNTH),
4070 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4071 CNTR_SYNTH),
4072 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4073 CNTR_SYNTH),
4074 [C_DC_CRC_MULT_LN] =
4075 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4076 CNTR_SYNTH),
4077 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4078 CNTR_SYNTH),
4079 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4080 CNTR_SYNTH),
4081 [C_DC_SEQ_CRC_CNT] =
4082 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4083 CNTR_SYNTH),
4084 [C_DC_ESC0_ONLY_CNT] =
4085 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4086 CNTR_SYNTH),
4087 [C_DC_ESC0_PLUS1_CNT] =
4088 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4089 CNTR_SYNTH),
4090 [C_DC_ESC0_PLUS2_CNT] =
4091 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4092 CNTR_SYNTH),
4093 [C_DC_REINIT_FROM_PEER_CNT] =
4094 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4095 CNTR_SYNTH),
4096 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4097 CNTR_SYNTH),
4098 [C_DC_MISC_FLG_CNT] =
4099 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4100 CNTR_SYNTH),
4101 [C_DC_PRF_GOOD_LTP_CNT] =
4102 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4103 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4104 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4105 CNTR_SYNTH),
4106 [C_DC_PRF_RX_FLIT_CNT] =
4107 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4108 [C_DC_PRF_TX_FLIT_CNT] =
4109 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4110 [C_DC_PRF_CLK_CNTR] =
4111 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4112 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4113 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4114 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4115 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4116 CNTR_SYNTH),
4117 [C_DC_PG_STS_TX_SBE_CNT] =
4118 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4119 [C_DC_PG_STS_TX_MBE_CNT] =
4120 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4121 CNTR_SYNTH),
4122 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4123 access_sw_cpu_intr),
4124 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4125 access_sw_cpu_rcv_limit),
4126 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4127 access_sw_vtx_wait),
4128 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4129 access_sw_pio_wait),
4130 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4131 access_sw_pio_drain),
4132 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4133 access_sw_kmem_wait),
4134 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4135 access_sw_send_schedule),
4136 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4137 SEND_DMA_DESC_FETCHED_CNT, 0,
4138 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4139 dev_access_u32_csr),
4140 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4141 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4142 access_sde_int_cnt),
4143 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4144 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4145 access_sde_err_cnt),
4146 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4147 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4148 access_sde_idle_int_cnt),
4149 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4150 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4151 access_sde_progress_int_cnt),
4152 /* MISC_ERR_STATUS */
4153 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4154 CNTR_NORMAL,
4155 access_misc_pll_lock_fail_err_cnt),
4156 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4157 CNTR_NORMAL,
4158 access_misc_mbist_fail_err_cnt),
4159 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4160 CNTR_NORMAL,
4161 access_misc_invalid_eep_cmd_err_cnt),
4162 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4163 CNTR_NORMAL,
4164 access_misc_efuse_done_parity_err_cnt),
4165 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4166 CNTR_NORMAL,
4167 access_misc_efuse_write_err_cnt),
4168 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4169 0, CNTR_NORMAL,
4170 access_misc_efuse_read_bad_addr_err_cnt),
4171 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4172 CNTR_NORMAL,
4173 access_misc_efuse_csr_parity_err_cnt),
4174 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4175 CNTR_NORMAL,
4176 access_misc_fw_auth_failed_err_cnt),
4177 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4178 CNTR_NORMAL,
4179 access_misc_key_mismatch_err_cnt),
4180 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4181 CNTR_NORMAL,
4182 access_misc_sbus_write_failed_err_cnt),
4183 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4184 CNTR_NORMAL,
4185 access_misc_csr_write_bad_addr_err_cnt),
4186 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4187 CNTR_NORMAL,
4188 access_misc_csr_read_bad_addr_err_cnt),
4189 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4190 CNTR_NORMAL,
4191 access_misc_csr_parity_err_cnt),
4192 /* CceErrStatus */
4193 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4194 CNTR_NORMAL,
4195 access_sw_cce_err_status_aggregated_cnt),
4196 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4197 CNTR_NORMAL,
4198 access_cce_msix_csr_parity_err_cnt),
4199 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4200 CNTR_NORMAL,
4201 access_cce_int_map_unc_err_cnt),
4202 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4203 CNTR_NORMAL,
4204 access_cce_int_map_cor_err_cnt),
4205 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4206 CNTR_NORMAL,
4207 access_cce_msix_table_unc_err_cnt),
4208 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4209 CNTR_NORMAL,
4210 access_cce_msix_table_cor_err_cnt),
4211 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4212 0, CNTR_NORMAL,
4213 access_cce_rxdma_conv_fifo_parity_err_cnt),
4214 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4215 0, CNTR_NORMAL,
4216 access_cce_rcpl_async_fifo_parity_err_cnt),
4217 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4218 CNTR_NORMAL,
4219 access_cce_seg_write_bad_addr_err_cnt),
4220 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4221 CNTR_NORMAL,
4222 access_cce_seg_read_bad_addr_err_cnt),
4223 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4224 CNTR_NORMAL,
4225 access_la_triggered_cnt),
4226 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4227 CNTR_NORMAL,
4228 access_cce_trgt_cpl_timeout_err_cnt),
4229 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4230 CNTR_NORMAL,
4231 access_pcic_receive_parity_err_cnt),
4232 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4233 CNTR_NORMAL,
4234 access_pcic_transmit_back_parity_err_cnt),
4235 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4236 0, CNTR_NORMAL,
4237 access_pcic_transmit_front_parity_err_cnt),
4238 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4239 CNTR_NORMAL,
4240 access_pcic_cpl_dat_q_unc_err_cnt),
4241 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4242 CNTR_NORMAL,
4243 access_pcic_cpl_hd_q_unc_err_cnt),
4244 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4245 CNTR_NORMAL,
4246 access_pcic_post_dat_q_unc_err_cnt),
4247 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4248 CNTR_NORMAL,
4249 access_pcic_post_hd_q_unc_err_cnt),
4250 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4251 CNTR_NORMAL,
4252 access_pcic_retry_sot_mem_unc_err_cnt),
4253 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4254 CNTR_NORMAL,
4255 access_pcic_retry_mem_unc_err),
4256 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4257 CNTR_NORMAL,
4258 access_pcic_n_post_dat_q_parity_err_cnt),
4259 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4260 CNTR_NORMAL,
4261 access_pcic_n_post_h_q_parity_err_cnt),
4262 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4263 CNTR_NORMAL,
4264 access_pcic_cpl_dat_q_cor_err_cnt),
4265 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4266 CNTR_NORMAL,
4267 access_pcic_cpl_hd_q_cor_err_cnt),
4268 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4269 CNTR_NORMAL,
4270 access_pcic_post_dat_q_cor_err_cnt),
4271 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4272 CNTR_NORMAL,
4273 access_pcic_post_hd_q_cor_err_cnt),
4274 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4275 CNTR_NORMAL,
4276 access_pcic_retry_sot_mem_cor_err_cnt),
4277 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4278 CNTR_NORMAL,
4279 access_pcic_retry_mem_cor_err_cnt),
4280 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4281 "CceCli1AsyncFifoDbgParityError", 0, 0,
4282 CNTR_NORMAL,
4283 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4284 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4285 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4286 CNTR_NORMAL,
4287 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4288 ),
4289 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4290 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4291 CNTR_NORMAL,
4292 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4293 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4294 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4295 CNTR_NORMAL,
4296 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4297 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4298 0, CNTR_NORMAL,
4299 access_cce_cli2_async_fifo_parity_err_cnt),
4300 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4301 CNTR_NORMAL,
4302 access_cce_csr_cfg_bus_parity_err_cnt),
4303 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4304 0, CNTR_NORMAL,
4305 access_cce_cli0_async_fifo_parity_err_cnt),
4306 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4307 CNTR_NORMAL,
4308 access_cce_rspd_data_parity_err_cnt),
4309 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4310 CNTR_NORMAL,
4311 access_cce_trgt_access_err_cnt),
4312 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4313 0, CNTR_NORMAL,
4314 access_cce_trgt_async_fifo_parity_err_cnt),
4315 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4316 CNTR_NORMAL,
4317 access_cce_csr_write_bad_addr_err_cnt),
4318 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4319 CNTR_NORMAL,
4320 access_cce_csr_read_bad_addr_err_cnt),
4321 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4322 CNTR_NORMAL,
4323 access_ccs_csr_parity_err_cnt),
4324
4325 /* RcvErrStatus */
4326 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4327 CNTR_NORMAL,
4328 access_rx_csr_parity_err_cnt),
4329 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4330 CNTR_NORMAL,
4331 access_rx_csr_write_bad_addr_err_cnt),
4332 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4333 CNTR_NORMAL,
4334 access_rx_csr_read_bad_addr_err_cnt),
4335 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4336 CNTR_NORMAL,
4337 access_rx_dma_csr_unc_err_cnt),
4338 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4339 CNTR_NORMAL,
4340 access_rx_dma_dq_fsm_encoding_err_cnt),
4341 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4342 CNTR_NORMAL,
4343 access_rx_dma_eq_fsm_encoding_err_cnt),
4344 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4345 CNTR_NORMAL,
4346 access_rx_dma_csr_parity_err_cnt),
4347 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4348 CNTR_NORMAL,
4349 access_rx_rbuf_data_cor_err_cnt),
4350 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4351 CNTR_NORMAL,
4352 access_rx_rbuf_data_unc_err_cnt),
4353 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4354 CNTR_NORMAL,
4355 access_rx_dma_data_fifo_rd_cor_err_cnt),
4356 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4357 CNTR_NORMAL,
4358 access_rx_dma_data_fifo_rd_unc_err_cnt),
4359 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4360 CNTR_NORMAL,
4361 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4362 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4363 CNTR_NORMAL,
4364 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4365 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4366 CNTR_NORMAL,
4367 access_rx_rbuf_desc_part2_cor_err_cnt),
4368 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4369 CNTR_NORMAL,
4370 access_rx_rbuf_desc_part2_unc_err_cnt),
4371 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4372 CNTR_NORMAL,
4373 access_rx_rbuf_desc_part1_cor_err_cnt),
4374 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4375 CNTR_NORMAL,
4376 access_rx_rbuf_desc_part1_unc_err_cnt),
4377 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4378 CNTR_NORMAL,
4379 access_rx_hq_intr_fsm_err_cnt),
4380 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4381 CNTR_NORMAL,
4382 access_rx_hq_intr_csr_parity_err_cnt),
4383 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4384 CNTR_NORMAL,
4385 access_rx_lookup_csr_parity_err_cnt),
4386 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4387 CNTR_NORMAL,
4388 access_rx_lookup_rcv_array_cor_err_cnt),
4389 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4390 CNTR_NORMAL,
4391 access_rx_lookup_rcv_array_unc_err_cnt),
4392 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4393 0, CNTR_NORMAL,
4394 access_rx_lookup_des_part2_parity_err_cnt),
4395 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4396 0, CNTR_NORMAL,
4397 access_rx_lookup_des_part1_unc_cor_err_cnt),
4398 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4399 CNTR_NORMAL,
4400 access_rx_lookup_des_part1_unc_err_cnt),
4401 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4402 CNTR_NORMAL,
4403 access_rx_rbuf_next_free_buf_cor_err_cnt),
4404 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4405 CNTR_NORMAL,
4406 access_rx_rbuf_next_free_buf_unc_err_cnt),
4407 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4408 "RxRbufFlInitWrAddrParityErr", 0, 0,
4409 CNTR_NORMAL,
4410 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4411 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4412 0, CNTR_NORMAL,
4413 access_rx_rbuf_fl_initdone_parity_err_cnt),
4414 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4415 0, CNTR_NORMAL,
4416 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4417 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4418 CNTR_NORMAL,
4419 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4420 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4421 CNTR_NORMAL,
4422 access_rx_rbuf_empty_err_cnt),
4423 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4424 CNTR_NORMAL,
4425 access_rx_rbuf_full_err_cnt),
4426 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4427 CNTR_NORMAL,
4428 access_rbuf_bad_lookup_err_cnt),
4429 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4430 CNTR_NORMAL,
4431 access_rbuf_ctx_id_parity_err_cnt),
4432 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4433 CNTR_NORMAL,
4434 access_rbuf_csr_qeopdw_parity_err_cnt),
4435 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4436 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4437 CNTR_NORMAL,
4438 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4439 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4440 "RxRbufCsrQTlPtrParityErr", 0, 0,
4441 CNTR_NORMAL,
4442 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4443 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4444 0, CNTR_NORMAL,
4445 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4446 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4447 0, CNTR_NORMAL,
4448 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4449 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4450 0, 0, CNTR_NORMAL,
4451 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4452 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4453 0, CNTR_NORMAL,
4454 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4455 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4456 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4457 CNTR_NORMAL,
4458 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4459 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4460 0, CNTR_NORMAL,
4461 access_rx_rbuf_block_list_read_cor_err_cnt),
4462 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4463 0, CNTR_NORMAL,
4464 access_rx_rbuf_block_list_read_unc_err_cnt),
4465 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4466 CNTR_NORMAL,
4467 access_rx_rbuf_lookup_des_cor_err_cnt),
4468 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4469 CNTR_NORMAL,
4470 access_rx_rbuf_lookup_des_unc_err_cnt),
4471 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4472 "RxRbufLookupDesRegUncCorErr", 0, 0,
4473 CNTR_NORMAL,
4474 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4475 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4476 CNTR_NORMAL,
4477 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4478 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4479 CNTR_NORMAL,
4480 access_rx_rbuf_free_list_cor_err_cnt),
4481 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4482 CNTR_NORMAL,
4483 access_rx_rbuf_free_list_unc_err_cnt),
4484 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4485 CNTR_NORMAL,
4486 access_rx_rcv_fsm_encoding_err_cnt),
4487 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4488 CNTR_NORMAL,
4489 access_rx_dma_flag_cor_err_cnt),
4490 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4491 CNTR_NORMAL,
4492 access_rx_dma_flag_unc_err_cnt),
4493 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4494 CNTR_NORMAL,
4495 access_rx_dc_sop_eop_parity_err_cnt),
4496 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4497 CNTR_NORMAL,
4498 access_rx_rcv_csr_parity_err_cnt),
4499 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4500 CNTR_NORMAL,
4501 access_rx_rcv_qp_map_table_cor_err_cnt),
4502 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4503 CNTR_NORMAL,
4504 access_rx_rcv_qp_map_table_unc_err_cnt),
4505 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4506 CNTR_NORMAL,
4507 access_rx_rcv_data_cor_err_cnt),
4508 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4509 CNTR_NORMAL,
4510 access_rx_rcv_data_unc_err_cnt),
4511 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4512 CNTR_NORMAL,
4513 access_rx_rcv_hdr_cor_err_cnt),
4514 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4515 CNTR_NORMAL,
4516 access_rx_rcv_hdr_unc_err_cnt),
4517 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4518 CNTR_NORMAL,
4519 access_rx_dc_intf_parity_err_cnt),
4520 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4521 CNTR_NORMAL,
4522 access_rx_dma_csr_cor_err_cnt),
4523 /* SendPioErrStatus */
4524 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4525 CNTR_NORMAL,
4526 access_pio_pec_sop_head_parity_err_cnt),
4527 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4528 CNTR_NORMAL,
4529 access_pio_pcc_sop_head_parity_err_cnt),
4530 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4531 0, 0, CNTR_NORMAL,
4532 access_pio_last_returned_cnt_parity_err_cnt),
4533 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4534 0, CNTR_NORMAL,
4535 access_pio_current_free_cnt_parity_err_cnt),
4536 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4537 CNTR_NORMAL,
4538 access_pio_reserved_31_err_cnt),
4539 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4540 CNTR_NORMAL,
4541 access_pio_reserved_30_err_cnt),
4542 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4543 CNTR_NORMAL,
4544 access_pio_ppmc_sop_len_err_cnt),
4545 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4546 CNTR_NORMAL,
4547 access_pio_ppmc_bqc_mem_parity_err_cnt),
4548 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4549 CNTR_NORMAL,
4550 access_pio_vl_fifo_parity_err_cnt),
4551 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4552 CNTR_NORMAL,
4553 access_pio_vlf_sop_parity_err_cnt),
4554 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4555 CNTR_NORMAL,
4556 access_pio_vlf_v1_len_parity_err_cnt),
4557 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4558 CNTR_NORMAL,
4559 access_pio_block_qw_count_parity_err_cnt),
4560 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4561 CNTR_NORMAL,
4562 access_pio_write_qw_valid_parity_err_cnt),
4563 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4564 CNTR_NORMAL,
4565 access_pio_state_machine_err_cnt),
4566 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4567 CNTR_NORMAL,
4568 access_pio_write_data_parity_err_cnt),
4569 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4570 CNTR_NORMAL,
4571 access_pio_host_addr_mem_cor_err_cnt),
4572 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4573 CNTR_NORMAL,
4574 access_pio_host_addr_mem_unc_err_cnt),
4575 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4576 CNTR_NORMAL,
4577 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4578 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4579 CNTR_NORMAL,
4580 access_pio_init_sm_in_err_cnt),
4581 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4582 CNTR_NORMAL,
4583 access_pio_ppmc_pbl_fifo_err_cnt),
4584 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4585 0, CNTR_NORMAL,
4586 access_pio_credit_ret_fifo_parity_err_cnt),
4587 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4588 CNTR_NORMAL,
4589 access_pio_v1_len_mem_bank1_cor_err_cnt),
4590 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4591 CNTR_NORMAL,
4592 access_pio_v1_len_mem_bank0_cor_err_cnt),
4593 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4594 CNTR_NORMAL,
4595 access_pio_v1_len_mem_bank1_unc_err_cnt),
4596 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4597 CNTR_NORMAL,
4598 access_pio_v1_len_mem_bank0_unc_err_cnt),
4599 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4600 CNTR_NORMAL,
4601 access_pio_sm_pkt_reset_parity_err_cnt),
4602 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4603 CNTR_NORMAL,
4604 access_pio_pkt_evict_fifo_parity_err_cnt),
4605 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4606 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4607 CNTR_NORMAL,
4608 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4609 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4610 CNTR_NORMAL,
4611 access_pio_sbrdctl_crrel_parity_err_cnt),
4612 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4613 CNTR_NORMAL,
4614 access_pio_pec_fifo_parity_err_cnt),
4615 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4616 CNTR_NORMAL,
4617 access_pio_pcc_fifo_parity_err_cnt),
4618 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4619 CNTR_NORMAL,
4620 access_pio_sb_mem_fifo1_err_cnt),
4621 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4622 CNTR_NORMAL,
4623 access_pio_sb_mem_fifo0_err_cnt),
4624 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4625 CNTR_NORMAL,
4626 access_pio_csr_parity_err_cnt),
4627 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4628 CNTR_NORMAL,
4629 access_pio_write_addr_parity_err_cnt),
4630 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4631 CNTR_NORMAL,
4632 access_pio_write_bad_ctxt_err_cnt),
4633 /* SendDmaErrStatus */
4634 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4635 0, CNTR_NORMAL,
4636 access_sdma_pcie_req_tracking_cor_err_cnt),
4637 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4638 0, CNTR_NORMAL,
4639 access_sdma_pcie_req_tracking_unc_err_cnt),
4640 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4641 CNTR_NORMAL,
4642 access_sdma_csr_parity_err_cnt),
4643 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4644 CNTR_NORMAL,
4645 access_sdma_rpy_tag_err_cnt),
4646 /* SendEgressErrStatus */
4647 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4648 CNTR_NORMAL,
4649 access_tx_read_pio_memory_csr_unc_err_cnt),
4650 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4651 0, CNTR_NORMAL,
4652 access_tx_read_sdma_memory_csr_err_cnt),
4653 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4654 CNTR_NORMAL,
4655 access_tx_egress_fifo_cor_err_cnt),
4656 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4657 CNTR_NORMAL,
4658 access_tx_read_pio_memory_cor_err_cnt),
4659 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4660 CNTR_NORMAL,
4661 access_tx_read_sdma_memory_cor_err_cnt),
4662 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4663 CNTR_NORMAL,
4664 access_tx_sb_hdr_cor_err_cnt),
4665 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4666 CNTR_NORMAL,
4667 access_tx_credit_overrun_err_cnt),
4668 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4669 CNTR_NORMAL,
4670 access_tx_launch_fifo8_cor_err_cnt),
4671 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4672 CNTR_NORMAL,
4673 access_tx_launch_fifo7_cor_err_cnt),
4674 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4675 CNTR_NORMAL,
4676 access_tx_launch_fifo6_cor_err_cnt),
4677 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4678 CNTR_NORMAL,
4679 access_tx_launch_fifo5_cor_err_cnt),
4680 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4681 CNTR_NORMAL,
4682 access_tx_launch_fifo4_cor_err_cnt),
4683 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4684 CNTR_NORMAL,
4685 access_tx_launch_fifo3_cor_err_cnt),
4686 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4687 CNTR_NORMAL,
4688 access_tx_launch_fifo2_cor_err_cnt),
4689 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4690 CNTR_NORMAL,
4691 access_tx_launch_fifo1_cor_err_cnt),
4692 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4693 CNTR_NORMAL,
4694 access_tx_launch_fifo0_cor_err_cnt),
4695 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4696 CNTR_NORMAL,
4697 access_tx_credit_return_vl_err_cnt),
4698 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4699 CNTR_NORMAL,
4700 access_tx_hcrc_insertion_err_cnt),
4701 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4702 CNTR_NORMAL,
4703 access_tx_egress_fifo_unc_err_cnt),
4704 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4705 CNTR_NORMAL,
4706 access_tx_read_pio_memory_unc_err_cnt),
4707 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4708 CNTR_NORMAL,
4709 access_tx_read_sdma_memory_unc_err_cnt),
4710 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4711 CNTR_NORMAL,
4712 access_tx_sb_hdr_unc_err_cnt),
4713 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4714 CNTR_NORMAL,
4715 access_tx_credit_return_partiy_err_cnt),
4716 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4717 0, 0, CNTR_NORMAL,
4718 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4719 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4720 0, 0, CNTR_NORMAL,
4721 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4722 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4723 0, 0, CNTR_NORMAL,
4724 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4725 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4726 0, 0, CNTR_NORMAL,
4727 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4728 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4729 0, 0, CNTR_NORMAL,
4730 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4731 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4732 0, 0, CNTR_NORMAL,
4733 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4734 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4735 0, 0, CNTR_NORMAL,
4736 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4737 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4738 0, 0, CNTR_NORMAL,
4739 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4740 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4741 0, 0, CNTR_NORMAL,
4742 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4743 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4744 0, 0, CNTR_NORMAL,
4745 access_tx_sdma15_disallowed_packet_err_cnt),
4746 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4747 0, 0, CNTR_NORMAL,
4748 access_tx_sdma14_disallowed_packet_err_cnt),
4749 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4750 0, 0, CNTR_NORMAL,
4751 access_tx_sdma13_disallowed_packet_err_cnt),
4752 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4753 0, 0, CNTR_NORMAL,
4754 access_tx_sdma12_disallowed_packet_err_cnt),
4755 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4756 0, 0, CNTR_NORMAL,
4757 access_tx_sdma11_disallowed_packet_err_cnt),
4758 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4759 0, 0, CNTR_NORMAL,
4760 access_tx_sdma10_disallowed_packet_err_cnt),
4761 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4762 0, 0, CNTR_NORMAL,
4763 access_tx_sdma9_disallowed_packet_err_cnt),
4764 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4765 0, 0, CNTR_NORMAL,
4766 access_tx_sdma8_disallowed_packet_err_cnt),
4767 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4768 0, 0, CNTR_NORMAL,
4769 access_tx_sdma7_disallowed_packet_err_cnt),
4770 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4771 0, 0, CNTR_NORMAL,
4772 access_tx_sdma6_disallowed_packet_err_cnt),
4773 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4774 0, 0, CNTR_NORMAL,
4775 access_tx_sdma5_disallowed_packet_err_cnt),
4776 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4777 0, 0, CNTR_NORMAL,
4778 access_tx_sdma4_disallowed_packet_err_cnt),
4779 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4780 0, 0, CNTR_NORMAL,
4781 access_tx_sdma3_disallowed_packet_err_cnt),
4782 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4783 0, 0, CNTR_NORMAL,
4784 access_tx_sdma2_disallowed_packet_err_cnt),
4785 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4786 0, 0, CNTR_NORMAL,
4787 access_tx_sdma1_disallowed_packet_err_cnt),
4788 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4789 0, 0, CNTR_NORMAL,
4790 access_tx_sdma0_disallowed_packet_err_cnt),
4791 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4792 CNTR_NORMAL,
4793 access_tx_config_parity_err_cnt),
4794 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4795 CNTR_NORMAL,
4796 access_tx_sbrd_ctl_csr_parity_err_cnt),
4797 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4798 CNTR_NORMAL,
4799 access_tx_launch_csr_parity_err_cnt),
4800 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4801 CNTR_NORMAL,
4802 access_tx_illegal_vl_err_cnt),
4803 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4804 "TxSbrdCtlStateMachineParityErr", 0, 0,
4805 CNTR_NORMAL,
4806 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4807 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4808 CNTR_NORMAL,
4809 access_egress_reserved_10_err_cnt),
4810 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4811 CNTR_NORMAL,
4812 access_egress_reserved_9_err_cnt),
4813 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4814 0, 0, CNTR_NORMAL,
4815 access_tx_sdma_launch_intf_parity_err_cnt),
4816 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4817 CNTR_NORMAL,
4818 access_tx_pio_launch_intf_parity_err_cnt),
4819 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4820 CNTR_NORMAL,
4821 access_egress_reserved_6_err_cnt),
4822 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4823 CNTR_NORMAL,
4824 access_tx_incorrect_link_state_err_cnt),
4825 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4826 CNTR_NORMAL,
4827 access_tx_linkdown_err_cnt),
4828 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4829 "EgressFifoUnderrunOrParityErr", 0, 0,
4830 CNTR_NORMAL,
4831 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4832 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4833 CNTR_NORMAL,
4834 access_egress_reserved_2_err_cnt),
4835 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4836 CNTR_NORMAL,
4837 access_tx_pkt_integrity_mem_unc_err_cnt),
4838 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4839 CNTR_NORMAL,
4840 access_tx_pkt_integrity_mem_cor_err_cnt),
4841 /* SendErrStatus */
4842 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4843 CNTR_NORMAL,
4844 access_send_csr_write_bad_addr_err_cnt),
4845 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4846 CNTR_NORMAL,
4847 access_send_csr_read_bad_addr_err_cnt),
4848 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4849 CNTR_NORMAL,
4850 access_send_csr_parity_cnt),
4851 /* SendCtxtErrStatus */
4852 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4853 CNTR_NORMAL,
4854 access_pio_write_out_of_bounds_err_cnt),
4855 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4856 CNTR_NORMAL,
4857 access_pio_write_overflow_err_cnt),
4858 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4859 0, 0, CNTR_NORMAL,
4860 access_pio_write_crosses_boundary_err_cnt),
4861 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4862 CNTR_NORMAL,
4863 access_pio_disallowed_packet_err_cnt),
4864 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4865 CNTR_NORMAL,
4866 access_pio_inconsistent_sop_err_cnt),
4867 /* SendDmaEngErrStatus */
4868 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4869 0, 0, CNTR_NORMAL,
4870 access_sdma_header_request_fifo_cor_err_cnt),
4871 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4872 CNTR_NORMAL,
4873 access_sdma_header_storage_cor_err_cnt),
4874 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4875 CNTR_NORMAL,
4876 access_sdma_packet_tracking_cor_err_cnt),
4877 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4878 CNTR_NORMAL,
4879 access_sdma_assembly_cor_err_cnt),
4880 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4881 CNTR_NORMAL,
4882 access_sdma_desc_table_cor_err_cnt),
4883 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4884 0, 0, CNTR_NORMAL,
4885 access_sdma_header_request_fifo_unc_err_cnt),
4886 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4887 CNTR_NORMAL,
4888 access_sdma_header_storage_unc_err_cnt),
4889 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4890 CNTR_NORMAL,
4891 access_sdma_packet_tracking_unc_err_cnt),
4892 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4893 CNTR_NORMAL,
4894 access_sdma_assembly_unc_err_cnt),
4895 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4896 CNTR_NORMAL,
4897 access_sdma_desc_table_unc_err_cnt),
4898 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4899 CNTR_NORMAL,
4900 access_sdma_timeout_err_cnt),
4901 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4902 CNTR_NORMAL,
4903 access_sdma_header_length_err_cnt),
4904 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4905 CNTR_NORMAL,
4906 access_sdma_header_address_err_cnt),
4907 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4908 CNTR_NORMAL,
4909 access_sdma_header_select_err_cnt),
4910 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4911 CNTR_NORMAL,
4912 access_sdma_reserved_9_err_cnt),
4913 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4914 CNTR_NORMAL,
4915 access_sdma_packet_desc_overflow_err_cnt),
4916 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4917 CNTR_NORMAL,
4918 access_sdma_length_mismatch_err_cnt),
4919 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4920 CNTR_NORMAL,
4921 access_sdma_halt_err_cnt),
4922 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4923 CNTR_NORMAL,
4924 access_sdma_mem_read_err_cnt),
4925 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4926 CNTR_NORMAL,
4927 access_sdma_first_desc_err_cnt),
4928 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4929 CNTR_NORMAL,
4930 access_sdma_tail_out_of_bounds_err_cnt),
4931 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4932 CNTR_NORMAL,
4933 access_sdma_too_long_err_cnt),
4934 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4935 CNTR_NORMAL,
4936 access_sdma_gen_mismatch_err_cnt),
4937 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4938 CNTR_NORMAL,
4939 access_sdma_wrong_dw_err_cnt),
4940 };
4941
4942 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4943 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4944 CNTR_NORMAL),
4945 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4946 CNTR_NORMAL),
4947 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4948 CNTR_NORMAL),
4949 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4950 CNTR_NORMAL),
4951 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4952 CNTR_NORMAL),
4953 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4954 CNTR_NORMAL),
4955 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4956 CNTR_NORMAL),
4957 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4958 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4959 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4960 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4961 CNTR_SYNTH | CNTR_VL),
4962 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4963 CNTR_SYNTH | CNTR_VL),
4964 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
4965 CNTR_SYNTH | CNTR_VL),
4966 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
4967 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
4968 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4969 access_sw_link_dn_cnt),
4970 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4971 access_sw_link_up_cnt),
4972 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
4973 access_sw_unknown_frame_cnt),
4974 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4975 access_sw_xmit_discards),
4976 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
4977 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
4978 access_sw_xmit_discards),
4979 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
4980 access_xmit_constraint_errs),
4981 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
4982 access_rcv_constraint_errs),
4983 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
4984 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
4985 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
4986 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
4987 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
4988 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
4989 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
4990 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
4991 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
4992 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
4993 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
4994 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
4995 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
4996 access_sw_cpu_rc_acks),
4997 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
4998 access_sw_cpu_rc_qacks),
4999 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5000 access_sw_cpu_rc_delayed_comp),
5001 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5002 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5003 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5004 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5005 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5006 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5007 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5008 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5009 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5010 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5011 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5012 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5013 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5014 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5015 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5016 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5017 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5018 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5019 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5020 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5021 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5022 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5023 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5024 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5025 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5026 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5027 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5028 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5029 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5030 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5031 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5032 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5033 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5034 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5035 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5036 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5037 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5038 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5039 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5040 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5041 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5042 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5043 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5044 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5045 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5046 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5047 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5048 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5049 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5050 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5051 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5052 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5053 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5054 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5055 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5056 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5057 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5058 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5059 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5060 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5061 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5062 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5063 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5064 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5065 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5066 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5067 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5068 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5069 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5070 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5071 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5072 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5073 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5074 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5075 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5076 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5077 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5078 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5079 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5080 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5081 };
5082
5083 /* ======================================================================== */
5084
5085 /* return true if this is chip revision revision a */
5086 int is_ax(struct hfi1_devdata *dd)
5087 {
5088 u8 chip_rev_minor =
5089 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5090 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5091 return (chip_rev_minor & 0xf0) == 0;
5092 }
5093
5094 /* return true if this is chip revision revision b */
5095 int is_bx(struct hfi1_devdata *dd)
5096 {
5097 u8 chip_rev_minor =
5098 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5099 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5100 return (chip_rev_minor & 0xF0) == 0x10;
5101 }
5102
5103 /*
5104 * Append string s to buffer buf. Arguments curp and len are the current
5105 * position and remaining length, respectively.
5106 *
5107 * return 0 on success, 1 on out of room
5108 */
5109 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5110 {
5111 char *p = *curp;
5112 int len = *lenp;
5113 int result = 0; /* success */
5114 char c;
5115
5116 /* add a comma, if first in the buffer */
5117 if (p != buf) {
5118 if (len == 0) {
5119 result = 1; /* out of room */
5120 goto done;
5121 }
5122 *p++ = ',';
5123 len--;
5124 }
5125
5126 /* copy the string */
5127 while ((c = *s++) != 0) {
5128 if (len == 0) {
5129 result = 1; /* out of room */
5130 goto done;
5131 }
5132 *p++ = c;
5133 len--;
5134 }
5135
5136 done:
5137 /* write return values */
5138 *curp = p;
5139 *lenp = len;
5140
5141 return result;
5142 }
5143
5144 /*
5145 * Using the given flag table, print a comma separated string into
5146 * the buffer. End in '*' if the buffer is too short.
5147 */
5148 static char *flag_string(char *buf, int buf_len, u64 flags,
5149 struct flag_table *table, int table_size)
5150 {
5151 char extra[32];
5152 char *p = buf;
5153 int len = buf_len;
5154 int no_room = 0;
5155 int i;
5156
5157 /* make sure there is at least 2 so we can form "*" */
5158 if (len < 2)
5159 return "";
5160
5161 len--; /* leave room for a nul */
5162 for (i = 0; i < table_size; i++) {
5163 if (flags & table[i].flag) {
5164 no_room = append_str(buf, &p, &len, table[i].str);
5165 if (no_room)
5166 break;
5167 flags &= ~table[i].flag;
5168 }
5169 }
5170
5171 /* any undocumented bits left? */
5172 if (!no_room && flags) {
5173 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5174 no_room = append_str(buf, &p, &len, extra);
5175 }
5176
5177 /* add * if ran out of room */
5178 if (no_room) {
5179 /* may need to back up to add space for a '*' */
5180 if (len == 0)
5181 --p;
5182 *p++ = '*';
5183 }
5184
5185 /* add final nul - space already allocated above */
5186 *p = 0;
5187 return buf;
5188 }
5189
5190 /* first 8 CCE error interrupt source names */
5191 static const char * const cce_misc_names[] = {
5192 "CceErrInt", /* 0 */
5193 "RxeErrInt", /* 1 */
5194 "MiscErrInt", /* 2 */
5195 "Reserved3", /* 3 */
5196 "PioErrInt", /* 4 */
5197 "SDmaErrInt", /* 5 */
5198 "EgressErrInt", /* 6 */
5199 "TxeErrInt" /* 7 */
5200 };
5201
5202 /*
5203 * Return the miscellaneous error interrupt name.
5204 */
5205 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5206 {
5207 if (source < ARRAY_SIZE(cce_misc_names))
5208 strncpy(buf, cce_misc_names[source], bsize);
5209 else
5210 snprintf(buf, bsize, "Reserved%u",
5211 source + IS_GENERAL_ERR_START);
5212
5213 return buf;
5214 }
5215
5216 /*
5217 * Return the SDMA engine error interrupt name.
5218 */
5219 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5220 {
5221 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5222 return buf;
5223 }
5224
5225 /*
5226 * Return the send context error interrupt name.
5227 */
5228 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5229 {
5230 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5231 return buf;
5232 }
5233
5234 static const char * const various_names[] = {
5235 "PbcInt",
5236 "GpioAssertInt",
5237 "Qsfp1Int",
5238 "Qsfp2Int",
5239 "TCritInt"
5240 };
5241
5242 /*
5243 * Return the various interrupt name.
5244 */
5245 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5246 {
5247 if (source < ARRAY_SIZE(various_names))
5248 strncpy(buf, various_names[source], bsize);
5249 else
5250 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5251 return buf;
5252 }
5253
5254 /*
5255 * Return the DC interrupt name.
5256 */
5257 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5258 {
5259 static const char * const dc_int_names[] = {
5260 "common",
5261 "lcb",
5262 "8051",
5263 "lbm" /* local block merge */
5264 };
5265
5266 if (source < ARRAY_SIZE(dc_int_names))
5267 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5268 else
5269 snprintf(buf, bsize, "DCInt%u", source);
5270 return buf;
5271 }
5272
5273 static const char * const sdma_int_names[] = {
5274 "SDmaInt",
5275 "SdmaIdleInt",
5276 "SdmaProgressInt",
5277 };
5278
5279 /*
5280 * Return the SDMA engine interrupt name.
5281 */
5282 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5283 {
5284 /* what interrupt */
5285 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5286 /* which engine */
5287 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5288
5289 if (likely(what < 3))
5290 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5291 else
5292 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5293 return buf;
5294 }
5295
5296 /*
5297 * Return the receive available interrupt name.
5298 */
5299 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5300 {
5301 snprintf(buf, bsize, "RcvAvailInt%u", source);
5302 return buf;
5303 }
5304
5305 /*
5306 * Return the receive urgent interrupt name.
5307 */
5308 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5309 {
5310 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5311 return buf;
5312 }
5313
5314 /*
5315 * Return the send credit interrupt name.
5316 */
5317 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5318 {
5319 snprintf(buf, bsize, "SendCreditInt%u", source);
5320 return buf;
5321 }
5322
5323 /*
5324 * Return the reserved interrupt name.
5325 */
5326 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5327 {
5328 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5329 return buf;
5330 }
5331
5332 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5333 {
5334 return flag_string(buf, buf_len, flags,
5335 cce_err_status_flags,
5336 ARRAY_SIZE(cce_err_status_flags));
5337 }
5338
5339 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5340 {
5341 return flag_string(buf, buf_len, flags,
5342 rxe_err_status_flags,
5343 ARRAY_SIZE(rxe_err_status_flags));
5344 }
5345
5346 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5347 {
5348 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5349 ARRAY_SIZE(misc_err_status_flags));
5350 }
5351
5352 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5353 {
5354 return flag_string(buf, buf_len, flags,
5355 pio_err_status_flags,
5356 ARRAY_SIZE(pio_err_status_flags));
5357 }
5358
5359 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5360 {
5361 return flag_string(buf, buf_len, flags,
5362 sdma_err_status_flags,
5363 ARRAY_SIZE(sdma_err_status_flags));
5364 }
5365
5366 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5367 {
5368 return flag_string(buf, buf_len, flags,
5369 egress_err_status_flags,
5370 ARRAY_SIZE(egress_err_status_flags));
5371 }
5372
5373 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5374 {
5375 return flag_string(buf, buf_len, flags,
5376 egress_err_info_flags,
5377 ARRAY_SIZE(egress_err_info_flags));
5378 }
5379
5380 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5381 {
5382 return flag_string(buf, buf_len, flags,
5383 send_err_status_flags,
5384 ARRAY_SIZE(send_err_status_flags));
5385 }
5386
5387 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5388 {
5389 char buf[96];
5390 int i = 0;
5391
5392 /*
5393 * For most these errors, there is nothing that can be done except
5394 * report or record it.
5395 */
5396 dd_dev_info(dd, "CCE Error: %s\n",
5397 cce_err_status_string(buf, sizeof(buf), reg));
5398
5399 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5400 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5401 /* this error requires a manual drop into SPC freeze mode */
5402 /* then a fix up */
5403 start_freeze_handling(dd->pport, FREEZE_SELF);
5404 }
5405
5406 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5407 if (reg & (1ull << i)) {
5408 incr_cntr64(&dd->cce_err_status_cnt[i]);
5409 /* maintain a counter over all cce_err_status errors */
5410 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5411 }
5412 }
5413 }
5414
5415 /*
5416 * Check counters for receive errors that do not have an interrupt
5417 * associated with them.
5418 */
5419 #define RCVERR_CHECK_TIME 10
5420 static void update_rcverr_timer(unsigned long opaque)
5421 {
5422 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5423 struct hfi1_pportdata *ppd = dd->pport;
5424 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5425
5426 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5427 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5428 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5429 set_link_down_reason(
5430 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5431 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5432 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5433 }
5434 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5435
5436 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5437 }
5438
5439 static int init_rcverr(struct hfi1_devdata *dd)
5440 {
5441 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5442 /* Assume the hardware counter has been reset */
5443 dd->rcv_ovfl_cnt = 0;
5444 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5445 }
5446
5447 static void free_rcverr(struct hfi1_devdata *dd)
5448 {
5449 if (dd->rcverr_timer.data)
5450 del_timer_sync(&dd->rcverr_timer);
5451 dd->rcverr_timer.data = 0;
5452 }
5453
5454 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5455 {
5456 char buf[96];
5457 int i = 0;
5458
5459 dd_dev_info(dd, "Receive Error: %s\n",
5460 rxe_err_status_string(buf, sizeof(buf), reg));
5461
5462 if (reg & ALL_RXE_FREEZE_ERR) {
5463 int flags = 0;
5464
5465 /*
5466 * Freeze mode recovery is disabled for the errors
5467 * in RXE_FREEZE_ABORT_MASK
5468 */
5469 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5470 flags = FREEZE_ABORT;
5471
5472 start_freeze_handling(dd->pport, flags);
5473 }
5474
5475 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5476 if (reg & (1ull << i))
5477 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5478 }
5479 }
5480
5481 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5482 {
5483 char buf[96];
5484 int i = 0;
5485
5486 dd_dev_info(dd, "Misc Error: %s",
5487 misc_err_status_string(buf, sizeof(buf), reg));
5488 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5489 if (reg & (1ull << i))
5490 incr_cntr64(&dd->misc_err_status_cnt[i]);
5491 }
5492 }
5493
5494 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5495 {
5496 char buf[96];
5497 int i = 0;
5498
5499 dd_dev_info(dd, "PIO Error: %s\n",
5500 pio_err_status_string(buf, sizeof(buf), reg));
5501
5502 if (reg & ALL_PIO_FREEZE_ERR)
5503 start_freeze_handling(dd->pport, 0);
5504
5505 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5506 if (reg & (1ull << i))
5507 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5508 }
5509 }
5510
5511 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5512 {
5513 char buf[96];
5514 int i = 0;
5515
5516 dd_dev_info(dd, "SDMA Error: %s\n",
5517 sdma_err_status_string(buf, sizeof(buf), reg));
5518
5519 if (reg & ALL_SDMA_FREEZE_ERR)
5520 start_freeze_handling(dd->pport, 0);
5521
5522 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5523 if (reg & (1ull << i))
5524 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5525 }
5526 }
5527
5528 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5529 {
5530 incr_cntr64(&ppd->port_xmit_discards);
5531 }
5532
5533 static void count_port_inactive(struct hfi1_devdata *dd)
5534 {
5535 __count_port_discards(dd->pport);
5536 }
5537
5538 /*
5539 * We have had a "disallowed packet" error during egress. Determine the
5540 * integrity check which failed, and update relevant error counter, etc.
5541 *
5542 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5543 * bit of state per integrity check, and so we can miss the reason for an
5544 * egress error if more than one packet fails the same integrity check
5545 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5546 */
5547 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5548 int vl)
5549 {
5550 struct hfi1_pportdata *ppd = dd->pport;
5551 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5552 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5553 char buf[96];
5554
5555 /* clear down all observed info as quickly as possible after read */
5556 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5557
5558 dd_dev_info(dd,
5559 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5560 info, egress_err_info_string(buf, sizeof(buf), info), src);
5561
5562 /* Eventually add other counters for each bit */
5563 if (info & PORT_DISCARD_EGRESS_ERRS) {
5564 int weight, i;
5565
5566 /*
5567 * Count all applicable bits as individual errors and
5568 * attribute them to the packet that triggered this handler.
5569 * This may not be completely accurate due to limitations
5570 * on the available hardware error information. There is
5571 * a single information register and any number of error
5572 * packets may have occurred and contributed to it before
5573 * this routine is called. This means that:
5574 * a) If multiple packets with the same error occur before
5575 * this routine is called, earlier packets are missed.
5576 * There is only a single bit for each error type.
5577 * b) Errors may not be attributed to the correct VL.
5578 * The driver is attributing all bits in the info register
5579 * to the packet that triggered this call, but bits
5580 * could be an accumulation of different packets with
5581 * different VLs.
5582 * c) A single error packet may have multiple counts attached
5583 * to it. There is no way for the driver to know if
5584 * multiple bits set in the info register are due to a
5585 * single packet or multiple packets. The driver assumes
5586 * multiple packets.
5587 */
5588 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5589 for (i = 0; i < weight; i++) {
5590 __count_port_discards(ppd);
5591 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5592 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5593 else if (vl == 15)
5594 incr_cntr64(&ppd->port_xmit_discards_vl
5595 [C_VL_15]);
5596 }
5597 }
5598 }
5599
5600 /*
5601 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5602 * register. Does it represent a 'port inactive' error?
5603 */
5604 static inline int port_inactive_err(u64 posn)
5605 {
5606 return (posn >= SEES(TX_LINKDOWN) &&
5607 posn <= SEES(TX_INCORRECT_LINK_STATE));
5608 }
5609
5610 /*
5611 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5612 * register. Does it represent a 'disallowed packet' error?
5613 */
5614 static inline int disallowed_pkt_err(int posn)
5615 {
5616 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5617 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5618 }
5619
5620 /*
5621 * Input value is a bit position of one of the SDMA engine disallowed
5622 * packet errors. Return which engine. Use of this must be guarded by
5623 * disallowed_pkt_err().
5624 */
5625 static inline int disallowed_pkt_engine(int posn)
5626 {
5627 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5628 }
5629
5630 /*
5631 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5632 * be done.
5633 */
5634 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5635 {
5636 struct sdma_vl_map *m;
5637 int vl;
5638
5639 /* range check */
5640 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5641 return -1;
5642
5643 rcu_read_lock();
5644 m = rcu_dereference(dd->sdma_map);
5645 vl = m->engine_to_vl[engine];
5646 rcu_read_unlock();
5647
5648 return vl;
5649 }
5650
5651 /*
5652 * Translate the send context (sofware index) into a VL. Return -1 if the
5653 * translation cannot be done.
5654 */
5655 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5656 {
5657 struct send_context_info *sci;
5658 struct send_context *sc;
5659 int i;
5660
5661 sci = &dd->send_contexts[sw_index];
5662
5663 /* there is no information for user (PSM) and ack contexts */
5664 if (sci->type != SC_KERNEL)
5665 return -1;
5666
5667 sc = sci->sc;
5668 if (!sc)
5669 return -1;
5670 if (dd->vld[15].sc == sc)
5671 return 15;
5672 for (i = 0; i < num_vls; i++)
5673 if (dd->vld[i].sc == sc)
5674 return i;
5675
5676 return -1;
5677 }
5678
5679 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5680 {
5681 u64 reg_copy = reg, handled = 0;
5682 char buf[96];
5683 int i = 0;
5684
5685 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5686 start_freeze_handling(dd->pport, 0);
5687 else if (is_ax(dd) &&
5688 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5689 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5690 start_freeze_handling(dd->pport, 0);
5691
5692 while (reg_copy) {
5693 int posn = fls64(reg_copy);
5694 /* fls64() returns a 1-based offset, we want it zero based */
5695 int shift = posn - 1;
5696 u64 mask = 1ULL << shift;
5697
5698 if (port_inactive_err(shift)) {
5699 count_port_inactive(dd);
5700 handled |= mask;
5701 } else if (disallowed_pkt_err(shift)) {
5702 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5703
5704 handle_send_egress_err_info(dd, vl);
5705 handled |= mask;
5706 }
5707 reg_copy &= ~mask;
5708 }
5709
5710 reg &= ~handled;
5711
5712 if (reg)
5713 dd_dev_info(dd, "Egress Error: %s\n",
5714 egress_err_status_string(buf, sizeof(buf), reg));
5715
5716 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5717 if (reg & (1ull << i))
5718 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5719 }
5720 }
5721
5722 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5723 {
5724 char buf[96];
5725 int i = 0;
5726
5727 dd_dev_info(dd, "Send Error: %s\n",
5728 send_err_status_string(buf, sizeof(buf), reg));
5729
5730 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5731 if (reg & (1ull << i))
5732 incr_cntr64(&dd->send_err_status_cnt[i]);
5733 }
5734 }
5735
5736 /*
5737 * The maximum number of times the error clear down will loop before
5738 * blocking a repeating error. This value is arbitrary.
5739 */
5740 #define MAX_CLEAR_COUNT 20
5741
5742 /*
5743 * Clear and handle an error register. All error interrupts are funneled
5744 * through here to have a central location to correctly handle single-
5745 * or multi-shot errors.
5746 *
5747 * For non per-context registers, call this routine with a context value
5748 * of 0 so the per-context offset is zero.
5749 *
5750 * If the handler loops too many times, assume that something is wrong
5751 * and can't be fixed, so mask the error bits.
5752 */
5753 static void interrupt_clear_down(struct hfi1_devdata *dd,
5754 u32 context,
5755 const struct err_reg_info *eri)
5756 {
5757 u64 reg;
5758 u32 count;
5759
5760 /* read in a loop until no more errors are seen */
5761 count = 0;
5762 while (1) {
5763 reg = read_kctxt_csr(dd, context, eri->status);
5764 if (reg == 0)
5765 break;
5766 write_kctxt_csr(dd, context, eri->clear, reg);
5767 if (likely(eri->handler))
5768 eri->handler(dd, context, reg);
5769 count++;
5770 if (count > MAX_CLEAR_COUNT) {
5771 u64 mask;
5772
5773 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5774 eri->desc, reg);
5775 /*
5776 * Read-modify-write so any other masked bits
5777 * remain masked.
5778 */
5779 mask = read_kctxt_csr(dd, context, eri->mask);
5780 mask &= ~reg;
5781 write_kctxt_csr(dd, context, eri->mask, mask);
5782 break;
5783 }
5784 }
5785 }
5786
5787 /*
5788 * CCE block "misc" interrupt. Source is < 16.
5789 */
5790 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5791 {
5792 const struct err_reg_info *eri = &misc_errs[source];
5793
5794 if (eri->handler) {
5795 interrupt_clear_down(dd, 0, eri);
5796 } else {
5797 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5798 source);
5799 }
5800 }
5801
5802 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5803 {
5804 return flag_string(buf, buf_len, flags,
5805 sc_err_status_flags,
5806 ARRAY_SIZE(sc_err_status_flags));
5807 }
5808
5809 /*
5810 * Send context error interrupt. Source (hw_context) is < 160.
5811 *
5812 * All send context errors cause the send context to halt. The normal
5813 * clear-down mechanism cannot be used because we cannot clear the
5814 * error bits until several other long-running items are done first.
5815 * This is OK because with the context halted, nothing else is going
5816 * to happen on it anyway.
5817 */
5818 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5819 unsigned int hw_context)
5820 {
5821 struct send_context_info *sci;
5822 struct send_context *sc;
5823 char flags[96];
5824 u64 status;
5825 u32 sw_index;
5826 int i = 0;
5827
5828 sw_index = dd->hw_to_sw[hw_context];
5829 if (sw_index >= dd->num_send_contexts) {
5830 dd_dev_err(dd,
5831 "out of range sw index %u for send context %u\n",
5832 sw_index, hw_context);
5833 return;
5834 }
5835 sci = &dd->send_contexts[sw_index];
5836 sc = sci->sc;
5837 if (!sc) {
5838 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5839 sw_index, hw_context);
5840 return;
5841 }
5842
5843 /* tell the software that a halt has begun */
5844 sc_stop(sc, SCF_HALTED);
5845
5846 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5847
5848 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5849 send_context_err_status_string(flags, sizeof(flags),
5850 status));
5851
5852 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5853 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5854
5855 /*
5856 * Automatically restart halted kernel contexts out of interrupt
5857 * context. User contexts must ask the driver to restart the context.
5858 */
5859 if (sc->type != SC_USER)
5860 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5861
5862 /*
5863 * Update the counters for the corresponding status bits.
5864 * Note that these particular counters are aggregated over all
5865 * 160 contexts.
5866 */
5867 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5868 if (status & (1ull << i))
5869 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5870 }
5871 }
5872
5873 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5874 unsigned int source, u64 status)
5875 {
5876 struct sdma_engine *sde;
5877 int i = 0;
5878
5879 sde = &dd->per_sdma[source];
5880 #ifdef CONFIG_SDMA_VERBOSITY
5881 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5882 slashstrip(__FILE__), __LINE__, __func__);
5883 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5884 sde->this_idx, source, (unsigned long long)status);
5885 #endif
5886 sde->err_cnt++;
5887 sdma_engine_error(sde, status);
5888
5889 /*
5890 * Update the counters for the corresponding status bits.
5891 * Note that these particular counters are aggregated over
5892 * all 16 DMA engines.
5893 */
5894 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5895 if (status & (1ull << i))
5896 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5897 }
5898 }
5899
5900 /*
5901 * CCE block SDMA error interrupt. Source is < 16.
5902 */
5903 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5904 {
5905 #ifdef CONFIG_SDMA_VERBOSITY
5906 struct sdma_engine *sde = &dd->per_sdma[source];
5907
5908 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5909 slashstrip(__FILE__), __LINE__, __func__);
5910 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5911 source);
5912 sdma_dumpstate(sde);
5913 #endif
5914 interrupt_clear_down(dd, source, &sdma_eng_err);
5915 }
5916
5917 /*
5918 * CCE block "various" interrupt. Source is < 8.
5919 */
5920 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5921 {
5922 const struct err_reg_info *eri = &various_err[source];
5923
5924 /*
5925 * TCritInt cannot go through interrupt_clear_down()
5926 * because it is not a second tier interrupt. The handler
5927 * should be called directly.
5928 */
5929 if (source == TCRIT_INT_SOURCE)
5930 handle_temp_err(dd);
5931 else if (eri->handler)
5932 interrupt_clear_down(dd, 0, eri);
5933 else
5934 dd_dev_info(dd,
5935 "%s: Unimplemented/reserved interrupt %d\n",
5936 __func__, source);
5937 }
5938
5939 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5940 {
5941 /* src_ctx is always zero */
5942 struct hfi1_pportdata *ppd = dd->pport;
5943 unsigned long flags;
5944 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5945
5946 if (reg & QSFP_HFI0_MODPRST_N) {
5947 if (!qsfp_mod_present(ppd)) {
5948 dd_dev_info(dd, "%s: QSFP module removed\n",
5949 __func__);
5950
5951 ppd->driver_link_ready = 0;
5952 /*
5953 * Cable removed, reset all our information about the
5954 * cache and cable capabilities
5955 */
5956
5957 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5958 /*
5959 * We don't set cache_refresh_required here as we expect
5960 * an interrupt when a cable is inserted
5961 */
5962 ppd->qsfp_info.cache_valid = 0;
5963 ppd->qsfp_info.reset_needed = 0;
5964 ppd->qsfp_info.limiting_active = 0;
5965 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5966 flags);
5967 /* Invert the ModPresent pin now to detect plug-in */
5968 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
5969 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
5970
5971 if ((ppd->offline_disabled_reason >
5972 HFI1_ODR_MASK(
5973 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
5974 (ppd->offline_disabled_reason ==
5975 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
5976 ppd->offline_disabled_reason =
5977 HFI1_ODR_MASK(
5978 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
5979
5980 if (ppd->host_link_state == HLS_DN_POLL) {
5981 /*
5982 * The link is still in POLL. This means
5983 * that the normal link down processing
5984 * will not happen. We have to do it here
5985 * before turning the DC off.
5986 */
5987 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
5988 }
5989 } else {
5990 dd_dev_info(dd, "%s: QSFP module inserted\n",
5991 __func__);
5992
5993 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5994 ppd->qsfp_info.cache_valid = 0;
5995 ppd->qsfp_info.cache_refresh_required = 1;
5996 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5997 flags);
5998
5999 /*
6000 * Stop inversion of ModPresent pin to detect
6001 * removal of the cable
6002 */
6003 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6004 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6005 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6006
6007 ppd->offline_disabled_reason =
6008 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6009 }
6010 }
6011
6012 if (reg & QSFP_HFI0_INT_N) {
6013 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6014 __func__);
6015 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6016 ppd->qsfp_info.check_interrupt_flags = 1;
6017 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6018 }
6019
6020 /* Schedule the QSFP work only if there is a cable attached. */
6021 if (qsfp_mod_present(ppd))
6022 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6023 }
6024
6025 static int request_host_lcb_access(struct hfi1_devdata *dd)
6026 {
6027 int ret;
6028
6029 ret = do_8051_command(dd, HCMD_MISC,
6030 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6031 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6032 if (ret != HCMD_SUCCESS) {
6033 dd_dev_err(dd, "%s: command failed with error %d\n",
6034 __func__, ret);
6035 }
6036 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6037 }
6038
6039 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6040 {
6041 int ret;
6042
6043 ret = do_8051_command(dd, HCMD_MISC,
6044 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6045 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6046 if (ret != HCMD_SUCCESS) {
6047 dd_dev_err(dd, "%s: command failed with error %d\n",
6048 __func__, ret);
6049 }
6050 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6051 }
6052
6053 /*
6054 * Set the LCB selector - allow host access. The DCC selector always
6055 * points to the host.
6056 */
6057 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6058 {
6059 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6060 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6061 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6062 }
6063
6064 /*
6065 * Clear the LCB selector - allow 8051 access. The DCC selector always
6066 * points to the host.
6067 */
6068 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6069 {
6070 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6071 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6072 }
6073
6074 /*
6075 * Acquire LCB access from the 8051. If the host already has access,
6076 * just increment a counter. Otherwise, inform the 8051 that the
6077 * host is taking access.
6078 *
6079 * Returns:
6080 * 0 on success
6081 * -EBUSY if the 8051 has control and cannot be disturbed
6082 * -errno if unable to acquire access from the 8051
6083 */
6084 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6085 {
6086 struct hfi1_pportdata *ppd = dd->pport;
6087 int ret = 0;
6088
6089 /*
6090 * Use the host link state lock so the operation of this routine
6091 * { link state check, selector change, count increment } can occur
6092 * as a unit against a link state change. Otherwise there is a
6093 * race between the state change and the count increment.
6094 */
6095 if (sleep_ok) {
6096 mutex_lock(&ppd->hls_lock);
6097 } else {
6098 while (!mutex_trylock(&ppd->hls_lock))
6099 udelay(1);
6100 }
6101
6102 /* this access is valid only when the link is up */
6103 if ((ppd->host_link_state & HLS_UP) == 0) {
6104 dd_dev_info(dd, "%s: link state %s not up\n",
6105 __func__, link_state_name(ppd->host_link_state));
6106 ret = -EBUSY;
6107 goto done;
6108 }
6109
6110 if (dd->lcb_access_count == 0) {
6111 ret = request_host_lcb_access(dd);
6112 if (ret) {
6113 dd_dev_err(dd,
6114 "%s: unable to acquire LCB access, err %d\n",
6115 __func__, ret);
6116 goto done;
6117 }
6118 set_host_lcb_access(dd);
6119 }
6120 dd->lcb_access_count++;
6121 done:
6122 mutex_unlock(&ppd->hls_lock);
6123 return ret;
6124 }
6125
6126 /*
6127 * Release LCB access by decrementing the use count. If the count is moving
6128 * from 1 to 0, inform 8051 that it has control back.
6129 *
6130 * Returns:
6131 * 0 on success
6132 * -errno if unable to release access to the 8051
6133 */
6134 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6135 {
6136 int ret = 0;
6137
6138 /*
6139 * Use the host link state lock because the acquire needed it.
6140 * Here, we only need to keep { selector change, count decrement }
6141 * as a unit.
6142 */
6143 if (sleep_ok) {
6144 mutex_lock(&dd->pport->hls_lock);
6145 } else {
6146 while (!mutex_trylock(&dd->pport->hls_lock))
6147 udelay(1);
6148 }
6149
6150 if (dd->lcb_access_count == 0) {
6151 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6152 __func__);
6153 goto done;
6154 }
6155
6156 if (dd->lcb_access_count == 1) {
6157 set_8051_lcb_access(dd);
6158 ret = request_8051_lcb_access(dd);
6159 if (ret) {
6160 dd_dev_err(dd,
6161 "%s: unable to release LCB access, err %d\n",
6162 __func__, ret);
6163 /* restore host access if the grant didn't work */
6164 set_host_lcb_access(dd);
6165 goto done;
6166 }
6167 }
6168 dd->lcb_access_count--;
6169 done:
6170 mutex_unlock(&dd->pport->hls_lock);
6171 return ret;
6172 }
6173
6174 /*
6175 * Initialize LCB access variables and state. Called during driver load,
6176 * after most of the initialization is finished.
6177 *
6178 * The DC default is LCB access on for the host. The driver defaults to
6179 * leaving access to the 8051. Assign access now - this constrains the call
6180 * to this routine to be after all LCB set-up is done. In particular, after
6181 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6182 */
6183 static void init_lcb_access(struct hfi1_devdata *dd)
6184 {
6185 dd->lcb_access_count = 0;
6186 }
6187
6188 /*
6189 * Write a response back to a 8051 request.
6190 */
6191 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6192 {
6193 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6194 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6195 (u64)return_code <<
6196 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6197 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6198 }
6199
6200 /*
6201 * Handle host requests from the 8051.
6202 *
6203 * This is a work-queue function outside of the interrupt.
6204 */
6205 void handle_8051_request(struct work_struct *work)
6206 {
6207 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6208 dc_host_req_work);
6209 struct hfi1_devdata *dd = ppd->dd;
6210 u64 reg;
6211 u16 data = 0;
6212 u8 type, i, lanes, *cache = ppd->qsfp_info.cache;
6213 u8 cdr_ctrl_byte = cache[QSFP_CDR_CTRL_BYTE_OFFS];
6214
6215 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6216 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6217 return; /* no request */
6218
6219 /* zero out COMPLETED so the response is seen */
6220 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6221
6222 /* extract request details */
6223 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6224 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6225 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6226 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6227
6228 switch (type) {
6229 case HREQ_LOAD_CONFIG:
6230 case HREQ_SAVE_CONFIG:
6231 case HREQ_READ_CONFIG:
6232 case HREQ_SET_TX_EQ_ABS:
6233 case HREQ_SET_TX_EQ_REL:
6234 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6235 type);
6236 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6237 break;
6238
6239 case HREQ_ENABLE:
6240 lanes = data & 0xF;
6241 for (i = 0; lanes; lanes >>= 1, i++) {
6242 if (!(lanes & 1))
6243 continue;
6244 if (data & 0x200) {
6245 /* enable TX CDR */
6246 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6247 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6248 cdr_ctrl_byte |= (1 << (i + 4));
6249 } else {
6250 /* disable TX CDR */
6251 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6252 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6253 cdr_ctrl_byte &= ~(1 << (i + 4));
6254 }
6255
6256 if (data & 0x800) {
6257 /* enable RX CDR */
6258 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6259 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6260 cdr_ctrl_byte |= (1 << i);
6261 } else {
6262 /* disable RX CDR */
6263 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6264 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6265 cdr_ctrl_byte &= ~(1 << i);
6266 }
6267 }
6268 one_qsfp_write(ppd, dd->hfi1_id, QSFP_CDR_CTRL_BYTE_OFFS,
6269 &cdr_ctrl_byte, 1);
6270 hreq_response(dd, HREQ_SUCCESS, data);
6271 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
6272 break;
6273
6274 case HREQ_CONFIG_DONE:
6275 hreq_response(dd, HREQ_SUCCESS, 0);
6276 break;
6277
6278 case HREQ_INTERFACE_TEST:
6279 hreq_response(dd, HREQ_SUCCESS, data);
6280 break;
6281
6282 default:
6283 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6284 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6285 break;
6286 }
6287 }
6288
6289 static void write_global_credit(struct hfi1_devdata *dd,
6290 u8 vau, u16 total, u16 shared)
6291 {
6292 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6293 ((u64)total <<
6294 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6295 ((u64)shared <<
6296 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6297 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6298 }
6299
6300 /*
6301 * Set up initial VL15 credits of the remote. Assumes the rest of
6302 * the CM credit registers are zero from a previous global or credit reset .
6303 */
6304 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6305 {
6306 /* leave shared count at zero for both global and VL15 */
6307 write_global_credit(dd, vau, vl15buf, 0);
6308
6309 /* We may need some credits for another VL when sending packets
6310 * with the snoop interface. Dividing it down the middle for VL15
6311 * and VL0 should suffice.
6312 */
6313 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6314 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6315 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6316 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6317 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6318 } else {
6319 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6320 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6321 }
6322 }
6323
6324 /*
6325 * Zero all credit details from the previous connection and
6326 * reset the CM manager's internal counters.
6327 */
6328 void reset_link_credits(struct hfi1_devdata *dd)
6329 {
6330 int i;
6331
6332 /* remove all previous VL credit limits */
6333 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6334 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6335 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6336 write_global_credit(dd, 0, 0, 0);
6337 /* reset the CM block */
6338 pio_send_control(dd, PSC_CM_RESET);
6339 }
6340
6341 /* convert a vCU to a CU */
6342 static u32 vcu_to_cu(u8 vcu)
6343 {
6344 return 1 << vcu;
6345 }
6346
6347 /* convert a CU to a vCU */
6348 static u8 cu_to_vcu(u32 cu)
6349 {
6350 return ilog2(cu);
6351 }
6352
6353 /* convert a vAU to an AU */
6354 static u32 vau_to_au(u8 vau)
6355 {
6356 return 8 * (1 << vau);
6357 }
6358
6359 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6360 {
6361 ppd->sm_trap_qp = 0x0;
6362 ppd->sa_qp = 0x1;
6363 }
6364
6365 /*
6366 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6367 */
6368 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6369 {
6370 u64 reg;
6371
6372 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6373 write_csr(dd, DC_LCB_CFG_RUN, 0);
6374 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6375 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6376 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6377 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6378 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6379 reg = read_csr(dd, DCC_CFG_RESET);
6380 write_csr(dd, DCC_CFG_RESET, reg |
6381 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6382 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6383 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6384 if (!abort) {
6385 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6386 write_csr(dd, DCC_CFG_RESET, reg);
6387 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6388 }
6389 }
6390
6391 /*
6392 * This routine should be called after the link has been transitioned to
6393 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6394 * reset).
6395 *
6396 * The expectation is that the caller of this routine would have taken
6397 * care of properly transitioning the link into the correct state.
6398 */
6399 static void dc_shutdown(struct hfi1_devdata *dd)
6400 {
6401 unsigned long flags;
6402
6403 spin_lock_irqsave(&dd->dc8051_lock, flags);
6404 if (dd->dc_shutdown) {
6405 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6406 return;
6407 }
6408 dd->dc_shutdown = 1;
6409 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6410 /* Shutdown the LCB */
6411 lcb_shutdown(dd, 1);
6412 /*
6413 * Going to OFFLINE would have causes the 8051 to put the
6414 * SerDes into reset already. Just need to shut down the 8051,
6415 * itself.
6416 */
6417 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6418 }
6419
6420 /*
6421 * Calling this after the DC has been brought out of reset should not
6422 * do any damage.
6423 */
6424 static void dc_start(struct hfi1_devdata *dd)
6425 {
6426 unsigned long flags;
6427 int ret;
6428
6429 spin_lock_irqsave(&dd->dc8051_lock, flags);
6430 if (!dd->dc_shutdown)
6431 goto done;
6432 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6433 /* Take the 8051 out of reset */
6434 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6435 /* Wait until 8051 is ready */
6436 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6437 if (ret) {
6438 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6439 __func__);
6440 }
6441 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6442 write_csr(dd, DCC_CFG_RESET, 0x10);
6443 /* lcb_shutdown() with abort=1 does not restore these */
6444 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6445 spin_lock_irqsave(&dd->dc8051_lock, flags);
6446 dd->dc_shutdown = 0;
6447 done:
6448 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6449 }
6450
6451 /*
6452 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6453 */
6454 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6455 {
6456 u64 rx_radr, tx_radr;
6457 u32 version;
6458
6459 if (dd->icode != ICODE_FPGA_EMULATION)
6460 return;
6461
6462 /*
6463 * These LCB defaults on emulator _s are good, nothing to do here:
6464 * LCB_CFG_TX_FIFOS_RADR
6465 * LCB_CFG_RX_FIFOS_RADR
6466 * LCB_CFG_LN_DCLK
6467 * LCB_CFG_IGNORE_LOST_RCLK
6468 */
6469 if (is_emulator_s(dd))
6470 return;
6471 /* else this is _p */
6472
6473 version = emulator_rev(dd);
6474 if (!is_ax(dd))
6475 version = 0x2d; /* all B0 use 0x2d or higher settings */
6476
6477 if (version <= 0x12) {
6478 /* release 0x12 and below */
6479
6480 /*
6481 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6482 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6483 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6484 */
6485 rx_radr =
6486 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6487 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6488 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6489 /*
6490 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6491 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6492 */
6493 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6494 } else if (version <= 0x18) {
6495 /* release 0x13 up to 0x18 */
6496 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6497 rx_radr =
6498 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6499 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6500 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6501 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6502 } else if (version == 0x19) {
6503 /* release 0x19 */
6504 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6505 rx_radr =
6506 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6507 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6508 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6509 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6510 } else if (version == 0x1a) {
6511 /* release 0x1a */
6512 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6513 rx_radr =
6514 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6515 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6516 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6517 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6518 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6519 } else {
6520 /* release 0x1b and higher */
6521 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6522 rx_radr =
6523 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6524 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6525 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6526 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6527 }
6528
6529 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6530 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6531 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6532 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6533 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6534 }
6535
6536 /*
6537 * Handle a SMA idle message
6538 *
6539 * This is a work-queue function outside of the interrupt.
6540 */
6541 void handle_sma_message(struct work_struct *work)
6542 {
6543 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6544 sma_message_work);
6545 struct hfi1_devdata *dd = ppd->dd;
6546 u64 msg;
6547 int ret;
6548
6549 /*
6550 * msg is bytes 1-4 of the 40-bit idle message - the command code
6551 * is stripped off
6552 */
6553 ret = read_idle_sma(dd, &msg);
6554 if (ret)
6555 return;
6556 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6557 /*
6558 * React to the SMA message. Byte[1] (0 for us) is the command.
6559 */
6560 switch (msg & 0xff) {
6561 case SMA_IDLE_ARM:
6562 /*
6563 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6564 * State Transitions
6565 *
6566 * Only expected in INIT or ARMED, discard otherwise.
6567 */
6568 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6569 ppd->neighbor_normal = 1;
6570 break;
6571 case SMA_IDLE_ACTIVE:
6572 /*
6573 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6574 * State Transitions
6575 *
6576 * Can activate the node. Discard otherwise.
6577 */
6578 if (ppd->host_link_state == HLS_UP_ARMED &&
6579 ppd->is_active_optimize_enabled) {
6580 ppd->neighbor_normal = 1;
6581 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6582 if (ret)
6583 dd_dev_err(
6584 dd,
6585 "%s: received Active SMA idle message, couldn't set link to Active\n",
6586 __func__);
6587 }
6588 break;
6589 default:
6590 dd_dev_err(dd,
6591 "%s: received unexpected SMA idle message 0x%llx\n",
6592 __func__, msg);
6593 break;
6594 }
6595 }
6596
6597 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6598 {
6599 u64 rcvctrl;
6600 unsigned long flags;
6601
6602 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6603 rcvctrl = read_csr(dd, RCV_CTRL);
6604 rcvctrl |= add;
6605 rcvctrl &= ~clear;
6606 write_csr(dd, RCV_CTRL, rcvctrl);
6607 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6608 }
6609
6610 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6611 {
6612 adjust_rcvctrl(dd, add, 0);
6613 }
6614
6615 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6616 {
6617 adjust_rcvctrl(dd, 0, clear);
6618 }
6619
6620 /*
6621 * Called from all interrupt handlers to start handling an SPC freeze.
6622 */
6623 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6624 {
6625 struct hfi1_devdata *dd = ppd->dd;
6626 struct send_context *sc;
6627 int i;
6628
6629 if (flags & FREEZE_SELF)
6630 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6631
6632 /* enter frozen mode */
6633 dd->flags |= HFI1_FROZEN;
6634
6635 /* notify all SDMA engines that they are going into a freeze */
6636 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6637
6638 /* do halt pre-handling on all enabled send contexts */
6639 for (i = 0; i < dd->num_send_contexts; i++) {
6640 sc = dd->send_contexts[i].sc;
6641 if (sc && (sc->flags & SCF_ENABLED))
6642 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6643 }
6644
6645 /* Send context are frozen. Notify user space */
6646 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6647
6648 if (flags & FREEZE_ABORT) {
6649 dd_dev_err(dd,
6650 "Aborted freeze recovery. Please REBOOT system\n");
6651 return;
6652 }
6653 /* queue non-interrupt handler */
6654 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6655 }
6656
6657 /*
6658 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6659 * depending on the "freeze" parameter.
6660 *
6661 * No need to return an error if it times out, our only option
6662 * is to proceed anyway.
6663 */
6664 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6665 {
6666 unsigned long timeout;
6667 u64 reg;
6668
6669 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6670 while (1) {
6671 reg = read_csr(dd, CCE_STATUS);
6672 if (freeze) {
6673 /* waiting until all indicators are set */
6674 if ((reg & ALL_FROZE) == ALL_FROZE)
6675 return; /* all done */
6676 } else {
6677 /* waiting until all indicators are clear */
6678 if ((reg & ALL_FROZE) == 0)
6679 return; /* all done */
6680 }
6681
6682 if (time_after(jiffies, timeout)) {
6683 dd_dev_err(dd,
6684 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6685 freeze ? "" : "un", reg & ALL_FROZE,
6686 freeze ? ALL_FROZE : 0ull);
6687 return;
6688 }
6689 usleep_range(80, 120);
6690 }
6691 }
6692
6693 /*
6694 * Do all freeze handling for the RXE block.
6695 */
6696 static void rxe_freeze(struct hfi1_devdata *dd)
6697 {
6698 int i;
6699
6700 /* disable port */
6701 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6702
6703 /* disable all receive contexts */
6704 for (i = 0; i < dd->num_rcv_contexts; i++)
6705 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6706 }
6707
6708 /*
6709 * Unfreeze handling for the RXE block - kernel contexts only.
6710 * This will also enable the port. User contexts will do unfreeze
6711 * handling on a per-context basis as they call into the driver.
6712 *
6713 */
6714 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6715 {
6716 u32 rcvmask;
6717 int i;
6718
6719 /* enable all kernel contexts */
6720 for (i = 0; i < dd->n_krcv_queues; i++) {
6721 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6722 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6723 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6724 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6725 hfi1_rcvctrl(dd, rcvmask, i);
6726 }
6727
6728 /* enable port */
6729 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6730 }
6731
6732 /*
6733 * Non-interrupt SPC freeze handling.
6734 *
6735 * This is a work-queue function outside of the triggering interrupt.
6736 */
6737 void handle_freeze(struct work_struct *work)
6738 {
6739 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6740 freeze_work);
6741 struct hfi1_devdata *dd = ppd->dd;
6742
6743 /* wait for freeze indicators on all affected blocks */
6744 wait_for_freeze_status(dd, 1);
6745
6746 /* SPC is now frozen */
6747
6748 /* do send PIO freeze steps */
6749 pio_freeze(dd);
6750
6751 /* do send DMA freeze steps */
6752 sdma_freeze(dd);
6753
6754 /* do send egress freeze steps - nothing to do */
6755
6756 /* do receive freeze steps */
6757 rxe_freeze(dd);
6758
6759 /*
6760 * Unfreeze the hardware - clear the freeze, wait for each
6761 * block's frozen bit to clear, then clear the frozen flag.
6762 */
6763 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6764 wait_for_freeze_status(dd, 0);
6765
6766 if (is_ax(dd)) {
6767 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6768 wait_for_freeze_status(dd, 1);
6769 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6770 wait_for_freeze_status(dd, 0);
6771 }
6772
6773 /* do send PIO unfreeze steps for kernel contexts */
6774 pio_kernel_unfreeze(dd);
6775
6776 /* do send DMA unfreeze steps */
6777 sdma_unfreeze(dd);
6778
6779 /* do send egress unfreeze steps - nothing to do */
6780
6781 /* do receive unfreeze steps for kernel contexts */
6782 rxe_kernel_unfreeze(dd);
6783
6784 /*
6785 * The unfreeze procedure touches global device registers when
6786 * it disables and re-enables RXE. Mark the device unfrozen
6787 * after all that is done so other parts of the driver waiting
6788 * for the device to unfreeze don't do things out of order.
6789 *
6790 * The above implies that the meaning of HFI1_FROZEN flag is
6791 * "Device has gone into freeze mode and freeze mode handling
6792 * is still in progress."
6793 *
6794 * The flag will be removed when freeze mode processing has
6795 * completed.
6796 */
6797 dd->flags &= ~HFI1_FROZEN;
6798 wake_up(&dd->event_queue);
6799
6800 /* no longer frozen */
6801 }
6802
6803 /*
6804 * Handle a link up interrupt from the 8051.
6805 *
6806 * This is a work-queue function outside of the interrupt.
6807 */
6808 void handle_link_up(struct work_struct *work)
6809 {
6810 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6811 link_up_work);
6812 set_link_state(ppd, HLS_UP_INIT);
6813
6814 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6815 read_ltp_rtt(ppd->dd);
6816 /*
6817 * OPA specifies that certain counters are cleared on a transition
6818 * to link up, so do that.
6819 */
6820 clear_linkup_counters(ppd->dd);
6821 /*
6822 * And (re)set link up default values.
6823 */
6824 set_linkup_defaults(ppd);
6825
6826 /* enforce link speed enabled */
6827 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6828 /* oops - current speed is not enabled, bounce */
6829 dd_dev_err(ppd->dd,
6830 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6831 ppd->link_speed_active, ppd->link_speed_enabled);
6832 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6833 OPA_LINKDOWN_REASON_SPEED_POLICY);
6834 set_link_state(ppd, HLS_DN_OFFLINE);
6835 tune_serdes(ppd);
6836 start_link(ppd);
6837 }
6838 }
6839
6840 /*
6841 * Several pieces of LNI information were cached for SMA in ppd.
6842 * Reset these on link down
6843 */
6844 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6845 {
6846 ppd->neighbor_guid = 0;
6847 ppd->neighbor_port_number = 0;
6848 ppd->neighbor_type = 0;
6849 ppd->neighbor_fm_security = 0;
6850 }
6851
6852 /*
6853 * Handle a link down interrupt from the 8051.
6854 *
6855 * This is a work-queue function outside of the interrupt.
6856 */
6857 void handle_link_down(struct work_struct *work)
6858 {
6859 u8 lcl_reason, neigh_reason = 0;
6860 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6861 link_down_work);
6862
6863 if ((ppd->host_link_state &
6864 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6865 ppd->port_type == PORT_TYPE_FIXED)
6866 ppd->offline_disabled_reason =
6867 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6868
6869 /* Go offline first, then deal with reading/writing through 8051 */
6870 set_link_state(ppd, HLS_DN_OFFLINE);
6871
6872 lcl_reason = 0;
6873 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6874
6875 /*
6876 * If no reason, assume peer-initiated but missed
6877 * LinkGoingDown idle flits.
6878 */
6879 if (neigh_reason == 0)
6880 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6881
6882 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6883
6884 reset_neighbor_info(ppd);
6885
6886 /* disable the port */
6887 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6888
6889 /*
6890 * If there is no cable attached, turn the DC off. Otherwise,
6891 * start the link bring up.
6892 */
6893 if (!qsfp_mod_present(ppd)) {
6894 dc_shutdown(ppd->dd);
6895 } else {
6896 tune_serdes(ppd);
6897 start_link(ppd);
6898 }
6899 }
6900
6901 void handle_link_bounce(struct work_struct *work)
6902 {
6903 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6904 link_bounce_work);
6905
6906 /*
6907 * Only do something if the link is currently up.
6908 */
6909 if (ppd->host_link_state & HLS_UP) {
6910 set_link_state(ppd, HLS_DN_OFFLINE);
6911 tune_serdes(ppd);
6912 start_link(ppd);
6913 } else {
6914 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
6915 __func__, link_state_name(ppd->host_link_state));
6916 }
6917 }
6918
6919 /*
6920 * Mask conversion: Capability exchange to Port LTP. The capability
6921 * exchange has an implicit 16b CRC that is mandatory.
6922 */
6923 static int cap_to_port_ltp(int cap)
6924 {
6925 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
6926
6927 if (cap & CAP_CRC_14B)
6928 port_ltp |= PORT_LTP_CRC_MODE_14;
6929 if (cap & CAP_CRC_48B)
6930 port_ltp |= PORT_LTP_CRC_MODE_48;
6931 if (cap & CAP_CRC_12B_16B_PER_LANE)
6932 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
6933
6934 return port_ltp;
6935 }
6936
6937 /*
6938 * Convert an OPA Port LTP mask to capability mask
6939 */
6940 int port_ltp_to_cap(int port_ltp)
6941 {
6942 int cap_mask = 0;
6943
6944 if (port_ltp & PORT_LTP_CRC_MODE_14)
6945 cap_mask |= CAP_CRC_14B;
6946 if (port_ltp & PORT_LTP_CRC_MODE_48)
6947 cap_mask |= CAP_CRC_48B;
6948 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
6949 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
6950
6951 return cap_mask;
6952 }
6953
6954 /*
6955 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
6956 */
6957 static int lcb_to_port_ltp(int lcb_crc)
6958 {
6959 int port_ltp = 0;
6960
6961 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
6962 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
6963 else if (lcb_crc == LCB_CRC_48B)
6964 port_ltp = PORT_LTP_CRC_MODE_48;
6965 else if (lcb_crc == LCB_CRC_14B)
6966 port_ltp = PORT_LTP_CRC_MODE_14;
6967 else
6968 port_ltp = PORT_LTP_CRC_MODE_16;
6969
6970 return port_ltp;
6971 }
6972
6973 /*
6974 * Our neighbor has indicated that we are allowed to act as a fabric
6975 * manager, so place the full management partition key in the second
6976 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
6977 * that we should already have the limited management partition key in
6978 * array element 1, and also that the port is not yet up when
6979 * add_full_mgmt_pkey() is invoked.
6980 */
6981 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
6982 {
6983 struct hfi1_devdata *dd = ppd->dd;
6984
6985 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
6986 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
6987 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
6988 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
6989 ppd->pkeys[2] = FULL_MGMT_P_KEY;
6990 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
6991 }
6992
6993 /*
6994 * Convert the given link width to the OPA link width bitmask.
6995 */
6996 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
6997 {
6998 switch (width) {
6999 case 0:
7000 /*
7001 * Simulator and quick linkup do not set the width.
7002 * Just set it to 4x without complaint.
7003 */
7004 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7005 return OPA_LINK_WIDTH_4X;
7006 return 0; /* no lanes up */
7007 case 1: return OPA_LINK_WIDTH_1X;
7008 case 2: return OPA_LINK_WIDTH_2X;
7009 case 3: return OPA_LINK_WIDTH_3X;
7010 default:
7011 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7012 __func__, width);
7013 /* fall through */
7014 case 4: return OPA_LINK_WIDTH_4X;
7015 }
7016 }
7017
7018 /*
7019 * Do a population count on the bottom nibble.
7020 */
7021 static const u8 bit_counts[16] = {
7022 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7023 };
7024
7025 static inline u8 nibble_to_count(u8 nibble)
7026 {
7027 return bit_counts[nibble & 0xf];
7028 }
7029
7030 /*
7031 * Read the active lane information from the 8051 registers and return
7032 * their widths.
7033 *
7034 * Active lane information is found in these 8051 registers:
7035 * enable_lane_tx
7036 * enable_lane_rx
7037 */
7038 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7039 u16 *rx_width)
7040 {
7041 u16 tx, rx;
7042 u8 enable_lane_rx;
7043 u8 enable_lane_tx;
7044 u8 tx_polarity_inversion;
7045 u8 rx_polarity_inversion;
7046 u8 max_rate;
7047
7048 /* read the active lanes */
7049 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7050 &rx_polarity_inversion, &max_rate);
7051 read_local_lni(dd, &enable_lane_rx);
7052
7053 /* convert to counts */
7054 tx = nibble_to_count(enable_lane_tx);
7055 rx = nibble_to_count(enable_lane_rx);
7056
7057 /*
7058 * Set link_speed_active here, overriding what was set in
7059 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7060 * set the max_rate field in handle_verify_cap until v0.19.
7061 */
7062 if ((dd->icode == ICODE_RTL_SILICON) &&
7063 (dd->dc8051_ver < dc8051_ver(0, 19))) {
7064 /* max_rate: 0 = 12.5G, 1 = 25G */
7065 switch (max_rate) {
7066 case 0:
7067 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7068 break;
7069 default:
7070 dd_dev_err(dd,
7071 "%s: unexpected max rate %d, using 25Gb\n",
7072 __func__, (int)max_rate);
7073 /* fall through */
7074 case 1:
7075 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7076 break;
7077 }
7078 }
7079
7080 dd_dev_info(dd,
7081 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7082 enable_lane_tx, tx, enable_lane_rx, rx);
7083 *tx_width = link_width_to_bits(dd, tx);
7084 *rx_width = link_width_to_bits(dd, rx);
7085 }
7086
7087 /*
7088 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7089 * Valid after the end of VerifyCap and during LinkUp. Does not change
7090 * after link up. I.e. look elsewhere for downgrade information.
7091 *
7092 * Bits are:
7093 * + bits [7:4] contain the number of active transmitters
7094 * + bits [3:0] contain the number of active receivers
7095 * These are numbers 1 through 4 and can be different values if the
7096 * link is asymmetric.
7097 *
7098 * verify_cap_local_fm_link_width[0] retains its original value.
7099 */
7100 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7101 u16 *rx_width)
7102 {
7103 u16 widths, tx, rx;
7104 u8 misc_bits, local_flags;
7105 u16 active_tx, active_rx;
7106
7107 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7108 tx = widths >> 12;
7109 rx = (widths >> 8) & 0xf;
7110
7111 *tx_width = link_width_to_bits(dd, tx);
7112 *rx_width = link_width_to_bits(dd, rx);
7113
7114 /* print the active widths */
7115 get_link_widths(dd, &active_tx, &active_rx);
7116 }
7117
7118 /*
7119 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7120 * hardware information when the link first comes up.
7121 *
7122 * The link width is not available until after VerifyCap.AllFramesReceived
7123 * (the trigger for handle_verify_cap), so this is outside that routine
7124 * and should be called when the 8051 signals linkup.
7125 */
7126 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7127 {
7128 u16 tx_width, rx_width;
7129
7130 /* get end-of-LNI link widths */
7131 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7132
7133 /* use tx_width as the link is supposed to be symmetric on link up */
7134 ppd->link_width_active = tx_width;
7135 /* link width downgrade active (LWD.A) starts out matching LW.A */
7136 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7137 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7138 /* per OPA spec, on link up LWD.E resets to LWD.S */
7139 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7140 /* cache the active egress rate (units {10^6 bits/sec]) */
7141 ppd->current_egress_rate = active_egress_rate(ppd);
7142 }
7143
7144 /*
7145 * Handle a verify capabilities interrupt from the 8051.
7146 *
7147 * This is a work-queue function outside of the interrupt.
7148 */
7149 void handle_verify_cap(struct work_struct *work)
7150 {
7151 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7152 link_vc_work);
7153 struct hfi1_devdata *dd = ppd->dd;
7154 u64 reg;
7155 u8 power_management;
7156 u8 continious;
7157 u8 vcu;
7158 u8 vau;
7159 u8 z;
7160 u16 vl15buf;
7161 u16 link_widths;
7162 u16 crc_mask;
7163 u16 crc_val;
7164 u16 device_id;
7165 u16 active_tx, active_rx;
7166 u8 partner_supported_crc;
7167 u8 remote_tx_rate;
7168 u8 device_rev;
7169
7170 set_link_state(ppd, HLS_VERIFY_CAP);
7171
7172 lcb_shutdown(dd, 0);
7173 adjust_lcb_for_fpga_serdes(dd);
7174
7175 /*
7176 * These are now valid:
7177 * remote VerifyCap fields in the general LNI config
7178 * CSR DC8051_STS_REMOTE_GUID
7179 * CSR DC8051_STS_REMOTE_NODE_TYPE
7180 * CSR DC8051_STS_REMOTE_FM_SECURITY
7181 * CSR DC8051_STS_REMOTE_PORT_NO
7182 */
7183
7184 read_vc_remote_phy(dd, &power_management, &continious);
7185 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7186 &partner_supported_crc);
7187 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7188 read_remote_device_id(dd, &device_id, &device_rev);
7189 /*
7190 * And the 'MgmtAllowed' information, which is exchanged during
7191 * LNI, is also be available at this point.
7192 */
7193 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7194 /* print the active widths */
7195 get_link_widths(dd, &active_tx, &active_rx);
7196 dd_dev_info(dd,
7197 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7198 (int)power_management, (int)continious);
7199 dd_dev_info(dd,
7200 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7201 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7202 (int)partner_supported_crc);
7203 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7204 (u32)remote_tx_rate, (u32)link_widths);
7205 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7206 (u32)device_id, (u32)device_rev);
7207 /*
7208 * The peer vAU value just read is the peer receiver value. HFI does
7209 * not support a transmit vAU of 0 (AU == 8). We advertised that
7210 * with Z=1 in the fabric capabilities sent to the peer. The peer
7211 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7212 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7213 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7214 * subject to the Z value exception.
7215 */
7216 if (vau == 0)
7217 vau = 1;
7218 set_up_vl15(dd, vau, vl15buf);
7219
7220 /* set up the LCB CRC mode */
7221 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7222
7223 /* order is important: use the lowest bit in common */
7224 if (crc_mask & CAP_CRC_14B)
7225 crc_val = LCB_CRC_14B;
7226 else if (crc_mask & CAP_CRC_48B)
7227 crc_val = LCB_CRC_48B;
7228 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7229 crc_val = LCB_CRC_12B_16B_PER_LANE;
7230 else
7231 crc_val = LCB_CRC_16B;
7232
7233 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7234 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7235 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7236
7237 /* set (14b only) or clear sideband credit */
7238 reg = read_csr(dd, SEND_CM_CTRL);
7239 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7240 write_csr(dd, SEND_CM_CTRL,
7241 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7242 } else {
7243 write_csr(dd, SEND_CM_CTRL,
7244 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7245 }
7246
7247 ppd->link_speed_active = 0; /* invalid value */
7248 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7249 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7250 switch (remote_tx_rate) {
7251 case 0:
7252 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7253 break;
7254 case 1:
7255 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7256 break;
7257 }
7258 } else {
7259 /* actual rate is highest bit of the ANDed rates */
7260 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7261
7262 if (rate & 2)
7263 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7264 else if (rate & 1)
7265 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7266 }
7267 if (ppd->link_speed_active == 0) {
7268 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7269 __func__, (int)remote_tx_rate);
7270 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7271 }
7272
7273 /*
7274 * Cache the values of the supported, enabled, and active
7275 * LTP CRC modes to return in 'portinfo' queries. But the bit
7276 * flags that are returned in the portinfo query differ from
7277 * what's in the link_crc_mask, crc_sizes, and crc_val
7278 * variables. Convert these here.
7279 */
7280 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7281 /* supported crc modes */
7282 ppd->port_ltp_crc_mode |=
7283 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7284 /* enabled crc modes */
7285 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7286 /* active crc mode */
7287
7288 /* set up the remote credit return table */
7289 assign_remote_cm_au_table(dd, vcu);
7290
7291 /*
7292 * The LCB is reset on entry to handle_verify_cap(), so this must
7293 * be applied on every link up.
7294 *
7295 * Adjust LCB error kill enable to kill the link if
7296 * these RBUF errors are seen:
7297 * REPLAY_BUF_MBE_SMASK
7298 * FLIT_INPUT_BUF_MBE_SMASK
7299 */
7300 if (is_ax(dd)) { /* fixed in B0 */
7301 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7302 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7303 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7304 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7305 }
7306
7307 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7308 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7309
7310 /* give 8051 access to the LCB CSRs */
7311 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7312 set_8051_lcb_access(dd);
7313
7314 ppd->neighbor_guid =
7315 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7316 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7317 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7318 ppd->neighbor_type =
7319 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7320 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7321 ppd->neighbor_fm_security =
7322 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7323 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7324 dd_dev_info(dd,
7325 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7326 ppd->neighbor_guid, ppd->neighbor_type,
7327 ppd->mgmt_allowed, ppd->neighbor_fm_security);
7328 if (ppd->mgmt_allowed)
7329 add_full_mgmt_pkey(ppd);
7330
7331 /* tell the 8051 to go to LinkUp */
7332 set_link_state(ppd, HLS_GOING_UP);
7333 }
7334
7335 /*
7336 * Apply the link width downgrade enabled policy against the current active
7337 * link widths.
7338 *
7339 * Called when the enabled policy changes or the active link widths change.
7340 */
7341 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7342 {
7343 int do_bounce = 0;
7344 int tries;
7345 u16 lwde;
7346 u16 tx, rx;
7347
7348 /* use the hls lock to avoid a race with actual link up */
7349 tries = 0;
7350 retry:
7351 mutex_lock(&ppd->hls_lock);
7352 /* only apply if the link is up */
7353 if (!(ppd->host_link_state & HLS_UP)) {
7354 /* still going up..wait and retry */
7355 if (ppd->host_link_state & HLS_GOING_UP) {
7356 if (++tries < 1000) {
7357 mutex_unlock(&ppd->hls_lock);
7358 usleep_range(100, 120); /* arbitrary */
7359 goto retry;
7360 }
7361 dd_dev_err(ppd->dd,
7362 "%s: giving up waiting for link state change\n",
7363 __func__);
7364 }
7365 goto done;
7366 }
7367
7368 lwde = ppd->link_width_downgrade_enabled;
7369
7370 if (refresh_widths) {
7371 get_link_widths(ppd->dd, &tx, &rx);
7372 ppd->link_width_downgrade_tx_active = tx;
7373 ppd->link_width_downgrade_rx_active = rx;
7374 }
7375
7376 if (lwde == 0) {
7377 /* downgrade is disabled */
7378
7379 /* bounce if not at starting active width */
7380 if ((ppd->link_width_active !=
7381 ppd->link_width_downgrade_tx_active) ||
7382 (ppd->link_width_active !=
7383 ppd->link_width_downgrade_rx_active)) {
7384 dd_dev_err(ppd->dd,
7385 "Link downgrade is disabled and link has downgraded, downing link\n");
7386 dd_dev_err(ppd->dd,
7387 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7388 ppd->link_width_active,
7389 ppd->link_width_downgrade_tx_active,
7390 ppd->link_width_downgrade_rx_active);
7391 do_bounce = 1;
7392 }
7393 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7394 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7395 /* Tx or Rx is outside the enabled policy */
7396 dd_dev_err(ppd->dd,
7397 "Link is outside of downgrade allowed, downing link\n");
7398 dd_dev_err(ppd->dd,
7399 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7400 lwde, ppd->link_width_downgrade_tx_active,
7401 ppd->link_width_downgrade_rx_active);
7402 do_bounce = 1;
7403 }
7404
7405 done:
7406 mutex_unlock(&ppd->hls_lock);
7407
7408 if (do_bounce) {
7409 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7410 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7411 set_link_state(ppd, HLS_DN_OFFLINE);
7412 tune_serdes(ppd);
7413 start_link(ppd);
7414 }
7415 }
7416
7417 /*
7418 * Handle a link downgrade interrupt from the 8051.
7419 *
7420 * This is a work-queue function outside of the interrupt.
7421 */
7422 void handle_link_downgrade(struct work_struct *work)
7423 {
7424 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7425 link_downgrade_work);
7426
7427 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7428 apply_link_downgrade_policy(ppd, 1);
7429 }
7430
7431 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7432 {
7433 return flag_string(buf, buf_len, flags, dcc_err_flags,
7434 ARRAY_SIZE(dcc_err_flags));
7435 }
7436
7437 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7438 {
7439 return flag_string(buf, buf_len, flags, lcb_err_flags,
7440 ARRAY_SIZE(lcb_err_flags));
7441 }
7442
7443 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7444 {
7445 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7446 ARRAY_SIZE(dc8051_err_flags));
7447 }
7448
7449 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7450 {
7451 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7452 ARRAY_SIZE(dc8051_info_err_flags));
7453 }
7454
7455 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7456 {
7457 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7458 ARRAY_SIZE(dc8051_info_host_msg_flags));
7459 }
7460
7461 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7462 {
7463 struct hfi1_pportdata *ppd = dd->pport;
7464 u64 info, err, host_msg;
7465 int queue_link_down = 0;
7466 char buf[96];
7467
7468 /* look at the flags */
7469 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7470 /* 8051 information set by firmware */
7471 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7472 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7473 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7474 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7475 host_msg = (info >>
7476 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7477 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7478
7479 /*
7480 * Handle error flags.
7481 */
7482 if (err & FAILED_LNI) {
7483 /*
7484 * LNI error indications are cleared by the 8051
7485 * only when starting polling. Only pay attention
7486 * to them when in the states that occur during
7487 * LNI.
7488 */
7489 if (ppd->host_link_state
7490 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7491 queue_link_down = 1;
7492 dd_dev_info(dd, "Link error: %s\n",
7493 dc8051_info_err_string(buf,
7494 sizeof(buf),
7495 err &
7496 FAILED_LNI));
7497 }
7498 err &= ~(u64)FAILED_LNI;
7499 }
7500 /* unknown frames can happen durning LNI, just count */
7501 if (err & UNKNOWN_FRAME) {
7502 ppd->unknown_frame_count++;
7503 err &= ~(u64)UNKNOWN_FRAME;
7504 }
7505 if (err) {
7506 /* report remaining errors, but do not do anything */
7507 dd_dev_err(dd, "8051 info error: %s\n",
7508 dc8051_info_err_string(buf, sizeof(buf),
7509 err));
7510 }
7511
7512 /*
7513 * Handle host message flags.
7514 */
7515 if (host_msg & HOST_REQ_DONE) {
7516 /*
7517 * Presently, the driver does a busy wait for
7518 * host requests to complete. This is only an
7519 * informational message.
7520 * NOTE: The 8051 clears the host message
7521 * information *on the next 8051 command*.
7522 * Therefore, when linkup is achieved,
7523 * this flag will still be set.
7524 */
7525 host_msg &= ~(u64)HOST_REQ_DONE;
7526 }
7527 if (host_msg & BC_SMA_MSG) {
7528 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7529 host_msg &= ~(u64)BC_SMA_MSG;
7530 }
7531 if (host_msg & LINKUP_ACHIEVED) {
7532 dd_dev_info(dd, "8051: Link up\n");
7533 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7534 host_msg &= ~(u64)LINKUP_ACHIEVED;
7535 }
7536 if (host_msg & EXT_DEVICE_CFG_REQ) {
7537 queue_work(ppd->hfi1_wq, &ppd->dc_host_req_work);
7538 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7539 }
7540 if (host_msg & VERIFY_CAP_FRAME) {
7541 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7542 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7543 }
7544 if (host_msg & LINK_GOING_DOWN) {
7545 const char *extra = "";
7546 /* no downgrade action needed if going down */
7547 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7548 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7549 extra = " (ignoring downgrade)";
7550 }
7551 dd_dev_info(dd, "8051: Link down%s\n", extra);
7552 queue_link_down = 1;
7553 host_msg &= ~(u64)LINK_GOING_DOWN;
7554 }
7555 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7556 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7557 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7558 }
7559 if (host_msg) {
7560 /* report remaining messages, but do not do anything */
7561 dd_dev_info(dd, "8051 info host message: %s\n",
7562 dc8051_info_host_msg_string(buf,
7563 sizeof(buf),
7564 host_msg));
7565 }
7566
7567 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7568 }
7569 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7570 /*
7571 * Lost the 8051 heartbeat. If this happens, we
7572 * receive constant interrupts about it. Disable
7573 * the interrupt after the first.
7574 */
7575 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7576 write_csr(dd, DC_DC8051_ERR_EN,
7577 read_csr(dd, DC_DC8051_ERR_EN) &
7578 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7579
7580 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7581 }
7582 if (reg) {
7583 /* report the error, but do not do anything */
7584 dd_dev_err(dd, "8051 error: %s\n",
7585 dc8051_err_string(buf, sizeof(buf), reg));
7586 }
7587
7588 if (queue_link_down) {
7589 /*
7590 * if the link is already going down or disabled, do not
7591 * queue another
7592 */
7593 if ((ppd->host_link_state &
7594 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7595 ppd->link_enabled == 0) {
7596 dd_dev_info(dd, "%s: not queuing link down\n",
7597 __func__);
7598 } else {
7599 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7600 }
7601 }
7602 }
7603
7604 static const char * const fm_config_txt[] = {
7605 [0] =
7606 "BadHeadDist: Distance violation between two head flits",
7607 [1] =
7608 "BadTailDist: Distance violation between two tail flits",
7609 [2] =
7610 "BadCtrlDist: Distance violation between two credit control flits",
7611 [3] =
7612 "BadCrdAck: Credits return for unsupported VL",
7613 [4] =
7614 "UnsupportedVLMarker: Received VL Marker",
7615 [5] =
7616 "BadPreempt: Exceeded the preemption nesting level",
7617 [6] =
7618 "BadControlFlit: Received unsupported control flit",
7619 /* no 7 */
7620 [8] =
7621 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7622 };
7623
7624 static const char * const port_rcv_txt[] = {
7625 [1] =
7626 "BadPktLen: Illegal PktLen",
7627 [2] =
7628 "PktLenTooLong: Packet longer than PktLen",
7629 [3] =
7630 "PktLenTooShort: Packet shorter than PktLen",
7631 [4] =
7632 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7633 [5] =
7634 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7635 [6] =
7636 "BadL2: Illegal L2 opcode",
7637 [7] =
7638 "BadSC: Unsupported SC",
7639 [9] =
7640 "BadRC: Illegal RC",
7641 [11] =
7642 "PreemptError: Preempting with same VL",
7643 [12] =
7644 "PreemptVL15: Preempting a VL15 packet",
7645 };
7646
7647 #define OPA_LDR_FMCONFIG_OFFSET 16
7648 #define OPA_LDR_PORTRCV_OFFSET 0
7649 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7650 {
7651 u64 info, hdr0, hdr1;
7652 const char *extra;
7653 char buf[96];
7654 struct hfi1_pportdata *ppd = dd->pport;
7655 u8 lcl_reason = 0;
7656 int do_bounce = 0;
7657
7658 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7659 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7660 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7661 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7662 /* set status bit */
7663 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7664 }
7665 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7666 }
7667
7668 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7669 struct hfi1_pportdata *ppd = dd->pport;
7670 /* this counter saturates at (2^32) - 1 */
7671 if (ppd->link_downed < (u32)UINT_MAX)
7672 ppd->link_downed++;
7673 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7674 }
7675
7676 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7677 u8 reason_valid = 1;
7678
7679 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7680 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7681 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7682 /* set status bit */
7683 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7684 }
7685 switch (info) {
7686 case 0:
7687 case 1:
7688 case 2:
7689 case 3:
7690 case 4:
7691 case 5:
7692 case 6:
7693 extra = fm_config_txt[info];
7694 break;
7695 case 8:
7696 extra = fm_config_txt[info];
7697 if (ppd->port_error_action &
7698 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7699 do_bounce = 1;
7700 /*
7701 * lcl_reason cannot be derived from info
7702 * for this error
7703 */
7704 lcl_reason =
7705 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7706 }
7707 break;
7708 default:
7709 reason_valid = 0;
7710 snprintf(buf, sizeof(buf), "reserved%lld", info);
7711 extra = buf;
7712 break;
7713 }
7714
7715 if (reason_valid && !do_bounce) {
7716 do_bounce = ppd->port_error_action &
7717 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7718 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7719 }
7720
7721 /* just report this */
7722 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7723 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7724 }
7725
7726 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7727 u8 reason_valid = 1;
7728
7729 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7730 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7731 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7732 if (!(dd->err_info_rcvport.status_and_code &
7733 OPA_EI_STATUS_SMASK)) {
7734 dd->err_info_rcvport.status_and_code =
7735 info & OPA_EI_CODE_SMASK;
7736 /* set status bit */
7737 dd->err_info_rcvport.status_and_code |=
7738 OPA_EI_STATUS_SMASK;
7739 /*
7740 * save first 2 flits in the packet that caused
7741 * the error
7742 */
7743 dd->err_info_rcvport.packet_flit1 = hdr0;
7744 dd->err_info_rcvport.packet_flit2 = hdr1;
7745 }
7746 switch (info) {
7747 case 1:
7748 case 2:
7749 case 3:
7750 case 4:
7751 case 5:
7752 case 6:
7753 case 7:
7754 case 9:
7755 case 11:
7756 case 12:
7757 extra = port_rcv_txt[info];
7758 break;
7759 default:
7760 reason_valid = 0;
7761 snprintf(buf, sizeof(buf), "reserved%lld", info);
7762 extra = buf;
7763 break;
7764 }
7765
7766 if (reason_valid && !do_bounce) {
7767 do_bounce = ppd->port_error_action &
7768 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7769 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7770 }
7771
7772 /* just report this */
7773 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7774 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
7775 hdr0, hdr1);
7776
7777 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7778 }
7779
7780 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7781 /* informative only */
7782 dd_dev_info(dd, "8051 access to LCB blocked\n");
7783 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7784 }
7785 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7786 /* informative only */
7787 dd_dev_info(dd, "host access to LCB blocked\n");
7788 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7789 }
7790
7791 /* report any remaining errors */
7792 if (reg)
7793 dd_dev_info(dd, "DCC Error: %s\n",
7794 dcc_err_string(buf, sizeof(buf), reg));
7795
7796 if (lcl_reason == 0)
7797 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7798
7799 if (do_bounce) {
7800 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7801 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7802 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7803 }
7804 }
7805
7806 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7807 {
7808 char buf[96];
7809
7810 dd_dev_info(dd, "LCB Error: %s\n",
7811 lcb_err_string(buf, sizeof(buf), reg));
7812 }
7813
7814 /*
7815 * CCE block DC interrupt. Source is < 8.
7816 */
7817 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7818 {
7819 const struct err_reg_info *eri = &dc_errs[source];
7820
7821 if (eri->handler) {
7822 interrupt_clear_down(dd, 0, eri);
7823 } else if (source == 3 /* dc_lbm_int */) {
7824 /*
7825 * This indicates that a parity error has occurred on the
7826 * address/control lines presented to the LBM. The error
7827 * is a single pulse, there is no associated error flag,
7828 * and it is non-maskable. This is because if a parity
7829 * error occurs on the request the request is dropped.
7830 * This should never occur, but it is nice to know if it
7831 * ever does.
7832 */
7833 dd_dev_err(dd, "Parity error in DC LBM block\n");
7834 } else {
7835 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7836 }
7837 }
7838
7839 /*
7840 * TX block send credit interrupt. Source is < 160.
7841 */
7842 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7843 {
7844 sc_group_release_update(dd, source);
7845 }
7846
7847 /*
7848 * TX block SDMA interrupt. Source is < 48.
7849 *
7850 * SDMA interrupts are grouped by type:
7851 *
7852 * 0 - N-1 = SDma
7853 * N - 2N-1 = SDmaProgress
7854 * 2N - 3N-1 = SDmaIdle
7855 */
7856 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7857 {
7858 /* what interrupt */
7859 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7860 /* which engine */
7861 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7862
7863 #ifdef CONFIG_SDMA_VERBOSITY
7864 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7865 slashstrip(__FILE__), __LINE__, __func__);
7866 sdma_dumpstate(&dd->per_sdma[which]);
7867 #endif
7868
7869 if (likely(what < 3 && which < dd->num_sdma)) {
7870 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7871 } else {
7872 /* should not happen */
7873 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7874 }
7875 }
7876
7877 /*
7878 * RX block receive available interrupt. Source is < 160.
7879 */
7880 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7881 {
7882 struct hfi1_ctxtdata *rcd;
7883 char *err_detail;
7884
7885 if (likely(source < dd->num_rcv_contexts)) {
7886 rcd = dd->rcd[source];
7887 if (rcd) {
7888 if (source < dd->first_user_ctxt)
7889 rcd->do_interrupt(rcd, 0);
7890 else
7891 handle_user_interrupt(rcd);
7892 return; /* OK */
7893 }
7894 /* received an interrupt, but no rcd */
7895 err_detail = "dataless";
7896 } else {
7897 /* received an interrupt, but are not using that context */
7898 err_detail = "out of range";
7899 }
7900 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
7901 err_detail, source);
7902 }
7903
7904 /*
7905 * RX block receive urgent interrupt. Source is < 160.
7906 */
7907 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
7908 {
7909 struct hfi1_ctxtdata *rcd;
7910 char *err_detail;
7911
7912 if (likely(source < dd->num_rcv_contexts)) {
7913 rcd = dd->rcd[source];
7914 if (rcd) {
7915 /* only pay attention to user urgent interrupts */
7916 if (source >= dd->first_user_ctxt)
7917 handle_user_interrupt(rcd);
7918 return; /* OK */
7919 }
7920 /* received an interrupt, but no rcd */
7921 err_detail = "dataless";
7922 } else {
7923 /* received an interrupt, but are not using that context */
7924 err_detail = "out of range";
7925 }
7926 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
7927 err_detail, source);
7928 }
7929
7930 /*
7931 * Reserved range interrupt. Should not be called in normal operation.
7932 */
7933 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
7934 {
7935 char name[64];
7936
7937 dd_dev_err(dd, "unexpected %s interrupt\n",
7938 is_reserved_name(name, sizeof(name), source));
7939 }
7940
7941 static const struct is_table is_table[] = {
7942 /*
7943 * start end
7944 * name func interrupt func
7945 */
7946 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
7947 is_misc_err_name, is_misc_err_int },
7948 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
7949 is_sdma_eng_err_name, is_sdma_eng_err_int },
7950 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
7951 is_sendctxt_err_name, is_sendctxt_err_int },
7952 { IS_SDMA_START, IS_SDMA_END,
7953 is_sdma_eng_name, is_sdma_eng_int },
7954 { IS_VARIOUS_START, IS_VARIOUS_END,
7955 is_various_name, is_various_int },
7956 { IS_DC_START, IS_DC_END,
7957 is_dc_name, is_dc_int },
7958 { IS_RCVAVAIL_START, IS_RCVAVAIL_END,
7959 is_rcv_avail_name, is_rcv_avail_int },
7960 { IS_RCVURGENT_START, IS_RCVURGENT_END,
7961 is_rcv_urgent_name, is_rcv_urgent_int },
7962 { IS_SENDCREDIT_START, IS_SENDCREDIT_END,
7963 is_send_credit_name, is_send_credit_int},
7964 { IS_RESERVED_START, IS_RESERVED_END,
7965 is_reserved_name, is_reserved_int},
7966 };
7967
7968 /*
7969 * Interrupt source interrupt - called when the given source has an interrupt.
7970 * Source is a bit index into an array of 64-bit integers.
7971 */
7972 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
7973 {
7974 const struct is_table *entry;
7975
7976 /* avoids a double compare by walking the table in-order */
7977 for (entry = &is_table[0]; entry->is_name; entry++) {
7978 if (source < entry->end) {
7979 trace_hfi1_interrupt(dd, entry, source);
7980 entry->is_int(dd, source - entry->start);
7981 return;
7982 }
7983 }
7984 /* fell off the end */
7985 dd_dev_err(dd, "invalid interrupt source %u\n", source);
7986 }
7987
7988 /*
7989 * General interrupt handler. This is able to correctly handle
7990 * all interrupts in case INTx is used.
7991 */
7992 static irqreturn_t general_interrupt(int irq, void *data)
7993 {
7994 struct hfi1_devdata *dd = data;
7995 u64 regs[CCE_NUM_INT_CSRS];
7996 u32 bit;
7997 int i;
7998
7999 this_cpu_inc(*dd->int_counter);
8000
8001 /* phase 1: scan and clear all handled interrupts */
8002 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8003 if (dd->gi_mask[i] == 0) {
8004 regs[i] = 0; /* used later */
8005 continue;
8006 }
8007 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8008 dd->gi_mask[i];
8009 /* only clear if anything is set */
8010 if (regs[i])
8011 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8012 }
8013
8014 /* phase 2: call the appropriate handler */
8015 for_each_set_bit(bit, (unsigned long *)&regs[0],
8016 CCE_NUM_INT_CSRS * 64) {
8017 is_interrupt(dd, bit);
8018 }
8019
8020 return IRQ_HANDLED;
8021 }
8022
8023 static irqreturn_t sdma_interrupt(int irq, void *data)
8024 {
8025 struct sdma_engine *sde = data;
8026 struct hfi1_devdata *dd = sde->dd;
8027 u64 status;
8028
8029 #ifdef CONFIG_SDMA_VERBOSITY
8030 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8031 slashstrip(__FILE__), __LINE__, __func__);
8032 sdma_dumpstate(sde);
8033 #endif
8034
8035 this_cpu_inc(*dd->int_counter);
8036
8037 /* This read_csr is really bad in the hot path */
8038 status = read_csr(dd,
8039 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8040 & sde->imask;
8041 if (likely(status)) {
8042 /* clear the interrupt(s) */
8043 write_csr(dd,
8044 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8045 status);
8046
8047 /* handle the interrupt(s) */
8048 sdma_engine_interrupt(sde, status);
8049 } else
8050 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8051 sde->this_idx);
8052
8053 return IRQ_HANDLED;
8054 }
8055
8056 /*
8057 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8058 * to insure that the write completed. This does NOT guarantee that
8059 * queued DMA writes to memory from the chip are pushed.
8060 */
8061 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8062 {
8063 struct hfi1_devdata *dd = rcd->dd;
8064 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8065
8066 mmiowb(); /* make sure everything before is written */
8067 write_csr(dd, addr, rcd->imask);
8068 /* force the above write on the chip and get a value back */
8069 (void)read_csr(dd, addr);
8070 }
8071
8072 /* force the receive interrupt */
8073 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8074 {
8075 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8076 }
8077
8078 /*
8079 * Return non-zero if a packet is present.
8080 *
8081 * This routine is called when rechecking for packets after the RcvAvail
8082 * interrupt has been cleared down. First, do a quick check of memory for
8083 * a packet present. If not found, use an expensive CSR read of the context
8084 * tail to determine the actual tail. The CSR read is necessary because there
8085 * is no method to push pending DMAs to memory other than an interrupt and we
8086 * are trying to determine if we need to force an interrupt.
8087 */
8088 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8089 {
8090 u32 tail;
8091 int present;
8092
8093 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8094 present = (rcd->seq_cnt ==
8095 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8096 else /* is RDMA rtail */
8097 present = (rcd->head != get_rcvhdrtail(rcd));
8098
8099 if (present)
8100 return 1;
8101
8102 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8103 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8104 return rcd->head != tail;
8105 }
8106
8107 /*
8108 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8109 * This routine will try to handle packets immediately (latency), but if
8110 * it finds too many, it will invoke the thread handler (bandwitdh). The
8111 * chip receive interrupt is *not* cleared down until this or the thread (if
8112 * invoked) is finished. The intent is to avoid extra interrupts while we
8113 * are processing packets anyway.
8114 */
8115 static irqreturn_t receive_context_interrupt(int irq, void *data)
8116 {
8117 struct hfi1_ctxtdata *rcd = data;
8118 struct hfi1_devdata *dd = rcd->dd;
8119 int disposition;
8120 int present;
8121
8122 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8123 this_cpu_inc(*dd->int_counter);
8124 aspm_ctx_disable(rcd);
8125
8126 /* receive interrupt remains blocked while processing packets */
8127 disposition = rcd->do_interrupt(rcd, 0);
8128
8129 /*
8130 * Too many packets were seen while processing packets in this
8131 * IRQ handler. Invoke the handler thread. The receive interrupt
8132 * remains blocked.
8133 */
8134 if (disposition == RCV_PKT_LIMIT)
8135 return IRQ_WAKE_THREAD;
8136
8137 /*
8138 * The packet processor detected no more packets. Clear the receive
8139 * interrupt and recheck for a packet packet that may have arrived
8140 * after the previous check and interrupt clear. If a packet arrived,
8141 * force another interrupt.
8142 */
8143 clear_recv_intr(rcd);
8144 present = check_packet_present(rcd);
8145 if (present)
8146 force_recv_intr(rcd);
8147
8148 return IRQ_HANDLED;
8149 }
8150
8151 /*
8152 * Receive packet thread handler. This expects to be invoked with the
8153 * receive interrupt still blocked.
8154 */
8155 static irqreturn_t receive_context_thread(int irq, void *data)
8156 {
8157 struct hfi1_ctxtdata *rcd = data;
8158 int present;
8159
8160 /* receive interrupt is still blocked from the IRQ handler */
8161 (void)rcd->do_interrupt(rcd, 1);
8162
8163 /*
8164 * The packet processor will only return if it detected no more
8165 * packets. Hold IRQs here so we can safely clear the interrupt and
8166 * recheck for a packet that may have arrived after the previous
8167 * check and the interrupt clear. If a packet arrived, force another
8168 * interrupt.
8169 */
8170 local_irq_disable();
8171 clear_recv_intr(rcd);
8172 present = check_packet_present(rcd);
8173 if (present)
8174 force_recv_intr(rcd);
8175 local_irq_enable();
8176
8177 return IRQ_HANDLED;
8178 }
8179
8180 /* ========================================================================= */
8181
8182 u32 read_physical_state(struct hfi1_devdata *dd)
8183 {
8184 u64 reg;
8185
8186 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8187 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8188 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8189 }
8190
8191 u32 read_logical_state(struct hfi1_devdata *dd)
8192 {
8193 u64 reg;
8194
8195 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8196 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8197 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8198 }
8199
8200 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8201 {
8202 u64 reg;
8203
8204 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8205 /* clear current state, set new state */
8206 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8207 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8208 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8209 }
8210
8211 /*
8212 * Use the 8051 to read a LCB CSR.
8213 */
8214 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8215 {
8216 u32 regno;
8217 int ret;
8218
8219 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8220 if (acquire_lcb_access(dd, 0) == 0) {
8221 *data = read_csr(dd, addr);
8222 release_lcb_access(dd, 0);
8223 return 0;
8224 }
8225 return -EBUSY;
8226 }
8227
8228 /* register is an index of LCB registers: (offset - base) / 8 */
8229 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8230 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8231 if (ret != HCMD_SUCCESS)
8232 return -EBUSY;
8233 return 0;
8234 }
8235
8236 /*
8237 * Read an LCB CSR. Access may not be in host control, so check.
8238 * Return 0 on success, -EBUSY on failure.
8239 */
8240 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8241 {
8242 struct hfi1_pportdata *ppd = dd->pport;
8243
8244 /* if up, go through the 8051 for the value */
8245 if (ppd->host_link_state & HLS_UP)
8246 return read_lcb_via_8051(dd, addr, data);
8247 /* if going up or down, no access */
8248 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8249 return -EBUSY;
8250 /* otherwise, host has access */
8251 *data = read_csr(dd, addr);
8252 return 0;
8253 }
8254
8255 /*
8256 * Use the 8051 to write a LCB CSR.
8257 */
8258 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8259 {
8260 u32 regno;
8261 int ret;
8262
8263 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8264 (dd->dc8051_ver < dc8051_ver(0, 20))) {
8265 if (acquire_lcb_access(dd, 0) == 0) {
8266 write_csr(dd, addr, data);
8267 release_lcb_access(dd, 0);
8268 return 0;
8269 }
8270 return -EBUSY;
8271 }
8272
8273 /* register is an index of LCB registers: (offset - base) / 8 */
8274 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8275 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8276 if (ret != HCMD_SUCCESS)
8277 return -EBUSY;
8278 return 0;
8279 }
8280
8281 /*
8282 * Write an LCB CSR. Access may not be in host control, so check.
8283 * Return 0 on success, -EBUSY on failure.
8284 */
8285 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8286 {
8287 struct hfi1_pportdata *ppd = dd->pport;
8288
8289 /* if up, go through the 8051 for the value */
8290 if (ppd->host_link_state & HLS_UP)
8291 return write_lcb_via_8051(dd, addr, data);
8292 /* if going up or down, no access */
8293 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8294 return -EBUSY;
8295 /* otherwise, host has access */
8296 write_csr(dd, addr, data);
8297 return 0;
8298 }
8299
8300 /*
8301 * Returns:
8302 * < 0 = Linux error, not able to get access
8303 * > 0 = 8051 command RETURN_CODE
8304 */
8305 static int do_8051_command(
8306 struct hfi1_devdata *dd,
8307 u32 type,
8308 u64 in_data,
8309 u64 *out_data)
8310 {
8311 u64 reg, completed;
8312 int return_code;
8313 unsigned long flags;
8314 unsigned long timeout;
8315
8316 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8317
8318 /*
8319 * Alternative to holding the lock for a long time:
8320 * - keep busy wait - have other users bounce off
8321 */
8322 spin_lock_irqsave(&dd->dc8051_lock, flags);
8323
8324 /* We can't send any commands to the 8051 if it's in reset */
8325 if (dd->dc_shutdown) {
8326 return_code = -ENODEV;
8327 goto fail;
8328 }
8329
8330 /*
8331 * If an 8051 host command timed out previously, then the 8051 is
8332 * stuck.
8333 *
8334 * On first timeout, attempt to reset and restart the entire DC
8335 * block (including 8051). (Is this too big of a hammer?)
8336 *
8337 * If the 8051 times out a second time, the reset did not bring it
8338 * back to healthy life. In that case, fail any subsequent commands.
8339 */
8340 if (dd->dc8051_timed_out) {
8341 if (dd->dc8051_timed_out > 1) {
8342 dd_dev_err(dd,
8343 "Previous 8051 host command timed out, skipping command %u\n",
8344 type);
8345 return_code = -ENXIO;
8346 goto fail;
8347 }
8348 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8349 dc_shutdown(dd);
8350 dc_start(dd);
8351 spin_lock_irqsave(&dd->dc8051_lock, flags);
8352 }
8353
8354 /*
8355 * If there is no timeout, then the 8051 command interface is
8356 * waiting for a command.
8357 */
8358
8359 /*
8360 * When writing a LCB CSR, out_data contains the full value to
8361 * to be written, while in_data contains the relative LCB
8362 * address in 7:0. Do the work here, rather than the caller,
8363 * of distrubting the write data to where it needs to go:
8364 *
8365 * Write data
8366 * 39:00 -> in_data[47:8]
8367 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8368 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8369 */
8370 if (type == HCMD_WRITE_LCB_CSR) {
8371 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8372 reg = ((((*out_data) >> 40) & 0xff) <<
8373 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8374 | ((((*out_data) >> 48) & 0xffff) <<
8375 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8376 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8377 }
8378
8379 /*
8380 * Do two writes: the first to stabilize the type and req_data, the
8381 * second to activate.
8382 */
8383 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8384 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8385 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8386 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8387 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8388 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8389 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8390
8391 /* wait for completion, alternate: interrupt */
8392 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8393 while (1) {
8394 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8395 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8396 if (completed)
8397 break;
8398 if (time_after(jiffies, timeout)) {
8399 dd->dc8051_timed_out++;
8400 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8401 if (out_data)
8402 *out_data = 0;
8403 return_code = -ETIMEDOUT;
8404 goto fail;
8405 }
8406 udelay(2);
8407 }
8408
8409 if (out_data) {
8410 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8411 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8412 if (type == HCMD_READ_LCB_CSR) {
8413 /* top 16 bits are in a different register */
8414 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8415 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8416 << (48
8417 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8418 }
8419 }
8420 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8421 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8422 dd->dc8051_timed_out = 0;
8423 /*
8424 * Clear command for next user.
8425 */
8426 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8427
8428 fail:
8429 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8430
8431 return return_code;
8432 }
8433
8434 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8435 {
8436 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8437 }
8438
8439 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8440 u8 lane_id, u32 config_data)
8441 {
8442 u64 data;
8443 int ret;
8444
8445 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8446 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8447 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8448 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8449 if (ret != HCMD_SUCCESS) {
8450 dd_dev_err(dd,
8451 "load 8051 config: field id %d, lane %d, err %d\n",
8452 (int)field_id, (int)lane_id, ret);
8453 }
8454 return ret;
8455 }
8456
8457 /*
8458 * Read the 8051 firmware "registers". Use the RAM directly. Always
8459 * set the result, even on error.
8460 * Return 0 on success, -errno on failure
8461 */
8462 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8463 u32 *result)
8464 {
8465 u64 big_data;
8466 u32 addr;
8467 int ret;
8468
8469 /* address start depends on the lane_id */
8470 if (lane_id < 4)
8471 addr = (4 * NUM_GENERAL_FIELDS)
8472 + (lane_id * 4 * NUM_LANE_FIELDS);
8473 else
8474 addr = 0;
8475 addr += field_id * 4;
8476
8477 /* read is in 8-byte chunks, hardware will truncate the address down */
8478 ret = read_8051_data(dd, addr, 8, &big_data);
8479
8480 if (ret == 0) {
8481 /* extract the 4 bytes we want */
8482 if (addr & 0x4)
8483 *result = (u32)(big_data >> 32);
8484 else
8485 *result = (u32)big_data;
8486 } else {
8487 *result = 0;
8488 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8489 __func__, lane_id, field_id);
8490 }
8491
8492 return ret;
8493 }
8494
8495 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8496 u8 continuous)
8497 {
8498 u32 frame;
8499
8500 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8501 | power_management << POWER_MANAGEMENT_SHIFT;
8502 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8503 GENERAL_CONFIG, frame);
8504 }
8505
8506 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8507 u16 vl15buf, u8 crc_sizes)
8508 {
8509 u32 frame;
8510
8511 frame = (u32)vau << VAU_SHIFT
8512 | (u32)z << Z_SHIFT
8513 | (u32)vcu << VCU_SHIFT
8514 | (u32)vl15buf << VL15BUF_SHIFT
8515 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8516 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8517 GENERAL_CONFIG, frame);
8518 }
8519
8520 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8521 u8 *flag_bits, u16 *link_widths)
8522 {
8523 u32 frame;
8524
8525 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8526 &frame);
8527 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8528 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8529 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8530 }
8531
8532 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8533 u8 misc_bits,
8534 u8 flag_bits,
8535 u16 link_widths)
8536 {
8537 u32 frame;
8538
8539 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8540 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8541 | (u32)link_widths << LINK_WIDTH_SHIFT;
8542 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8543 frame);
8544 }
8545
8546 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8547 u8 device_rev)
8548 {
8549 u32 frame;
8550
8551 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8552 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8553 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8554 }
8555
8556 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8557 u8 *device_rev)
8558 {
8559 u32 frame;
8560
8561 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8562 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8563 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8564 & REMOTE_DEVICE_REV_MASK;
8565 }
8566
8567 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8568 {
8569 u32 frame;
8570
8571 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8572 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8573 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8574 }
8575
8576 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8577 u8 *continuous)
8578 {
8579 u32 frame;
8580
8581 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8582 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8583 & POWER_MANAGEMENT_MASK;
8584 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8585 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8586 }
8587
8588 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8589 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8590 {
8591 u32 frame;
8592
8593 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8594 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8595 *z = (frame >> Z_SHIFT) & Z_MASK;
8596 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8597 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8598 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8599 }
8600
8601 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8602 u8 *remote_tx_rate,
8603 u16 *link_widths)
8604 {
8605 u32 frame;
8606
8607 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8608 &frame);
8609 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8610 & REMOTE_TX_RATE_MASK;
8611 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8612 }
8613
8614 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8615 {
8616 u32 frame;
8617
8618 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8619 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8620 }
8621
8622 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8623 {
8624 u32 frame;
8625
8626 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8627 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8628 }
8629
8630 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8631 {
8632 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8633 }
8634
8635 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8636 {
8637 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8638 }
8639
8640 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8641 {
8642 u32 frame;
8643 int ret;
8644
8645 *link_quality = 0;
8646 if (dd->pport->host_link_state & HLS_UP) {
8647 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8648 &frame);
8649 if (ret == 0)
8650 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8651 & LINK_QUALITY_MASK;
8652 }
8653 }
8654
8655 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8656 {
8657 u32 frame;
8658
8659 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8660 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8661 }
8662
8663 static int read_tx_settings(struct hfi1_devdata *dd,
8664 u8 *enable_lane_tx,
8665 u8 *tx_polarity_inversion,
8666 u8 *rx_polarity_inversion,
8667 u8 *max_rate)
8668 {
8669 u32 frame;
8670 int ret;
8671
8672 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8673 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8674 & ENABLE_LANE_TX_MASK;
8675 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8676 & TX_POLARITY_INVERSION_MASK;
8677 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8678 & RX_POLARITY_INVERSION_MASK;
8679 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8680 return ret;
8681 }
8682
8683 static int write_tx_settings(struct hfi1_devdata *dd,
8684 u8 enable_lane_tx,
8685 u8 tx_polarity_inversion,
8686 u8 rx_polarity_inversion,
8687 u8 max_rate)
8688 {
8689 u32 frame;
8690
8691 /* no need to mask, all variable sizes match field widths */
8692 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8693 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8694 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8695 | max_rate << MAX_RATE_SHIFT;
8696 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8697 }
8698
8699 static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
8700 {
8701 u32 frame, version, prod_id;
8702 int ret, lane;
8703
8704 /* 4 lanes */
8705 for (lane = 0; lane < 4; lane++) {
8706 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
8707 if (ret) {
8708 dd_dev_err(dd,
8709 "Unable to read lane %d firmware details\n",
8710 lane);
8711 continue;
8712 }
8713 version = (frame >> SPICO_ROM_VERSION_SHIFT)
8714 & SPICO_ROM_VERSION_MASK;
8715 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
8716 & SPICO_ROM_PROD_ID_MASK;
8717 dd_dev_info(dd,
8718 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
8719 lane, version, prod_id);
8720 }
8721 }
8722
8723 /*
8724 * Read an idle LCB message.
8725 *
8726 * Returns 0 on success, -EINVAL on error
8727 */
8728 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8729 {
8730 int ret;
8731
8732 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8733 if (ret != HCMD_SUCCESS) {
8734 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8735 (u32)type, ret);
8736 return -EINVAL;
8737 }
8738 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8739 /* return only the payload as we already know the type */
8740 *data_out >>= IDLE_PAYLOAD_SHIFT;
8741 return 0;
8742 }
8743
8744 /*
8745 * Read an idle SMA message. To be done in response to a notification from
8746 * the 8051.
8747 *
8748 * Returns 0 on success, -EINVAL on error
8749 */
8750 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8751 {
8752 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8753 data);
8754 }
8755
8756 /*
8757 * Send an idle LCB message.
8758 *
8759 * Returns 0 on success, -EINVAL on error
8760 */
8761 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8762 {
8763 int ret;
8764
8765 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8766 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8767 if (ret != HCMD_SUCCESS) {
8768 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8769 data, ret);
8770 return -EINVAL;
8771 }
8772 return 0;
8773 }
8774
8775 /*
8776 * Send an idle SMA message.
8777 *
8778 * Returns 0 on success, -EINVAL on error
8779 */
8780 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8781 {
8782 u64 data;
8783
8784 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8785 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8786 return send_idle_message(dd, data);
8787 }
8788
8789 /*
8790 * Initialize the LCB then do a quick link up. This may or may not be
8791 * in loopback.
8792 *
8793 * return 0 on success, -errno on error
8794 */
8795 static int do_quick_linkup(struct hfi1_devdata *dd)
8796 {
8797 u64 reg;
8798 unsigned long timeout;
8799 int ret;
8800
8801 lcb_shutdown(dd, 0);
8802
8803 if (loopback) {
8804 /* LCB_CFG_LOOPBACK.VAL = 2 */
8805 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8806 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8807 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8808 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8809 }
8810
8811 /* start the LCBs */
8812 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8813 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8814
8815 /* simulator only loopback steps */
8816 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8817 /* LCB_CFG_RUN.EN = 1 */
8818 write_csr(dd, DC_LCB_CFG_RUN,
8819 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8820
8821 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8822 timeout = jiffies + msecs_to_jiffies(10);
8823 while (1) {
8824 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8825 if (reg)
8826 break;
8827 if (time_after(jiffies, timeout)) {
8828 dd_dev_err(dd,
8829 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8830 return -ETIMEDOUT;
8831 }
8832 udelay(2);
8833 }
8834
8835 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8836 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8837 }
8838
8839 if (!loopback) {
8840 /*
8841 * When doing quick linkup and not in loopback, both
8842 * sides must be done with LCB set-up before either
8843 * starts the quick linkup. Put a delay here so that
8844 * both sides can be started and have a chance to be
8845 * done with LCB set up before resuming.
8846 */
8847 dd_dev_err(dd,
8848 "Pausing for peer to be finished with LCB set up\n");
8849 msleep(5000);
8850 dd_dev_err(dd, "Continuing with quick linkup\n");
8851 }
8852
8853 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8854 set_8051_lcb_access(dd);
8855
8856 /*
8857 * State "quick" LinkUp request sets the physical link state to
8858 * LinkUp without a verify capability sequence.
8859 * This state is in simulator v37 and later.
8860 */
8861 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8862 if (ret != HCMD_SUCCESS) {
8863 dd_dev_err(dd,
8864 "%s: set physical link state to quick LinkUp failed with return %d\n",
8865 __func__, ret);
8866
8867 set_host_lcb_access(dd);
8868 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8869
8870 if (ret >= 0)
8871 ret = -EINVAL;
8872 return ret;
8873 }
8874
8875 return 0; /* success */
8876 }
8877
8878 /*
8879 * Set the SerDes to internal loopback mode.
8880 * Returns 0 on success, -errno on error.
8881 */
8882 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8883 {
8884 int ret;
8885
8886 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8887 if (ret == HCMD_SUCCESS)
8888 return 0;
8889 dd_dev_err(dd,
8890 "Set physical link state to SerDes Loopback failed with return %d\n",
8891 ret);
8892 if (ret >= 0)
8893 ret = -EINVAL;
8894 return ret;
8895 }
8896
8897 /*
8898 * Do all special steps to set up loopback.
8899 */
8900 static int init_loopback(struct hfi1_devdata *dd)
8901 {
8902 dd_dev_info(dd, "Entering loopback mode\n");
8903
8904 /* all loopbacks should disable self GUID check */
8905 write_csr(dd, DC_DC8051_CFG_MODE,
8906 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
8907
8908 /*
8909 * The simulator has only one loopback option - LCB. Switch
8910 * to that option, which includes quick link up.
8911 *
8912 * Accept all valid loopback values.
8913 */
8914 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
8915 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
8916 loopback == LOOPBACK_CABLE)) {
8917 loopback = LOOPBACK_LCB;
8918 quick_linkup = 1;
8919 return 0;
8920 }
8921
8922 /* handle serdes loopback */
8923 if (loopback == LOOPBACK_SERDES) {
8924 /* internal serdes loopack needs quick linkup on RTL */
8925 if (dd->icode == ICODE_RTL_SILICON)
8926 quick_linkup = 1;
8927 return set_serdes_loopback_mode(dd);
8928 }
8929
8930 /* LCB loopback - handled at poll time */
8931 if (loopback == LOOPBACK_LCB) {
8932 quick_linkup = 1; /* LCB is always quick linkup */
8933
8934 /* not supported in emulation due to emulation RTL changes */
8935 if (dd->icode == ICODE_FPGA_EMULATION) {
8936 dd_dev_err(dd,
8937 "LCB loopback not supported in emulation\n");
8938 return -EINVAL;
8939 }
8940 return 0;
8941 }
8942
8943 /* external cable loopback requires no extra steps */
8944 if (loopback == LOOPBACK_CABLE)
8945 return 0;
8946
8947 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
8948 return -EINVAL;
8949 }
8950
8951 /*
8952 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
8953 * used in the Verify Capability link width attribute.
8954 */
8955 static u16 opa_to_vc_link_widths(u16 opa_widths)
8956 {
8957 int i;
8958 u16 result = 0;
8959
8960 static const struct link_bits {
8961 u16 from;
8962 u16 to;
8963 } opa_link_xlate[] = {
8964 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
8965 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
8966 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
8967 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
8968 };
8969
8970 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
8971 if (opa_widths & opa_link_xlate[i].from)
8972 result |= opa_link_xlate[i].to;
8973 }
8974 return result;
8975 }
8976
8977 /*
8978 * Set link attributes before moving to polling.
8979 */
8980 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
8981 {
8982 struct hfi1_devdata *dd = ppd->dd;
8983 u8 enable_lane_tx;
8984 u8 tx_polarity_inversion;
8985 u8 rx_polarity_inversion;
8986 int ret;
8987
8988 /* reset our fabric serdes to clear any lingering problems */
8989 fabric_serdes_reset(dd);
8990
8991 /* set the local tx rate - need to read-modify-write */
8992 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
8993 &rx_polarity_inversion, &ppd->local_tx_rate);
8994 if (ret)
8995 goto set_local_link_attributes_fail;
8996
8997 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
8998 /* set the tx rate to the fastest enabled */
8999 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9000 ppd->local_tx_rate = 1;
9001 else
9002 ppd->local_tx_rate = 0;
9003 } else {
9004 /* set the tx rate to all enabled */
9005 ppd->local_tx_rate = 0;
9006 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9007 ppd->local_tx_rate |= 2;
9008 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9009 ppd->local_tx_rate |= 1;
9010 }
9011
9012 enable_lane_tx = 0xF; /* enable all four lanes */
9013 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9014 rx_polarity_inversion, ppd->local_tx_rate);
9015 if (ret != HCMD_SUCCESS)
9016 goto set_local_link_attributes_fail;
9017
9018 /*
9019 * DC supports continuous updates.
9020 */
9021 ret = write_vc_local_phy(dd,
9022 0 /* no power management */,
9023 1 /* continuous updates */);
9024 if (ret != HCMD_SUCCESS)
9025 goto set_local_link_attributes_fail;
9026
9027 /* z=1 in the next call: AU of 0 is not supported by the hardware */
9028 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9029 ppd->port_crc_mode_enabled);
9030 if (ret != HCMD_SUCCESS)
9031 goto set_local_link_attributes_fail;
9032
9033 ret = write_vc_local_link_width(dd, 0, 0,
9034 opa_to_vc_link_widths(
9035 ppd->link_width_enabled));
9036 if (ret != HCMD_SUCCESS)
9037 goto set_local_link_attributes_fail;
9038
9039 /* let peer know who we are */
9040 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9041 if (ret == HCMD_SUCCESS)
9042 return 0;
9043
9044 set_local_link_attributes_fail:
9045 dd_dev_err(dd,
9046 "Failed to set local link attributes, return 0x%x\n",
9047 ret);
9048 return ret;
9049 }
9050
9051 /*
9052 * Call this to start the link. Schedule a retry if the cable is not
9053 * present or if unable to start polling. Do not do anything if the
9054 * link is disabled. Returns 0 if link is disabled or moved to polling
9055 */
9056 int start_link(struct hfi1_pportdata *ppd)
9057 {
9058 if (!ppd->link_enabled) {
9059 dd_dev_info(ppd->dd,
9060 "%s: stopping link start because link is disabled\n",
9061 __func__);
9062 return 0;
9063 }
9064 if (!ppd->driver_link_ready) {
9065 dd_dev_info(ppd->dd,
9066 "%s: stopping link start because driver is not ready\n",
9067 __func__);
9068 return 0;
9069 }
9070
9071 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
9072 loopback == LOOPBACK_LCB ||
9073 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9074 return set_link_state(ppd, HLS_DN_POLL);
9075
9076 dd_dev_info(ppd->dd,
9077 "%s: stopping link start because no cable is present\n",
9078 __func__);
9079 return -EAGAIN;
9080 }
9081
9082 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9083 {
9084 struct hfi1_devdata *dd = ppd->dd;
9085 u64 mask;
9086 unsigned long timeout;
9087
9088 /*
9089 * Check for QSFP interrupt for t_init (SFF 8679)
9090 */
9091 timeout = jiffies + msecs_to_jiffies(2000);
9092 while (1) {
9093 mask = read_csr(dd, dd->hfi1_id ?
9094 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9095 if (!(mask & QSFP_HFI0_INT_N)) {
9096 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR :
9097 ASIC_QSFP1_CLEAR, QSFP_HFI0_INT_N);
9098 break;
9099 }
9100 if (time_after(jiffies, timeout)) {
9101 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9102 __func__);
9103 break;
9104 }
9105 udelay(2);
9106 }
9107 }
9108
9109 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9110 {
9111 struct hfi1_devdata *dd = ppd->dd;
9112 u64 mask;
9113
9114 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9115 if (enable)
9116 mask |= (u64)QSFP_HFI0_INT_N;
9117 else
9118 mask &= ~(u64)QSFP_HFI0_INT_N;
9119 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9120 }
9121
9122 void reset_qsfp(struct hfi1_pportdata *ppd)
9123 {
9124 struct hfi1_devdata *dd = ppd->dd;
9125 u64 mask, qsfp_mask;
9126
9127 /* Disable INT_N from triggering QSFP interrupts */
9128 set_qsfp_int_n(ppd, 0);
9129
9130 /* Reset the QSFP */
9131 mask = (u64)QSFP_HFI0_RESET_N;
9132 qsfp_mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
9133 qsfp_mask |= mask;
9134 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE, qsfp_mask);
9135
9136 qsfp_mask = read_csr(dd,
9137 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9138 qsfp_mask &= ~mask;
9139 write_csr(dd,
9140 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9141
9142 udelay(10);
9143
9144 qsfp_mask |= mask;
9145 write_csr(dd,
9146 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9147
9148 wait_for_qsfp_init(ppd);
9149
9150 /*
9151 * Allow INT_N to trigger the QSFP interrupt to watch
9152 * for alarms and warnings
9153 */
9154 set_qsfp_int_n(ppd, 1);
9155 }
9156
9157 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9158 u8 *qsfp_interrupt_status)
9159 {
9160 struct hfi1_devdata *dd = ppd->dd;
9161
9162 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9163 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9164 dd_dev_info(dd, "%s: QSFP cable on fire\n",
9165 __func__);
9166
9167 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9168 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9169 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9170 __func__);
9171
9172 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9173 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9174 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9175 __func__);
9176
9177 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9178 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9179 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9180 __func__);
9181
9182 /* Byte 2 is vendor specific */
9183
9184 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9185 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9186 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9187 __func__);
9188
9189 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9190 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9191 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9192 __func__);
9193
9194 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9195 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9196 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9197 __func__);
9198
9199 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9200 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9201 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9202 __func__);
9203
9204 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9205 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9206 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9207 __func__);
9208
9209 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9210 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9211 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9212 __func__);
9213
9214 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9215 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9216 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9217 __func__);
9218
9219 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9220 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9221 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9222 __func__);
9223
9224 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9225 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9226 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9227 __func__);
9228
9229 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9230 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9231 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9232 __func__);
9233
9234 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9235 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9236 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9237 __func__);
9238
9239 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9240 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9241 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9242 __func__);
9243
9244 /* Bytes 9-10 and 11-12 are reserved */
9245 /* Bytes 13-15 are vendor specific */
9246
9247 return 0;
9248 }
9249
9250 /* This routine will only be scheduled if the QSFP module is present */
9251 void qsfp_event(struct work_struct *work)
9252 {
9253 struct qsfp_data *qd;
9254 struct hfi1_pportdata *ppd;
9255 struct hfi1_devdata *dd;
9256
9257 qd = container_of(work, struct qsfp_data, qsfp_work);
9258 ppd = qd->ppd;
9259 dd = ppd->dd;
9260
9261 /* Sanity check */
9262 if (!qsfp_mod_present(ppd))
9263 return;
9264
9265 /*
9266 * Turn DC back on after cables has been
9267 * re-inserted. Up until now, the DC has been in
9268 * reset to save power.
9269 */
9270 dc_start(dd);
9271
9272 if (qd->cache_refresh_required) {
9273 set_qsfp_int_n(ppd, 0);
9274
9275 wait_for_qsfp_init(ppd);
9276
9277 /*
9278 * Allow INT_N to trigger the QSFP interrupt to watch
9279 * for alarms and warnings
9280 */
9281 set_qsfp_int_n(ppd, 1);
9282
9283 tune_serdes(ppd);
9284
9285 start_link(ppd);
9286 }
9287
9288 if (qd->check_interrupt_flags) {
9289 u8 qsfp_interrupt_status[16] = {0,};
9290
9291 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9292 &qsfp_interrupt_status[0], 16) != 16) {
9293 dd_dev_info(dd,
9294 "%s: Failed to read status of QSFP module\n",
9295 __func__);
9296 } else {
9297 unsigned long flags;
9298
9299 handle_qsfp_error_conditions(
9300 ppd, qsfp_interrupt_status);
9301 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9302 ppd->qsfp_info.check_interrupt_flags = 0;
9303 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9304 flags);
9305 }
9306 }
9307 }
9308
9309 static void init_qsfp_int(struct hfi1_devdata *dd)
9310 {
9311 struct hfi1_pportdata *ppd = dd->pport;
9312 u64 qsfp_mask, cce_int_mask;
9313 const int qsfp1_int_smask = QSFP1_INT % 64;
9314 const int qsfp2_int_smask = QSFP2_INT % 64;
9315
9316 /*
9317 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9318 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9319 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9320 * the index of the appropriate CSR in the CCEIntMask CSR array
9321 */
9322 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9323 (8 * (QSFP1_INT / 64)));
9324 if (dd->hfi1_id) {
9325 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9326 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9327 cce_int_mask);
9328 } else {
9329 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9330 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9331 cce_int_mask);
9332 }
9333
9334 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9335 /* Clear current status to avoid spurious interrupts */
9336 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9337 qsfp_mask);
9338 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9339 qsfp_mask);
9340
9341 set_qsfp_int_n(ppd, 0);
9342
9343 /* Handle active low nature of INT_N and MODPRST_N pins */
9344 if (qsfp_mod_present(ppd))
9345 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9346 write_csr(dd,
9347 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9348 qsfp_mask);
9349 }
9350
9351 /*
9352 * Do a one-time initialize of the LCB block.
9353 */
9354 static void init_lcb(struct hfi1_devdata *dd)
9355 {
9356 /* simulator does not correctly handle LCB cclk loopback, skip */
9357 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9358 return;
9359
9360 /* the DC has been reset earlier in the driver load */
9361
9362 /* set LCB for cclk loopback on the port */
9363 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9364 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9365 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9366 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9367 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9368 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9369 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9370 }
9371
9372 int bringup_serdes(struct hfi1_pportdata *ppd)
9373 {
9374 struct hfi1_devdata *dd = ppd->dd;
9375 u64 guid;
9376 int ret;
9377
9378 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9379 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9380
9381 guid = ppd->guid;
9382 if (!guid) {
9383 if (dd->base_guid)
9384 guid = dd->base_guid + ppd->port - 1;
9385 ppd->guid = guid;
9386 }
9387
9388 /* Set linkinit_reason on power up per OPA spec */
9389 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9390
9391 /* one-time init of the LCB */
9392 init_lcb(dd);
9393
9394 if (loopback) {
9395 ret = init_loopback(dd);
9396 if (ret < 0)
9397 return ret;
9398 }
9399
9400 /* tune the SERDES to a ballpark setting for
9401 * optimal signal and bit error rate
9402 * Needs to be done before starting the link
9403 */
9404 tune_serdes(ppd);
9405
9406 return start_link(ppd);
9407 }
9408
9409 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9410 {
9411 struct hfi1_devdata *dd = ppd->dd;
9412
9413 /*
9414 * Shut down the link and keep it down. First turn off that the
9415 * driver wants to allow the link to be up (driver_link_ready).
9416 * Then make sure the link is not automatically restarted
9417 * (link_enabled). Cancel any pending restart. And finally
9418 * go offline.
9419 */
9420 ppd->driver_link_ready = 0;
9421 ppd->link_enabled = 0;
9422
9423 ppd->offline_disabled_reason =
9424 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9425 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9426 OPA_LINKDOWN_REASON_SMA_DISABLED);
9427 set_link_state(ppd, HLS_DN_OFFLINE);
9428
9429 /* disable the port */
9430 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9431 }
9432
9433 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9434 {
9435 struct hfi1_pportdata *ppd;
9436 int i;
9437
9438 ppd = (struct hfi1_pportdata *)(dd + 1);
9439 for (i = 0; i < dd->num_pports; i++, ppd++) {
9440 ppd->ibport_data.rvp.rc_acks = NULL;
9441 ppd->ibport_data.rvp.rc_qacks = NULL;
9442 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9443 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9444 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9445 if (!ppd->ibport_data.rvp.rc_acks ||
9446 !ppd->ibport_data.rvp.rc_delayed_comp ||
9447 !ppd->ibport_data.rvp.rc_qacks)
9448 return -ENOMEM;
9449 }
9450
9451 return 0;
9452 }
9453
9454 static const char * const pt_names[] = {
9455 "expected",
9456 "eager",
9457 "invalid"
9458 };
9459
9460 static const char *pt_name(u32 type)
9461 {
9462 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9463 }
9464
9465 /*
9466 * index is the index into the receive array
9467 */
9468 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9469 u32 type, unsigned long pa, u16 order)
9470 {
9471 u64 reg;
9472 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9473 (dd->kregbase + RCV_ARRAY));
9474
9475 if (!(dd->flags & HFI1_PRESENT))
9476 goto done;
9477
9478 if (type == PT_INVALID) {
9479 pa = 0;
9480 } else if (type > PT_INVALID) {
9481 dd_dev_err(dd,
9482 "unexpected receive array type %u for index %u, not handled\n",
9483 type, index);
9484 goto done;
9485 }
9486
9487 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9488 pt_name(type), index, pa, (unsigned long)order);
9489
9490 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9491 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9492 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9493 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9494 << RCV_ARRAY_RT_ADDR_SHIFT;
9495 writeq(reg, base + (index * 8));
9496
9497 if (type == PT_EAGER)
9498 /*
9499 * Eager entries are written one-by-one so we have to push them
9500 * after we write the entry.
9501 */
9502 flush_wc();
9503 done:
9504 return;
9505 }
9506
9507 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9508 {
9509 struct hfi1_devdata *dd = rcd->dd;
9510 u32 i;
9511
9512 /* this could be optimized */
9513 for (i = rcd->eager_base; i < rcd->eager_base +
9514 rcd->egrbufs.alloced; i++)
9515 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9516
9517 for (i = rcd->expected_base;
9518 i < rcd->expected_base + rcd->expected_count; i++)
9519 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9520 }
9521
9522 int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
9523 struct hfi1_ctxt_info *kinfo)
9524 {
9525 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
9526 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
9527 return 0;
9528 }
9529
9530 struct hfi1_message_header *hfi1_get_msgheader(
9531 struct hfi1_devdata *dd, __le32 *rhf_addr)
9532 {
9533 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9534
9535 return (struct hfi1_message_header *)
9536 (rhf_addr - dd->rhf_offset + offset);
9537 }
9538
9539 static const char * const ib_cfg_name_strings[] = {
9540 "HFI1_IB_CFG_LIDLMC",
9541 "HFI1_IB_CFG_LWID_DG_ENB",
9542 "HFI1_IB_CFG_LWID_ENB",
9543 "HFI1_IB_CFG_LWID",
9544 "HFI1_IB_CFG_SPD_ENB",
9545 "HFI1_IB_CFG_SPD",
9546 "HFI1_IB_CFG_RXPOL_ENB",
9547 "HFI1_IB_CFG_LREV_ENB",
9548 "HFI1_IB_CFG_LINKLATENCY",
9549 "HFI1_IB_CFG_HRTBT",
9550 "HFI1_IB_CFG_OP_VLS",
9551 "HFI1_IB_CFG_VL_HIGH_CAP",
9552 "HFI1_IB_CFG_VL_LOW_CAP",
9553 "HFI1_IB_CFG_OVERRUN_THRESH",
9554 "HFI1_IB_CFG_PHYERR_THRESH",
9555 "HFI1_IB_CFG_LINKDEFAULT",
9556 "HFI1_IB_CFG_PKEYS",
9557 "HFI1_IB_CFG_MTU",
9558 "HFI1_IB_CFG_LSTATE",
9559 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9560 "HFI1_IB_CFG_PMA_TICKS",
9561 "HFI1_IB_CFG_PORT"
9562 };
9563
9564 static const char *ib_cfg_name(int which)
9565 {
9566 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9567 return "invalid";
9568 return ib_cfg_name_strings[which];
9569 }
9570
9571 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9572 {
9573 struct hfi1_devdata *dd = ppd->dd;
9574 int val = 0;
9575
9576 switch (which) {
9577 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9578 val = ppd->link_width_enabled;
9579 break;
9580 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9581 val = ppd->link_width_active;
9582 break;
9583 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9584 val = ppd->link_speed_enabled;
9585 break;
9586 case HFI1_IB_CFG_SPD: /* current Link speed */
9587 val = ppd->link_speed_active;
9588 break;
9589
9590 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9591 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9592 case HFI1_IB_CFG_LINKLATENCY:
9593 goto unimplemented;
9594
9595 case HFI1_IB_CFG_OP_VLS:
9596 val = ppd->vls_operational;
9597 break;
9598 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9599 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9600 break;
9601 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9602 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9603 break;
9604 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9605 val = ppd->overrun_threshold;
9606 break;
9607 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9608 val = ppd->phy_error_threshold;
9609 break;
9610 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9611 val = dd->link_default;
9612 break;
9613
9614 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9615 case HFI1_IB_CFG_PMA_TICKS:
9616 default:
9617 unimplemented:
9618 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9619 dd_dev_info(
9620 dd,
9621 "%s: which %s: not implemented\n",
9622 __func__,
9623 ib_cfg_name(which));
9624 break;
9625 }
9626
9627 return val;
9628 }
9629
9630 /*
9631 * The largest MAD packet size.
9632 */
9633 #define MAX_MAD_PACKET 2048
9634
9635 /*
9636 * Return the maximum header bytes that can go on the _wire_
9637 * for this device. This count includes the ICRC which is
9638 * not part of the packet held in memory but it is appended
9639 * by the HW.
9640 * This is dependent on the device's receive header entry size.
9641 * HFI allows this to be set per-receive context, but the
9642 * driver presently enforces a global value.
9643 */
9644 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9645 {
9646 /*
9647 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9648 * the Receive Header Entry Size minus the PBC (or RHF) size
9649 * plus one DW for the ICRC appended by HW.
9650 *
9651 * dd->rcd[0].rcvhdrqentsize is in DW.
9652 * We use rcd[0] as all context will have the same value. Also,
9653 * the first kernel context would have been allocated by now so
9654 * we are guaranteed a valid value.
9655 */
9656 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9657 }
9658
9659 /*
9660 * Set Send Length
9661 * @ppd - per port data
9662 *
9663 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9664 * registers compare against LRH.PktLen, so use the max bytes included
9665 * in the LRH.
9666 *
9667 * This routine changes all VL values except VL15, which it maintains at
9668 * the same value.
9669 */
9670 static void set_send_length(struct hfi1_pportdata *ppd)
9671 {
9672 struct hfi1_devdata *dd = ppd->dd;
9673 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9674 u32 maxvlmtu = dd->vld[15].mtu;
9675 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9676 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9677 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9678 int i;
9679
9680 for (i = 0; i < ppd->vls_supported; i++) {
9681 if (dd->vld[i].mtu > maxvlmtu)
9682 maxvlmtu = dd->vld[i].mtu;
9683 if (i <= 3)
9684 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9685 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9686 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9687 else
9688 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9689 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9690 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9691 }
9692 write_csr(dd, SEND_LEN_CHECK0, len1);
9693 write_csr(dd, SEND_LEN_CHECK1, len2);
9694 /* adjust kernel credit return thresholds based on new MTUs */
9695 /* all kernel receive contexts have the same hdrqentsize */
9696 for (i = 0; i < ppd->vls_supported; i++) {
9697 sc_set_cr_threshold(dd->vld[i].sc,
9698 sc_mtu_to_threshold(dd->vld[i].sc,
9699 dd->vld[i].mtu,
9700 dd->rcd[0]->
9701 rcvhdrqentsize));
9702 }
9703 sc_set_cr_threshold(dd->vld[15].sc,
9704 sc_mtu_to_threshold(dd->vld[15].sc,
9705 dd->vld[15].mtu,
9706 dd->rcd[0]->rcvhdrqentsize));
9707
9708 /* Adjust maximum MTU for the port in DC */
9709 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9710 (ilog2(maxvlmtu >> 8) + 1);
9711 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9712 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9713 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9714 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9715 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9716 }
9717
9718 static void set_lidlmc(struct hfi1_pportdata *ppd)
9719 {
9720 int i;
9721 u64 sreg = 0;
9722 struct hfi1_devdata *dd = ppd->dd;
9723 u32 mask = ~((1U << ppd->lmc) - 1);
9724 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9725
9726 if (dd->hfi1_snoop.mode_flag)
9727 dd_dev_info(dd, "Set lid/lmc while snooping");
9728
9729 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9730 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9731 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9732 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9733 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9734 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9735 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9736
9737 /*
9738 * Iterate over all the send contexts and set their SLID check
9739 */
9740 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9741 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9742 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9743 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9744
9745 for (i = 0; i < dd->chip_send_contexts; i++) {
9746 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9747 i, (u32)sreg);
9748 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9749 }
9750
9751 /* Now we have to do the same thing for the sdma engines */
9752 sdma_update_lmc(dd, mask, ppd->lid);
9753 }
9754
9755 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9756 {
9757 unsigned long timeout;
9758 u32 curr_state;
9759
9760 timeout = jiffies + msecs_to_jiffies(msecs);
9761 while (1) {
9762 curr_state = read_physical_state(dd);
9763 if (curr_state == state)
9764 break;
9765 if (time_after(jiffies, timeout)) {
9766 dd_dev_err(dd,
9767 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9768 state, curr_state);
9769 return -ETIMEDOUT;
9770 }
9771 usleep_range(1950, 2050); /* sleep 2ms-ish */
9772 }
9773
9774 return 0;
9775 }
9776
9777 /*
9778 * Helper for set_link_state(). Do not call except from that routine.
9779 * Expects ppd->hls_mutex to be held.
9780 *
9781 * @rem_reason value to be sent to the neighbor
9782 *
9783 * LinkDownReasons only set if transition succeeds.
9784 */
9785 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
9786 {
9787 struct hfi1_devdata *dd = ppd->dd;
9788 u32 pstate, previous_state;
9789 u32 last_local_state;
9790 u32 last_remote_state;
9791 int ret;
9792 int do_transition;
9793 int do_wait;
9794
9795 previous_state = ppd->host_link_state;
9796 ppd->host_link_state = HLS_GOING_OFFLINE;
9797 pstate = read_physical_state(dd);
9798 if (pstate == PLS_OFFLINE) {
9799 do_transition = 0; /* in right state */
9800 do_wait = 0; /* ...no need to wait */
9801 } else if ((pstate & 0xff) == PLS_OFFLINE) {
9802 do_transition = 0; /* in an offline transient state */
9803 do_wait = 1; /* ...wait for it to settle */
9804 } else {
9805 do_transition = 1; /* need to move to offline */
9806 do_wait = 1; /* ...will need to wait */
9807 }
9808
9809 if (do_transition) {
9810 ret = set_physical_link_state(dd,
9811 (rem_reason << 8) | PLS_OFFLINE);
9812
9813 if (ret != HCMD_SUCCESS) {
9814 dd_dev_err(dd,
9815 "Failed to transition to Offline link state, return %d\n",
9816 ret);
9817 return -EINVAL;
9818 }
9819 if (ppd->offline_disabled_reason ==
9820 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
9821 ppd->offline_disabled_reason =
9822 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
9823 }
9824
9825 if (do_wait) {
9826 /* it can take a while for the link to go down */
9827 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
9828 if (ret < 0)
9829 return ret;
9830 }
9831
9832 /* make sure the logical state is also down */
9833 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
9834
9835 /*
9836 * Now in charge of LCB - must be after the physical state is
9837 * offline.quiet and before host_link_state is changed.
9838 */
9839 set_host_lcb_access(dd);
9840 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9841 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
9842
9843 if (ppd->port_type == PORT_TYPE_QSFP &&
9844 ppd->qsfp_info.limiting_active &&
9845 qsfp_mod_present(ppd)) {
9846 int ret;
9847
9848 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
9849 if (ret == 0) {
9850 set_qsfp_tx(ppd, 0);
9851 release_chip_resource(dd, qsfp_resource(dd));
9852 } else {
9853 /* not fatal, but should warn */
9854 dd_dev_err(dd,
9855 "Unable to acquire lock to turn off QSFP TX\n");
9856 }
9857 }
9858
9859 /*
9860 * The LNI has a mandatory wait time after the physical state
9861 * moves to Offline.Quiet. The wait time may be different
9862 * depending on how the link went down. The 8051 firmware
9863 * will observe the needed wait time and only move to ready
9864 * when that is completed. The largest of the quiet timeouts
9865 * is 6s, so wait that long and then at least 0.5s more for
9866 * other transitions, and another 0.5s for a buffer.
9867 */
9868 ret = wait_fm_ready(dd, 7000);
9869 if (ret) {
9870 dd_dev_err(dd,
9871 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
9872 /* state is really offline, so make it so */
9873 ppd->host_link_state = HLS_DN_OFFLINE;
9874 return ret;
9875 }
9876
9877 /*
9878 * The state is now offline and the 8051 is ready to accept host
9879 * requests.
9880 * - change our state
9881 * - notify others if we were previously in a linkup state
9882 */
9883 ppd->host_link_state = HLS_DN_OFFLINE;
9884 if (previous_state & HLS_UP) {
9885 /* went down while link was up */
9886 handle_linkup_change(dd, 0);
9887 } else if (previous_state
9888 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
9889 /* went down while attempting link up */
9890 /* byte 1 of last_*_state is the failure reason */
9891 read_last_local_state(dd, &last_local_state);
9892 read_last_remote_state(dd, &last_remote_state);
9893 dd_dev_err(dd,
9894 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
9895 last_local_state, last_remote_state);
9896 }
9897
9898 /* the active link width (downgrade) is 0 on link down */
9899 ppd->link_width_active = 0;
9900 ppd->link_width_downgrade_tx_active = 0;
9901 ppd->link_width_downgrade_rx_active = 0;
9902 ppd->current_egress_rate = 0;
9903 return 0;
9904 }
9905
9906 /* return the link state name */
9907 static const char *link_state_name(u32 state)
9908 {
9909 const char *name;
9910 int n = ilog2(state);
9911 static const char * const names[] = {
9912 [__HLS_UP_INIT_BP] = "INIT",
9913 [__HLS_UP_ARMED_BP] = "ARMED",
9914 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
9915 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
9916 [__HLS_DN_POLL_BP] = "POLL",
9917 [__HLS_DN_DISABLE_BP] = "DISABLE",
9918 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
9919 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
9920 [__HLS_GOING_UP_BP] = "GOING_UP",
9921 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
9922 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
9923 };
9924
9925 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
9926 return name ? name : "unknown";
9927 }
9928
9929 /* return the link state reason name */
9930 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
9931 {
9932 if (state == HLS_UP_INIT) {
9933 switch (ppd->linkinit_reason) {
9934 case OPA_LINKINIT_REASON_LINKUP:
9935 return "(LINKUP)";
9936 case OPA_LINKINIT_REASON_FLAPPING:
9937 return "(FLAPPING)";
9938 case OPA_LINKINIT_OUTSIDE_POLICY:
9939 return "(OUTSIDE_POLICY)";
9940 case OPA_LINKINIT_QUARANTINED:
9941 return "(QUARANTINED)";
9942 case OPA_LINKINIT_INSUFIC_CAPABILITY:
9943 return "(INSUFIC_CAPABILITY)";
9944 default:
9945 break;
9946 }
9947 }
9948 return "";
9949 }
9950
9951 /*
9952 * driver_physical_state - convert the driver's notion of a port's
9953 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
9954 * Return -1 (converted to a u32) to indicate error.
9955 */
9956 u32 driver_physical_state(struct hfi1_pportdata *ppd)
9957 {
9958 switch (ppd->host_link_state) {
9959 case HLS_UP_INIT:
9960 case HLS_UP_ARMED:
9961 case HLS_UP_ACTIVE:
9962 return IB_PORTPHYSSTATE_LINKUP;
9963 case HLS_DN_POLL:
9964 return IB_PORTPHYSSTATE_POLLING;
9965 case HLS_DN_DISABLE:
9966 return IB_PORTPHYSSTATE_DISABLED;
9967 case HLS_DN_OFFLINE:
9968 return OPA_PORTPHYSSTATE_OFFLINE;
9969 case HLS_VERIFY_CAP:
9970 return IB_PORTPHYSSTATE_POLLING;
9971 case HLS_GOING_UP:
9972 return IB_PORTPHYSSTATE_POLLING;
9973 case HLS_GOING_OFFLINE:
9974 return OPA_PORTPHYSSTATE_OFFLINE;
9975 case HLS_LINK_COOLDOWN:
9976 return OPA_PORTPHYSSTATE_OFFLINE;
9977 case HLS_DN_DOWNDEF:
9978 default:
9979 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9980 ppd->host_link_state);
9981 return -1;
9982 }
9983 }
9984
9985 /*
9986 * driver_logical_state - convert the driver's notion of a port's
9987 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
9988 * (converted to a u32) to indicate error.
9989 */
9990 u32 driver_logical_state(struct hfi1_pportdata *ppd)
9991 {
9992 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
9993 return IB_PORT_DOWN;
9994
9995 switch (ppd->host_link_state & HLS_UP) {
9996 case HLS_UP_INIT:
9997 return IB_PORT_INIT;
9998 case HLS_UP_ARMED:
9999 return IB_PORT_ARMED;
10000 case HLS_UP_ACTIVE:
10001 return IB_PORT_ACTIVE;
10002 default:
10003 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10004 ppd->host_link_state);
10005 return -1;
10006 }
10007 }
10008
10009 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10010 u8 neigh_reason, u8 rem_reason)
10011 {
10012 if (ppd->local_link_down_reason.latest == 0 &&
10013 ppd->neigh_link_down_reason.latest == 0) {
10014 ppd->local_link_down_reason.latest = lcl_reason;
10015 ppd->neigh_link_down_reason.latest = neigh_reason;
10016 ppd->remote_link_down_reason = rem_reason;
10017 }
10018 }
10019
10020 /*
10021 * Change the physical and/or logical link state.
10022 *
10023 * Do not call this routine while inside an interrupt. It contains
10024 * calls to routines that can take multiple seconds to finish.
10025 *
10026 * Returns 0 on success, -errno on failure.
10027 */
10028 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10029 {
10030 struct hfi1_devdata *dd = ppd->dd;
10031 struct ib_event event = {.device = NULL};
10032 int ret1, ret = 0;
10033 int was_up, is_down;
10034 int orig_new_state, poll_bounce;
10035
10036 mutex_lock(&ppd->hls_lock);
10037
10038 orig_new_state = state;
10039 if (state == HLS_DN_DOWNDEF)
10040 state = dd->link_default;
10041
10042 /* interpret poll -> poll as a link bounce */
10043 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10044 state == HLS_DN_POLL;
10045
10046 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10047 link_state_name(ppd->host_link_state),
10048 link_state_name(orig_new_state),
10049 poll_bounce ? "(bounce) " : "",
10050 link_state_reason_name(ppd, state));
10051
10052 was_up = !!(ppd->host_link_state & HLS_UP);
10053
10054 /*
10055 * If we're going to a (HLS_*) link state that implies the logical
10056 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10057 * reset is_sm_config_started to 0.
10058 */
10059 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10060 ppd->is_sm_config_started = 0;
10061
10062 /*
10063 * Do nothing if the states match. Let a poll to poll link bounce
10064 * go through.
10065 */
10066 if (ppd->host_link_state == state && !poll_bounce)
10067 goto done;
10068
10069 switch (state) {
10070 case HLS_UP_INIT:
10071 if (ppd->host_link_state == HLS_DN_POLL &&
10072 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10073 /*
10074 * Quick link up jumps from polling to here.
10075 *
10076 * Whether in normal or loopback mode, the
10077 * simulator jumps from polling to link up.
10078 * Accept that here.
10079 */
10080 /* OK */
10081 } else if (ppd->host_link_state != HLS_GOING_UP) {
10082 goto unexpected;
10083 }
10084
10085 ppd->host_link_state = HLS_UP_INIT;
10086 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10087 if (ret) {
10088 /* logical state didn't change, stay at going_up */
10089 ppd->host_link_state = HLS_GOING_UP;
10090 dd_dev_err(dd,
10091 "%s: logical state did not change to INIT\n",
10092 __func__);
10093 } else {
10094 /* clear old transient LINKINIT_REASON code */
10095 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10096 ppd->linkinit_reason =
10097 OPA_LINKINIT_REASON_LINKUP;
10098
10099 /* enable the port */
10100 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10101
10102 handle_linkup_change(dd, 1);
10103 }
10104 break;
10105 case HLS_UP_ARMED:
10106 if (ppd->host_link_state != HLS_UP_INIT)
10107 goto unexpected;
10108
10109 ppd->host_link_state = HLS_UP_ARMED;
10110 set_logical_state(dd, LSTATE_ARMED);
10111 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10112 if (ret) {
10113 /* logical state didn't change, stay at init */
10114 ppd->host_link_state = HLS_UP_INIT;
10115 dd_dev_err(dd,
10116 "%s: logical state did not change to ARMED\n",
10117 __func__);
10118 }
10119 /*
10120 * The simulator does not currently implement SMA messages,
10121 * so neighbor_normal is not set. Set it here when we first
10122 * move to Armed.
10123 */
10124 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10125 ppd->neighbor_normal = 1;
10126 break;
10127 case HLS_UP_ACTIVE:
10128 if (ppd->host_link_state != HLS_UP_ARMED)
10129 goto unexpected;
10130
10131 ppd->host_link_state = HLS_UP_ACTIVE;
10132 set_logical_state(dd, LSTATE_ACTIVE);
10133 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10134 if (ret) {
10135 /* logical state didn't change, stay at armed */
10136 ppd->host_link_state = HLS_UP_ARMED;
10137 dd_dev_err(dd,
10138 "%s: logical state did not change to ACTIVE\n",
10139 __func__);
10140 } else {
10141 /* tell all engines to go running */
10142 sdma_all_running(dd);
10143
10144 /* Signal the IB layer that the port has went active */
10145 event.device = &dd->verbs_dev.rdi.ibdev;
10146 event.element.port_num = ppd->port;
10147 event.event = IB_EVENT_PORT_ACTIVE;
10148 }
10149 break;
10150 case HLS_DN_POLL:
10151 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10152 ppd->host_link_state == HLS_DN_OFFLINE) &&
10153 dd->dc_shutdown)
10154 dc_start(dd);
10155 /* Hand LED control to the DC */
10156 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10157
10158 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10159 u8 tmp = ppd->link_enabled;
10160
10161 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10162 if (ret) {
10163 ppd->link_enabled = tmp;
10164 break;
10165 }
10166 ppd->remote_link_down_reason = 0;
10167
10168 if (ppd->driver_link_ready)
10169 ppd->link_enabled = 1;
10170 }
10171
10172 set_all_slowpath(ppd->dd);
10173 ret = set_local_link_attributes(ppd);
10174 if (ret)
10175 break;
10176
10177 ppd->port_error_action = 0;
10178 ppd->host_link_state = HLS_DN_POLL;
10179
10180 if (quick_linkup) {
10181 /* quick linkup does not go into polling */
10182 ret = do_quick_linkup(dd);
10183 } else {
10184 ret1 = set_physical_link_state(dd, PLS_POLLING);
10185 if (ret1 != HCMD_SUCCESS) {
10186 dd_dev_err(dd,
10187 "Failed to transition to Polling link state, return 0x%x\n",
10188 ret1);
10189 ret = -EINVAL;
10190 }
10191 }
10192 ppd->offline_disabled_reason =
10193 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10194 /*
10195 * If an error occurred above, go back to offline. The
10196 * caller may reschedule another attempt.
10197 */
10198 if (ret)
10199 goto_offline(ppd, 0);
10200 break;
10201 case HLS_DN_DISABLE:
10202 /* link is disabled */
10203 ppd->link_enabled = 0;
10204
10205 /* allow any state to transition to disabled */
10206
10207 /* must transition to offline first */
10208 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10209 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10210 if (ret)
10211 break;
10212 ppd->remote_link_down_reason = 0;
10213 }
10214
10215 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10216 if (ret1 != HCMD_SUCCESS) {
10217 dd_dev_err(dd,
10218 "Failed to transition to Disabled link state, return 0x%x\n",
10219 ret1);
10220 ret = -EINVAL;
10221 break;
10222 }
10223 ppd->host_link_state = HLS_DN_DISABLE;
10224 dc_shutdown(dd);
10225 break;
10226 case HLS_DN_OFFLINE:
10227 if (ppd->host_link_state == HLS_DN_DISABLE)
10228 dc_start(dd);
10229
10230 /* allow any state to transition to offline */
10231 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10232 if (!ret)
10233 ppd->remote_link_down_reason = 0;
10234 break;
10235 case HLS_VERIFY_CAP:
10236 if (ppd->host_link_state != HLS_DN_POLL)
10237 goto unexpected;
10238 ppd->host_link_state = HLS_VERIFY_CAP;
10239 break;
10240 case HLS_GOING_UP:
10241 if (ppd->host_link_state != HLS_VERIFY_CAP)
10242 goto unexpected;
10243
10244 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10245 if (ret1 != HCMD_SUCCESS) {
10246 dd_dev_err(dd,
10247 "Failed to transition to link up state, return 0x%x\n",
10248 ret1);
10249 ret = -EINVAL;
10250 break;
10251 }
10252 ppd->host_link_state = HLS_GOING_UP;
10253 break;
10254
10255 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10256 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10257 default:
10258 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10259 __func__, state);
10260 ret = -EINVAL;
10261 break;
10262 }
10263
10264 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
10265 HLS_DN_DISABLE | HLS_DN_OFFLINE));
10266
10267 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
10268 ppd->neigh_link_down_reason.sma == 0) {
10269 ppd->local_link_down_reason.sma =
10270 ppd->local_link_down_reason.latest;
10271 ppd->neigh_link_down_reason.sma =
10272 ppd->neigh_link_down_reason.latest;
10273 }
10274
10275 goto done;
10276
10277 unexpected:
10278 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10279 __func__, link_state_name(ppd->host_link_state),
10280 link_state_name(state));
10281 ret = -EINVAL;
10282
10283 done:
10284 mutex_unlock(&ppd->hls_lock);
10285
10286 if (event.device)
10287 ib_dispatch_event(&event);
10288
10289 return ret;
10290 }
10291
10292 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10293 {
10294 u64 reg;
10295 int ret = 0;
10296
10297 switch (which) {
10298 case HFI1_IB_CFG_LIDLMC:
10299 set_lidlmc(ppd);
10300 break;
10301 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10302 /*
10303 * The VL Arbitrator high limit is sent in units of 4k
10304 * bytes, while HFI stores it in units of 64 bytes.
10305 */
10306 val *= 4096 / 64;
10307 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10308 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10309 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10310 break;
10311 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10312 /* HFI only supports POLL as the default link down state */
10313 if (val != HLS_DN_POLL)
10314 ret = -EINVAL;
10315 break;
10316 case HFI1_IB_CFG_OP_VLS:
10317 if (ppd->vls_operational != val) {
10318 ppd->vls_operational = val;
10319 if (!ppd->port)
10320 ret = -EINVAL;
10321 }
10322 break;
10323 /*
10324 * For link width, link width downgrade, and speed enable, always AND
10325 * the setting with what is actually supported. This has two benefits.
10326 * First, enabled can't have unsupported values, no matter what the
10327 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10328 * "fill in with your supported value" have all the bits in the
10329 * field set, so simply ANDing with supported has the desired result.
10330 */
10331 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10332 ppd->link_width_enabled = val & ppd->link_width_supported;
10333 break;
10334 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10335 ppd->link_width_downgrade_enabled =
10336 val & ppd->link_width_downgrade_supported;
10337 break;
10338 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10339 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10340 break;
10341 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10342 /*
10343 * HFI does not follow IB specs, save this value
10344 * so we can report it, if asked.
10345 */
10346 ppd->overrun_threshold = val;
10347 break;
10348 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10349 /*
10350 * HFI does not follow IB specs, save this value
10351 * so we can report it, if asked.
10352 */
10353 ppd->phy_error_threshold = val;
10354 break;
10355
10356 case HFI1_IB_CFG_MTU:
10357 set_send_length(ppd);
10358 break;
10359
10360 case HFI1_IB_CFG_PKEYS:
10361 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10362 set_partition_keys(ppd);
10363 break;
10364
10365 default:
10366 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10367 dd_dev_info(ppd->dd,
10368 "%s: which %s, val 0x%x: not implemented\n",
10369 __func__, ib_cfg_name(which), val);
10370 break;
10371 }
10372 return ret;
10373 }
10374
10375 /* begin functions related to vl arbitration table caching */
10376 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10377 {
10378 int i;
10379
10380 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10381 VL_ARB_LOW_PRIO_TABLE_SIZE);
10382 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10383 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10384
10385 /*
10386 * Note that we always return values directly from the
10387 * 'vl_arb_cache' (and do no CSR reads) in response to a
10388 * 'Get(VLArbTable)'. This is obviously correct after a
10389 * 'Set(VLArbTable)', since the cache will then be up to
10390 * date. But it's also correct prior to any 'Set(VLArbTable)'
10391 * since then both the cache, and the relevant h/w registers
10392 * will be zeroed.
10393 */
10394
10395 for (i = 0; i < MAX_PRIO_TABLE; i++)
10396 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10397 }
10398
10399 /*
10400 * vl_arb_lock_cache
10401 *
10402 * All other vl_arb_* functions should be called only after locking
10403 * the cache.
10404 */
10405 static inline struct vl_arb_cache *
10406 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10407 {
10408 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10409 return NULL;
10410 spin_lock(&ppd->vl_arb_cache[idx].lock);
10411 return &ppd->vl_arb_cache[idx];
10412 }
10413
10414 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10415 {
10416 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10417 }
10418
10419 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10420 struct ib_vl_weight_elem *vl)
10421 {
10422 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10423 }
10424
10425 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10426 struct ib_vl_weight_elem *vl)
10427 {
10428 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10429 }
10430
10431 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10432 struct ib_vl_weight_elem *vl)
10433 {
10434 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10435 }
10436
10437 /* end functions related to vl arbitration table caching */
10438
10439 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10440 u32 size, struct ib_vl_weight_elem *vl)
10441 {
10442 struct hfi1_devdata *dd = ppd->dd;
10443 u64 reg;
10444 unsigned int i, is_up = 0;
10445 int drain, ret = 0;
10446
10447 mutex_lock(&ppd->hls_lock);
10448
10449 if (ppd->host_link_state & HLS_UP)
10450 is_up = 1;
10451
10452 drain = !is_ax(dd) && is_up;
10453
10454 if (drain)
10455 /*
10456 * Before adjusting VL arbitration weights, empty per-VL
10457 * FIFOs, otherwise a packet whose VL weight is being
10458 * set to 0 could get stuck in a FIFO with no chance to
10459 * egress.
10460 */
10461 ret = stop_drain_data_vls(dd);
10462
10463 if (ret) {
10464 dd_dev_err(
10465 dd,
10466 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10467 __func__);
10468 goto err;
10469 }
10470
10471 for (i = 0; i < size; i++, vl++) {
10472 /*
10473 * NOTE: The low priority shift and mask are used here, but
10474 * they are the same for both the low and high registers.
10475 */
10476 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10477 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10478 | (((u64)vl->weight
10479 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10480 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10481 write_csr(dd, target + (i * 8), reg);
10482 }
10483 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10484
10485 if (drain)
10486 open_fill_data_vls(dd); /* reopen all VLs */
10487
10488 err:
10489 mutex_unlock(&ppd->hls_lock);
10490
10491 return ret;
10492 }
10493
10494 /*
10495 * Read one credit merge VL register.
10496 */
10497 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10498 struct vl_limit *vll)
10499 {
10500 u64 reg = read_csr(dd, csr);
10501
10502 vll->dedicated = cpu_to_be16(
10503 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10504 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10505 vll->shared = cpu_to_be16(
10506 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10507 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10508 }
10509
10510 /*
10511 * Read the current credit merge limits.
10512 */
10513 static int get_buffer_control(struct hfi1_devdata *dd,
10514 struct buffer_control *bc, u16 *overall_limit)
10515 {
10516 u64 reg;
10517 int i;
10518
10519 /* not all entries are filled in */
10520 memset(bc, 0, sizeof(*bc));
10521
10522 /* OPA and HFI have a 1-1 mapping */
10523 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10524 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10525
10526 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10527 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10528
10529 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10530 bc->overall_shared_limit = cpu_to_be16(
10531 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10532 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10533 if (overall_limit)
10534 *overall_limit = (reg
10535 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10536 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10537 return sizeof(struct buffer_control);
10538 }
10539
10540 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10541 {
10542 u64 reg;
10543 int i;
10544
10545 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10546 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10547 for (i = 0; i < sizeof(u64); i++) {
10548 u8 byte = *(((u8 *)&reg) + i);
10549
10550 dp->vlnt[2 * i] = byte & 0xf;
10551 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10552 }
10553
10554 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10555 for (i = 0; i < sizeof(u64); i++) {
10556 u8 byte = *(((u8 *)&reg) + i);
10557
10558 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10559 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10560 }
10561 return sizeof(struct sc2vlnt);
10562 }
10563
10564 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10565 struct ib_vl_weight_elem *vl)
10566 {
10567 unsigned int i;
10568
10569 for (i = 0; i < nelems; i++, vl++) {
10570 vl->vl = 0xf;
10571 vl->weight = 0;
10572 }
10573 }
10574
10575 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10576 {
10577 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10578 DC_SC_VL_VAL(15_0,
10579 0, dp->vlnt[0] & 0xf,
10580 1, dp->vlnt[1] & 0xf,
10581 2, dp->vlnt[2] & 0xf,
10582 3, dp->vlnt[3] & 0xf,
10583 4, dp->vlnt[4] & 0xf,
10584 5, dp->vlnt[5] & 0xf,
10585 6, dp->vlnt[6] & 0xf,
10586 7, dp->vlnt[7] & 0xf,
10587 8, dp->vlnt[8] & 0xf,
10588 9, dp->vlnt[9] & 0xf,
10589 10, dp->vlnt[10] & 0xf,
10590 11, dp->vlnt[11] & 0xf,
10591 12, dp->vlnt[12] & 0xf,
10592 13, dp->vlnt[13] & 0xf,
10593 14, dp->vlnt[14] & 0xf,
10594 15, dp->vlnt[15] & 0xf));
10595 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10596 DC_SC_VL_VAL(31_16,
10597 16, dp->vlnt[16] & 0xf,
10598 17, dp->vlnt[17] & 0xf,
10599 18, dp->vlnt[18] & 0xf,
10600 19, dp->vlnt[19] & 0xf,
10601 20, dp->vlnt[20] & 0xf,
10602 21, dp->vlnt[21] & 0xf,
10603 22, dp->vlnt[22] & 0xf,
10604 23, dp->vlnt[23] & 0xf,
10605 24, dp->vlnt[24] & 0xf,
10606 25, dp->vlnt[25] & 0xf,
10607 26, dp->vlnt[26] & 0xf,
10608 27, dp->vlnt[27] & 0xf,
10609 28, dp->vlnt[28] & 0xf,
10610 29, dp->vlnt[29] & 0xf,
10611 30, dp->vlnt[30] & 0xf,
10612 31, dp->vlnt[31] & 0xf));
10613 }
10614
10615 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10616 u16 limit)
10617 {
10618 if (limit != 0)
10619 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10620 what, (int)limit, idx);
10621 }
10622
10623 /* change only the shared limit portion of SendCmGLobalCredit */
10624 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10625 {
10626 u64 reg;
10627
10628 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10629 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10630 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10631 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10632 }
10633
10634 /* change only the total credit limit portion of SendCmGLobalCredit */
10635 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10636 {
10637 u64 reg;
10638
10639 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10640 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10641 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10642 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10643 }
10644
10645 /* set the given per-VL shared limit */
10646 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10647 {
10648 u64 reg;
10649 u32 addr;
10650
10651 if (vl < TXE_NUM_DATA_VL)
10652 addr = SEND_CM_CREDIT_VL + (8 * vl);
10653 else
10654 addr = SEND_CM_CREDIT_VL15;
10655
10656 reg = read_csr(dd, addr);
10657 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10658 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10659 write_csr(dd, addr, reg);
10660 }
10661
10662 /* set the given per-VL dedicated limit */
10663 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10664 {
10665 u64 reg;
10666 u32 addr;
10667
10668 if (vl < TXE_NUM_DATA_VL)
10669 addr = SEND_CM_CREDIT_VL + (8 * vl);
10670 else
10671 addr = SEND_CM_CREDIT_VL15;
10672
10673 reg = read_csr(dd, addr);
10674 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10675 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10676 write_csr(dd, addr, reg);
10677 }
10678
10679 /* spin until the given per-VL status mask bits clear */
10680 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10681 const char *which)
10682 {
10683 unsigned long timeout;
10684 u64 reg;
10685
10686 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10687 while (1) {
10688 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10689
10690 if (reg == 0)
10691 return; /* success */
10692 if (time_after(jiffies, timeout))
10693 break; /* timed out */
10694 udelay(1);
10695 }
10696
10697 dd_dev_err(dd,
10698 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10699 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10700 /*
10701 * If this occurs, it is likely there was a credit loss on the link.
10702 * The only recovery from that is a link bounce.
10703 */
10704 dd_dev_err(dd,
10705 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
10706 }
10707
10708 /*
10709 * The number of credits on the VLs may be changed while everything
10710 * is "live", but the following algorithm must be followed due to
10711 * how the hardware is actually implemented. In particular,
10712 * Return_Credit_Status[] is the only correct status check.
10713 *
10714 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
10715 * set Global_Shared_Credit_Limit = 0
10716 * use_all_vl = 1
10717 * mask0 = all VLs that are changing either dedicated or shared limits
10718 * set Shared_Limit[mask0] = 0
10719 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
10720 * if (changing any dedicated limit)
10721 * mask1 = all VLs that are lowering dedicated limits
10722 * lower Dedicated_Limit[mask1]
10723 * spin until Return_Credit_Status[mask1] == 0
10724 * raise Dedicated_Limits
10725 * raise Shared_Limits
10726 * raise Global_Shared_Credit_Limit
10727 *
10728 * lower = if the new limit is lower, set the limit to the new value
10729 * raise = if the new limit is higher than the current value (may be changed
10730 * earlier in the algorithm), set the new limit to the new value
10731 */
10732 int set_buffer_control(struct hfi1_pportdata *ppd,
10733 struct buffer_control *new_bc)
10734 {
10735 struct hfi1_devdata *dd = ppd->dd;
10736 u64 changing_mask, ld_mask, stat_mask;
10737 int change_count;
10738 int i, use_all_mask;
10739 int this_shared_changing;
10740 int vl_count = 0, ret;
10741 /*
10742 * A0: add the variable any_shared_limit_changing below and in the
10743 * algorithm above. If removing A0 support, it can be removed.
10744 */
10745 int any_shared_limit_changing;
10746 struct buffer_control cur_bc;
10747 u8 changing[OPA_MAX_VLS];
10748 u8 lowering_dedicated[OPA_MAX_VLS];
10749 u16 cur_total;
10750 u32 new_total = 0;
10751 const u64 all_mask =
10752 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
10753 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
10754 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
10755 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
10756 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
10757 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
10758 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
10759 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
10760 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
10761
10762 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
10763 #define NUM_USABLE_VLS 16 /* look at VL15 and less */
10764
10765 /* find the new total credits, do sanity check on unused VLs */
10766 for (i = 0; i < OPA_MAX_VLS; i++) {
10767 if (valid_vl(i)) {
10768 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
10769 continue;
10770 }
10771 nonzero_msg(dd, i, "dedicated",
10772 be16_to_cpu(new_bc->vl[i].dedicated));
10773 nonzero_msg(dd, i, "shared",
10774 be16_to_cpu(new_bc->vl[i].shared));
10775 new_bc->vl[i].dedicated = 0;
10776 new_bc->vl[i].shared = 0;
10777 }
10778 new_total += be16_to_cpu(new_bc->overall_shared_limit);
10779
10780 /* fetch the current values */
10781 get_buffer_control(dd, &cur_bc, &cur_total);
10782
10783 /*
10784 * Create the masks we will use.
10785 */
10786 memset(changing, 0, sizeof(changing));
10787 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
10788 /*
10789 * NOTE: Assumes that the individual VL bits are adjacent and in
10790 * increasing order
10791 */
10792 stat_mask =
10793 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
10794 changing_mask = 0;
10795 ld_mask = 0;
10796 change_count = 0;
10797 any_shared_limit_changing = 0;
10798 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
10799 if (!valid_vl(i))
10800 continue;
10801 this_shared_changing = new_bc->vl[i].shared
10802 != cur_bc.vl[i].shared;
10803 if (this_shared_changing)
10804 any_shared_limit_changing = 1;
10805 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
10806 this_shared_changing) {
10807 changing[i] = 1;
10808 changing_mask |= stat_mask;
10809 change_count++;
10810 }
10811 if (be16_to_cpu(new_bc->vl[i].dedicated) <
10812 be16_to_cpu(cur_bc.vl[i].dedicated)) {
10813 lowering_dedicated[i] = 1;
10814 ld_mask |= stat_mask;
10815 }
10816 }
10817
10818 /* bracket the credit change with a total adjustment */
10819 if (new_total > cur_total)
10820 set_global_limit(dd, new_total);
10821
10822 /*
10823 * Start the credit change algorithm.
10824 */
10825 use_all_mask = 0;
10826 if ((be16_to_cpu(new_bc->overall_shared_limit) <
10827 be16_to_cpu(cur_bc.overall_shared_limit)) ||
10828 (is_ax(dd) && any_shared_limit_changing)) {
10829 set_global_shared(dd, 0);
10830 cur_bc.overall_shared_limit = 0;
10831 use_all_mask = 1;
10832 }
10833
10834 for (i = 0; i < NUM_USABLE_VLS; i++) {
10835 if (!valid_vl(i))
10836 continue;
10837
10838 if (changing[i]) {
10839 set_vl_shared(dd, i, 0);
10840 cur_bc.vl[i].shared = 0;
10841 }
10842 }
10843
10844 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
10845 "shared");
10846
10847 if (change_count > 0) {
10848 for (i = 0; i < NUM_USABLE_VLS; i++) {
10849 if (!valid_vl(i))
10850 continue;
10851
10852 if (lowering_dedicated[i]) {
10853 set_vl_dedicated(dd, i,
10854 be16_to_cpu(new_bc->
10855 vl[i].dedicated));
10856 cur_bc.vl[i].dedicated =
10857 new_bc->vl[i].dedicated;
10858 }
10859 }
10860
10861 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
10862
10863 /* now raise all dedicated that are going up */
10864 for (i = 0; i < NUM_USABLE_VLS; i++) {
10865 if (!valid_vl(i))
10866 continue;
10867
10868 if (be16_to_cpu(new_bc->vl[i].dedicated) >
10869 be16_to_cpu(cur_bc.vl[i].dedicated))
10870 set_vl_dedicated(dd, i,
10871 be16_to_cpu(new_bc->
10872 vl[i].dedicated));
10873 }
10874 }
10875
10876 /* next raise all shared that are going up */
10877 for (i = 0; i < NUM_USABLE_VLS; i++) {
10878 if (!valid_vl(i))
10879 continue;
10880
10881 if (be16_to_cpu(new_bc->vl[i].shared) >
10882 be16_to_cpu(cur_bc.vl[i].shared))
10883 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
10884 }
10885
10886 /* finally raise the global shared */
10887 if (be16_to_cpu(new_bc->overall_shared_limit) >
10888 be16_to_cpu(cur_bc.overall_shared_limit))
10889 set_global_shared(dd,
10890 be16_to_cpu(new_bc->overall_shared_limit));
10891
10892 /* bracket the credit change with a total adjustment */
10893 if (new_total < cur_total)
10894 set_global_limit(dd, new_total);
10895
10896 /*
10897 * Determine the actual number of operational VLS using the number of
10898 * dedicated and shared credits for each VL.
10899 */
10900 if (change_count > 0) {
10901 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10902 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
10903 be16_to_cpu(new_bc->vl[i].shared) > 0)
10904 vl_count++;
10905 ppd->actual_vls_operational = vl_count;
10906 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
10907 ppd->actual_vls_operational :
10908 ppd->vls_operational,
10909 NULL);
10910 if (ret == 0)
10911 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
10912 ppd->actual_vls_operational :
10913 ppd->vls_operational, NULL);
10914 if (ret)
10915 return ret;
10916 }
10917 return 0;
10918 }
10919
10920 /*
10921 * Read the given fabric manager table. Return the size of the
10922 * table (in bytes) on success, and a negative error code on
10923 * failure.
10924 */
10925 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
10926
10927 {
10928 int size;
10929 struct vl_arb_cache *vlc;
10930
10931 switch (which) {
10932 case FM_TBL_VL_HIGH_ARB:
10933 size = 256;
10934 /*
10935 * OPA specifies 128 elements (of 2 bytes each), though
10936 * HFI supports only 16 elements in h/w.
10937 */
10938 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10939 vl_arb_get_cache(vlc, t);
10940 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10941 break;
10942 case FM_TBL_VL_LOW_ARB:
10943 size = 256;
10944 /*
10945 * OPA specifies 128 elements (of 2 bytes each), though
10946 * HFI supports only 16 elements in h/w.
10947 */
10948 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10949 vl_arb_get_cache(vlc, t);
10950 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10951 break;
10952 case FM_TBL_BUFFER_CONTROL:
10953 size = get_buffer_control(ppd->dd, t, NULL);
10954 break;
10955 case FM_TBL_SC2VLNT:
10956 size = get_sc2vlnt(ppd->dd, t);
10957 break;
10958 case FM_TBL_VL_PREEMPT_ELEMS:
10959 size = 256;
10960 /* OPA specifies 128 elements, of 2 bytes each */
10961 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
10962 break;
10963 case FM_TBL_VL_PREEMPT_MATRIX:
10964 size = 256;
10965 /*
10966 * OPA specifies that this is the same size as the VL
10967 * arbitration tables (i.e., 256 bytes).
10968 */
10969 break;
10970 default:
10971 return -EINVAL;
10972 }
10973 return size;
10974 }
10975
10976 /*
10977 * Write the given fabric manager table.
10978 */
10979 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
10980 {
10981 int ret = 0;
10982 struct vl_arb_cache *vlc;
10983
10984 switch (which) {
10985 case FM_TBL_VL_HIGH_ARB:
10986 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10987 if (vl_arb_match_cache(vlc, t)) {
10988 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10989 break;
10990 }
10991 vl_arb_set_cache(vlc, t);
10992 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10993 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
10994 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
10995 break;
10996 case FM_TBL_VL_LOW_ARB:
10997 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10998 if (vl_arb_match_cache(vlc, t)) {
10999 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11000 break;
11001 }
11002 vl_arb_set_cache(vlc, t);
11003 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11004 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11005 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11006 break;
11007 case FM_TBL_BUFFER_CONTROL:
11008 ret = set_buffer_control(ppd, t);
11009 break;
11010 case FM_TBL_SC2VLNT:
11011 set_sc2vlnt(ppd->dd, t);
11012 break;
11013 default:
11014 ret = -EINVAL;
11015 }
11016 return ret;
11017 }
11018
11019 /*
11020 * Disable all data VLs.
11021 *
11022 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11023 */
11024 static int disable_data_vls(struct hfi1_devdata *dd)
11025 {
11026 if (is_ax(dd))
11027 return 1;
11028
11029 pio_send_control(dd, PSC_DATA_VL_DISABLE);
11030
11031 return 0;
11032 }
11033
11034 /*
11035 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11036 * Just re-enables all data VLs (the "fill" part happens
11037 * automatically - the name was chosen for symmetry with
11038 * stop_drain_data_vls()).
11039 *
11040 * Return 0 if successful, non-zero if the VLs cannot be enabled.
11041 */
11042 int open_fill_data_vls(struct hfi1_devdata *dd)
11043 {
11044 if (is_ax(dd))
11045 return 1;
11046
11047 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11048
11049 return 0;
11050 }
11051
11052 /*
11053 * drain_data_vls() - assumes that disable_data_vls() has been called,
11054 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11055 * engines to drop to 0.
11056 */
11057 static void drain_data_vls(struct hfi1_devdata *dd)
11058 {
11059 sc_wait(dd);
11060 sdma_wait(dd);
11061 pause_for_credit_return(dd);
11062 }
11063
11064 /*
11065 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11066 *
11067 * Use open_fill_data_vls() to resume using data VLs. This pair is
11068 * meant to be used like this:
11069 *
11070 * stop_drain_data_vls(dd);
11071 * // do things with per-VL resources
11072 * open_fill_data_vls(dd);
11073 */
11074 int stop_drain_data_vls(struct hfi1_devdata *dd)
11075 {
11076 int ret;
11077
11078 ret = disable_data_vls(dd);
11079 if (ret == 0)
11080 drain_data_vls(dd);
11081
11082 return ret;
11083 }
11084
11085 /*
11086 * Convert a nanosecond time to a cclock count. No matter how slow
11087 * the cclock, a non-zero ns will always have a non-zero result.
11088 */
11089 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11090 {
11091 u32 cclocks;
11092
11093 if (dd->icode == ICODE_FPGA_EMULATION)
11094 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11095 else /* simulation pretends to be ASIC */
11096 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11097 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11098 cclocks = 1;
11099 return cclocks;
11100 }
11101
11102 /*
11103 * Convert a cclock count to nanoseconds. Not matter how slow
11104 * the cclock, a non-zero cclocks will always have a non-zero result.
11105 */
11106 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11107 {
11108 u32 ns;
11109
11110 if (dd->icode == ICODE_FPGA_EMULATION)
11111 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11112 else /* simulation pretends to be ASIC */
11113 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11114 if (cclocks && !ns)
11115 ns = 1;
11116 return ns;
11117 }
11118
11119 /*
11120 * Dynamically adjust the receive interrupt timeout for a context based on
11121 * incoming packet rate.
11122 *
11123 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11124 */
11125 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11126 {
11127 struct hfi1_devdata *dd = rcd->dd;
11128 u32 timeout = rcd->rcvavail_timeout;
11129
11130 /*
11131 * This algorithm doubles or halves the timeout depending on whether
11132 * the number of packets received in this interrupt were less than or
11133 * greater equal the interrupt count.
11134 *
11135 * The calculations below do not allow a steady state to be achieved.
11136 * Only at the endpoints it is possible to have an unchanging
11137 * timeout.
11138 */
11139 if (npkts < rcv_intr_count) {
11140 /*
11141 * Not enough packets arrived before the timeout, adjust
11142 * timeout downward.
11143 */
11144 if (timeout < 2) /* already at minimum? */
11145 return;
11146 timeout >>= 1;
11147 } else {
11148 /*
11149 * More than enough packets arrived before the timeout, adjust
11150 * timeout upward.
11151 */
11152 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11153 return;
11154 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11155 }
11156
11157 rcd->rcvavail_timeout = timeout;
11158 /*
11159 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11160 * been verified to be in range
11161 */
11162 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11163 (u64)timeout <<
11164 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11165 }
11166
11167 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11168 u32 intr_adjust, u32 npkts)
11169 {
11170 struct hfi1_devdata *dd = rcd->dd;
11171 u64 reg;
11172 u32 ctxt = rcd->ctxt;
11173
11174 /*
11175 * Need to write timeout register before updating RcvHdrHead to ensure
11176 * that a new value is used when the HW decides to restart counting.
11177 */
11178 if (intr_adjust)
11179 adjust_rcv_timeout(rcd, npkts);
11180 if (updegr) {
11181 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11182 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11183 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11184 }
11185 mmiowb();
11186 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11187 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11188 << RCV_HDR_HEAD_HEAD_SHIFT);
11189 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11190 mmiowb();
11191 }
11192
11193 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11194 {
11195 u32 head, tail;
11196
11197 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11198 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11199
11200 if (rcd->rcvhdrtail_kvaddr)
11201 tail = get_rcvhdrtail(rcd);
11202 else
11203 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11204
11205 return head == tail;
11206 }
11207
11208 /*
11209 * Context Control and Receive Array encoding for buffer size:
11210 * 0x0 invalid
11211 * 0x1 4 KB
11212 * 0x2 8 KB
11213 * 0x3 16 KB
11214 * 0x4 32 KB
11215 * 0x5 64 KB
11216 * 0x6 128 KB
11217 * 0x7 256 KB
11218 * 0x8 512 KB (Receive Array only)
11219 * 0x9 1 MB (Receive Array only)
11220 * 0xa 2 MB (Receive Array only)
11221 *
11222 * 0xB-0xF - reserved (Receive Array only)
11223 *
11224 *
11225 * This routine assumes that the value has already been sanity checked.
11226 */
11227 static u32 encoded_size(u32 size)
11228 {
11229 switch (size) {
11230 case 4 * 1024: return 0x1;
11231 case 8 * 1024: return 0x2;
11232 case 16 * 1024: return 0x3;
11233 case 32 * 1024: return 0x4;
11234 case 64 * 1024: return 0x5;
11235 case 128 * 1024: return 0x6;
11236 case 256 * 1024: return 0x7;
11237 case 512 * 1024: return 0x8;
11238 case 1 * 1024 * 1024: return 0x9;
11239 case 2 * 1024 * 1024: return 0xa;
11240 }
11241 return 0x1; /* if invalid, go with the minimum size */
11242 }
11243
11244 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11245 {
11246 struct hfi1_ctxtdata *rcd;
11247 u64 rcvctrl, reg;
11248 int did_enable = 0;
11249
11250 rcd = dd->rcd[ctxt];
11251 if (!rcd)
11252 return;
11253
11254 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11255
11256 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11257 /* if the context already enabled, don't do the extra steps */
11258 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11259 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11260 /* reset the tail and hdr addresses, and sequence count */
11261 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11262 rcd->rcvhdrq_phys);
11263 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11264 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11265 rcd->rcvhdrqtailaddr_phys);
11266 rcd->seq_cnt = 1;
11267
11268 /* reset the cached receive header queue head value */
11269 rcd->head = 0;
11270
11271 /*
11272 * Zero the receive header queue so we don't get false
11273 * positives when checking the sequence number. The
11274 * sequence numbers could land exactly on the same spot.
11275 * E.g. a rcd restart before the receive header wrapped.
11276 */
11277 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11278
11279 /* starting timeout */
11280 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11281
11282 /* enable the context */
11283 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11284
11285 /* clean the egr buffer size first */
11286 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11287 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11288 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11289 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11290
11291 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11292 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11293 did_enable = 1;
11294
11295 /* zero RcvEgrIndexHead */
11296 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11297
11298 /* set eager count and base index */
11299 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11300 & RCV_EGR_CTRL_EGR_CNT_MASK)
11301 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11302 (((rcd->eager_base >> RCV_SHIFT)
11303 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11304 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11305 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11306
11307 /*
11308 * Set TID (expected) count and base index.
11309 * rcd->expected_count is set to individual RcvArray entries,
11310 * not pairs, and the CSR takes a pair-count in groups of
11311 * four, so divide by 8.
11312 */
11313 reg = (((rcd->expected_count >> RCV_SHIFT)
11314 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11315 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11316 (((rcd->expected_base >> RCV_SHIFT)
11317 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11318 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11319 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11320 if (ctxt == HFI1_CTRL_CTXT)
11321 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11322 }
11323 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11324 write_csr(dd, RCV_VL15, 0);
11325 /*
11326 * When receive context is being disabled turn on tail
11327 * update with a dummy tail address and then disable
11328 * receive context.
11329 */
11330 if (dd->rcvhdrtail_dummy_physaddr) {
11331 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11332 dd->rcvhdrtail_dummy_physaddr);
11333 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11334 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11335 }
11336
11337 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11338 }
11339 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11340 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11341 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11342 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11343 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11344 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11345 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11346 /* See comment on RcvCtxtCtrl.TailUpd above */
11347 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11348 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11349 }
11350 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11351 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11352 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11353 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11354 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11355 /*
11356 * In one-packet-per-eager mode, the size comes from
11357 * the RcvArray entry.
11358 */
11359 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11360 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11361 }
11362 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11363 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11364 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11365 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11366 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11367 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11368 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11369 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11370 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11371 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11372 rcd->rcvctrl = rcvctrl;
11373 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11374 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11375
11376 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11377 if (did_enable &&
11378 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11379 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11380 if (reg != 0) {
11381 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11382 ctxt, reg);
11383 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11384 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11385 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11386 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11387 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11388 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11389 ctxt, reg, reg == 0 ? "not" : "still");
11390 }
11391 }
11392
11393 if (did_enable) {
11394 /*
11395 * The interrupt timeout and count must be set after
11396 * the context is enabled to take effect.
11397 */
11398 /* set interrupt timeout */
11399 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11400 (u64)rcd->rcvavail_timeout <<
11401 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11402
11403 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11404 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11405 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11406 }
11407
11408 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11409 /*
11410 * If the context has been disabled and the Tail Update has
11411 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11412 * so it doesn't contain an address that is invalid.
11413 */
11414 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11415 dd->rcvhdrtail_dummy_physaddr);
11416 }
11417
11418 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11419 {
11420 int ret;
11421 u64 val = 0;
11422
11423 if (namep) {
11424 ret = dd->cntrnameslen;
11425 *namep = dd->cntrnames;
11426 } else {
11427 const struct cntr_entry *entry;
11428 int i, j;
11429
11430 ret = (dd->ndevcntrs) * sizeof(u64);
11431
11432 /* Get the start of the block of counters */
11433 *cntrp = dd->cntrs;
11434
11435 /*
11436 * Now go and fill in each counter in the block.
11437 */
11438 for (i = 0; i < DEV_CNTR_LAST; i++) {
11439 entry = &dev_cntrs[i];
11440 hfi1_cdbg(CNTR, "reading %s", entry->name);
11441 if (entry->flags & CNTR_DISABLED) {
11442 /* Nothing */
11443 hfi1_cdbg(CNTR, "\tDisabled\n");
11444 } else {
11445 if (entry->flags & CNTR_VL) {
11446 hfi1_cdbg(CNTR, "\tPer VL\n");
11447 for (j = 0; j < C_VL_COUNT; j++) {
11448 val = entry->rw_cntr(entry,
11449 dd, j,
11450 CNTR_MODE_R,
11451 0);
11452 hfi1_cdbg(
11453 CNTR,
11454 "\t\tRead 0x%llx for %d\n",
11455 val, j);
11456 dd->cntrs[entry->offset + j] =
11457 val;
11458 }
11459 } else if (entry->flags & CNTR_SDMA) {
11460 hfi1_cdbg(CNTR,
11461 "\t Per SDMA Engine\n");
11462 for (j = 0; j < dd->chip_sdma_engines;
11463 j++) {
11464 val =
11465 entry->rw_cntr(entry, dd, j,
11466 CNTR_MODE_R, 0);
11467 hfi1_cdbg(CNTR,
11468 "\t\tRead 0x%llx for %d\n",
11469 val, j);
11470 dd->cntrs[entry->offset + j] =
11471 val;
11472 }
11473 } else {
11474 val = entry->rw_cntr(entry, dd,
11475 CNTR_INVALID_VL,
11476 CNTR_MODE_R, 0);
11477 dd->cntrs[entry->offset] = val;
11478 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11479 }
11480 }
11481 }
11482 }
11483 return ret;
11484 }
11485
11486 /*
11487 * Used by sysfs to create files for hfi stats to read
11488 */
11489 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11490 {
11491 int ret;
11492 u64 val = 0;
11493
11494 if (namep) {
11495 ret = ppd->dd->portcntrnameslen;
11496 *namep = ppd->dd->portcntrnames;
11497 } else {
11498 const struct cntr_entry *entry;
11499 int i, j;
11500
11501 ret = ppd->dd->nportcntrs * sizeof(u64);
11502 *cntrp = ppd->cntrs;
11503
11504 for (i = 0; i < PORT_CNTR_LAST; i++) {
11505 entry = &port_cntrs[i];
11506 hfi1_cdbg(CNTR, "reading %s", entry->name);
11507 if (entry->flags & CNTR_DISABLED) {
11508 /* Nothing */
11509 hfi1_cdbg(CNTR, "\tDisabled\n");
11510 continue;
11511 }
11512
11513 if (entry->flags & CNTR_VL) {
11514 hfi1_cdbg(CNTR, "\tPer VL");
11515 for (j = 0; j < C_VL_COUNT; j++) {
11516 val = entry->rw_cntr(entry, ppd, j,
11517 CNTR_MODE_R,
11518 0);
11519 hfi1_cdbg(
11520 CNTR,
11521 "\t\tRead 0x%llx for %d",
11522 val, j);
11523 ppd->cntrs[entry->offset + j] = val;
11524 }
11525 } else {
11526 val = entry->rw_cntr(entry, ppd,
11527 CNTR_INVALID_VL,
11528 CNTR_MODE_R,
11529 0);
11530 ppd->cntrs[entry->offset] = val;
11531 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11532 }
11533 }
11534 }
11535 return ret;
11536 }
11537
11538 static void free_cntrs(struct hfi1_devdata *dd)
11539 {
11540 struct hfi1_pportdata *ppd;
11541 int i;
11542
11543 if (dd->synth_stats_timer.data)
11544 del_timer_sync(&dd->synth_stats_timer);
11545 dd->synth_stats_timer.data = 0;
11546 ppd = (struct hfi1_pportdata *)(dd + 1);
11547 for (i = 0; i < dd->num_pports; i++, ppd++) {
11548 kfree(ppd->cntrs);
11549 kfree(ppd->scntrs);
11550 free_percpu(ppd->ibport_data.rvp.rc_acks);
11551 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11552 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11553 ppd->cntrs = NULL;
11554 ppd->scntrs = NULL;
11555 ppd->ibport_data.rvp.rc_acks = NULL;
11556 ppd->ibport_data.rvp.rc_qacks = NULL;
11557 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11558 }
11559 kfree(dd->portcntrnames);
11560 dd->portcntrnames = NULL;
11561 kfree(dd->cntrs);
11562 dd->cntrs = NULL;
11563 kfree(dd->scntrs);
11564 dd->scntrs = NULL;
11565 kfree(dd->cntrnames);
11566 dd->cntrnames = NULL;
11567 }
11568
11569 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
11570 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
11571
11572 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11573 u64 *psval, void *context, int vl)
11574 {
11575 u64 val;
11576 u64 sval = *psval;
11577
11578 if (entry->flags & CNTR_DISABLED) {
11579 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11580 return 0;
11581 }
11582
11583 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11584
11585 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11586
11587 /* If its a synthetic counter there is more work we need to do */
11588 if (entry->flags & CNTR_SYNTH) {
11589 if (sval == CNTR_MAX) {
11590 /* No need to read already saturated */
11591 return CNTR_MAX;
11592 }
11593
11594 if (entry->flags & CNTR_32BIT) {
11595 /* 32bit counters can wrap multiple times */
11596 u64 upper = sval >> 32;
11597 u64 lower = (sval << 32) >> 32;
11598
11599 if (lower > val) { /* hw wrapped */
11600 if (upper == CNTR_32BIT_MAX)
11601 val = CNTR_MAX;
11602 else
11603 upper++;
11604 }
11605
11606 if (val != CNTR_MAX)
11607 val = (upper << 32) | val;
11608
11609 } else {
11610 /* If we rolled we are saturated */
11611 if ((val < sval) || (val > CNTR_MAX))
11612 val = CNTR_MAX;
11613 }
11614 }
11615
11616 *psval = val;
11617
11618 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11619
11620 return val;
11621 }
11622
11623 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11624 struct cntr_entry *entry,
11625 u64 *psval, void *context, int vl, u64 data)
11626 {
11627 u64 val;
11628
11629 if (entry->flags & CNTR_DISABLED) {
11630 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11631 return 0;
11632 }
11633
11634 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11635
11636 if (entry->flags & CNTR_SYNTH) {
11637 *psval = data;
11638 if (entry->flags & CNTR_32BIT) {
11639 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11640 (data << 32) >> 32);
11641 val = data; /* return the full 64bit value */
11642 } else {
11643 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11644 data);
11645 }
11646 } else {
11647 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11648 }
11649
11650 *psval = val;
11651
11652 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11653
11654 return val;
11655 }
11656
11657 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11658 {
11659 struct cntr_entry *entry;
11660 u64 *sval;
11661
11662 entry = &dev_cntrs[index];
11663 sval = dd->scntrs + entry->offset;
11664
11665 if (vl != CNTR_INVALID_VL)
11666 sval += vl;
11667
11668 return read_dev_port_cntr(dd, entry, sval, dd, vl);
11669 }
11670
11671 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11672 {
11673 struct cntr_entry *entry;
11674 u64 *sval;
11675
11676 entry = &dev_cntrs[index];
11677 sval = dd->scntrs + entry->offset;
11678
11679 if (vl != CNTR_INVALID_VL)
11680 sval += vl;
11681
11682 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11683 }
11684
11685 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11686 {
11687 struct cntr_entry *entry;
11688 u64 *sval;
11689
11690 entry = &port_cntrs[index];
11691 sval = ppd->scntrs + entry->offset;
11692
11693 if (vl != CNTR_INVALID_VL)
11694 sval += vl;
11695
11696 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11697 (index <= C_RCV_HDR_OVF_LAST)) {
11698 /* We do not want to bother for disabled contexts */
11699 return 0;
11700 }
11701
11702 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11703 }
11704
11705 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11706 {
11707 struct cntr_entry *entry;
11708 u64 *sval;
11709
11710 entry = &port_cntrs[index];
11711 sval = ppd->scntrs + entry->offset;
11712
11713 if (vl != CNTR_INVALID_VL)
11714 sval += vl;
11715
11716 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11717 (index <= C_RCV_HDR_OVF_LAST)) {
11718 /* We do not want to bother for disabled contexts */
11719 return 0;
11720 }
11721
11722 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
11723 }
11724
11725 static void update_synth_timer(unsigned long opaque)
11726 {
11727 u64 cur_tx;
11728 u64 cur_rx;
11729 u64 total_flits;
11730 u8 update = 0;
11731 int i, j, vl;
11732 struct hfi1_pportdata *ppd;
11733 struct cntr_entry *entry;
11734
11735 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
11736
11737 /*
11738 * Rather than keep beating on the CSRs pick a minimal set that we can
11739 * check to watch for potential roll over. We can do this by looking at
11740 * the number of flits sent/recv. If the total flits exceeds 32bits then
11741 * we have to iterate all the counters and update.
11742 */
11743 entry = &dev_cntrs[C_DC_RCV_FLITS];
11744 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11745
11746 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11747 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11748
11749 hfi1_cdbg(
11750 CNTR,
11751 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
11752 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
11753
11754 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
11755 /*
11756 * May not be strictly necessary to update but it won't hurt and
11757 * simplifies the logic here.
11758 */
11759 update = 1;
11760 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
11761 dd->unit);
11762 } else {
11763 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
11764 hfi1_cdbg(CNTR,
11765 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
11766 total_flits, (u64)CNTR_32BIT_MAX);
11767 if (total_flits >= CNTR_32BIT_MAX) {
11768 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
11769 dd->unit);
11770 update = 1;
11771 }
11772 }
11773
11774 if (update) {
11775 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
11776 for (i = 0; i < DEV_CNTR_LAST; i++) {
11777 entry = &dev_cntrs[i];
11778 if (entry->flags & CNTR_VL) {
11779 for (vl = 0; vl < C_VL_COUNT; vl++)
11780 read_dev_cntr(dd, i, vl);
11781 } else {
11782 read_dev_cntr(dd, i, CNTR_INVALID_VL);
11783 }
11784 }
11785 ppd = (struct hfi1_pportdata *)(dd + 1);
11786 for (i = 0; i < dd->num_pports; i++, ppd++) {
11787 for (j = 0; j < PORT_CNTR_LAST; j++) {
11788 entry = &port_cntrs[j];
11789 if (entry->flags & CNTR_VL) {
11790 for (vl = 0; vl < C_VL_COUNT; vl++)
11791 read_port_cntr(ppd, j, vl);
11792 } else {
11793 read_port_cntr(ppd, j, CNTR_INVALID_VL);
11794 }
11795 }
11796 }
11797
11798 /*
11799 * We want the value in the register. The goal is to keep track
11800 * of the number of "ticks" not the counter value. In other
11801 * words if the register rolls we want to notice it and go ahead
11802 * and force an update.
11803 */
11804 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11805 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11806 CNTR_MODE_R, 0);
11807
11808 entry = &dev_cntrs[C_DC_RCV_FLITS];
11809 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11810 CNTR_MODE_R, 0);
11811
11812 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
11813 dd->unit, dd->last_tx, dd->last_rx);
11814
11815 } else {
11816 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
11817 }
11818
11819 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
11820 }
11821
11822 #define C_MAX_NAME 13 /* 12 chars + one for /0 */
11823 static int init_cntrs(struct hfi1_devdata *dd)
11824 {
11825 int i, rcv_ctxts, j;
11826 size_t sz;
11827 char *p;
11828 char name[C_MAX_NAME];
11829 struct hfi1_pportdata *ppd;
11830 const char *bit_type_32 = ",32";
11831 const int bit_type_32_sz = strlen(bit_type_32);
11832
11833 /* set up the stats timer; the add_timer is done at the end */
11834 setup_timer(&dd->synth_stats_timer, update_synth_timer,
11835 (unsigned long)dd);
11836
11837 /***********************/
11838 /* per device counters */
11839 /***********************/
11840
11841 /* size names and determine how many we have*/
11842 dd->ndevcntrs = 0;
11843 sz = 0;
11844
11845 for (i = 0; i < DEV_CNTR_LAST; i++) {
11846 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11847 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
11848 continue;
11849 }
11850
11851 if (dev_cntrs[i].flags & CNTR_VL) {
11852 dev_cntrs[i].offset = dd->ndevcntrs;
11853 for (j = 0; j < C_VL_COUNT; j++) {
11854 snprintf(name, C_MAX_NAME, "%s%d",
11855 dev_cntrs[i].name, vl_from_idx(j));
11856 sz += strlen(name);
11857 /* Add ",32" for 32-bit counters */
11858 if (dev_cntrs[i].flags & CNTR_32BIT)
11859 sz += bit_type_32_sz;
11860 sz++;
11861 dd->ndevcntrs++;
11862 }
11863 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11864 dev_cntrs[i].offset = dd->ndevcntrs;
11865 for (j = 0; j < dd->chip_sdma_engines; j++) {
11866 snprintf(name, C_MAX_NAME, "%s%d",
11867 dev_cntrs[i].name, j);
11868 sz += strlen(name);
11869 /* Add ",32" for 32-bit counters */
11870 if (dev_cntrs[i].flags & CNTR_32BIT)
11871 sz += bit_type_32_sz;
11872 sz++;
11873 dd->ndevcntrs++;
11874 }
11875 } else {
11876 /* +1 for newline. */
11877 sz += strlen(dev_cntrs[i].name) + 1;
11878 /* Add ",32" for 32-bit counters */
11879 if (dev_cntrs[i].flags & CNTR_32BIT)
11880 sz += bit_type_32_sz;
11881 dev_cntrs[i].offset = dd->ndevcntrs;
11882 dd->ndevcntrs++;
11883 }
11884 }
11885
11886 /* allocate space for the counter values */
11887 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
11888 if (!dd->cntrs)
11889 goto bail;
11890
11891 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
11892 if (!dd->scntrs)
11893 goto bail;
11894
11895 /* allocate space for the counter names */
11896 dd->cntrnameslen = sz;
11897 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
11898 if (!dd->cntrnames)
11899 goto bail;
11900
11901 /* fill in the names */
11902 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
11903 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11904 /* Nothing */
11905 } else if (dev_cntrs[i].flags & CNTR_VL) {
11906 for (j = 0; j < C_VL_COUNT; j++) {
11907 snprintf(name, C_MAX_NAME, "%s%d",
11908 dev_cntrs[i].name,
11909 vl_from_idx(j));
11910 memcpy(p, name, strlen(name));
11911 p += strlen(name);
11912
11913 /* Counter is 32 bits */
11914 if (dev_cntrs[i].flags & CNTR_32BIT) {
11915 memcpy(p, bit_type_32, bit_type_32_sz);
11916 p += bit_type_32_sz;
11917 }
11918
11919 *p++ = '\n';
11920 }
11921 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11922 for (j = 0; j < dd->chip_sdma_engines; j++) {
11923 snprintf(name, C_MAX_NAME, "%s%d",
11924 dev_cntrs[i].name, j);
11925 memcpy(p, name, strlen(name));
11926 p += strlen(name);
11927
11928 /* Counter is 32 bits */
11929 if (dev_cntrs[i].flags & CNTR_32BIT) {
11930 memcpy(p, bit_type_32, bit_type_32_sz);
11931 p += bit_type_32_sz;
11932 }
11933
11934 *p++ = '\n';
11935 }
11936 } else {
11937 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
11938 p += strlen(dev_cntrs[i].name);
11939
11940 /* Counter is 32 bits */
11941 if (dev_cntrs[i].flags & CNTR_32BIT) {
11942 memcpy(p, bit_type_32, bit_type_32_sz);
11943 p += bit_type_32_sz;
11944 }
11945
11946 *p++ = '\n';
11947 }
11948 }
11949
11950 /*********************/
11951 /* per port counters */
11952 /*********************/
11953
11954 /*
11955 * Go through the counters for the overflows and disable the ones we
11956 * don't need. This varies based on platform so we need to do it
11957 * dynamically here.
11958 */
11959 rcv_ctxts = dd->num_rcv_contexts;
11960 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
11961 i <= C_RCV_HDR_OVF_LAST; i++) {
11962 port_cntrs[i].flags |= CNTR_DISABLED;
11963 }
11964
11965 /* size port counter names and determine how many we have*/
11966 sz = 0;
11967 dd->nportcntrs = 0;
11968 for (i = 0; i < PORT_CNTR_LAST; i++) {
11969 if (port_cntrs[i].flags & CNTR_DISABLED) {
11970 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
11971 continue;
11972 }
11973
11974 if (port_cntrs[i].flags & CNTR_VL) {
11975 port_cntrs[i].offset = dd->nportcntrs;
11976 for (j = 0; j < C_VL_COUNT; j++) {
11977 snprintf(name, C_MAX_NAME, "%s%d",
11978 port_cntrs[i].name, vl_from_idx(j));
11979 sz += strlen(name);
11980 /* Add ",32" for 32-bit counters */
11981 if (port_cntrs[i].flags & CNTR_32BIT)
11982 sz += bit_type_32_sz;
11983 sz++;
11984 dd->nportcntrs++;
11985 }
11986 } else {
11987 /* +1 for newline */
11988 sz += strlen(port_cntrs[i].name) + 1;
11989 /* Add ",32" for 32-bit counters */
11990 if (port_cntrs[i].flags & CNTR_32BIT)
11991 sz += bit_type_32_sz;
11992 port_cntrs[i].offset = dd->nportcntrs;
11993 dd->nportcntrs++;
11994 }
11995 }
11996
11997 /* allocate space for the counter names */
11998 dd->portcntrnameslen = sz;
11999 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12000 if (!dd->portcntrnames)
12001 goto bail;
12002
12003 /* fill in port cntr names */
12004 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12005 if (port_cntrs[i].flags & CNTR_DISABLED)
12006 continue;
12007
12008 if (port_cntrs[i].flags & CNTR_VL) {
12009 for (j = 0; j < C_VL_COUNT; j++) {
12010 snprintf(name, C_MAX_NAME, "%s%d",
12011 port_cntrs[i].name, vl_from_idx(j));
12012 memcpy(p, name, strlen(name));
12013 p += strlen(name);
12014
12015 /* Counter is 32 bits */
12016 if (port_cntrs[i].flags & CNTR_32BIT) {
12017 memcpy(p, bit_type_32, bit_type_32_sz);
12018 p += bit_type_32_sz;
12019 }
12020
12021 *p++ = '\n';
12022 }
12023 } else {
12024 memcpy(p, port_cntrs[i].name,
12025 strlen(port_cntrs[i].name));
12026 p += strlen(port_cntrs[i].name);
12027
12028 /* Counter is 32 bits */
12029 if (port_cntrs[i].flags & CNTR_32BIT) {
12030 memcpy(p, bit_type_32, bit_type_32_sz);
12031 p += bit_type_32_sz;
12032 }
12033
12034 *p++ = '\n';
12035 }
12036 }
12037
12038 /* allocate per port storage for counter values */
12039 ppd = (struct hfi1_pportdata *)(dd + 1);
12040 for (i = 0; i < dd->num_pports; i++, ppd++) {
12041 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12042 if (!ppd->cntrs)
12043 goto bail;
12044
12045 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12046 if (!ppd->scntrs)
12047 goto bail;
12048 }
12049
12050 /* CPU counters need to be allocated and zeroed */
12051 if (init_cpu_counters(dd))
12052 goto bail;
12053
12054 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12055 return 0;
12056 bail:
12057 free_cntrs(dd);
12058 return -ENOMEM;
12059 }
12060
12061 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12062 {
12063 switch (chip_lstate) {
12064 default:
12065 dd_dev_err(dd,
12066 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12067 chip_lstate);
12068 /* fall through */
12069 case LSTATE_DOWN:
12070 return IB_PORT_DOWN;
12071 case LSTATE_INIT:
12072 return IB_PORT_INIT;
12073 case LSTATE_ARMED:
12074 return IB_PORT_ARMED;
12075 case LSTATE_ACTIVE:
12076 return IB_PORT_ACTIVE;
12077 }
12078 }
12079
12080 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12081 {
12082 /* look at the HFI meta-states only */
12083 switch (chip_pstate & 0xf0) {
12084 default:
12085 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12086 chip_pstate);
12087 /* fall through */
12088 case PLS_DISABLED:
12089 return IB_PORTPHYSSTATE_DISABLED;
12090 case PLS_OFFLINE:
12091 return OPA_PORTPHYSSTATE_OFFLINE;
12092 case PLS_POLLING:
12093 return IB_PORTPHYSSTATE_POLLING;
12094 case PLS_CONFIGPHY:
12095 return IB_PORTPHYSSTATE_TRAINING;
12096 case PLS_LINKUP:
12097 return IB_PORTPHYSSTATE_LINKUP;
12098 case PLS_PHYTEST:
12099 return IB_PORTPHYSSTATE_PHY_TEST;
12100 }
12101 }
12102
12103 /* return the OPA port logical state name */
12104 const char *opa_lstate_name(u32 lstate)
12105 {
12106 static const char * const port_logical_names[] = {
12107 "PORT_NOP",
12108 "PORT_DOWN",
12109 "PORT_INIT",
12110 "PORT_ARMED",
12111 "PORT_ACTIVE",
12112 "PORT_ACTIVE_DEFER",
12113 };
12114 if (lstate < ARRAY_SIZE(port_logical_names))
12115 return port_logical_names[lstate];
12116 return "unknown";
12117 }
12118
12119 /* return the OPA port physical state name */
12120 const char *opa_pstate_name(u32 pstate)
12121 {
12122 static const char * const port_physical_names[] = {
12123 "PHYS_NOP",
12124 "reserved1",
12125 "PHYS_POLL",
12126 "PHYS_DISABLED",
12127 "PHYS_TRAINING",
12128 "PHYS_LINKUP",
12129 "PHYS_LINK_ERR_RECOVER",
12130 "PHYS_PHY_TEST",
12131 "reserved8",
12132 "PHYS_OFFLINE",
12133 "PHYS_GANGED",
12134 "PHYS_TEST",
12135 };
12136 if (pstate < ARRAY_SIZE(port_physical_names))
12137 return port_physical_names[pstate];
12138 return "unknown";
12139 }
12140
12141 /*
12142 * Read the hardware link state and set the driver's cached value of it.
12143 * Return the (new) current value.
12144 */
12145 u32 get_logical_state(struct hfi1_pportdata *ppd)
12146 {
12147 u32 new_state;
12148
12149 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12150 if (new_state != ppd->lstate) {
12151 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12152 opa_lstate_name(new_state), new_state);
12153 ppd->lstate = new_state;
12154 }
12155 /*
12156 * Set port status flags in the page mapped into userspace
12157 * memory. Do it here to ensure a reliable state - this is
12158 * the only function called by all state handling code.
12159 * Always set the flags due to the fact that the cache value
12160 * might have been changed explicitly outside of this
12161 * function.
12162 */
12163 if (ppd->statusp) {
12164 switch (ppd->lstate) {
12165 case IB_PORT_DOWN:
12166 case IB_PORT_INIT:
12167 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12168 HFI1_STATUS_IB_READY);
12169 break;
12170 case IB_PORT_ARMED:
12171 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12172 break;
12173 case IB_PORT_ACTIVE:
12174 *ppd->statusp |= HFI1_STATUS_IB_READY;
12175 break;
12176 }
12177 }
12178 return ppd->lstate;
12179 }
12180
12181 /**
12182 * wait_logical_linkstate - wait for an IB link state change to occur
12183 * @ppd: port device
12184 * @state: the state to wait for
12185 * @msecs: the number of milliseconds to wait
12186 *
12187 * Wait up to msecs milliseconds for IB link state change to occur.
12188 * For now, take the easy polling route.
12189 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12190 */
12191 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12192 int msecs)
12193 {
12194 unsigned long timeout;
12195
12196 timeout = jiffies + msecs_to_jiffies(msecs);
12197 while (1) {
12198 if (get_logical_state(ppd) == state)
12199 return 0;
12200 if (time_after(jiffies, timeout))
12201 break;
12202 msleep(20);
12203 }
12204 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12205
12206 return -ETIMEDOUT;
12207 }
12208
12209 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12210 {
12211 u32 pstate;
12212 u32 ib_pstate;
12213
12214 pstate = read_physical_state(ppd->dd);
12215 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12216 if (ppd->last_pstate != ib_pstate) {
12217 dd_dev_info(ppd->dd,
12218 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12219 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12220 pstate);
12221 ppd->last_pstate = ib_pstate;
12222 }
12223 return ib_pstate;
12224 }
12225
12226 /*
12227 * Read/modify/write ASIC_QSFP register bits as selected by mask
12228 * data: 0 or 1 in the positions depending on what needs to be written
12229 * dir: 0 for read, 1 for write
12230 * mask: select by setting
12231 * I2CCLK (bit 0)
12232 * I2CDATA (bit 1)
12233 */
12234 u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
12235 u32 mask)
12236 {
12237 u64 qsfp_oe, target_oe;
12238
12239 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
12240 if (mask) {
12241 /* We are writing register bits, so lock access */
12242 dir &= mask;
12243 data &= mask;
12244
12245 qsfp_oe = read_csr(dd, target_oe);
12246 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
12247 write_csr(dd, target_oe, qsfp_oe);
12248 }
12249 /* We are exclusively reading bits here, but it is unlikely
12250 * we'll get valid data when we set the direction of the pin
12251 * in the same call, so read should call this function again
12252 * to get valid data
12253 */
12254 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
12255 }
12256
12257 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12258 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12259
12260 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12261 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12262
12263 int hfi1_init_ctxt(struct send_context *sc)
12264 {
12265 if (sc) {
12266 struct hfi1_devdata *dd = sc->dd;
12267 u64 reg;
12268 u8 set = (sc->type == SC_USER ?
12269 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12270 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12271 reg = read_kctxt_csr(dd, sc->hw_context,
12272 SEND_CTXT_CHECK_ENABLE);
12273 if (set)
12274 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12275 else
12276 SET_STATIC_RATE_CONTROL_SMASK(reg);
12277 write_kctxt_csr(dd, sc->hw_context,
12278 SEND_CTXT_CHECK_ENABLE, reg);
12279 }
12280 return 0;
12281 }
12282
12283 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12284 {
12285 int ret = 0;
12286 u64 reg;
12287
12288 if (dd->icode != ICODE_RTL_SILICON) {
12289 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12290 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12291 __func__);
12292 return -EINVAL;
12293 }
12294 reg = read_csr(dd, ASIC_STS_THERM);
12295 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12296 ASIC_STS_THERM_CURR_TEMP_MASK);
12297 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12298 ASIC_STS_THERM_LO_TEMP_MASK);
12299 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12300 ASIC_STS_THERM_HI_TEMP_MASK);
12301 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12302 ASIC_STS_THERM_CRIT_TEMP_MASK);
12303 /* triggers is a 3-bit value - 1 bit per trigger. */
12304 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12305
12306 return ret;
12307 }
12308
12309 /* ========================================================================= */
12310
12311 /*
12312 * Enable/disable chip from delivering interrupts.
12313 */
12314 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12315 {
12316 int i;
12317
12318 /*
12319 * In HFI, the mask needs to be 1 to allow interrupts.
12320 */
12321 if (enable) {
12322 /* enable all interrupts */
12323 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12324 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12325
12326 init_qsfp_int(dd);
12327 } else {
12328 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12329 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12330 }
12331 }
12332
12333 /*
12334 * Clear all interrupt sources on the chip.
12335 */
12336 static void clear_all_interrupts(struct hfi1_devdata *dd)
12337 {
12338 int i;
12339
12340 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12341 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12342
12343 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12344 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12345 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12346 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12347 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12348 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12349 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12350 for (i = 0; i < dd->chip_send_contexts; i++)
12351 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12352 for (i = 0; i < dd->chip_sdma_engines; i++)
12353 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12354
12355 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12356 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12357 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12358 }
12359
12360 /* Move to pcie.c? */
12361 static void disable_intx(struct pci_dev *pdev)
12362 {
12363 pci_intx(pdev, 0);
12364 }
12365
12366 static void clean_up_interrupts(struct hfi1_devdata *dd)
12367 {
12368 int i;
12369
12370 /* remove irqs - must happen before disabling/turning off */
12371 if (dd->num_msix_entries) {
12372 /* MSI-X */
12373 struct hfi1_msix_entry *me = dd->msix_entries;
12374
12375 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12376 if (!me->arg) /* => no irq, no affinity */
12377 continue;
12378 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12379 free_irq(me->msix.vector, me->arg);
12380 }
12381 } else {
12382 /* INTx */
12383 if (dd->requested_intx_irq) {
12384 free_irq(dd->pcidev->irq, dd);
12385 dd->requested_intx_irq = 0;
12386 }
12387 }
12388
12389 /* turn off interrupts */
12390 if (dd->num_msix_entries) {
12391 /* MSI-X */
12392 pci_disable_msix(dd->pcidev);
12393 } else {
12394 /* INTx */
12395 disable_intx(dd->pcidev);
12396 }
12397
12398 /* clean structures */
12399 kfree(dd->msix_entries);
12400 dd->msix_entries = NULL;
12401 dd->num_msix_entries = 0;
12402 }
12403
12404 /*
12405 * Remap the interrupt source from the general handler to the given MSI-X
12406 * interrupt.
12407 */
12408 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12409 {
12410 u64 reg;
12411 int m, n;
12412
12413 /* clear from the handled mask of the general interrupt */
12414 m = isrc / 64;
12415 n = isrc % 64;
12416 dd->gi_mask[m] &= ~((u64)1 << n);
12417
12418 /* direct the chip source to the given MSI-X interrupt */
12419 m = isrc / 8;
12420 n = isrc % 8;
12421 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12422 reg &= ~((u64)0xff << (8 * n));
12423 reg |= ((u64)msix_intr & 0xff) << (8 * n);
12424 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12425 }
12426
12427 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12428 int engine, int msix_intr)
12429 {
12430 /*
12431 * SDMA engine interrupt sources grouped by type, rather than
12432 * engine. Per-engine interrupts are as follows:
12433 * SDMA
12434 * SDMAProgress
12435 * SDMAIdle
12436 */
12437 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12438 msix_intr);
12439 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12440 msix_intr);
12441 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12442 msix_intr);
12443 }
12444
12445 static int request_intx_irq(struct hfi1_devdata *dd)
12446 {
12447 int ret;
12448
12449 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12450 dd->unit);
12451 ret = request_irq(dd->pcidev->irq, general_interrupt,
12452 IRQF_SHARED, dd->intx_name, dd);
12453 if (ret)
12454 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12455 ret);
12456 else
12457 dd->requested_intx_irq = 1;
12458 return ret;
12459 }
12460
12461 static int request_msix_irqs(struct hfi1_devdata *dd)
12462 {
12463 int first_general, last_general;
12464 int first_sdma, last_sdma;
12465 int first_rx, last_rx;
12466 int i, ret = 0;
12467
12468 /* calculate the ranges we are going to use */
12469 first_general = 0;
12470 last_general = first_general + 1;
12471 first_sdma = last_general;
12472 last_sdma = first_sdma + dd->num_sdma;
12473 first_rx = last_sdma;
12474 last_rx = first_rx + dd->n_krcv_queues;
12475
12476 /*
12477 * Sanity check - the code expects all SDMA chip source
12478 * interrupts to be in the same CSR, starting at bit 0. Verify
12479 * that this is true by checking the bit location of the start.
12480 */
12481 BUILD_BUG_ON(IS_SDMA_START % 64);
12482
12483 for (i = 0; i < dd->num_msix_entries; i++) {
12484 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12485 const char *err_info;
12486 irq_handler_t handler;
12487 irq_handler_t thread = NULL;
12488 void *arg;
12489 int idx;
12490 struct hfi1_ctxtdata *rcd = NULL;
12491 struct sdma_engine *sde = NULL;
12492
12493 /* obtain the arguments to request_irq */
12494 if (first_general <= i && i < last_general) {
12495 idx = i - first_general;
12496 handler = general_interrupt;
12497 arg = dd;
12498 snprintf(me->name, sizeof(me->name),
12499 DRIVER_NAME "_%d", dd->unit);
12500 err_info = "general";
12501 me->type = IRQ_GENERAL;
12502 } else if (first_sdma <= i && i < last_sdma) {
12503 idx = i - first_sdma;
12504 sde = &dd->per_sdma[idx];
12505 handler = sdma_interrupt;
12506 arg = sde;
12507 snprintf(me->name, sizeof(me->name),
12508 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12509 err_info = "sdma";
12510 remap_sdma_interrupts(dd, idx, i);
12511 me->type = IRQ_SDMA;
12512 } else if (first_rx <= i && i < last_rx) {
12513 idx = i - first_rx;
12514 rcd = dd->rcd[idx];
12515 /* no interrupt if no rcd */
12516 if (!rcd)
12517 continue;
12518 /*
12519 * Set the interrupt register and mask for this
12520 * context's interrupt.
12521 */
12522 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12523 rcd->imask = ((u64)1) <<
12524 ((IS_RCVAVAIL_START + idx) % 64);
12525 handler = receive_context_interrupt;
12526 thread = receive_context_thread;
12527 arg = rcd;
12528 snprintf(me->name, sizeof(me->name),
12529 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
12530 err_info = "receive context";
12531 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12532 me->type = IRQ_RCVCTXT;
12533 } else {
12534 /* not in our expected range - complain, then
12535 * ignore it
12536 */
12537 dd_dev_err(dd,
12538 "Unexpected extra MSI-X interrupt %d\n", i);
12539 continue;
12540 }
12541 /* no argument, no interrupt */
12542 if (!arg)
12543 continue;
12544 /* make sure the name is terminated */
12545 me->name[sizeof(me->name) - 1] = 0;
12546
12547 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12548 me->name, arg);
12549 if (ret) {
12550 dd_dev_err(dd,
12551 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12552 err_info, me->msix.vector, idx, ret);
12553 return ret;
12554 }
12555 /*
12556 * assign arg after request_irq call, so it will be
12557 * cleaned up
12558 */
12559 me->arg = arg;
12560
12561 ret = hfi1_get_irq_affinity(dd, me);
12562 if (ret)
12563 dd_dev_err(dd,
12564 "unable to pin IRQ %d\n", ret);
12565 }
12566
12567 return ret;
12568 }
12569
12570 /*
12571 * Set the general handler to accept all interrupts, remap all
12572 * chip interrupts back to MSI-X 0.
12573 */
12574 static void reset_interrupts(struct hfi1_devdata *dd)
12575 {
12576 int i;
12577
12578 /* all interrupts handled by the general handler */
12579 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12580 dd->gi_mask[i] = ~(u64)0;
12581
12582 /* all chip interrupts map to MSI-X 0 */
12583 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12584 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12585 }
12586
12587 static int set_up_interrupts(struct hfi1_devdata *dd)
12588 {
12589 struct hfi1_msix_entry *entries;
12590 u32 total, request;
12591 int i, ret;
12592 int single_interrupt = 0; /* we expect to have all the interrupts */
12593
12594 /*
12595 * Interrupt count:
12596 * 1 general, "slow path" interrupt (includes the SDMA engines
12597 * slow source, SDMACleanupDone)
12598 * N interrupts - one per used SDMA engine
12599 * M interrupt - one per kernel receive context
12600 */
12601 total = 1 + dd->num_sdma + dd->n_krcv_queues;
12602
12603 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12604 if (!entries) {
12605 ret = -ENOMEM;
12606 goto fail;
12607 }
12608 /* 1-1 MSI-X entry assignment */
12609 for (i = 0; i < total; i++)
12610 entries[i].msix.entry = i;
12611
12612 /* ask for MSI-X interrupts */
12613 request = total;
12614 request_msix(dd, &request, entries);
12615
12616 if (request == 0) {
12617 /* using INTx */
12618 /* dd->num_msix_entries already zero */
12619 kfree(entries);
12620 single_interrupt = 1;
12621 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12622 } else {
12623 /* using MSI-X */
12624 dd->num_msix_entries = request;
12625 dd->msix_entries = entries;
12626
12627 if (request != total) {
12628 /* using MSI-X, with reduced interrupts */
12629 dd_dev_err(
12630 dd,
12631 "cannot handle reduced interrupt case, want %u, got %u\n",
12632 total, request);
12633 ret = -EINVAL;
12634 goto fail;
12635 }
12636 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12637 }
12638
12639 /* mask all interrupts */
12640 set_intr_state(dd, 0);
12641 /* clear all pending interrupts */
12642 clear_all_interrupts(dd);
12643
12644 /* reset general handler mask, chip MSI-X mappings */
12645 reset_interrupts(dd);
12646
12647 if (single_interrupt)
12648 ret = request_intx_irq(dd);
12649 else
12650 ret = request_msix_irqs(dd);
12651 if (ret)
12652 goto fail;
12653
12654 return 0;
12655
12656 fail:
12657 clean_up_interrupts(dd);
12658 return ret;
12659 }
12660
12661 /*
12662 * Set up context values in dd. Sets:
12663 *
12664 * num_rcv_contexts - number of contexts being used
12665 * n_krcv_queues - number of kernel contexts
12666 * first_user_ctxt - first non-kernel context in array of contexts
12667 * freectxts - number of free user contexts
12668 * num_send_contexts - number of PIO send contexts being used
12669 */
12670 static int set_up_context_variables(struct hfi1_devdata *dd)
12671 {
12672 int num_kernel_contexts;
12673 int total_contexts;
12674 int ret;
12675 unsigned ngroups;
12676
12677 /*
12678 * Kernel contexts: (to be fixed later):
12679 * - min or 2 or 1 context/numa
12680 * - Context 0 - control context (VL15/multicast/error)
12681 * - Context 1 - default context
12682 */
12683 if (n_krcvqs)
12684 /*
12685 * Don't count context 0 in n_krcvqs since
12686 * is isn't used for normal verbs traffic.
12687 *
12688 * krcvqs will reflect number of kernel
12689 * receive contexts above 0.
12690 */
12691 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS - 1;
12692 else
12693 num_kernel_contexts = num_online_nodes() + 1;
12694 num_kernel_contexts =
12695 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
12696 /*
12697 * Every kernel receive context needs an ACK send context.
12698 * one send context is allocated for each VL{0-7} and VL15
12699 */
12700 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12701 dd_dev_err(dd,
12702 "Reducing # kernel rcv contexts to: %d, from %d\n",
12703 (int)(dd->chip_send_contexts - num_vls - 1),
12704 (int)num_kernel_contexts);
12705 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12706 }
12707 /*
12708 * User contexts: (to be fixed later)
12709 * - default to 1 user context per CPU if num_user_contexts is
12710 * negative
12711 */
12712 if (num_user_contexts < 0)
12713 num_user_contexts = num_online_cpus();
12714
12715 total_contexts = num_kernel_contexts + num_user_contexts;
12716
12717 /*
12718 * Adjust the counts given a global max.
12719 */
12720 if (total_contexts > dd->chip_rcv_contexts) {
12721 dd_dev_err(dd,
12722 "Reducing # user receive contexts to: %d, from %d\n",
12723 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12724 (int)num_user_contexts);
12725 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12726 /* recalculate */
12727 total_contexts = num_kernel_contexts + num_user_contexts;
12728 }
12729
12730 /* the first N are kernel contexts, the rest are user contexts */
12731 dd->num_rcv_contexts = total_contexts;
12732 dd->n_krcv_queues = num_kernel_contexts;
12733 dd->first_user_ctxt = num_kernel_contexts;
12734 dd->num_user_contexts = num_user_contexts;
12735 dd->freectxts = num_user_contexts;
12736 dd_dev_info(dd,
12737 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
12738 (int)dd->chip_rcv_contexts,
12739 (int)dd->num_rcv_contexts,
12740 (int)dd->n_krcv_queues,
12741 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
12742
12743 /*
12744 * Receive array allocation:
12745 * All RcvArray entries are divided into groups of 8. This
12746 * is required by the hardware and will speed up writes to
12747 * consecutive entries by using write-combining of the entire
12748 * cacheline.
12749 *
12750 * The number of groups are evenly divided among all contexts.
12751 * any left over groups will be given to the first N user
12752 * contexts.
12753 */
12754 dd->rcv_entries.group_size = RCV_INCREMENT;
12755 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
12756 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
12757 dd->rcv_entries.nctxt_extra = ngroups -
12758 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
12759 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
12760 dd->rcv_entries.ngroups,
12761 dd->rcv_entries.nctxt_extra);
12762 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
12763 MAX_EAGER_ENTRIES * 2) {
12764 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
12765 dd->rcv_entries.group_size;
12766 dd_dev_info(dd,
12767 "RcvArray group count too high, change to %u\n",
12768 dd->rcv_entries.ngroups);
12769 dd->rcv_entries.nctxt_extra = 0;
12770 }
12771 /*
12772 * PIO send contexts
12773 */
12774 ret = init_sc_pools_and_sizes(dd);
12775 if (ret >= 0) { /* success */
12776 dd->num_send_contexts = ret;
12777 dd_dev_info(
12778 dd,
12779 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
12780 dd->chip_send_contexts,
12781 dd->num_send_contexts,
12782 dd->sc_sizes[SC_KERNEL].count,
12783 dd->sc_sizes[SC_ACK].count,
12784 dd->sc_sizes[SC_USER].count);
12785 ret = 0; /* success */
12786 }
12787
12788 return ret;
12789 }
12790
12791 /*
12792 * Set the device/port partition key table. The MAD code
12793 * will ensure that, at least, the partial management
12794 * partition key is present in the table.
12795 */
12796 static void set_partition_keys(struct hfi1_pportdata *ppd)
12797 {
12798 struct hfi1_devdata *dd = ppd->dd;
12799 u64 reg = 0;
12800 int i;
12801
12802 dd_dev_info(dd, "Setting partition keys\n");
12803 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
12804 reg |= (ppd->pkeys[i] &
12805 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
12806 ((i % 4) *
12807 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
12808 /* Each register holds 4 PKey values. */
12809 if ((i % 4) == 3) {
12810 write_csr(dd, RCV_PARTITION_KEY +
12811 ((i - 3) * 2), reg);
12812 reg = 0;
12813 }
12814 }
12815
12816 /* Always enable HW pkeys check when pkeys table is set */
12817 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
12818 }
12819
12820 /*
12821 * These CSRs and memories are uninitialized on reset and must be
12822 * written before reading to set the ECC/parity bits.
12823 *
12824 * NOTE: All user context CSRs that are not mmaped write-only
12825 * (e.g. the TID flows) must be initialized even if the driver never
12826 * reads them.
12827 */
12828 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
12829 {
12830 int i, j;
12831
12832 /* CceIntMap */
12833 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12834 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12835
12836 /* SendCtxtCreditReturnAddr */
12837 for (i = 0; i < dd->chip_send_contexts; i++)
12838 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
12839
12840 /* PIO Send buffers */
12841 /* SDMA Send buffers */
12842 /*
12843 * These are not normally read, and (presently) have no method
12844 * to be read, so are not pre-initialized
12845 */
12846
12847 /* RcvHdrAddr */
12848 /* RcvHdrTailAddr */
12849 /* RcvTidFlowTable */
12850 for (i = 0; i < dd->chip_rcv_contexts; i++) {
12851 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
12852 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
12853 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
12854 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
12855 }
12856
12857 /* RcvArray */
12858 for (i = 0; i < dd->chip_rcv_array_count; i++)
12859 write_csr(dd, RCV_ARRAY + (8 * i),
12860 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
12861
12862 /* RcvQPMapTable */
12863 for (i = 0; i < 32; i++)
12864 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
12865 }
12866
12867 /*
12868 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
12869 */
12870 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
12871 u64 ctrl_bits)
12872 {
12873 unsigned long timeout;
12874 u64 reg;
12875
12876 /* is the condition present? */
12877 reg = read_csr(dd, CCE_STATUS);
12878 if ((reg & status_bits) == 0)
12879 return;
12880
12881 /* clear the condition */
12882 write_csr(dd, CCE_CTRL, ctrl_bits);
12883
12884 /* wait for the condition to clear */
12885 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
12886 while (1) {
12887 reg = read_csr(dd, CCE_STATUS);
12888 if ((reg & status_bits) == 0)
12889 return;
12890 if (time_after(jiffies, timeout)) {
12891 dd_dev_err(dd,
12892 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
12893 status_bits, reg & status_bits);
12894 return;
12895 }
12896 udelay(1);
12897 }
12898 }
12899
12900 /* set CCE CSRs to chip reset defaults */
12901 static void reset_cce_csrs(struct hfi1_devdata *dd)
12902 {
12903 int i;
12904
12905 /* CCE_REVISION read-only */
12906 /* CCE_REVISION2 read-only */
12907 /* CCE_CTRL - bits clear automatically */
12908 /* CCE_STATUS read-only, use CceCtrl to clear */
12909 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
12910 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
12911 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
12912 for (i = 0; i < CCE_NUM_SCRATCH; i++)
12913 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
12914 /* CCE_ERR_STATUS read-only */
12915 write_csr(dd, CCE_ERR_MASK, 0);
12916 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
12917 /* CCE_ERR_FORCE leave alone */
12918 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
12919 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
12920 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
12921 /* CCE_PCIE_CTRL leave alone */
12922 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
12923 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
12924 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
12925 CCE_MSIX_TABLE_UPPER_RESETCSR);
12926 }
12927 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
12928 /* CCE_MSIX_PBA read-only */
12929 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
12930 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
12931 }
12932 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12933 write_csr(dd, CCE_INT_MAP, 0);
12934 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12935 /* CCE_INT_STATUS read-only */
12936 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
12937 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
12938 /* CCE_INT_FORCE leave alone */
12939 /* CCE_INT_BLOCKED read-only */
12940 }
12941 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
12942 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
12943 }
12944
12945 /* set MISC CSRs to chip reset defaults */
12946 static void reset_misc_csrs(struct hfi1_devdata *dd)
12947 {
12948 int i;
12949
12950 for (i = 0; i < 32; i++) {
12951 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
12952 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
12953 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
12954 }
12955 /*
12956 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
12957 * only be written 128-byte chunks
12958 */
12959 /* init RSA engine to clear lingering errors */
12960 write_csr(dd, MISC_CFG_RSA_CMD, 1);
12961 write_csr(dd, MISC_CFG_RSA_MU, 0);
12962 write_csr(dd, MISC_CFG_FW_CTRL, 0);
12963 /* MISC_STS_8051_DIGEST read-only */
12964 /* MISC_STS_SBM_DIGEST read-only */
12965 /* MISC_STS_PCIE_DIGEST read-only */
12966 /* MISC_STS_FAB_DIGEST read-only */
12967 /* MISC_ERR_STATUS read-only */
12968 write_csr(dd, MISC_ERR_MASK, 0);
12969 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
12970 /* MISC_ERR_FORCE leave alone */
12971 }
12972
12973 /* set TXE CSRs to chip reset defaults */
12974 static void reset_txe_csrs(struct hfi1_devdata *dd)
12975 {
12976 int i;
12977
12978 /*
12979 * TXE Kernel CSRs
12980 */
12981 write_csr(dd, SEND_CTRL, 0);
12982 __cm_reset(dd, 0); /* reset CM internal state */
12983 /* SEND_CONTEXTS read-only */
12984 /* SEND_DMA_ENGINES read-only */
12985 /* SEND_PIO_MEM_SIZE read-only */
12986 /* SEND_DMA_MEM_SIZE read-only */
12987 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
12988 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
12989 /* SEND_PIO_ERR_STATUS read-only */
12990 write_csr(dd, SEND_PIO_ERR_MASK, 0);
12991 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
12992 /* SEND_PIO_ERR_FORCE leave alone */
12993 /* SEND_DMA_ERR_STATUS read-only */
12994 write_csr(dd, SEND_DMA_ERR_MASK, 0);
12995 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
12996 /* SEND_DMA_ERR_FORCE leave alone */
12997 /* SEND_EGRESS_ERR_STATUS read-only */
12998 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
12999 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13000 /* SEND_EGRESS_ERR_FORCE leave alone */
13001 write_csr(dd, SEND_BTH_QP, 0);
13002 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13003 write_csr(dd, SEND_SC2VLT0, 0);
13004 write_csr(dd, SEND_SC2VLT1, 0);
13005 write_csr(dd, SEND_SC2VLT2, 0);
13006 write_csr(dd, SEND_SC2VLT3, 0);
13007 write_csr(dd, SEND_LEN_CHECK0, 0);
13008 write_csr(dd, SEND_LEN_CHECK1, 0);
13009 /* SEND_ERR_STATUS read-only */
13010 write_csr(dd, SEND_ERR_MASK, 0);
13011 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13012 /* SEND_ERR_FORCE read-only */
13013 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13014 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13015 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13016 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13017 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13018 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13019 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13020 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13021 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13022 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13023 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13024 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13025 /* SEND_CM_CREDIT_USED_STATUS read-only */
13026 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13027 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13028 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13029 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13030 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13031 for (i = 0; i < TXE_NUM_DATA_VL; i++)
13032 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13033 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13034 /* SEND_CM_CREDIT_USED_VL read-only */
13035 /* SEND_CM_CREDIT_USED_VL15 read-only */
13036 /* SEND_EGRESS_CTXT_STATUS read-only */
13037 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13038 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13039 /* SEND_EGRESS_ERR_INFO read-only */
13040 /* SEND_EGRESS_ERR_SOURCE read-only */
13041
13042 /*
13043 * TXE Per-Context CSRs
13044 */
13045 for (i = 0; i < dd->chip_send_contexts; i++) {
13046 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13047 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13048 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13049 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13050 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13051 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13052 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13053 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13054 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13055 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13056 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13057 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13058 }
13059
13060 /*
13061 * TXE Per-SDMA CSRs
13062 */
13063 for (i = 0; i < dd->chip_sdma_engines; i++) {
13064 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13065 /* SEND_DMA_STATUS read-only */
13066 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13067 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13068 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13069 /* SEND_DMA_HEAD read-only */
13070 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13071 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13072 /* SEND_DMA_IDLE_CNT read-only */
13073 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13074 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13075 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13076 /* SEND_DMA_ENG_ERR_STATUS read-only */
13077 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13078 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13079 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13080 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13081 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13082 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13083 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13084 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13085 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13086 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13087 }
13088 }
13089
13090 /*
13091 * Expect on entry:
13092 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13093 */
13094 static void init_rbufs(struct hfi1_devdata *dd)
13095 {
13096 u64 reg;
13097 int count;
13098
13099 /*
13100 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13101 * clear.
13102 */
13103 count = 0;
13104 while (1) {
13105 reg = read_csr(dd, RCV_STATUS);
13106 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13107 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13108 break;
13109 /*
13110 * Give up after 1ms - maximum wait time.
13111 *
13112 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
13113 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13114 * 148 KB / (66% * 250MB/s) = 920us
13115 */
13116 if (count++ > 500) {
13117 dd_dev_err(dd,
13118 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13119 __func__, reg);
13120 break;
13121 }
13122 udelay(2); /* do not busy-wait the CSR */
13123 }
13124
13125 /* start the init - expect RcvCtrl to be 0 */
13126 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13127
13128 /*
13129 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13130 * period after the write before RcvStatus.RxRbufInitDone is valid.
13131 * The delay in the first run through the loop below is sufficient and
13132 * required before the first read of RcvStatus.RxRbufInintDone.
13133 */
13134 read_csr(dd, RCV_CTRL);
13135
13136 /* wait for the init to finish */
13137 count = 0;
13138 while (1) {
13139 /* delay is required first time through - see above */
13140 udelay(2); /* do not busy-wait the CSR */
13141 reg = read_csr(dd, RCV_STATUS);
13142 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13143 break;
13144
13145 /* give up after 100us - slowest possible at 33MHz is 73us */
13146 if (count++ > 50) {
13147 dd_dev_err(dd,
13148 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13149 __func__);
13150 break;
13151 }
13152 }
13153 }
13154
13155 /* set RXE CSRs to chip reset defaults */
13156 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13157 {
13158 int i, j;
13159
13160 /*
13161 * RXE Kernel CSRs
13162 */
13163 write_csr(dd, RCV_CTRL, 0);
13164 init_rbufs(dd);
13165 /* RCV_STATUS read-only */
13166 /* RCV_CONTEXTS read-only */
13167 /* RCV_ARRAY_CNT read-only */
13168 /* RCV_BUF_SIZE read-only */
13169 write_csr(dd, RCV_BTH_QP, 0);
13170 write_csr(dd, RCV_MULTICAST, 0);
13171 write_csr(dd, RCV_BYPASS, 0);
13172 write_csr(dd, RCV_VL15, 0);
13173 /* this is a clear-down */
13174 write_csr(dd, RCV_ERR_INFO,
13175 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13176 /* RCV_ERR_STATUS read-only */
13177 write_csr(dd, RCV_ERR_MASK, 0);
13178 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13179 /* RCV_ERR_FORCE leave alone */
13180 for (i = 0; i < 32; i++)
13181 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13182 for (i = 0; i < 4; i++)
13183 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13184 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13185 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13186 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13187 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13188 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13189 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13190 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13191 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13192 }
13193 for (i = 0; i < 32; i++)
13194 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13195
13196 /*
13197 * RXE Kernel and User Per-Context CSRs
13198 */
13199 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13200 /* kernel */
13201 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13202 /* RCV_CTXT_STATUS read-only */
13203 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13204 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13205 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13206 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13207 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13208 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13209 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13210 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13211 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13212 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13213
13214 /* user */
13215 /* RCV_HDR_TAIL read-only */
13216 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13217 /* RCV_EGR_INDEX_TAIL read-only */
13218 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13219 /* RCV_EGR_OFFSET_TAIL read-only */
13220 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13221 write_uctxt_csr(dd, i,
13222 RCV_TID_FLOW_TABLE + (8 * j), 0);
13223 }
13224 }
13225 }
13226
13227 /*
13228 * Set sc2vl tables.
13229 *
13230 * They power on to zeros, so to avoid send context errors
13231 * they need to be set:
13232 *
13233 * SC 0-7 -> VL 0-7 (respectively)
13234 * SC 15 -> VL 15
13235 * otherwise
13236 * -> VL 0
13237 */
13238 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13239 {
13240 int i;
13241 /* init per architecture spec, constrained by hardware capability */
13242
13243 /* HFI maps sent packets */
13244 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13245 0,
13246 0, 0, 1, 1,
13247 2, 2, 3, 3,
13248 4, 4, 5, 5,
13249 6, 6, 7, 7));
13250 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13251 1,
13252 8, 0, 9, 0,
13253 10, 0, 11, 0,
13254 12, 0, 13, 0,
13255 14, 0, 15, 15));
13256 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13257 2,
13258 16, 0, 17, 0,
13259 18, 0, 19, 0,
13260 20, 0, 21, 0,
13261 22, 0, 23, 0));
13262 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13263 3,
13264 24, 0, 25, 0,
13265 26, 0, 27, 0,
13266 28, 0, 29, 0,
13267 30, 0, 31, 0));
13268
13269 /* DC maps received packets */
13270 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13271 15_0,
13272 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13273 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13274 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13275 31_16,
13276 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13277 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13278
13279 /* initialize the cached sc2vl values consistently with h/w */
13280 for (i = 0; i < 32; i++) {
13281 if (i < 8 || i == 15)
13282 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13283 else
13284 *((u8 *)(dd->sc2vl) + i) = 0;
13285 }
13286 }
13287
13288 /*
13289 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13290 * depend on the chip going through a power-on reset - a driver may be loaded
13291 * and unloaded many times.
13292 *
13293 * Do not write any CSR values to the chip in this routine - there may be
13294 * a reset following the (possible) FLR in this routine.
13295 *
13296 */
13297 static void init_chip(struct hfi1_devdata *dd)
13298 {
13299 int i;
13300
13301 /*
13302 * Put the HFI CSRs in a known state.
13303 * Combine this with a DC reset.
13304 *
13305 * Stop the device from doing anything while we do a
13306 * reset. We know there are no other active users of
13307 * the device since we are now in charge. Turn off
13308 * off all outbound and inbound traffic and make sure
13309 * the device does not generate any interrupts.
13310 */
13311
13312 /* disable send contexts and SDMA engines */
13313 write_csr(dd, SEND_CTRL, 0);
13314 for (i = 0; i < dd->chip_send_contexts; i++)
13315 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13316 for (i = 0; i < dd->chip_sdma_engines; i++)
13317 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13318 /* disable port (turn off RXE inbound traffic) and contexts */
13319 write_csr(dd, RCV_CTRL, 0);
13320 for (i = 0; i < dd->chip_rcv_contexts; i++)
13321 write_csr(dd, RCV_CTXT_CTRL, 0);
13322 /* mask all interrupt sources */
13323 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13324 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13325
13326 /*
13327 * DC Reset: do a full DC reset before the register clear.
13328 * A recommended length of time to hold is one CSR read,
13329 * so reread the CceDcCtrl. Then, hold the DC in reset
13330 * across the clear.
13331 */
13332 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13333 (void)read_csr(dd, CCE_DC_CTRL);
13334
13335 if (use_flr) {
13336 /*
13337 * A FLR will reset the SPC core and part of the PCIe.
13338 * The parts that need to be restored have already been
13339 * saved.
13340 */
13341 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13342
13343 /* do the FLR, the DC reset will remain */
13344 hfi1_pcie_flr(dd);
13345
13346 /* restore command and BARs */
13347 restore_pci_variables(dd);
13348
13349 if (is_ax(dd)) {
13350 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13351 hfi1_pcie_flr(dd);
13352 restore_pci_variables(dd);
13353 }
13354 } else {
13355 dd_dev_info(dd, "Resetting CSRs with writes\n");
13356 reset_cce_csrs(dd);
13357 reset_txe_csrs(dd);
13358 reset_rxe_csrs(dd);
13359 reset_misc_csrs(dd);
13360 }
13361 /* clear the DC reset */
13362 write_csr(dd, CCE_DC_CTRL, 0);
13363
13364 /* Set the LED off */
13365 setextled(dd, 0);
13366
13367 /*
13368 * Clear the QSFP reset.
13369 * An FLR enforces a 0 on all out pins. The driver does not touch
13370 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
13371 * anything plugged constantly in reset, if it pays attention
13372 * to RESET_N.
13373 * Prime examples of this are optical cables. Set all pins high.
13374 * I2CCLK and I2CDAT will change per direction, and INT_N and
13375 * MODPRS_N are input only and their value is ignored.
13376 */
13377 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13378 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13379 init_chip_resources(dd);
13380 }
13381
13382 static void init_early_variables(struct hfi1_devdata *dd)
13383 {
13384 int i;
13385
13386 /* assign link credit variables */
13387 dd->vau = CM_VAU;
13388 dd->link_credits = CM_GLOBAL_CREDITS;
13389 if (is_ax(dd))
13390 dd->link_credits--;
13391 dd->vcu = cu_to_vcu(hfi1_cu);
13392 /* enough room for 8 MAD packets plus header - 17K */
13393 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13394 if (dd->vl15_init > dd->link_credits)
13395 dd->vl15_init = dd->link_credits;
13396
13397 write_uninitialized_csrs_and_memories(dd);
13398
13399 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13400 for (i = 0; i < dd->num_pports; i++) {
13401 struct hfi1_pportdata *ppd = &dd->pport[i];
13402
13403 set_partition_keys(ppd);
13404 }
13405 init_sc2vl_tables(dd);
13406 }
13407
13408 static void init_kdeth_qp(struct hfi1_devdata *dd)
13409 {
13410 /* user changed the KDETH_QP */
13411 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13412 /* out of range or illegal value */
13413 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13414 kdeth_qp = 0;
13415 }
13416 if (kdeth_qp == 0) /* not set, or failed range check */
13417 kdeth_qp = DEFAULT_KDETH_QP;
13418
13419 write_csr(dd, SEND_BTH_QP,
13420 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13421 SEND_BTH_QP_KDETH_QP_SHIFT);
13422
13423 write_csr(dd, RCV_BTH_QP,
13424 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13425 RCV_BTH_QP_KDETH_QP_SHIFT);
13426 }
13427
13428 /**
13429 * init_qpmap_table
13430 * @dd - device data
13431 * @first_ctxt - first context
13432 * @last_ctxt - first context
13433 *
13434 * This return sets the qpn mapping table that
13435 * is indexed by qpn[8:1].
13436 *
13437 * The routine will round robin the 256 settings
13438 * from first_ctxt to last_ctxt.
13439 *
13440 * The first/last looks ahead to having specialized
13441 * receive contexts for mgmt and bypass. Normal
13442 * verbs traffic will assumed to be on a range
13443 * of receive contexts.
13444 */
13445 static void init_qpmap_table(struct hfi1_devdata *dd,
13446 u32 first_ctxt,
13447 u32 last_ctxt)
13448 {
13449 u64 reg = 0;
13450 u64 regno = RCV_QP_MAP_TABLE;
13451 int i;
13452 u64 ctxt = first_ctxt;
13453
13454 for (i = 0; i < 256;) {
13455 reg |= ctxt << (8 * (i % 8));
13456 i++;
13457 ctxt++;
13458 if (ctxt > last_ctxt)
13459 ctxt = first_ctxt;
13460 if (i % 8 == 0) {
13461 write_csr(dd, regno, reg);
13462 reg = 0;
13463 regno += 8;
13464 }
13465 }
13466 if (i % 8)
13467 write_csr(dd, regno, reg);
13468
13469 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13470 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13471 }
13472
13473 /**
13474 * init_qos - init RX qos
13475 * @dd - device data
13476 * @first_context
13477 *
13478 * This routine initializes Rule 0 and the
13479 * RSM map table to implement qos.
13480 *
13481 * If all of the limit tests succeed,
13482 * qos is applied based on the array
13483 * interpretation of krcvqs where
13484 * entry 0 is VL0.
13485 *
13486 * The number of vl bits (n) and the number of qpn
13487 * bits (m) are computed to feed both the RSM map table
13488 * and the single rule.
13489 *
13490 */
13491 static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
13492 {
13493 u8 max_by_vl = 0;
13494 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13495 u64 *rsmmap;
13496 u64 reg;
13497 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
13498
13499 /* validate */
13500 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13501 num_vls == 1 ||
13502 krcvqsset <= 1)
13503 goto bail;
13504 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
13505 if (krcvqs[i] > max_by_vl)
13506 max_by_vl = krcvqs[i];
13507 if (max_by_vl > 32)
13508 goto bail;
13509 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
13510 /* determine bits vl */
13511 n = ilog2(num_vls);
13512 /* determine bits for qpn */
13513 m = ilog2(qpns_per_vl);
13514 if ((m + n) > 7)
13515 goto bail;
13516 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
13517 goto bail;
13518 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
13519 if (!rsmmap)
13520 goto bail;
13521 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
13522 /* init the local copy of the table */
13523 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
13524 unsigned tctxt;
13525
13526 for (qpn = 0, tctxt = ctxt;
13527 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13528 unsigned idx, regoff, regidx;
13529
13530 /* generate index <= 128 */
13531 idx = (qpn << n) ^ i;
13532 regoff = (idx % 8) * 8;
13533 regidx = idx / 8;
13534 reg = rsmmap[regidx];
13535 /* replace 0xff with context number */
13536 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13537 << regoff);
13538 reg |= (u64)(tctxt++) << regoff;
13539 rsmmap[regidx] = reg;
13540 if (tctxt == ctxt + krcvqs[i])
13541 tctxt = ctxt;
13542 }
13543 ctxt += krcvqs[i];
13544 }
13545 /* flush cached copies to chip */
13546 for (i = 0; i < NUM_MAP_REGS; i++)
13547 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
13548 /* add rule0 */
13549 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
13550 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK <<
13551 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
13552 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13553 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
13554 LRH_BTH_MATCH_OFFSET << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13555 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13556 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13557 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13558 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13559 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13560 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
13561 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
13562 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
13563 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
13564 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
13565 /* Enable RSM */
13566 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13567 kfree(rsmmap);
13568 /* map everything else to first context */
13569 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, MIN_KERNEL_KCTXTS - 1);
13570 dd->qos_shift = n + 1;
13571 return;
13572 bail:
13573 dd->qos_shift = 1;
13574 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
13575 }
13576
13577 static void init_rxe(struct hfi1_devdata *dd)
13578 {
13579 /* enable all receive errors */
13580 write_csr(dd, RCV_ERR_MASK, ~0ull);
13581 /* setup QPN map table - start where VL15 context leaves off */
13582 init_qos(dd, dd->n_krcv_queues > MIN_KERNEL_KCTXTS ?
13583 MIN_KERNEL_KCTXTS : 0);
13584 /*
13585 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
13586 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
13587 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
13588 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
13589 * Max_PayLoad_Size set to its minimum of 128.
13590 *
13591 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
13592 * (64 bytes). Max_Payload_Size is possibly modified upward in
13593 * tune_pcie_caps() which is called after this routine.
13594 */
13595 }
13596
13597 static void init_other(struct hfi1_devdata *dd)
13598 {
13599 /* enable all CCE errors */
13600 write_csr(dd, CCE_ERR_MASK, ~0ull);
13601 /* enable *some* Misc errors */
13602 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
13603 /* enable all DC errors, except LCB */
13604 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
13605 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
13606 }
13607
13608 /*
13609 * Fill out the given AU table using the given CU. A CU is defined in terms
13610 * AUs. The table is a an encoding: given the index, how many AUs does that
13611 * represent?
13612 *
13613 * NOTE: Assumes that the register layout is the same for the
13614 * local and remote tables.
13615 */
13616 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
13617 u32 csr0to3, u32 csr4to7)
13618 {
13619 write_csr(dd, csr0to3,
13620 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
13621 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
13622 2ull * cu <<
13623 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
13624 4ull * cu <<
13625 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
13626 write_csr(dd, csr4to7,
13627 8ull * cu <<
13628 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
13629 16ull * cu <<
13630 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
13631 32ull * cu <<
13632 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
13633 64ull * cu <<
13634 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
13635 }
13636
13637 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13638 {
13639 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
13640 SEND_CM_LOCAL_AU_TABLE4_TO7);
13641 }
13642
13643 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13644 {
13645 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
13646 SEND_CM_REMOTE_AU_TABLE4_TO7);
13647 }
13648
13649 static void init_txe(struct hfi1_devdata *dd)
13650 {
13651 int i;
13652
13653 /* enable all PIO, SDMA, general, and Egress errors */
13654 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
13655 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
13656 write_csr(dd, SEND_ERR_MASK, ~0ull);
13657 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
13658
13659 /* enable all per-context and per-SDMA engine errors */
13660 for (i = 0; i < dd->chip_send_contexts; i++)
13661 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
13662 for (i = 0; i < dd->chip_sdma_engines; i++)
13663 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
13664
13665 /* set the local CU to AU mapping */
13666 assign_local_cm_au_table(dd, dd->vcu);
13667
13668 /*
13669 * Set reasonable default for Credit Return Timer
13670 * Don't set on Simulator - causes it to choke.
13671 */
13672 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
13673 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
13674 }
13675
13676 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
13677 {
13678 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13679 unsigned sctxt;
13680 int ret = 0;
13681 u64 reg;
13682
13683 if (!rcd || !rcd->sc) {
13684 ret = -EINVAL;
13685 goto done;
13686 }
13687 sctxt = rcd->sc->hw_context;
13688 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
13689 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
13690 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
13691 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
13692 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
13693 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
13694 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
13695 /*
13696 * Enable send-side J_KEY integrity check, unless this is A0 h/w
13697 */
13698 if (!is_ax(dd)) {
13699 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13700 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13701 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13702 }
13703
13704 /* Enable J_KEY check on receive context. */
13705 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
13706 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
13707 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
13708 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
13709 done:
13710 return ret;
13711 }
13712
13713 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
13714 {
13715 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13716 unsigned sctxt;
13717 int ret = 0;
13718 u64 reg;
13719
13720 if (!rcd || !rcd->sc) {
13721 ret = -EINVAL;
13722 goto done;
13723 }
13724 sctxt = rcd->sc->hw_context;
13725 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
13726 /*
13727 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
13728 * This check would not have been enabled for A0 h/w, see
13729 * set_ctxt_jkey().
13730 */
13731 if (!is_ax(dd)) {
13732 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13733 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13734 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13735 }
13736 /* Turn off the J_KEY on the receive side */
13737 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
13738 done:
13739 return ret;
13740 }
13741
13742 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
13743 {
13744 struct hfi1_ctxtdata *rcd;
13745 unsigned sctxt;
13746 int ret = 0;
13747 u64 reg;
13748
13749 if (ctxt < dd->num_rcv_contexts) {
13750 rcd = dd->rcd[ctxt];
13751 } else {
13752 ret = -EINVAL;
13753 goto done;
13754 }
13755 if (!rcd || !rcd->sc) {
13756 ret = -EINVAL;
13757 goto done;
13758 }
13759 sctxt = rcd->sc->hw_context;
13760 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
13761 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
13762 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
13763 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13764 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13765 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13766 done:
13767 return ret;
13768 }
13769
13770 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
13771 {
13772 struct hfi1_ctxtdata *rcd;
13773 unsigned sctxt;
13774 int ret = 0;
13775 u64 reg;
13776
13777 if (ctxt < dd->num_rcv_contexts) {
13778 rcd = dd->rcd[ctxt];
13779 } else {
13780 ret = -EINVAL;
13781 goto done;
13782 }
13783 if (!rcd || !rcd->sc) {
13784 ret = -EINVAL;
13785 goto done;
13786 }
13787 sctxt = rcd->sc->hw_context;
13788 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13789 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13790 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13791 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13792 done:
13793 return ret;
13794 }
13795
13796 /*
13797 * Start doing the clean up the the chip. Our clean up happens in multiple
13798 * stages and this is just the first.
13799 */
13800 void hfi1_start_cleanup(struct hfi1_devdata *dd)
13801 {
13802 aspm_exit(dd);
13803 free_cntrs(dd);
13804 free_rcverr(dd);
13805 clean_up_interrupts(dd);
13806 finish_chip_resources(dd);
13807 }
13808
13809 #define HFI_BASE_GUID(dev) \
13810 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
13811
13812 /*
13813 * Information can be shared between the two HFIs on the same ASIC
13814 * in the same OS. This function finds the peer device and sets
13815 * up a shared structure.
13816 */
13817 static int init_asic_data(struct hfi1_devdata *dd)
13818 {
13819 unsigned long flags;
13820 struct hfi1_devdata *tmp, *peer = NULL;
13821 int ret = 0;
13822
13823 spin_lock_irqsave(&hfi1_devs_lock, flags);
13824 /* Find our peer device */
13825 list_for_each_entry(tmp, &hfi1_dev_list, list) {
13826 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
13827 dd->unit != tmp->unit) {
13828 peer = tmp;
13829 break;
13830 }
13831 }
13832
13833 if (peer) {
13834 dd->asic_data = peer->asic_data;
13835 } else {
13836 dd->asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
13837 if (!dd->asic_data) {
13838 ret = -ENOMEM;
13839 goto done;
13840 }
13841 mutex_init(&dd->asic_data->asic_resource_mutex);
13842 }
13843 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
13844
13845 done:
13846 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
13847 return ret;
13848 }
13849
13850 /*
13851 * Set dd->boardname. Use a generic name if a name is not returned from
13852 * EFI variable space.
13853 *
13854 * Return 0 on success, -ENOMEM if space could not be allocated.
13855 */
13856 static int obtain_boardname(struct hfi1_devdata *dd)
13857 {
13858 /* generic board description */
13859 const char generic[] =
13860 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
13861 unsigned long size;
13862 int ret;
13863
13864 ret = read_hfi1_efi_var(dd, "description", &size,
13865 (void **)&dd->boardname);
13866 if (ret) {
13867 dd_dev_info(dd, "Board description not found\n");
13868 /* use generic description */
13869 dd->boardname = kstrdup(generic, GFP_KERNEL);
13870 if (!dd->boardname)
13871 return -ENOMEM;
13872 }
13873 return 0;
13874 }
13875
13876 /*
13877 * Check the interrupt registers to make sure that they are mapped correctly.
13878 * It is intended to help user identify any mismapping by VMM when the driver
13879 * is running in a VM. This function should only be called before interrupt
13880 * is set up properly.
13881 *
13882 * Return 0 on success, -EINVAL on failure.
13883 */
13884 static int check_int_registers(struct hfi1_devdata *dd)
13885 {
13886 u64 reg;
13887 u64 all_bits = ~(u64)0;
13888 u64 mask;
13889
13890 /* Clear CceIntMask[0] to avoid raising any interrupts */
13891 mask = read_csr(dd, CCE_INT_MASK);
13892 write_csr(dd, CCE_INT_MASK, 0ull);
13893 reg = read_csr(dd, CCE_INT_MASK);
13894 if (reg)
13895 goto err_exit;
13896
13897 /* Clear all interrupt status bits */
13898 write_csr(dd, CCE_INT_CLEAR, all_bits);
13899 reg = read_csr(dd, CCE_INT_STATUS);
13900 if (reg)
13901 goto err_exit;
13902
13903 /* Set all interrupt status bits */
13904 write_csr(dd, CCE_INT_FORCE, all_bits);
13905 reg = read_csr(dd, CCE_INT_STATUS);
13906 if (reg != all_bits)
13907 goto err_exit;
13908
13909 /* Restore the interrupt mask */
13910 write_csr(dd, CCE_INT_CLEAR, all_bits);
13911 write_csr(dd, CCE_INT_MASK, mask);
13912
13913 return 0;
13914 err_exit:
13915 write_csr(dd, CCE_INT_MASK, mask);
13916 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
13917 return -EINVAL;
13918 }
13919
13920 /**
13921 * Allocate and initialize the device structure for the hfi.
13922 * @dev: the pci_dev for hfi1_ib device
13923 * @ent: pci_device_id struct for this dev
13924 *
13925 * Also allocates, initializes, and returns the devdata struct for this
13926 * device instance
13927 *
13928 * This is global, and is called directly at init to set up the
13929 * chip-specific function pointers for later use.
13930 */
13931 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
13932 const struct pci_device_id *ent)
13933 {
13934 struct hfi1_devdata *dd;
13935 struct hfi1_pportdata *ppd;
13936 u64 reg;
13937 int i, ret;
13938 static const char * const inames[] = { /* implementation names */
13939 "RTL silicon",
13940 "RTL VCS simulation",
13941 "RTL FPGA emulation",
13942 "Functional simulator"
13943 };
13944 struct pci_dev *parent = pdev->bus->self;
13945
13946 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
13947 sizeof(struct hfi1_pportdata));
13948 if (IS_ERR(dd))
13949 goto bail;
13950 ppd = dd->pport;
13951 for (i = 0; i < dd->num_pports; i++, ppd++) {
13952 int vl;
13953 /* init common fields */
13954 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
13955 /* DC supports 4 link widths */
13956 ppd->link_width_supported =
13957 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
13958 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
13959 ppd->link_width_downgrade_supported =
13960 ppd->link_width_supported;
13961 /* start out enabling only 4X */
13962 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
13963 ppd->link_width_downgrade_enabled =
13964 ppd->link_width_downgrade_supported;
13965 /* link width active is 0 when link is down */
13966 /* link width downgrade active is 0 when link is down */
13967
13968 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
13969 num_vls > HFI1_MAX_VLS_SUPPORTED) {
13970 hfi1_early_err(&pdev->dev,
13971 "Invalid num_vls %u, using %u VLs\n",
13972 num_vls, HFI1_MAX_VLS_SUPPORTED);
13973 num_vls = HFI1_MAX_VLS_SUPPORTED;
13974 }
13975 ppd->vls_supported = num_vls;
13976 ppd->vls_operational = ppd->vls_supported;
13977 ppd->actual_vls_operational = ppd->vls_supported;
13978 /* Set the default MTU. */
13979 for (vl = 0; vl < num_vls; vl++)
13980 dd->vld[vl].mtu = hfi1_max_mtu;
13981 dd->vld[15].mtu = MAX_MAD_PACKET;
13982 /*
13983 * Set the initial values to reasonable default, will be set
13984 * for real when link is up.
13985 */
13986 ppd->lstate = IB_PORT_DOWN;
13987 ppd->overrun_threshold = 0x4;
13988 ppd->phy_error_threshold = 0xf;
13989 ppd->port_crc_mode_enabled = link_crc_mask;
13990 /* initialize supported LTP CRC mode */
13991 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
13992 /* initialize enabled LTP CRC mode */
13993 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
13994 /* start in offline */
13995 ppd->host_link_state = HLS_DN_OFFLINE;
13996 init_vl_arb_caches(ppd);
13997 ppd->last_pstate = 0xff; /* invalid value */
13998 }
13999
14000 dd->link_default = HLS_DN_POLL;
14001
14002 /*
14003 * Do remaining PCIe setup and save PCIe values in dd.
14004 * Any error printing is already done by the init code.
14005 * On return, we have the chip mapped.
14006 */
14007 ret = hfi1_pcie_ddinit(dd, pdev, ent);
14008 if (ret < 0)
14009 goto bail_free;
14010
14011 /* verify that reads actually work, save revision for reset check */
14012 dd->revision = read_csr(dd, CCE_REVISION);
14013 if (dd->revision == ~(u64)0) {
14014 dd_dev_err(dd, "cannot read chip CSRs\n");
14015 ret = -EINVAL;
14016 goto bail_cleanup;
14017 }
14018 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14019 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14020 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14021 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14022
14023 /*
14024 * Check interrupt registers mapping if the driver has no access to
14025 * the upstream component. In this case, it is likely that the driver
14026 * is running in a VM.
14027 */
14028 if (!parent) {
14029 ret = check_int_registers(dd);
14030 if (ret)
14031 goto bail_cleanup;
14032 }
14033
14034 /*
14035 * obtain the hardware ID - NOT related to unit, which is a
14036 * software enumeration
14037 */
14038 reg = read_csr(dd, CCE_REVISION2);
14039 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14040 & CCE_REVISION2_HFI_ID_MASK;
14041 /* the variable size will remove unwanted bits */
14042 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14043 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14044 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14045 dd->icode < ARRAY_SIZE(inames) ?
14046 inames[dd->icode] : "unknown", (int)dd->irev);
14047
14048 /* speeds the hardware can support */
14049 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14050 /* speeds allowed to run at */
14051 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14052 /* give a reasonable active value, will be set on link up */
14053 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14054
14055 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14056 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14057 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14058 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14059 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14060 /* fix up link widths for emulation _p */
14061 ppd = dd->pport;
14062 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14063 ppd->link_width_supported =
14064 ppd->link_width_enabled =
14065 ppd->link_width_downgrade_supported =
14066 ppd->link_width_downgrade_enabled =
14067 OPA_LINK_WIDTH_1X;
14068 }
14069 /* insure num_vls isn't larger than number of sdma engines */
14070 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14071 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14072 num_vls, dd->chip_sdma_engines);
14073 num_vls = dd->chip_sdma_engines;
14074 ppd->vls_supported = dd->chip_sdma_engines;
14075 ppd->vls_operational = ppd->vls_supported;
14076 }
14077
14078 /*
14079 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14080 * Limit the max if larger than the field holds. If timeout is
14081 * non-zero, then the calculated field will be at least 1.
14082 *
14083 * Must be after icode is set up - the cclock rate depends
14084 * on knowing the hardware being used.
14085 */
14086 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14087 if (dd->rcv_intr_timeout_csr >
14088 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14089 dd->rcv_intr_timeout_csr =
14090 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14091 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14092 dd->rcv_intr_timeout_csr = 1;
14093
14094 /* needs to be done before we look for the peer device */
14095 read_guid(dd);
14096
14097 /* set up shared ASIC data with peer device */
14098 ret = init_asic_data(dd);
14099 if (ret)
14100 goto bail_cleanup;
14101
14102 /* obtain chip sizes, reset chip CSRs */
14103 init_chip(dd);
14104
14105 /* read in the PCIe link speed information */
14106 ret = pcie_speeds(dd);
14107 if (ret)
14108 goto bail_cleanup;
14109
14110 /* Needs to be called before hfi1_firmware_init */
14111 get_platform_config(dd);
14112
14113 /* read in firmware */
14114 ret = hfi1_firmware_init(dd);
14115 if (ret)
14116 goto bail_cleanup;
14117
14118 /*
14119 * In general, the PCIe Gen3 transition must occur after the
14120 * chip has been idled (so it won't initiate any PCIe transactions
14121 * e.g. an interrupt) and before the driver changes any registers
14122 * (the transition will reset the registers).
14123 *
14124 * In particular, place this call after:
14125 * - init_chip() - the chip will not initiate any PCIe transactions
14126 * - pcie_speeds() - reads the current link speed
14127 * - hfi1_firmware_init() - the needed firmware is ready to be
14128 * downloaded
14129 */
14130 ret = do_pcie_gen3_transition(dd);
14131 if (ret)
14132 goto bail_cleanup;
14133
14134 /* start setting dd values and adjusting CSRs */
14135 init_early_variables(dd);
14136
14137 parse_platform_config(dd);
14138
14139 ret = obtain_boardname(dd);
14140 if (ret)
14141 goto bail_cleanup;
14142
14143 snprintf(dd->boardversion, BOARD_VERS_MAX,
14144 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14145 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14146 (u32)dd->majrev,
14147 (u32)dd->minrev,
14148 (dd->revision >> CCE_REVISION_SW_SHIFT)
14149 & CCE_REVISION_SW_MASK);
14150
14151 ret = set_up_context_variables(dd);
14152 if (ret)
14153 goto bail_cleanup;
14154
14155 /* set initial RXE CSRs */
14156 init_rxe(dd);
14157 /* set initial TXE CSRs */
14158 init_txe(dd);
14159 /* set initial non-RXE, non-TXE CSRs */
14160 init_other(dd);
14161 /* set up KDETH QP prefix in both RX and TX CSRs */
14162 init_kdeth_qp(dd);
14163
14164 ret = hfi1_dev_affinity_init(dd);
14165 if (ret)
14166 goto bail_cleanup;
14167
14168 /* send contexts must be set up before receive contexts */
14169 ret = init_send_contexts(dd);
14170 if (ret)
14171 goto bail_cleanup;
14172
14173 ret = hfi1_create_ctxts(dd);
14174 if (ret)
14175 goto bail_cleanup;
14176
14177 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14178 /*
14179 * rcd[0] is guaranteed to be valid by this point. Also, all
14180 * context are using the same value, as per the module parameter.
14181 */
14182 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14183
14184 ret = init_pervl_scs(dd);
14185 if (ret)
14186 goto bail_cleanup;
14187
14188 /* sdma init */
14189 for (i = 0; i < dd->num_pports; ++i) {
14190 ret = sdma_init(dd, i);
14191 if (ret)
14192 goto bail_cleanup;
14193 }
14194
14195 /* use contexts created by hfi1_create_ctxts */
14196 ret = set_up_interrupts(dd);
14197 if (ret)
14198 goto bail_cleanup;
14199
14200 /* set up LCB access - must be after set_up_interrupts() */
14201 init_lcb_access(dd);
14202
14203 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14204 dd->base_guid & 0xFFFFFF);
14205
14206 dd->oui1 = dd->base_guid >> 56 & 0xFF;
14207 dd->oui2 = dd->base_guid >> 48 & 0xFF;
14208 dd->oui3 = dd->base_guid >> 40 & 0xFF;
14209
14210 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14211 if (ret)
14212 goto bail_clear_intr;
14213 check_fabric_firmware_versions(dd);
14214
14215 thermal_init(dd);
14216
14217 ret = init_cntrs(dd);
14218 if (ret)
14219 goto bail_clear_intr;
14220
14221 ret = init_rcverr(dd);
14222 if (ret)
14223 goto bail_free_cntrs;
14224
14225 ret = eprom_init(dd);
14226 if (ret)
14227 goto bail_free_rcverr;
14228
14229 goto bail;
14230
14231 bail_free_rcverr:
14232 free_rcverr(dd);
14233 bail_free_cntrs:
14234 free_cntrs(dd);
14235 bail_clear_intr:
14236 clean_up_interrupts(dd);
14237 bail_cleanup:
14238 hfi1_pcie_ddcleanup(dd);
14239 bail_free:
14240 hfi1_free_devdata(dd);
14241 dd = ERR_PTR(ret);
14242 bail:
14243 return dd;
14244 }
14245
14246 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14247 u32 dw_len)
14248 {
14249 u32 delta_cycles;
14250 u32 current_egress_rate = ppd->current_egress_rate;
14251 /* rates here are in units of 10^6 bits/sec */
14252
14253 if (desired_egress_rate == -1)
14254 return 0; /* shouldn't happen */
14255
14256 if (desired_egress_rate >= current_egress_rate)
14257 return 0; /* we can't help go faster, only slower */
14258
14259 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14260 egress_cycles(dw_len * 4, current_egress_rate);
14261
14262 return (u16)delta_cycles;
14263 }
14264
14265 /**
14266 * create_pbc - build a pbc for transmission
14267 * @flags: special case flags or-ed in built pbc
14268 * @srate: static rate
14269 * @vl: vl
14270 * @dwlen: dword length (header words + data words + pbc words)
14271 *
14272 * Create a PBC with the given flags, rate, VL, and length.
14273 *
14274 * NOTE: The PBC created will not insert any HCRC - all callers but one are
14275 * for verbs, which does not use this PSM feature. The lone other caller
14276 * is for the diagnostic interface which calls this if the user does not
14277 * supply their own PBC.
14278 */
14279 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14280 u32 dw_len)
14281 {
14282 u64 pbc, delay = 0;
14283
14284 if (unlikely(srate_mbs))
14285 delay = delay_cycles(ppd, srate_mbs, dw_len);
14286
14287 pbc = flags
14288 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14289 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14290 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14291 | (dw_len & PBC_LENGTH_DWS_MASK)
14292 << PBC_LENGTH_DWS_SHIFT;
14293
14294 return pbc;
14295 }
14296
14297 #define SBUS_THERMAL 0x4f
14298 #define SBUS_THERM_MONITOR_MODE 0x1
14299
14300 #define THERM_FAILURE(dev, ret, reason) \
14301 dd_dev_err((dd), \
14302 "Thermal sensor initialization failed: %s (%d)\n", \
14303 (reason), (ret))
14304
14305 /*
14306 * Initialize the Avago Thermal sensor.
14307 *
14308 * After initialization, enable polling of thermal sensor through
14309 * SBus interface. In order for this to work, the SBus Master
14310 * firmware has to be loaded due to the fact that the HW polling
14311 * logic uses SBus interrupts, which are not supported with
14312 * default firmware. Otherwise, no data will be returned through
14313 * the ASIC_STS_THERM CSR.
14314 */
14315 static int thermal_init(struct hfi1_devdata *dd)
14316 {
14317 int ret = 0;
14318
14319 if (dd->icode != ICODE_RTL_SILICON ||
14320 check_chip_resource(dd, CR_THERM_INIT, NULL))
14321 return ret;
14322
14323 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14324 if (ret) {
14325 THERM_FAILURE(dd, ret, "Acquire SBus");
14326 return ret;
14327 }
14328
14329 dd_dev_info(dd, "Initializing thermal sensor\n");
14330 /* Disable polling of thermal readings */
14331 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14332 msleep(100);
14333 /* Thermal Sensor Initialization */
14334 /* Step 1: Reset the Thermal SBus Receiver */
14335 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14336 RESET_SBUS_RECEIVER, 0);
14337 if (ret) {
14338 THERM_FAILURE(dd, ret, "Bus Reset");
14339 goto done;
14340 }
14341 /* Step 2: Set Reset bit in Thermal block */
14342 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14343 WRITE_SBUS_RECEIVER, 0x1);
14344 if (ret) {
14345 THERM_FAILURE(dd, ret, "Therm Block Reset");
14346 goto done;
14347 }
14348 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
14349 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14350 WRITE_SBUS_RECEIVER, 0x32);
14351 if (ret) {
14352 THERM_FAILURE(dd, ret, "Write Clock Div");
14353 goto done;
14354 }
14355 /* Step 4: Select temperature mode */
14356 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14357 WRITE_SBUS_RECEIVER,
14358 SBUS_THERM_MONITOR_MODE);
14359 if (ret) {
14360 THERM_FAILURE(dd, ret, "Write Mode Sel");
14361 goto done;
14362 }
14363 /* Step 5: De-assert block reset and start conversion */
14364 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14365 WRITE_SBUS_RECEIVER, 0x2);
14366 if (ret) {
14367 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14368 goto done;
14369 }
14370 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
14371 msleep(22);
14372
14373 /* Enable polling of thermal readings */
14374 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14375
14376 /* Set initialized flag */
14377 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
14378 if (ret)
14379 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
14380
14381 done:
14382 release_chip_resource(dd, CR_SBUS);
14383 return ret;
14384 }
14385
14386 static void handle_temp_err(struct hfi1_devdata *dd)
14387 {
14388 struct hfi1_pportdata *ppd = &dd->pport[0];
14389 /*
14390 * Thermal Critical Interrupt
14391 * Put the device into forced freeze mode, take link down to
14392 * offline, and put DC into reset.
14393 */
14394 dd_dev_emerg(dd,
14395 "Critical temperature reached! Forcing device into freeze mode!\n");
14396 dd->flags |= HFI1_FORCED_FREEZE;
14397 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
14398 /*
14399 * Shut DC down as much and as quickly as possible.
14400 *
14401 * Step 1: Take the link down to OFFLINE. This will cause the
14402 * 8051 to put the Serdes in reset. However, we don't want to
14403 * go through the entire link state machine since we want to
14404 * shutdown ASAP. Furthermore, this is not a graceful shutdown
14405 * but rather an attempt to save the chip.
14406 * Code below is almost the same as quiet_serdes() but avoids
14407 * all the extra work and the sleeps.
14408 */
14409 ppd->driver_link_ready = 0;
14410 ppd->link_enabled = 0;
14411 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14412 PLS_OFFLINE);
14413 /*
14414 * Step 2: Shutdown LCB and 8051
14415 * After shutdown, do not restore DC_CFG_RESET value.
14416 */
14417 dc_shutdown(dd);
14418 }
This page took 0.428224 seconds and 5 git commands to generate.