IB/hfi1: Create a routine to set a receive side mapping rule
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / chip.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 /*
49 * This file contains all of the code that is specific to the HFI chip
50 */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66
67 #define NUM_IB_PORTS 1
68
69 uint kdeth_qp;
70 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
71 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
72
73 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
74 module_param(num_vls, uint, S_IRUGO);
75 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
76
77 /*
78 * Default time to aggregate two 10K packets from the idle state
79 * (timer not running). The timer starts at the end of the first packet,
80 * so only the time for one 10K packet and header plus a bit extra is needed.
81 * 10 * 1024 + 64 header byte = 10304 byte
82 * 10304 byte / 12.5 GB/s = 824.32ns
83 */
84 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
85 module_param(rcv_intr_timeout, uint, S_IRUGO);
86 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
87
88 uint rcv_intr_count = 16; /* same as qib */
89 module_param(rcv_intr_count, uint, S_IRUGO);
90 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
91
92 ushort link_crc_mask = SUPPORTED_CRCS;
93 module_param(link_crc_mask, ushort, S_IRUGO);
94 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
95
96 uint loopback;
97 module_param_named(loopback, loopback, uint, S_IRUGO);
98 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
99
100 /* Other driver tunables */
101 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
102 static ushort crc_14b_sideband = 1;
103 static uint use_flr = 1;
104 uint quick_linkup; /* skip LNI */
105
106 struct flag_table {
107 u64 flag; /* the flag */
108 char *str; /* description string */
109 u16 extra; /* extra information */
110 u16 unused0;
111 u32 unused1;
112 };
113
114 /* str must be a string constant */
115 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
116 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
117
118 /* Send Error Consequences */
119 #define SEC_WRITE_DROPPED 0x1
120 #define SEC_PACKET_DROPPED 0x2
121 #define SEC_SC_HALTED 0x4 /* per-context only */
122 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */
123
124 #define MIN_KERNEL_KCTXTS 2
125 #define FIRST_KERNEL_KCTXT 1
126 /* sizes for both the QP and RSM map tables */
127 #define NUM_MAP_ENTRIES 256
128 #define NUM_MAP_REGS 32
129
130 /* Bit offset into the GUID which carries HFI id information */
131 #define GUID_HFI_INDEX_SHIFT 39
132
133 /* extract the emulation revision */
134 #define emulator_rev(dd) ((dd)->irev >> 8)
135 /* parallel and serial emulation versions are 3 and 4 respectively */
136 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
137 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
138
139 /* RSM fields */
140
141 /* packet type */
142 #define IB_PACKET_TYPE 2ull
143 #define QW_SHIFT 6ull
144 /* QPN[7..1] */
145 #define QPN_WIDTH 7ull
146
147 /* LRH.BTH: QW 0, OFFSET 48 - for match */
148 #define LRH_BTH_QW 0ull
149 #define LRH_BTH_BIT_OFFSET 48ull
150 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
151 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
152 #define LRH_BTH_SELECT
153 #define LRH_BTH_MASK 3ull
154 #define LRH_BTH_VALUE 2ull
155
156 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
157 #define LRH_SC_QW 0ull
158 #define LRH_SC_BIT_OFFSET 56ull
159 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
160 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
161 #define LRH_SC_MASK 128ull
162 #define LRH_SC_VALUE 0ull
163
164 /* SC[n..0] QW 0, OFFSET 60 - for select */
165 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
166
167 /* QPN[m+n:1] QW 1, OFFSET 1 */
168 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
169
170 /* defines to build power on SC2VL table */
171 #define SC2VL_VAL( \
172 num, \
173 sc0, sc0val, \
174 sc1, sc1val, \
175 sc2, sc2val, \
176 sc3, sc3val, \
177 sc4, sc4val, \
178 sc5, sc5val, \
179 sc6, sc6val, \
180 sc7, sc7val) \
181 ( \
182 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
183 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
184 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
185 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
186 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
187 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
188 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
189 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
190 )
191
192 #define DC_SC_VL_VAL( \
193 range, \
194 e0, e0val, \
195 e1, e1val, \
196 e2, e2val, \
197 e3, e3val, \
198 e4, e4val, \
199 e5, e5val, \
200 e6, e6val, \
201 e7, e7val, \
202 e8, e8val, \
203 e9, e9val, \
204 e10, e10val, \
205 e11, e11val, \
206 e12, e12val, \
207 e13, e13val, \
208 e14, e14val, \
209 e15, e15val) \
210 ( \
211 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
212 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
213 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
214 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
215 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
216 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
217 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
218 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
219 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
220 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
221 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
222 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
223 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
224 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
225 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
226 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
227 )
228
229 /* all CceStatus sub-block freeze bits */
230 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
231 | CCE_STATUS_RXE_FROZE_SMASK \
232 | CCE_STATUS_TXE_FROZE_SMASK \
233 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
234 /* all CceStatus sub-block TXE pause bits */
235 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
236 | CCE_STATUS_TXE_PAUSED_SMASK \
237 | CCE_STATUS_SDMA_PAUSED_SMASK)
238 /* all CceStatus sub-block RXE pause bits */
239 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
240
241 /*
242 * CCE Error flags.
243 */
244 static struct flag_table cce_err_status_flags[] = {
245 /* 0*/ FLAG_ENTRY0("CceCsrParityErr",
246 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
247 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
248 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
249 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
250 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
251 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
252 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
253 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
254 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
255 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
256 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
257 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
258 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
259 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
260 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
261 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
262 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
263 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
264 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
265 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
266 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
267 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
268 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
269 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
270 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
271 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
272 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
273 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
274 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
275 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
276 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
277 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
278 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
279 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
280 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
281 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
282 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
283 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
284 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
285 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
286 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
287 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
288 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
289 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
290 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
291 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
292 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
293 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
294 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
295 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
296 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
297 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
298 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
299 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
300 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
301 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
302 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
303 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
304 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
305 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
306 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
307 /*31*/ FLAG_ENTRY0("LATriggered",
308 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
309 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
310 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
311 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
312 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
313 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
314 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
315 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
316 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
317 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
318 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
319 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
320 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
321 /*38*/ FLAG_ENTRY0("CceIntMapCorErr",
322 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
323 /*39*/ FLAG_ENTRY0("CceIntMapUncErr",
324 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
325 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
326 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
327 /*41-63 reserved*/
328 };
329
330 /*
331 * Misc Error flags
332 */
333 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
334 static struct flag_table misc_err_status_flags[] = {
335 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
336 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
337 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
338 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
339 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
340 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
341 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
342 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
343 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
344 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
345 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
346 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
347 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
348 };
349
350 /*
351 * TXE PIO Error flags and consequences
352 */
353 static struct flag_table pio_err_status_flags[] = {
354 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
355 SEC_WRITE_DROPPED,
356 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
357 /* 1*/ FLAG_ENTRY("PioWriteAddrParity",
358 SEC_SPC_FREEZE,
359 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
360 /* 2*/ FLAG_ENTRY("PioCsrParity",
361 SEC_SPC_FREEZE,
362 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
363 /* 3*/ FLAG_ENTRY("PioSbMemFifo0",
364 SEC_SPC_FREEZE,
365 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
366 /* 4*/ FLAG_ENTRY("PioSbMemFifo1",
367 SEC_SPC_FREEZE,
368 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
369 /* 5*/ FLAG_ENTRY("PioPccFifoParity",
370 SEC_SPC_FREEZE,
371 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
372 /* 6*/ FLAG_ENTRY("PioPecFifoParity",
373 SEC_SPC_FREEZE,
374 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
375 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
376 SEC_SPC_FREEZE,
377 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
378 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
379 SEC_SPC_FREEZE,
380 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
381 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
382 SEC_SPC_FREEZE,
383 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
384 /*10*/ FLAG_ENTRY("PioSmPktResetParity",
385 SEC_SPC_FREEZE,
386 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
387 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
388 SEC_SPC_FREEZE,
389 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
390 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
391 SEC_SPC_FREEZE,
392 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
393 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
394 0,
395 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
396 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
397 0,
398 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
399 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
400 SEC_SPC_FREEZE,
401 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
402 /*16*/ FLAG_ENTRY("PioPpmcPblFifo",
403 SEC_SPC_FREEZE,
404 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
405 /*17*/ FLAG_ENTRY("PioInitSmIn",
406 0,
407 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
408 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
409 SEC_SPC_FREEZE,
410 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
411 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
412 SEC_SPC_FREEZE,
413 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
414 /*20*/ FLAG_ENTRY("PioHostAddrMemCor",
415 0,
416 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
417 /*21*/ FLAG_ENTRY("PioWriteDataParity",
418 SEC_SPC_FREEZE,
419 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
420 /*22*/ FLAG_ENTRY("PioStateMachine",
421 SEC_SPC_FREEZE,
422 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
423 /*23*/ FLAG_ENTRY("PioWriteQwValidParity",
424 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
425 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
426 /*24*/ FLAG_ENTRY("PioBlockQwCountParity",
427 SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
428 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
429 /*25*/ FLAG_ENTRY("PioVlfVlLenParity",
430 SEC_SPC_FREEZE,
431 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
432 /*26*/ FLAG_ENTRY("PioVlfSopParity",
433 SEC_SPC_FREEZE,
434 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
435 /*27*/ FLAG_ENTRY("PioVlFifoParity",
436 SEC_SPC_FREEZE,
437 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
438 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
439 SEC_SPC_FREEZE,
440 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
441 /*29*/ FLAG_ENTRY("PioPpmcSopLen",
442 SEC_SPC_FREEZE,
443 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
444 /*30-31 reserved*/
445 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
446 SEC_SPC_FREEZE,
447 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
448 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
449 SEC_SPC_FREEZE,
450 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
451 /*34*/ FLAG_ENTRY("PioPccSopHeadParity",
452 SEC_SPC_FREEZE,
453 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
454 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
455 SEC_SPC_FREEZE,
456 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
457 /*36-63 reserved*/
458 };
459
460 /* TXE PIO errors that cause an SPC freeze */
461 #define ALL_PIO_FREEZE_ERR \
462 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
463 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
489 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
490 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
491
492 /*
493 * TXE SDMA Error flags
494 */
495 static struct flag_table sdma_err_status_flags[] = {
496 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
497 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
498 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
499 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
500 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
501 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
502 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
503 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
504 /*04-63 reserved*/
505 };
506
507 /* TXE SDMA errors that cause an SPC freeze */
508 #define ALL_SDMA_FREEZE_ERR \
509 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
510 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
511 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
512
513 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
514 #define PORT_DISCARD_EGRESS_ERRS \
515 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
516 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
517 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
518
519 /*
520 * TXE Egress Error flags
521 */
522 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
523 static struct flag_table egress_err_status_flags[] = {
524 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
525 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
526 /* 2 reserved */
527 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
528 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
529 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
530 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
531 /* 6 reserved */
532 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
533 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
534 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
535 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
536 /* 9-10 reserved */
537 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
538 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
539 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
540 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
541 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
542 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
543 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
544 SEES(TX_SDMA0_DISALLOWED_PACKET)),
545 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
546 SEES(TX_SDMA1_DISALLOWED_PACKET)),
547 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
548 SEES(TX_SDMA2_DISALLOWED_PACKET)),
549 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
550 SEES(TX_SDMA3_DISALLOWED_PACKET)),
551 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
552 SEES(TX_SDMA4_DISALLOWED_PACKET)),
553 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
554 SEES(TX_SDMA5_DISALLOWED_PACKET)),
555 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
556 SEES(TX_SDMA6_DISALLOWED_PACKET)),
557 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
558 SEES(TX_SDMA7_DISALLOWED_PACKET)),
559 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
560 SEES(TX_SDMA8_DISALLOWED_PACKET)),
561 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
562 SEES(TX_SDMA9_DISALLOWED_PACKET)),
563 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
564 SEES(TX_SDMA10_DISALLOWED_PACKET)),
565 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
566 SEES(TX_SDMA11_DISALLOWED_PACKET)),
567 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
568 SEES(TX_SDMA12_DISALLOWED_PACKET)),
569 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
570 SEES(TX_SDMA13_DISALLOWED_PACKET)),
571 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
572 SEES(TX_SDMA14_DISALLOWED_PACKET)),
573 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
574 SEES(TX_SDMA15_DISALLOWED_PACKET)),
575 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
576 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
577 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
578 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
579 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
580 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
581 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
582 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
583 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
584 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
585 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
586 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
587 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
588 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
589 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
590 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
591 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
592 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
593 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
594 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
595 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
596 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
597 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
598 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
599 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
600 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
601 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
602 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
603 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
604 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
605 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
606 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
607 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
608 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
609 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
610 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
611 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
612 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
613 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
614 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
615 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
616 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
617 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
618 };
619
620 /*
621 * TXE Egress Error Info flags
622 */
623 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
624 static struct flag_table egress_err_info_flags[] = {
625 /* 0*/ FLAG_ENTRY0("Reserved", 0ull),
626 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
627 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
628 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
629 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
630 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
631 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
632 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
633 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
634 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
635 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
636 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
637 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
638 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
639 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
640 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
641 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
642 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
643 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
644 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
645 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
646 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
647 };
648
649 /* TXE Egress errors that cause an SPC freeze */
650 #define ALL_TXE_EGRESS_FREEZE_ERR \
651 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
652 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
653 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
654 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
655 | SEES(TX_LAUNCH_CSR_PARITY) \
656 | SEES(TX_SBRD_CTL_CSR_PARITY) \
657 | SEES(TX_CONFIG_PARITY) \
658 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
659 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
660 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
661 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
662 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
663 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
664 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
665 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
666 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
667 | SEES(TX_CREDIT_RETURN_PARITY))
668
669 /*
670 * TXE Send error flags
671 */
672 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
673 static struct flag_table send_err_status_flags[] = {
674 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
675 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
676 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
677 };
678
679 /*
680 * TXE Send Context Error flags and consequences
681 */
682 static struct flag_table sc_err_status_flags[] = {
683 /* 0*/ FLAG_ENTRY("InconsistentSop",
684 SEC_PACKET_DROPPED | SEC_SC_HALTED,
685 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
686 /* 1*/ FLAG_ENTRY("DisallowedPacket",
687 SEC_PACKET_DROPPED | SEC_SC_HALTED,
688 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
689 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
690 SEC_WRITE_DROPPED | SEC_SC_HALTED,
691 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
692 /* 3*/ FLAG_ENTRY("WriteOverflow",
693 SEC_WRITE_DROPPED | SEC_SC_HALTED,
694 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
695 /* 4*/ FLAG_ENTRY("WriteOutOfBounds",
696 SEC_WRITE_DROPPED | SEC_SC_HALTED,
697 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
698 /* 5-63 reserved*/
699 };
700
701 /*
702 * RXE Receive Error flags
703 */
704 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
705 static struct flag_table rxe_err_status_flags[] = {
706 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
707 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
708 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
709 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
710 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
711 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
712 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
713 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
714 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
715 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
716 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
717 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
718 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
719 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
720 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
721 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
722 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
723 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
724 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
725 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
726 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
727 RXES(RBUF_BLOCK_LIST_READ_UNC)),
728 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
729 RXES(RBUF_BLOCK_LIST_READ_COR)),
730 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
731 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
732 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
733 RXES(RBUF_CSR_QENT_CNT_PARITY)),
734 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
735 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
736 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
737 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
738 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
739 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
740 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
741 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
742 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
743 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
744 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
745 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
746 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
747 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
748 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
749 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
750 RXES(RBUF_FL_INITDONE_PARITY)),
751 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
752 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
753 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
754 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
755 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
756 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
757 RXES(LOOKUP_DES_PART1_UNC_COR)),
758 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
759 RXES(LOOKUP_DES_PART2_PARITY)),
760 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
761 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
762 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
763 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
764 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
765 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
766 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
767 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
768 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
769 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
770 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
771 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
772 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
773 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
774 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
775 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
776 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
777 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
778 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
779 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
780 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
781 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
782 };
783
784 /* RXE errors that will trigger an SPC freeze */
785 #define ALL_RXE_FREEZE_ERR \
786 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
787 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
830
831 #define RXE_FREEZE_ABORT_MASK \
832 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
833 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
834 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
835
836 /*
837 * DCC Error Flags
838 */
839 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
840 static struct flag_table dcc_err_flags[] = {
841 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
842 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
843 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
844 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
845 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
846 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
847 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
848 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
849 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
850 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
851 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
852 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
853 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
854 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
855 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
856 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
857 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
858 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
859 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
860 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
861 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
862 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
863 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
864 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
865 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
866 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
867 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
868 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
869 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
870 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
871 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
872 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
873 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
874 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
875 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
876 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
877 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
878 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
879 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
880 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
881 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
882 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
883 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
884 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
885 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
886 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
887 };
888
889 /*
890 * LCB error flags
891 */
892 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
893 static struct flag_table lcb_err_flags[] = {
894 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
895 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
896 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
897 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
898 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
899 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
900 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
901 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
902 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
903 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
904 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
905 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
906 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
907 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
908 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
909 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
910 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
911 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
912 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
913 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
914 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
915 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
916 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
917 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
918 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
919 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
920 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
921 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
922 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
923 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
924 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
925 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
926 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
927 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
928 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
929 LCBE(REDUNDANT_FLIT_PARITY_ERR))
930 };
931
932 /*
933 * DC8051 Error Flags
934 */
935 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
936 static struct flag_table dc8051_err_flags[] = {
937 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
938 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
939 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
940 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
941 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
942 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
943 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
944 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
945 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
946 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
947 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
948 };
949
950 /*
951 * DC8051 Information Error flags
952 *
953 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
954 */
955 static struct flag_table dc8051_info_err_flags[] = {
956 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
957 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
958 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
959 FLAG_ENTRY0("Serdes internal loopback failure",
960 FAILED_SERDES_INTERNAL_LOOPBACK),
961 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
962 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
963 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
964 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
965 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
966 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
967 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
968 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
969 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT)
970 };
971
972 /*
973 * DC8051 Information Host Information flags
974 *
975 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
976 */
977 static struct flag_table dc8051_info_host_msg_flags[] = {
978 FLAG_ENTRY0("Host request done", 0x0001),
979 FLAG_ENTRY0("BC SMA message", 0x0002),
980 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
981 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
982 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
983 FLAG_ENTRY0("External device config request", 0x0020),
984 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
985 FLAG_ENTRY0("LinkUp achieved", 0x0080),
986 FLAG_ENTRY0("Link going down", 0x0100),
987 };
988
989 static u32 encoded_size(u32 size);
990 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
991 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
992 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
993 u8 *continuous);
994 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
995 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
996 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
997 u8 *remote_tx_rate, u16 *link_widths);
998 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
999 u8 *flag_bits, u16 *link_widths);
1000 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1001 u8 *device_rev);
1002 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1003 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1004 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1005 u8 *tx_polarity_inversion,
1006 u8 *rx_polarity_inversion, u8 *max_rate);
1007 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1008 unsigned int context, u64 err_status);
1009 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1010 static void handle_dcc_err(struct hfi1_devdata *dd,
1011 unsigned int context, u64 err_status);
1012 static void handle_lcb_err(struct hfi1_devdata *dd,
1013 unsigned int context, u64 err_status);
1014 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1015 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1016 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1017 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1018 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1019 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1020 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1021 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022 static void set_partition_keys(struct hfi1_pportdata *);
1023 static const char *link_state_name(u32 state);
1024 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1025 u32 state);
1026 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1027 u64 *out_data);
1028 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1029 static int thermal_init(struct hfi1_devdata *dd);
1030
1031 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1032 int msecs);
1033 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1034 static void handle_temp_err(struct hfi1_devdata *);
1035 static void dc_shutdown(struct hfi1_devdata *);
1036 static void dc_start(struct hfi1_devdata *);
1037
1038 /*
1039 * Error interrupt table entry. This is used as input to the interrupt
1040 * "clear down" routine used for all second tier error interrupt register.
1041 * Second tier interrupt registers have a single bit representing them
1042 * in the top-level CceIntStatus.
1043 */
1044 struct err_reg_info {
1045 u32 status; /* status CSR offset */
1046 u32 clear; /* clear CSR offset */
1047 u32 mask; /* mask CSR offset */
1048 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1049 const char *desc;
1050 };
1051
1052 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1053 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1054 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1055
1056 /*
1057 * Helpers for building HFI and DC error interrupt table entries. Different
1058 * helpers are needed because of inconsistent register names.
1059 */
1060 #define EE(reg, handler, desc) \
1061 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1062 handler, desc }
1063 #define DC_EE1(reg, handler, desc) \
1064 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1065 #define DC_EE2(reg, handler, desc) \
1066 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1067
1068 /*
1069 * Table of the "misc" grouping of error interrupts. Each entry refers to
1070 * another register containing more information.
1071 */
1072 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1073 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1074 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1075 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1076 /* 3*/ { 0, 0, 0, NULL }, /* reserved */
1077 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1078 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1079 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1080 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1081 /* the rest are reserved */
1082 };
1083
1084 /*
1085 * Index into the Various section of the interrupt sources
1086 * corresponding to the Critical Temperature interrupt.
1087 */
1088 #define TCRIT_INT_SOURCE 4
1089
1090 /*
1091 * SDMA error interrupt entry - refers to another register containing more
1092 * information.
1093 */
1094 static const struct err_reg_info sdma_eng_err =
1095 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1096
1097 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1098 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1099 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1100 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1101 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1102 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1103 /* rest are reserved */
1104 };
1105
1106 /*
1107 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1108 * register can not be derived from the MTU value because 10K is not
1109 * a power of 2. Therefore, we need a constant. Everything else can
1110 * be calculated.
1111 */
1112 #define DCC_CFG_PORT_MTU_CAP_10240 7
1113
1114 /*
1115 * Table of the DC grouping of error interrupts. Each entry refers to
1116 * another register containing more information.
1117 */
1118 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1119 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1120 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1121 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1122 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1123 /* the rest are reserved */
1124 };
1125
1126 struct cntr_entry {
1127 /*
1128 * counter name
1129 */
1130 char *name;
1131
1132 /*
1133 * csr to read for name (if applicable)
1134 */
1135 u64 csr;
1136
1137 /*
1138 * offset into dd or ppd to store the counter's value
1139 */
1140 int offset;
1141
1142 /*
1143 * flags
1144 */
1145 u8 flags;
1146
1147 /*
1148 * accessor for stat element, context either dd or ppd
1149 */
1150 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1151 int mode, u64 data);
1152 };
1153
1154 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1155 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1156
1157 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1158 { \
1159 name, \
1160 csr, \
1161 offset, \
1162 flags, \
1163 accessor \
1164 }
1165
1166 /* 32bit RXE */
1167 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1168 CNTR_ELEM(#name, \
1169 (counter * 8 + RCV_COUNTER_ARRAY32), \
1170 0, flags | CNTR_32BIT, \
1171 port_access_u32_csr)
1172
1173 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1174 CNTR_ELEM(#name, \
1175 (counter * 8 + RCV_COUNTER_ARRAY32), \
1176 0, flags | CNTR_32BIT, \
1177 dev_access_u32_csr)
1178
1179 /* 64bit RXE */
1180 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1181 CNTR_ELEM(#name, \
1182 (counter * 8 + RCV_COUNTER_ARRAY64), \
1183 0, flags, \
1184 port_access_u64_csr)
1185
1186 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1187 CNTR_ELEM(#name, \
1188 (counter * 8 + RCV_COUNTER_ARRAY64), \
1189 0, flags, \
1190 dev_access_u64_csr)
1191
1192 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1193 #define OVR_ELM(ctx) \
1194 CNTR_ELEM("RcvHdrOvr" #ctx, \
1195 (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1196 0, CNTR_NORMAL, port_access_u64_csr)
1197
1198 /* 32bit TXE */
1199 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1200 CNTR_ELEM(#name, \
1201 (counter * 8 + SEND_COUNTER_ARRAY32), \
1202 0, flags | CNTR_32BIT, \
1203 port_access_u32_csr)
1204
1205 /* 64bit TXE */
1206 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1207 CNTR_ELEM(#name, \
1208 (counter * 8 + SEND_COUNTER_ARRAY64), \
1209 0, flags, \
1210 port_access_u64_csr)
1211
1212 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1213 CNTR_ELEM(#name,\
1214 counter * 8 + SEND_COUNTER_ARRAY64, \
1215 0, \
1216 flags, \
1217 dev_access_u64_csr)
1218
1219 /* CCE */
1220 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1221 CNTR_ELEM(#name, \
1222 (counter * 8 + CCE_COUNTER_ARRAY32), \
1223 0, flags | CNTR_32BIT, \
1224 dev_access_u32_csr)
1225
1226 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1227 CNTR_ELEM(#name, \
1228 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1229 0, flags | CNTR_32BIT, \
1230 dev_access_u32_csr)
1231
1232 /* DC */
1233 #define DC_PERF_CNTR(name, counter, flags) \
1234 CNTR_ELEM(#name, \
1235 counter, \
1236 0, \
1237 flags, \
1238 dev_access_u64_csr)
1239
1240 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1241 CNTR_ELEM(#name, \
1242 counter, \
1243 0, \
1244 flags, \
1245 dc_access_lcb_cntr)
1246
1247 /* ibp counters */
1248 #define SW_IBP_CNTR(name, cntr) \
1249 CNTR_ELEM(#name, \
1250 0, \
1251 0, \
1252 CNTR_SYNTH, \
1253 access_ibp_##cntr)
1254
1255 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1256 {
1257 if (dd->flags & HFI1_PRESENT) {
1258 return readq((void __iomem *)dd->kregbase + offset);
1259 }
1260 return -1;
1261 }
1262
1263 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1264 {
1265 if (dd->flags & HFI1_PRESENT)
1266 writeq(value, (void __iomem *)dd->kregbase + offset);
1267 }
1268
1269 void __iomem *get_csr_addr(
1270 struct hfi1_devdata *dd,
1271 u32 offset)
1272 {
1273 return (void __iomem *)dd->kregbase + offset;
1274 }
1275
1276 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1277 int mode, u64 value)
1278 {
1279 u64 ret;
1280
1281 if (mode == CNTR_MODE_R) {
1282 ret = read_csr(dd, csr);
1283 } else if (mode == CNTR_MODE_W) {
1284 write_csr(dd, csr, value);
1285 ret = value;
1286 } else {
1287 dd_dev_err(dd, "Invalid cntr register access mode");
1288 return 0;
1289 }
1290
1291 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1292 return ret;
1293 }
1294
1295 /* Dev Access */
1296 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1297 void *context, int vl, int mode, u64 data)
1298 {
1299 struct hfi1_devdata *dd = context;
1300 u64 csr = entry->csr;
1301
1302 if (entry->flags & CNTR_SDMA) {
1303 if (vl == CNTR_INVALID_VL)
1304 return 0;
1305 csr += 0x100 * vl;
1306 } else {
1307 if (vl != CNTR_INVALID_VL)
1308 return 0;
1309 }
1310 return read_write_csr(dd, csr, mode, data);
1311 }
1312
1313 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1314 void *context, int idx, int mode, u64 data)
1315 {
1316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1317
1318 if (dd->per_sdma && idx < dd->num_sdma)
1319 return dd->per_sdma[idx].err_cnt;
1320 return 0;
1321 }
1322
1323 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1324 void *context, int idx, int mode, u64 data)
1325 {
1326 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1327
1328 if (dd->per_sdma && idx < dd->num_sdma)
1329 return dd->per_sdma[idx].sdma_int_cnt;
1330 return 0;
1331 }
1332
1333 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1334 void *context, int idx, int mode, u64 data)
1335 {
1336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1337
1338 if (dd->per_sdma && idx < dd->num_sdma)
1339 return dd->per_sdma[idx].idle_int_cnt;
1340 return 0;
1341 }
1342
1343 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1344 void *context, int idx, int mode,
1345 u64 data)
1346 {
1347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1348
1349 if (dd->per_sdma && idx < dd->num_sdma)
1350 return dd->per_sdma[idx].progress_int_cnt;
1351 return 0;
1352 }
1353
1354 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1355 int vl, int mode, u64 data)
1356 {
1357 struct hfi1_devdata *dd = context;
1358
1359 u64 val = 0;
1360 u64 csr = entry->csr;
1361
1362 if (entry->flags & CNTR_VL) {
1363 if (vl == CNTR_INVALID_VL)
1364 return 0;
1365 csr += 8 * vl;
1366 } else {
1367 if (vl != CNTR_INVALID_VL)
1368 return 0;
1369 }
1370
1371 val = read_write_csr(dd, csr, mode, data);
1372 return val;
1373 }
1374
1375 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1376 int vl, int mode, u64 data)
1377 {
1378 struct hfi1_devdata *dd = context;
1379 u32 csr = entry->csr;
1380 int ret = 0;
1381
1382 if (vl != CNTR_INVALID_VL)
1383 return 0;
1384 if (mode == CNTR_MODE_R)
1385 ret = read_lcb_csr(dd, csr, &data);
1386 else if (mode == CNTR_MODE_W)
1387 ret = write_lcb_csr(dd, csr, data);
1388
1389 if (ret) {
1390 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1391 return 0;
1392 }
1393
1394 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1395 return data;
1396 }
1397
1398 /* Port Access */
1399 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1400 int vl, int mode, u64 data)
1401 {
1402 struct hfi1_pportdata *ppd = context;
1403
1404 if (vl != CNTR_INVALID_VL)
1405 return 0;
1406 return read_write_csr(ppd->dd, entry->csr, mode, data);
1407 }
1408
1409 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1410 void *context, int vl, int mode, u64 data)
1411 {
1412 struct hfi1_pportdata *ppd = context;
1413 u64 val;
1414 u64 csr = entry->csr;
1415
1416 if (entry->flags & CNTR_VL) {
1417 if (vl == CNTR_INVALID_VL)
1418 return 0;
1419 csr += 8 * vl;
1420 } else {
1421 if (vl != CNTR_INVALID_VL)
1422 return 0;
1423 }
1424 val = read_write_csr(ppd->dd, csr, mode, data);
1425 return val;
1426 }
1427
1428 /* Software defined */
1429 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1430 u64 data)
1431 {
1432 u64 ret;
1433
1434 if (mode == CNTR_MODE_R) {
1435 ret = *cntr;
1436 } else if (mode == CNTR_MODE_W) {
1437 *cntr = data;
1438 ret = data;
1439 } else {
1440 dd_dev_err(dd, "Invalid cntr sw access mode");
1441 return 0;
1442 }
1443
1444 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1445
1446 return ret;
1447 }
1448
1449 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1450 int vl, int mode, u64 data)
1451 {
1452 struct hfi1_pportdata *ppd = context;
1453
1454 if (vl != CNTR_INVALID_VL)
1455 return 0;
1456 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1457 }
1458
1459 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1460 int vl, int mode, u64 data)
1461 {
1462 struct hfi1_pportdata *ppd = context;
1463
1464 if (vl != CNTR_INVALID_VL)
1465 return 0;
1466 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1467 }
1468
1469 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1470 void *context, int vl, int mode,
1471 u64 data)
1472 {
1473 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1474
1475 if (vl != CNTR_INVALID_VL)
1476 return 0;
1477 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1478 }
1479
1480 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1481 void *context, int vl, int mode, u64 data)
1482 {
1483 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1484 u64 zero = 0;
1485 u64 *counter;
1486
1487 if (vl == CNTR_INVALID_VL)
1488 counter = &ppd->port_xmit_discards;
1489 else if (vl >= 0 && vl < C_VL_COUNT)
1490 counter = &ppd->port_xmit_discards_vl[vl];
1491 else
1492 counter = &zero;
1493
1494 return read_write_sw(ppd->dd, counter, mode, data);
1495 }
1496
1497 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1498 void *context, int vl, int mode,
1499 u64 data)
1500 {
1501 struct hfi1_pportdata *ppd = context;
1502
1503 if (vl != CNTR_INVALID_VL)
1504 return 0;
1505
1506 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1507 mode, data);
1508 }
1509
1510 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1511 void *context, int vl, int mode, u64 data)
1512 {
1513 struct hfi1_pportdata *ppd = context;
1514
1515 if (vl != CNTR_INVALID_VL)
1516 return 0;
1517
1518 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1519 mode, data);
1520 }
1521
1522 u64 get_all_cpu_total(u64 __percpu *cntr)
1523 {
1524 int cpu;
1525 u64 counter = 0;
1526
1527 for_each_possible_cpu(cpu)
1528 counter += *per_cpu_ptr(cntr, cpu);
1529 return counter;
1530 }
1531
1532 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1533 u64 __percpu *cntr,
1534 int vl, int mode, u64 data)
1535 {
1536 u64 ret = 0;
1537
1538 if (vl != CNTR_INVALID_VL)
1539 return 0;
1540
1541 if (mode == CNTR_MODE_R) {
1542 ret = get_all_cpu_total(cntr) - *z_val;
1543 } else if (mode == CNTR_MODE_W) {
1544 /* A write can only zero the counter */
1545 if (data == 0)
1546 *z_val = get_all_cpu_total(cntr);
1547 else
1548 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1549 } else {
1550 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1551 return 0;
1552 }
1553
1554 return ret;
1555 }
1556
1557 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1558 void *context, int vl, int mode, u64 data)
1559 {
1560 struct hfi1_devdata *dd = context;
1561
1562 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1563 mode, data);
1564 }
1565
1566 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1567 void *context, int vl, int mode, u64 data)
1568 {
1569 struct hfi1_devdata *dd = context;
1570
1571 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1572 mode, data);
1573 }
1574
1575 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1576 void *context, int vl, int mode, u64 data)
1577 {
1578 struct hfi1_devdata *dd = context;
1579
1580 return dd->verbs_dev.n_piowait;
1581 }
1582
1583 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1584 void *context, int vl, int mode, u64 data)
1585 {
1586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1587
1588 return dd->verbs_dev.n_piodrain;
1589 }
1590
1591 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1592 void *context, int vl, int mode, u64 data)
1593 {
1594 struct hfi1_devdata *dd = context;
1595
1596 return dd->verbs_dev.n_txwait;
1597 }
1598
1599 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1600 void *context, int vl, int mode, u64 data)
1601 {
1602 struct hfi1_devdata *dd = context;
1603
1604 return dd->verbs_dev.n_kmem_wait;
1605 }
1606
1607 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1608 void *context, int vl, int mode, u64 data)
1609 {
1610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1611
1612 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1613 mode, data);
1614 }
1615
1616 /* Software counters for the error status bits within MISC_ERR_STATUS */
1617 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1618 void *context, int vl, int mode,
1619 u64 data)
1620 {
1621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1622
1623 return dd->misc_err_status_cnt[12];
1624 }
1625
1626 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1627 void *context, int vl, int mode,
1628 u64 data)
1629 {
1630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1631
1632 return dd->misc_err_status_cnt[11];
1633 }
1634
1635 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1636 void *context, int vl, int mode,
1637 u64 data)
1638 {
1639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1640
1641 return dd->misc_err_status_cnt[10];
1642 }
1643
1644 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1645 void *context, int vl,
1646 int mode, u64 data)
1647 {
1648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1649
1650 return dd->misc_err_status_cnt[9];
1651 }
1652
1653 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1654 void *context, int vl, int mode,
1655 u64 data)
1656 {
1657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1658
1659 return dd->misc_err_status_cnt[8];
1660 }
1661
1662 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1663 const struct cntr_entry *entry,
1664 void *context, int vl, int mode, u64 data)
1665 {
1666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1667
1668 return dd->misc_err_status_cnt[7];
1669 }
1670
1671 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1672 void *context, int vl,
1673 int mode, u64 data)
1674 {
1675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1676
1677 return dd->misc_err_status_cnt[6];
1678 }
1679
1680 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1681 void *context, int vl, int mode,
1682 u64 data)
1683 {
1684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685
1686 return dd->misc_err_status_cnt[5];
1687 }
1688
1689 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1690 void *context, int vl, int mode,
1691 u64 data)
1692 {
1693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694
1695 return dd->misc_err_status_cnt[4];
1696 }
1697
1698 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1699 void *context, int vl,
1700 int mode, u64 data)
1701 {
1702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703
1704 return dd->misc_err_status_cnt[3];
1705 }
1706
1707 static u64 access_misc_csr_write_bad_addr_err_cnt(
1708 const struct cntr_entry *entry,
1709 void *context, int vl, int mode, u64 data)
1710 {
1711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712
1713 return dd->misc_err_status_cnt[2];
1714 }
1715
1716 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1717 void *context, int vl,
1718 int mode, u64 data)
1719 {
1720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721
1722 return dd->misc_err_status_cnt[1];
1723 }
1724
1725 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1726 void *context, int vl, int mode,
1727 u64 data)
1728 {
1729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730
1731 return dd->misc_err_status_cnt[0];
1732 }
1733
1734 /*
1735 * Software counter for the aggregate of
1736 * individual CceErrStatus counters
1737 */
1738 static u64 access_sw_cce_err_status_aggregated_cnt(
1739 const struct cntr_entry *entry,
1740 void *context, int vl, int mode, u64 data)
1741 {
1742 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1743
1744 return dd->sw_cce_err_status_aggregate;
1745 }
1746
1747 /*
1748 * Software counters corresponding to each of the
1749 * error status bits within CceErrStatus
1750 */
1751 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1752 void *context, int vl, int mode,
1753 u64 data)
1754 {
1755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1756
1757 return dd->cce_err_status_cnt[40];
1758 }
1759
1760 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1761 void *context, int vl, int mode,
1762 u64 data)
1763 {
1764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1765
1766 return dd->cce_err_status_cnt[39];
1767 }
1768
1769 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1770 void *context, int vl, int mode,
1771 u64 data)
1772 {
1773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1774
1775 return dd->cce_err_status_cnt[38];
1776 }
1777
1778 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1779 void *context, int vl, int mode,
1780 u64 data)
1781 {
1782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1783
1784 return dd->cce_err_status_cnt[37];
1785 }
1786
1787 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1788 void *context, int vl, int mode,
1789 u64 data)
1790 {
1791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1792
1793 return dd->cce_err_status_cnt[36];
1794 }
1795
1796 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1797 const struct cntr_entry *entry,
1798 void *context, int vl, int mode, u64 data)
1799 {
1800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1801
1802 return dd->cce_err_status_cnt[35];
1803 }
1804
1805 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1806 const struct cntr_entry *entry,
1807 void *context, int vl, int mode, u64 data)
1808 {
1809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1810
1811 return dd->cce_err_status_cnt[34];
1812 }
1813
1814 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1815 void *context, int vl,
1816 int mode, u64 data)
1817 {
1818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1819
1820 return dd->cce_err_status_cnt[33];
1821 }
1822
1823 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1824 void *context, int vl, int mode,
1825 u64 data)
1826 {
1827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1828
1829 return dd->cce_err_status_cnt[32];
1830 }
1831
1832 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1833 void *context, int vl, int mode, u64 data)
1834 {
1835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1836
1837 return dd->cce_err_status_cnt[31];
1838 }
1839
1840 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1841 void *context, int vl, int mode,
1842 u64 data)
1843 {
1844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1845
1846 return dd->cce_err_status_cnt[30];
1847 }
1848
1849 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1850 void *context, int vl, int mode,
1851 u64 data)
1852 {
1853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1854
1855 return dd->cce_err_status_cnt[29];
1856 }
1857
1858 static u64 access_pcic_transmit_back_parity_err_cnt(
1859 const struct cntr_entry *entry,
1860 void *context, int vl, int mode, u64 data)
1861 {
1862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1863
1864 return dd->cce_err_status_cnt[28];
1865 }
1866
1867 static u64 access_pcic_transmit_front_parity_err_cnt(
1868 const struct cntr_entry *entry,
1869 void *context, int vl, int mode, u64 data)
1870 {
1871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1872
1873 return dd->cce_err_status_cnt[27];
1874 }
1875
1876 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1877 void *context, int vl, int mode,
1878 u64 data)
1879 {
1880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1881
1882 return dd->cce_err_status_cnt[26];
1883 }
1884
1885 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1886 void *context, int vl, int mode,
1887 u64 data)
1888 {
1889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1890
1891 return dd->cce_err_status_cnt[25];
1892 }
1893
1894 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1895 void *context, int vl, int mode,
1896 u64 data)
1897 {
1898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1899
1900 return dd->cce_err_status_cnt[24];
1901 }
1902
1903 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1904 void *context, int vl, int mode,
1905 u64 data)
1906 {
1907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1908
1909 return dd->cce_err_status_cnt[23];
1910 }
1911
1912 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1913 void *context, int vl,
1914 int mode, u64 data)
1915 {
1916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917
1918 return dd->cce_err_status_cnt[22];
1919 }
1920
1921 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1922 void *context, int vl, int mode,
1923 u64 data)
1924 {
1925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926
1927 return dd->cce_err_status_cnt[21];
1928 }
1929
1930 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1931 const struct cntr_entry *entry,
1932 void *context, int vl, int mode, u64 data)
1933 {
1934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935
1936 return dd->cce_err_status_cnt[20];
1937 }
1938
1939 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1940 void *context, int vl,
1941 int mode, u64 data)
1942 {
1943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944
1945 return dd->cce_err_status_cnt[19];
1946 }
1947
1948 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1949 void *context, int vl, int mode,
1950 u64 data)
1951 {
1952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953
1954 return dd->cce_err_status_cnt[18];
1955 }
1956
1957 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1958 void *context, int vl, int mode,
1959 u64 data)
1960 {
1961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962
1963 return dd->cce_err_status_cnt[17];
1964 }
1965
1966 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1967 void *context, int vl, int mode,
1968 u64 data)
1969 {
1970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971
1972 return dd->cce_err_status_cnt[16];
1973 }
1974
1975 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1976 void *context, int vl, int mode,
1977 u64 data)
1978 {
1979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980
1981 return dd->cce_err_status_cnt[15];
1982 }
1983
1984 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1985 void *context, int vl,
1986 int mode, u64 data)
1987 {
1988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989
1990 return dd->cce_err_status_cnt[14];
1991 }
1992
1993 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
1994 void *context, int vl, int mode,
1995 u64 data)
1996 {
1997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998
1999 return dd->cce_err_status_cnt[13];
2000 }
2001
2002 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2003 const struct cntr_entry *entry,
2004 void *context, int vl, int mode, u64 data)
2005 {
2006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007
2008 return dd->cce_err_status_cnt[12];
2009 }
2010
2011 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2012 const struct cntr_entry *entry,
2013 void *context, int vl, int mode, u64 data)
2014 {
2015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016
2017 return dd->cce_err_status_cnt[11];
2018 }
2019
2020 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2021 const struct cntr_entry *entry,
2022 void *context, int vl, int mode, u64 data)
2023 {
2024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025
2026 return dd->cce_err_status_cnt[10];
2027 }
2028
2029 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2030 const struct cntr_entry *entry,
2031 void *context, int vl, int mode, u64 data)
2032 {
2033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034
2035 return dd->cce_err_status_cnt[9];
2036 }
2037
2038 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2039 const struct cntr_entry *entry,
2040 void *context, int vl, int mode, u64 data)
2041 {
2042 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043
2044 return dd->cce_err_status_cnt[8];
2045 }
2046
2047 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2048 void *context, int vl,
2049 int mode, u64 data)
2050 {
2051 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052
2053 return dd->cce_err_status_cnt[7];
2054 }
2055
2056 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2057 const struct cntr_entry *entry,
2058 void *context, int vl, int mode, u64 data)
2059 {
2060 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061
2062 return dd->cce_err_status_cnt[6];
2063 }
2064
2065 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2066 void *context, int vl, int mode,
2067 u64 data)
2068 {
2069 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070
2071 return dd->cce_err_status_cnt[5];
2072 }
2073
2074 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2075 void *context, int vl, int mode,
2076 u64 data)
2077 {
2078 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079
2080 return dd->cce_err_status_cnt[4];
2081 }
2082
2083 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2084 const struct cntr_entry *entry,
2085 void *context, int vl, int mode, u64 data)
2086 {
2087 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088
2089 return dd->cce_err_status_cnt[3];
2090 }
2091
2092 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2093 void *context, int vl,
2094 int mode, u64 data)
2095 {
2096 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097
2098 return dd->cce_err_status_cnt[2];
2099 }
2100
2101 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2102 void *context, int vl,
2103 int mode, u64 data)
2104 {
2105 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106
2107 return dd->cce_err_status_cnt[1];
2108 }
2109
2110 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2111 void *context, int vl, int mode,
2112 u64 data)
2113 {
2114 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115
2116 return dd->cce_err_status_cnt[0];
2117 }
2118
2119 /*
2120 * Software counters corresponding to each of the
2121 * error status bits within RcvErrStatus
2122 */
2123 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2124 void *context, int vl, int mode,
2125 u64 data)
2126 {
2127 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2128
2129 return dd->rcv_err_status_cnt[63];
2130 }
2131
2132 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2133 void *context, int vl,
2134 int mode, u64 data)
2135 {
2136 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137
2138 return dd->rcv_err_status_cnt[62];
2139 }
2140
2141 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2142 void *context, int vl, int mode,
2143 u64 data)
2144 {
2145 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146
2147 return dd->rcv_err_status_cnt[61];
2148 }
2149
2150 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2151 void *context, int vl, int mode,
2152 u64 data)
2153 {
2154 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155
2156 return dd->rcv_err_status_cnt[60];
2157 }
2158
2159 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2160 void *context, int vl,
2161 int mode, u64 data)
2162 {
2163 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164
2165 return dd->rcv_err_status_cnt[59];
2166 }
2167
2168 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2169 void *context, int vl,
2170 int mode, u64 data)
2171 {
2172 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173
2174 return dd->rcv_err_status_cnt[58];
2175 }
2176
2177 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2178 void *context, int vl, int mode,
2179 u64 data)
2180 {
2181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182
2183 return dd->rcv_err_status_cnt[57];
2184 }
2185
2186 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2187 void *context, int vl, int mode,
2188 u64 data)
2189 {
2190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191
2192 return dd->rcv_err_status_cnt[56];
2193 }
2194
2195 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2196 void *context, int vl, int mode,
2197 u64 data)
2198 {
2199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200
2201 return dd->rcv_err_status_cnt[55];
2202 }
2203
2204 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2205 const struct cntr_entry *entry,
2206 void *context, int vl, int mode, u64 data)
2207 {
2208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209
2210 return dd->rcv_err_status_cnt[54];
2211 }
2212
2213 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2214 const struct cntr_entry *entry,
2215 void *context, int vl, int mode, u64 data)
2216 {
2217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218
2219 return dd->rcv_err_status_cnt[53];
2220 }
2221
2222 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2223 void *context, int vl,
2224 int mode, u64 data)
2225 {
2226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227
2228 return dd->rcv_err_status_cnt[52];
2229 }
2230
2231 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2232 void *context, int vl,
2233 int mode, u64 data)
2234 {
2235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236
2237 return dd->rcv_err_status_cnt[51];
2238 }
2239
2240 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2241 void *context, int vl,
2242 int mode, u64 data)
2243 {
2244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245
2246 return dd->rcv_err_status_cnt[50];
2247 }
2248
2249 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2250 void *context, int vl,
2251 int mode, u64 data)
2252 {
2253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254
2255 return dd->rcv_err_status_cnt[49];
2256 }
2257
2258 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2259 void *context, int vl,
2260 int mode, u64 data)
2261 {
2262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263
2264 return dd->rcv_err_status_cnt[48];
2265 }
2266
2267 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2268 void *context, int vl,
2269 int mode, u64 data)
2270 {
2271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272
2273 return dd->rcv_err_status_cnt[47];
2274 }
2275
2276 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2277 void *context, int vl, int mode,
2278 u64 data)
2279 {
2280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281
2282 return dd->rcv_err_status_cnt[46];
2283 }
2284
2285 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2286 const struct cntr_entry *entry,
2287 void *context, int vl, int mode, u64 data)
2288 {
2289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290
2291 return dd->rcv_err_status_cnt[45];
2292 }
2293
2294 static u64 access_rx_lookup_csr_parity_err_cnt(
2295 const struct cntr_entry *entry,
2296 void *context, int vl, int mode, u64 data)
2297 {
2298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299
2300 return dd->rcv_err_status_cnt[44];
2301 }
2302
2303 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2304 const struct cntr_entry *entry,
2305 void *context, int vl, int mode, u64 data)
2306 {
2307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308
2309 return dd->rcv_err_status_cnt[43];
2310 }
2311
2312 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2313 const struct cntr_entry *entry,
2314 void *context, int vl, int mode, u64 data)
2315 {
2316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317
2318 return dd->rcv_err_status_cnt[42];
2319 }
2320
2321 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2322 const struct cntr_entry *entry,
2323 void *context, int vl, int mode, u64 data)
2324 {
2325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326
2327 return dd->rcv_err_status_cnt[41];
2328 }
2329
2330 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2331 const struct cntr_entry *entry,
2332 void *context, int vl, int mode, u64 data)
2333 {
2334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335
2336 return dd->rcv_err_status_cnt[40];
2337 }
2338
2339 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2340 const struct cntr_entry *entry,
2341 void *context, int vl, int mode, u64 data)
2342 {
2343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344
2345 return dd->rcv_err_status_cnt[39];
2346 }
2347
2348 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2349 const struct cntr_entry *entry,
2350 void *context, int vl, int mode, u64 data)
2351 {
2352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353
2354 return dd->rcv_err_status_cnt[38];
2355 }
2356
2357 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2358 const struct cntr_entry *entry,
2359 void *context, int vl, int mode, u64 data)
2360 {
2361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362
2363 return dd->rcv_err_status_cnt[37];
2364 }
2365
2366 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2367 const struct cntr_entry *entry,
2368 void *context, int vl, int mode, u64 data)
2369 {
2370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371
2372 return dd->rcv_err_status_cnt[36];
2373 }
2374
2375 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2376 const struct cntr_entry *entry,
2377 void *context, int vl, int mode, u64 data)
2378 {
2379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380
2381 return dd->rcv_err_status_cnt[35];
2382 }
2383
2384 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2385 const struct cntr_entry *entry,
2386 void *context, int vl, int mode, u64 data)
2387 {
2388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389
2390 return dd->rcv_err_status_cnt[34];
2391 }
2392
2393 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2394 const struct cntr_entry *entry,
2395 void *context, int vl, int mode, u64 data)
2396 {
2397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398
2399 return dd->rcv_err_status_cnt[33];
2400 }
2401
2402 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2403 void *context, int vl, int mode,
2404 u64 data)
2405 {
2406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407
2408 return dd->rcv_err_status_cnt[32];
2409 }
2410
2411 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2412 void *context, int vl, int mode,
2413 u64 data)
2414 {
2415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416
2417 return dd->rcv_err_status_cnt[31];
2418 }
2419
2420 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2421 void *context, int vl, int mode,
2422 u64 data)
2423 {
2424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425
2426 return dd->rcv_err_status_cnt[30];
2427 }
2428
2429 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2430 void *context, int vl, int mode,
2431 u64 data)
2432 {
2433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434
2435 return dd->rcv_err_status_cnt[29];
2436 }
2437
2438 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2439 void *context, int vl,
2440 int mode, u64 data)
2441 {
2442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443
2444 return dd->rcv_err_status_cnt[28];
2445 }
2446
2447 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2448 const struct cntr_entry *entry,
2449 void *context, int vl, int mode, u64 data)
2450 {
2451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452
2453 return dd->rcv_err_status_cnt[27];
2454 }
2455
2456 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2457 const struct cntr_entry *entry,
2458 void *context, int vl, int mode, u64 data)
2459 {
2460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461
2462 return dd->rcv_err_status_cnt[26];
2463 }
2464
2465 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2466 const struct cntr_entry *entry,
2467 void *context, int vl, int mode, u64 data)
2468 {
2469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470
2471 return dd->rcv_err_status_cnt[25];
2472 }
2473
2474 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2475 const struct cntr_entry *entry,
2476 void *context, int vl, int mode, u64 data)
2477 {
2478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479
2480 return dd->rcv_err_status_cnt[24];
2481 }
2482
2483 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2484 const struct cntr_entry *entry,
2485 void *context, int vl, int mode, u64 data)
2486 {
2487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488
2489 return dd->rcv_err_status_cnt[23];
2490 }
2491
2492 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2493 const struct cntr_entry *entry,
2494 void *context, int vl, int mode, u64 data)
2495 {
2496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497
2498 return dd->rcv_err_status_cnt[22];
2499 }
2500
2501 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2502 const struct cntr_entry *entry,
2503 void *context, int vl, int mode, u64 data)
2504 {
2505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506
2507 return dd->rcv_err_status_cnt[21];
2508 }
2509
2510 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2511 const struct cntr_entry *entry,
2512 void *context, int vl, int mode, u64 data)
2513 {
2514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515
2516 return dd->rcv_err_status_cnt[20];
2517 }
2518
2519 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2520 const struct cntr_entry *entry,
2521 void *context, int vl, int mode, u64 data)
2522 {
2523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524
2525 return dd->rcv_err_status_cnt[19];
2526 }
2527
2528 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2529 void *context, int vl,
2530 int mode, u64 data)
2531 {
2532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533
2534 return dd->rcv_err_status_cnt[18];
2535 }
2536
2537 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2538 void *context, int vl,
2539 int mode, u64 data)
2540 {
2541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542
2543 return dd->rcv_err_status_cnt[17];
2544 }
2545
2546 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2547 const struct cntr_entry *entry,
2548 void *context, int vl, int mode, u64 data)
2549 {
2550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551
2552 return dd->rcv_err_status_cnt[16];
2553 }
2554
2555 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2556 const struct cntr_entry *entry,
2557 void *context, int vl, int mode, u64 data)
2558 {
2559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560
2561 return dd->rcv_err_status_cnt[15];
2562 }
2563
2564 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2565 void *context, int vl,
2566 int mode, u64 data)
2567 {
2568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569
2570 return dd->rcv_err_status_cnt[14];
2571 }
2572
2573 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2574 void *context, int vl,
2575 int mode, u64 data)
2576 {
2577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578
2579 return dd->rcv_err_status_cnt[13];
2580 }
2581
2582 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2583 void *context, int vl, int mode,
2584 u64 data)
2585 {
2586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587
2588 return dd->rcv_err_status_cnt[12];
2589 }
2590
2591 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2592 void *context, int vl, int mode,
2593 u64 data)
2594 {
2595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596
2597 return dd->rcv_err_status_cnt[11];
2598 }
2599
2600 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2601 void *context, int vl, int mode,
2602 u64 data)
2603 {
2604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605
2606 return dd->rcv_err_status_cnt[10];
2607 }
2608
2609 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2610 void *context, int vl, int mode,
2611 u64 data)
2612 {
2613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614
2615 return dd->rcv_err_status_cnt[9];
2616 }
2617
2618 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2619 void *context, int vl, int mode,
2620 u64 data)
2621 {
2622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623
2624 return dd->rcv_err_status_cnt[8];
2625 }
2626
2627 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2628 const struct cntr_entry *entry,
2629 void *context, int vl, int mode, u64 data)
2630 {
2631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632
2633 return dd->rcv_err_status_cnt[7];
2634 }
2635
2636 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2637 const struct cntr_entry *entry,
2638 void *context, int vl, int mode, u64 data)
2639 {
2640 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641
2642 return dd->rcv_err_status_cnt[6];
2643 }
2644
2645 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2646 void *context, int vl, int mode,
2647 u64 data)
2648 {
2649 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650
2651 return dd->rcv_err_status_cnt[5];
2652 }
2653
2654 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2655 void *context, int vl, int mode,
2656 u64 data)
2657 {
2658 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659
2660 return dd->rcv_err_status_cnt[4];
2661 }
2662
2663 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2664 void *context, int vl, int mode,
2665 u64 data)
2666 {
2667 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668
2669 return dd->rcv_err_status_cnt[3];
2670 }
2671
2672 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2673 void *context, int vl, int mode,
2674 u64 data)
2675 {
2676 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677
2678 return dd->rcv_err_status_cnt[2];
2679 }
2680
2681 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2682 void *context, int vl, int mode,
2683 u64 data)
2684 {
2685 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686
2687 return dd->rcv_err_status_cnt[1];
2688 }
2689
2690 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2691 void *context, int vl, int mode,
2692 u64 data)
2693 {
2694 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695
2696 return dd->rcv_err_status_cnt[0];
2697 }
2698
2699 /*
2700 * Software counters corresponding to each of the
2701 * error status bits within SendPioErrStatus
2702 */
2703 static u64 access_pio_pec_sop_head_parity_err_cnt(
2704 const struct cntr_entry *entry,
2705 void *context, int vl, int mode, u64 data)
2706 {
2707 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2708
2709 return dd->send_pio_err_status_cnt[35];
2710 }
2711
2712 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2713 const struct cntr_entry *entry,
2714 void *context, int vl, int mode, u64 data)
2715 {
2716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717
2718 return dd->send_pio_err_status_cnt[34];
2719 }
2720
2721 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2722 const struct cntr_entry *entry,
2723 void *context, int vl, int mode, u64 data)
2724 {
2725 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726
2727 return dd->send_pio_err_status_cnt[33];
2728 }
2729
2730 static u64 access_pio_current_free_cnt_parity_err_cnt(
2731 const struct cntr_entry *entry,
2732 void *context, int vl, int mode, u64 data)
2733 {
2734 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735
2736 return dd->send_pio_err_status_cnt[32];
2737 }
2738
2739 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2740 void *context, int vl, int mode,
2741 u64 data)
2742 {
2743 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744
2745 return dd->send_pio_err_status_cnt[31];
2746 }
2747
2748 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2749 void *context, int vl, int mode,
2750 u64 data)
2751 {
2752 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753
2754 return dd->send_pio_err_status_cnt[30];
2755 }
2756
2757 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2758 void *context, int vl, int mode,
2759 u64 data)
2760 {
2761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762
2763 return dd->send_pio_err_status_cnt[29];
2764 }
2765
2766 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2767 const struct cntr_entry *entry,
2768 void *context, int vl, int mode, u64 data)
2769 {
2770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771
2772 return dd->send_pio_err_status_cnt[28];
2773 }
2774
2775 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2776 void *context, int vl, int mode,
2777 u64 data)
2778 {
2779 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780
2781 return dd->send_pio_err_status_cnt[27];
2782 }
2783
2784 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2785 void *context, int vl, int mode,
2786 u64 data)
2787 {
2788 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789
2790 return dd->send_pio_err_status_cnt[26];
2791 }
2792
2793 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2794 void *context, int vl,
2795 int mode, u64 data)
2796 {
2797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798
2799 return dd->send_pio_err_status_cnt[25];
2800 }
2801
2802 static u64 access_pio_block_qw_count_parity_err_cnt(
2803 const struct cntr_entry *entry,
2804 void *context, int vl, int mode, u64 data)
2805 {
2806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807
2808 return dd->send_pio_err_status_cnt[24];
2809 }
2810
2811 static u64 access_pio_write_qw_valid_parity_err_cnt(
2812 const struct cntr_entry *entry,
2813 void *context, int vl, int mode, u64 data)
2814 {
2815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816
2817 return dd->send_pio_err_status_cnt[23];
2818 }
2819
2820 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2821 void *context, int vl, int mode,
2822 u64 data)
2823 {
2824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825
2826 return dd->send_pio_err_status_cnt[22];
2827 }
2828
2829 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2830 void *context, int vl,
2831 int mode, u64 data)
2832 {
2833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834
2835 return dd->send_pio_err_status_cnt[21];
2836 }
2837
2838 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2839 void *context, int vl,
2840 int mode, u64 data)
2841 {
2842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843
2844 return dd->send_pio_err_status_cnt[20];
2845 }
2846
2847 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2848 void *context, int vl,
2849 int mode, u64 data)
2850 {
2851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852
2853 return dd->send_pio_err_status_cnt[19];
2854 }
2855
2856 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2857 const struct cntr_entry *entry,
2858 void *context, int vl, int mode, u64 data)
2859 {
2860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861
2862 return dd->send_pio_err_status_cnt[18];
2863 }
2864
2865 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2866 void *context, int vl, int mode,
2867 u64 data)
2868 {
2869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870
2871 return dd->send_pio_err_status_cnt[17];
2872 }
2873
2874 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2875 void *context, int vl, int mode,
2876 u64 data)
2877 {
2878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879
2880 return dd->send_pio_err_status_cnt[16];
2881 }
2882
2883 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2884 const struct cntr_entry *entry,
2885 void *context, int vl, int mode, u64 data)
2886 {
2887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888
2889 return dd->send_pio_err_status_cnt[15];
2890 }
2891
2892 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2893 const struct cntr_entry *entry,
2894 void *context, int vl, int mode, u64 data)
2895 {
2896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897
2898 return dd->send_pio_err_status_cnt[14];
2899 }
2900
2901 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2902 const struct cntr_entry *entry,
2903 void *context, int vl, int mode, u64 data)
2904 {
2905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906
2907 return dd->send_pio_err_status_cnt[13];
2908 }
2909
2910 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2911 const struct cntr_entry *entry,
2912 void *context, int vl, int mode, u64 data)
2913 {
2914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915
2916 return dd->send_pio_err_status_cnt[12];
2917 }
2918
2919 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2920 const struct cntr_entry *entry,
2921 void *context, int vl, int mode, u64 data)
2922 {
2923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924
2925 return dd->send_pio_err_status_cnt[11];
2926 }
2927
2928 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2929 const struct cntr_entry *entry,
2930 void *context, int vl, int mode, u64 data)
2931 {
2932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933
2934 return dd->send_pio_err_status_cnt[10];
2935 }
2936
2937 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2938 const struct cntr_entry *entry,
2939 void *context, int vl, int mode, u64 data)
2940 {
2941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942
2943 return dd->send_pio_err_status_cnt[9];
2944 }
2945
2946 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2947 const struct cntr_entry *entry,
2948 void *context, int vl, int mode, u64 data)
2949 {
2950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951
2952 return dd->send_pio_err_status_cnt[8];
2953 }
2954
2955 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2956 const struct cntr_entry *entry,
2957 void *context, int vl, int mode, u64 data)
2958 {
2959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960
2961 return dd->send_pio_err_status_cnt[7];
2962 }
2963
2964 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2965 void *context, int vl, int mode,
2966 u64 data)
2967 {
2968 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969
2970 return dd->send_pio_err_status_cnt[6];
2971 }
2972
2973 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2974 void *context, int vl, int mode,
2975 u64 data)
2976 {
2977 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978
2979 return dd->send_pio_err_status_cnt[5];
2980 }
2981
2982 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2983 void *context, int vl, int mode,
2984 u64 data)
2985 {
2986 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987
2988 return dd->send_pio_err_status_cnt[4];
2989 }
2990
2991 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
2992 void *context, int vl, int mode,
2993 u64 data)
2994 {
2995 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996
2997 return dd->send_pio_err_status_cnt[3];
2998 }
2999
3000 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3001 void *context, int vl, int mode,
3002 u64 data)
3003 {
3004 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005
3006 return dd->send_pio_err_status_cnt[2];
3007 }
3008
3009 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3010 void *context, int vl,
3011 int mode, u64 data)
3012 {
3013 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014
3015 return dd->send_pio_err_status_cnt[1];
3016 }
3017
3018 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3019 void *context, int vl, int mode,
3020 u64 data)
3021 {
3022 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023
3024 return dd->send_pio_err_status_cnt[0];
3025 }
3026
3027 /*
3028 * Software counters corresponding to each of the
3029 * error status bits within SendDmaErrStatus
3030 */
3031 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3032 const struct cntr_entry *entry,
3033 void *context, int vl, int mode, u64 data)
3034 {
3035 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3036
3037 return dd->send_dma_err_status_cnt[3];
3038 }
3039
3040 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3041 const struct cntr_entry *entry,
3042 void *context, int vl, int mode, u64 data)
3043 {
3044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3045
3046 return dd->send_dma_err_status_cnt[2];
3047 }
3048
3049 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3050 void *context, int vl, int mode,
3051 u64 data)
3052 {
3053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3054
3055 return dd->send_dma_err_status_cnt[1];
3056 }
3057
3058 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3059 void *context, int vl, int mode,
3060 u64 data)
3061 {
3062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3063
3064 return dd->send_dma_err_status_cnt[0];
3065 }
3066
3067 /*
3068 * Software counters corresponding to each of the
3069 * error status bits within SendEgressErrStatus
3070 */
3071 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3072 const struct cntr_entry *entry,
3073 void *context, int vl, int mode, u64 data)
3074 {
3075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3076
3077 return dd->send_egress_err_status_cnt[63];
3078 }
3079
3080 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3081 const struct cntr_entry *entry,
3082 void *context, int vl, int mode, u64 data)
3083 {
3084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3085
3086 return dd->send_egress_err_status_cnt[62];
3087 }
3088
3089 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3090 void *context, int vl, int mode,
3091 u64 data)
3092 {
3093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3094
3095 return dd->send_egress_err_status_cnt[61];
3096 }
3097
3098 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3099 void *context, int vl,
3100 int mode, u64 data)
3101 {
3102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3103
3104 return dd->send_egress_err_status_cnt[60];
3105 }
3106
3107 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3108 const struct cntr_entry *entry,
3109 void *context, int vl, int mode, u64 data)
3110 {
3111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3112
3113 return dd->send_egress_err_status_cnt[59];
3114 }
3115
3116 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3117 void *context, int vl, int mode,
3118 u64 data)
3119 {
3120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3121
3122 return dd->send_egress_err_status_cnt[58];
3123 }
3124
3125 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3126 void *context, int vl, int mode,
3127 u64 data)
3128 {
3129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130
3131 return dd->send_egress_err_status_cnt[57];
3132 }
3133
3134 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3135 void *context, int vl, int mode,
3136 u64 data)
3137 {
3138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139
3140 return dd->send_egress_err_status_cnt[56];
3141 }
3142
3143 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3144 void *context, int vl, int mode,
3145 u64 data)
3146 {
3147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148
3149 return dd->send_egress_err_status_cnt[55];
3150 }
3151
3152 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3153 void *context, int vl, int mode,
3154 u64 data)
3155 {
3156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157
3158 return dd->send_egress_err_status_cnt[54];
3159 }
3160
3161 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3162 void *context, int vl, int mode,
3163 u64 data)
3164 {
3165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166
3167 return dd->send_egress_err_status_cnt[53];
3168 }
3169
3170 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3171 void *context, int vl, int mode,
3172 u64 data)
3173 {
3174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175
3176 return dd->send_egress_err_status_cnt[52];
3177 }
3178
3179 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3180 void *context, int vl, int mode,
3181 u64 data)
3182 {
3183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184
3185 return dd->send_egress_err_status_cnt[51];
3186 }
3187
3188 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3189 void *context, int vl, int mode,
3190 u64 data)
3191 {
3192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193
3194 return dd->send_egress_err_status_cnt[50];
3195 }
3196
3197 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3198 void *context, int vl, int mode,
3199 u64 data)
3200 {
3201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202
3203 return dd->send_egress_err_status_cnt[49];
3204 }
3205
3206 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3207 void *context, int vl, int mode,
3208 u64 data)
3209 {
3210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211
3212 return dd->send_egress_err_status_cnt[48];
3213 }
3214
3215 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3216 void *context, int vl, int mode,
3217 u64 data)
3218 {
3219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220
3221 return dd->send_egress_err_status_cnt[47];
3222 }
3223
3224 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3225 void *context, int vl, int mode,
3226 u64 data)
3227 {
3228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229
3230 return dd->send_egress_err_status_cnt[46];
3231 }
3232
3233 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3234 void *context, int vl, int mode,
3235 u64 data)
3236 {
3237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238
3239 return dd->send_egress_err_status_cnt[45];
3240 }
3241
3242 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3243 void *context, int vl,
3244 int mode, u64 data)
3245 {
3246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247
3248 return dd->send_egress_err_status_cnt[44];
3249 }
3250
3251 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3252 const struct cntr_entry *entry,
3253 void *context, int vl, int mode, u64 data)
3254 {
3255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256
3257 return dd->send_egress_err_status_cnt[43];
3258 }
3259
3260 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3261 void *context, int vl, int mode,
3262 u64 data)
3263 {
3264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265
3266 return dd->send_egress_err_status_cnt[42];
3267 }
3268
3269 static u64 access_tx_credit_return_partiy_err_cnt(
3270 const struct cntr_entry *entry,
3271 void *context, int vl, int mode, u64 data)
3272 {
3273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274
3275 return dd->send_egress_err_status_cnt[41];
3276 }
3277
3278 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3279 const struct cntr_entry *entry,
3280 void *context, int vl, int mode, u64 data)
3281 {
3282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283
3284 return dd->send_egress_err_status_cnt[40];
3285 }
3286
3287 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3288 const struct cntr_entry *entry,
3289 void *context, int vl, int mode, u64 data)
3290 {
3291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292
3293 return dd->send_egress_err_status_cnt[39];
3294 }
3295
3296 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3297 const struct cntr_entry *entry,
3298 void *context, int vl, int mode, u64 data)
3299 {
3300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301
3302 return dd->send_egress_err_status_cnt[38];
3303 }
3304
3305 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3306 const struct cntr_entry *entry,
3307 void *context, int vl, int mode, u64 data)
3308 {
3309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310
3311 return dd->send_egress_err_status_cnt[37];
3312 }
3313
3314 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3315 const struct cntr_entry *entry,
3316 void *context, int vl, int mode, u64 data)
3317 {
3318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319
3320 return dd->send_egress_err_status_cnt[36];
3321 }
3322
3323 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3324 const struct cntr_entry *entry,
3325 void *context, int vl, int mode, u64 data)
3326 {
3327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328
3329 return dd->send_egress_err_status_cnt[35];
3330 }
3331
3332 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3333 const struct cntr_entry *entry,
3334 void *context, int vl, int mode, u64 data)
3335 {
3336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337
3338 return dd->send_egress_err_status_cnt[34];
3339 }
3340
3341 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3342 const struct cntr_entry *entry,
3343 void *context, int vl, int mode, u64 data)
3344 {
3345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346
3347 return dd->send_egress_err_status_cnt[33];
3348 }
3349
3350 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3351 const struct cntr_entry *entry,
3352 void *context, int vl, int mode, u64 data)
3353 {
3354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355
3356 return dd->send_egress_err_status_cnt[32];
3357 }
3358
3359 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3360 const struct cntr_entry *entry,
3361 void *context, int vl, int mode, u64 data)
3362 {
3363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364
3365 return dd->send_egress_err_status_cnt[31];
3366 }
3367
3368 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3369 const struct cntr_entry *entry,
3370 void *context, int vl, int mode, u64 data)
3371 {
3372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373
3374 return dd->send_egress_err_status_cnt[30];
3375 }
3376
3377 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3378 const struct cntr_entry *entry,
3379 void *context, int vl, int mode, u64 data)
3380 {
3381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382
3383 return dd->send_egress_err_status_cnt[29];
3384 }
3385
3386 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3387 const struct cntr_entry *entry,
3388 void *context, int vl, int mode, u64 data)
3389 {
3390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391
3392 return dd->send_egress_err_status_cnt[28];
3393 }
3394
3395 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3396 const struct cntr_entry *entry,
3397 void *context, int vl, int mode, u64 data)
3398 {
3399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400
3401 return dd->send_egress_err_status_cnt[27];
3402 }
3403
3404 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3405 const struct cntr_entry *entry,
3406 void *context, int vl, int mode, u64 data)
3407 {
3408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409
3410 return dd->send_egress_err_status_cnt[26];
3411 }
3412
3413 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3414 const struct cntr_entry *entry,
3415 void *context, int vl, int mode, u64 data)
3416 {
3417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418
3419 return dd->send_egress_err_status_cnt[25];
3420 }
3421
3422 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3423 const struct cntr_entry *entry,
3424 void *context, int vl, int mode, u64 data)
3425 {
3426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427
3428 return dd->send_egress_err_status_cnt[24];
3429 }
3430
3431 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3432 const struct cntr_entry *entry,
3433 void *context, int vl, int mode, u64 data)
3434 {
3435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436
3437 return dd->send_egress_err_status_cnt[23];
3438 }
3439
3440 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3441 const struct cntr_entry *entry,
3442 void *context, int vl, int mode, u64 data)
3443 {
3444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445
3446 return dd->send_egress_err_status_cnt[22];
3447 }
3448
3449 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3450 const struct cntr_entry *entry,
3451 void *context, int vl, int mode, u64 data)
3452 {
3453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454
3455 return dd->send_egress_err_status_cnt[21];
3456 }
3457
3458 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3459 const struct cntr_entry *entry,
3460 void *context, int vl, int mode, u64 data)
3461 {
3462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463
3464 return dd->send_egress_err_status_cnt[20];
3465 }
3466
3467 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3468 const struct cntr_entry *entry,
3469 void *context, int vl, int mode, u64 data)
3470 {
3471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472
3473 return dd->send_egress_err_status_cnt[19];
3474 }
3475
3476 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3477 const struct cntr_entry *entry,
3478 void *context, int vl, int mode, u64 data)
3479 {
3480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481
3482 return dd->send_egress_err_status_cnt[18];
3483 }
3484
3485 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3486 const struct cntr_entry *entry,
3487 void *context, int vl, int mode, u64 data)
3488 {
3489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490
3491 return dd->send_egress_err_status_cnt[17];
3492 }
3493
3494 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3495 const struct cntr_entry *entry,
3496 void *context, int vl, int mode, u64 data)
3497 {
3498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499
3500 return dd->send_egress_err_status_cnt[16];
3501 }
3502
3503 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3504 void *context, int vl, int mode,
3505 u64 data)
3506 {
3507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508
3509 return dd->send_egress_err_status_cnt[15];
3510 }
3511
3512 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3513 void *context, int vl,
3514 int mode, u64 data)
3515 {
3516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517
3518 return dd->send_egress_err_status_cnt[14];
3519 }
3520
3521 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3522 void *context, int vl, int mode,
3523 u64 data)
3524 {
3525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526
3527 return dd->send_egress_err_status_cnt[13];
3528 }
3529
3530 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3531 void *context, int vl, int mode,
3532 u64 data)
3533 {
3534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535
3536 return dd->send_egress_err_status_cnt[12];
3537 }
3538
3539 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3540 const struct cntr_entry *entry,
3541 void *context, int vl, int mode, u64 data)
3542 {
3543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544
3545 return dd->send_egress_err_status_cnt[11];
3546 }
3547
3548 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3549 void *context, int vl, int mode,
3550 u64 data)
3551 {
3552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553
3554 return dd->send_egress_err_status_cnt[10];
3555 }
3556
3557 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3558 void *context, int vl, int mode,
3559 u64 data)
3560 {
3561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562
3563 return dd->send_egress_err_status_cnt[9];
3564 }
3565
3566 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3567 const struct cntr_entry *entry,
3568 void *context, int vl, int mode, u64 data)
3569 {
3570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571
3572 return dd->send_egress_err_status_cnt[8];
3573 }
3574
3575 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3576 const struct cntr_entry *entry,
3577 void *context, int vl, int mode, u64 data)
3578 {
3579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580
3581 return dd->send_egress_err_status_cnt[7];
3582 }
3583
3584 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3585 void *context, int vl, int mode,
3586 u64 data)
3587 {
3588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589
3590 return dd->send_egress_err_status_cnt[6];
3591 }
3592
3593 static u64 access_tx_incorrect_link_state_err_cnt(
3594 const struct cntr_entry *entry,
3595 void *context, int vl, int mode, u64 data)
3596 {
3597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598
3599 return dd->send_egress_err_status_cnt[5];
3600 }
3601
3602 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3603 void *context, int vl, int mode,
3604 u64 data)
3605 {
3606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607
3608 return dd->send_egress_err_status_cnt[4];
3609 }
3610
3611 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3612 const struct cntr_entry *entry,
3613 void *context, int vl, int mode, u64 data)
3614 {
3615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616
3617 return dd->send_egress_err_status_cnt[3];
3618 }
3619
3620 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3621 void *context, int vl, int mode,
3622 u64 data)
3623 {
3624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625
3626 return dd->send_egress_err_status_cnt[2];
3627 }
3628
3629 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3630 const struct cntr_entry *entry,
3631 void *context, int vl, int mode, u64 data)
3632 {
3633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634
3635 return dd->send_egress_err_status_cnt[1];
3636 }
3637
3638 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3639 const struct cntr_entry *entry,
3640 void *context, int vl, int mode, u64 data)
3641 {
3642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643
3644 return dd->send_egress_err_status_cnt[0];
3645 }
3646
3647 /*
3648 * Software counters corresponding to each of the
3649 * error status bits within SendErrStatus
3650 */
3651 static u64 access_send_csr_write_bad_addr_err_cnt(
3652 const struct cntr_entry *entry,
3653 void *context, int vl, int mode, u64 data)
3654 {
3655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3656
3657 return dd->send_err_status_cnt[2];
3658 }
3659
3660 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3661 void *context, int vl,
3662 int mode, u64 data)
3663 {
3664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3665
3666 return dd->send_err_status_cnt[1];
3667 }
3668
3669 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3670 void *context, int vl, int mode,
3671 u64 data)
3672 {
3673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3674
3675 return dd->send_err_status_cnt[0];
3676 }
3677
3678 /*
3679 * Software counters corresponding to each of the
3680 * error status bits within SendCtxtErrStatus
3681 */
3682 static u64 access_pio_write_out_of_bounds_err_cnt(
3683 const struct cntr_entry *entry,
3684 void *context, int vl, int mode, u64 data)
3685 {
3686 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3687
3688 return dd->sw_ctxt_err_status_cnt[4];
3689 }
3690
3691 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3692 void *context, int vl, int mode,
3693 u64 data)
3694 {
3695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3696
3697 return dd->sw_ctxt_err_status_cnt[3];
3698 }
3699
3700 static u64 access_pio_write_crosses_boundary_err_cnt(
3701 const struct cntr_entry *entry,
3702 void *context, int vl, int mode, u64 data)
3703 {
3704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3705
3706 return dd->sw_ctxt_err_status_cnt[2];
3707 }
3708
3709 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3710 void *context, int vl,
3711 int mode, u64 data)
3712 {
3713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3714
3715 return dd->sw_ctxt_err_status_cnt[1];
3716 }
3717
3718 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3719 void *context, int vl, int mode,
3720 u64 data)
3721 {
3722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3723
3724 return dd->sw_ctxt_err_status_cnt[0];
3725 }
3726
3727 /*
3728 * Software counters corresponding to each of the
3729 * error status bits within SendDmaEngErrStatus
3730 */
3731 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3732 const struct cntr_entry *entry,
3733 void *context, int vl, int mode, u64 data)
3734 {
3735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3736
3737 return dd->sw_send_dma_eng_err_status_cnt[23];
3738 }
3739
3740 static u64 access_sdma_header_storage_cor_err_cnt(
3741 const struct cntr_entry *entry,
3742 void *context, int vl, int mode, u64 data)
3743 {
3744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3745
3746 return dd->sw_send_dma_eng_err_status_cnt[22];
3747 }
3748
3749 static u64 access_sdma_packet_tracking_cor_err_cnt(
3750 const struct cntr_entry *entry,
3751 void *context, int vl, int mode, u64 data)
3752 {
3753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3754
3755 return dd->sw_send_dma_eng_err_status_cnt[21];
3756 }
3757
3758 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3759 void *context, int vl, int mode,
3760 u64 data)
3761 {
3762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3763
3764 return dd->sw_send_dma_eng_err_status_cnt[20];
3765 }
3766
3767 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3768 void *context, int vl, int mode,
3769 u64 data)
3770 {
3771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3772
3773 return dd->sw_send_dma_eng_err_status_cnt[19];
3774 }
3775
3776 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3777 const struct cntr_entry *entry,
3778 void *context, int vl, int mode, u64 data)
3779 {
3780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781
3782 return dd->sw_send_dma_eng_err_status_cnt[18];
3783 }
3784
3785 static u64 access_sdma_header_storage_unc_err_cnt(
3786 const struct cntr_entry *entry,
3787 void *context, int vl, int mode, u64 data)
3788 {
3789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790
3791 return dd->sw_send_dma_eng_err_status_cnt[17];
3792 }
3793
3794 static u64 access_sdma_packet_tracking_unc_err_cnt(
3795 const struct cntr_entry *entry,
3796 void *context, int vl, int mode, u64 data)
3797 {
3798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799
3800 return dd->sw_send_dma_eng_err_status_cnt[16];
3801 }
3802
3803 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3804 void *context, int vl, int mode,
3805 u64 data)
3806 {
3807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808
3809 return dd->sw_send_dma_eng_err_status_cnt[15];
3810 }
3811
3812 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3813 void *context, int vl, int mode,
3814 u64 data)
3815 {
3816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817
3818 return dd->sw_send_dma_eng_err_status_cnt[14];
3819 }
3820
3821 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3822 void *context, int vl, int mode,
3823 u64 data)
3824 {
3825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826
3827 return dd->sw_send_dma_eng_err_status_cnt[13];
3828 }
3829
3830 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3831 void *context, int vl, int mode,
3832 u64 data)
3833 {
3834 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835
3836 return dd->sw_send_dma_eng_err_status_cnt[12];
3837 }
3838
3839 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3840 void *context, int vl, int mode,
3841 u64 data)
3842 {
3843 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844
3845 return dd->sw_send_dma_eng_err_status_cnt[11];
3846 }
3847
3848 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3849 void *context, int vl, int mode,
3850 u64 data)
3851 {
3852 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853
3854 return dd->sw_send_dma_eng_err_status_cnt[10];
3855 }
3856
3857 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3858 void *context, int vl, int mode,
3859 u64 data)
3860 {
3861 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862
3863 return dd->sw_send_dma_eng_err_status_cnt[9];
3864 }
3865
3866 static u64 access_sdma_packet_desc_overflow_err_cnt(
3867 const struct cntr_entry *entry,
3868 void *context, int vl, int mode, u64 data)
3869 {
3870 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871
3872 return dd->sw_send_dma_eng_err_status_cnt[8];
3873 }
3874
3875 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3876 void *context, int vl,
3877 int mode, u64 data)
3878 {
3879 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880
3881 return dd->sw_send_dma_eng_err_status_cnt[7];
3882 }
3883
3884 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3885 void *context, int vl, int mode, u64 data)
3886 {
3887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3888
3889 return dd->sw_send_dma_eng_err_status_cnt[6];
3890 }
3891
3892 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3893 void *context, int vl, int mode,
3894 u64 data)
3895 {
3896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3897
3898 return dd->sw_send_dma_eng_err_status_cnt[5];
3899 }
3900
3901 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3902 void *context, int vl, int mode,
3903 u64 data)
3904 {
3905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3906
3907 return dd->sw_send_dma_eng_err_status_cnt[4];
3908 }
3909
3910 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3911 const struct cntr_entry *entry,
3912 void *context, int vl, int mode, u64 data)
3913 {
3914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3915
3916 return dd->sw_send_dma_eng_err_status_cnt[3];
3917 }
3918
3919 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3920 void *context, int vl, int mode,
3921 u64 data)
3922 {
3923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3924
3925 return dd->sw_send_dma_eng_err_status_cnt[2];
3926 }
3927
3928 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3929 void *context, int vl, int mode,
3930 u64 data)
3931 {
3932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3933
3934 return dd->sw_send_dma_eng_err_status_cnt[1];
3935 }
3936
3937 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3938 void *context, int vl, int mode,
3939 u64 data)
3940 {
3941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3942
3943 return dd->sw_send_dma_eng_err_status_cnt[0];
3944 }
3945
3946 #define def_access_sw_cpu(cntr) \
3947 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
3948 void *context, int vl, int mode, u64 data) \
3949 { \
3950 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3951 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
3952 ppd->ibport_data.rvp.cntr, vl, \
3953 mode, data); \
3954 }
3955
3956 def_access_sw_cpu(rc_acks);
3957 def_access_sw_cpu(rc_qacks);
3958 def_access_sw_cpu(rc_delayed_comp);
3959
3960 #define def_access_ibp_counter(cntr) \
3961 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
3962 void *context, int vl, int mode, u64 data) \
3963 { \
3964 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3965 \
3966 if (vl != CNTR_INVALID_VL) \
3967 return 0; \
3968 \
3969 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
3970 mode, data); \
3971 }
3972
3973 def_access_ibp_counter(loop_pkts);
3974 def_access_ibp_counter(rc_resends);
3975 def_access_ibp_counter(rnr_naks);
3976 def_access_ibp_counter(other_naks);
3977 def_access_ibp_counter(rc_timeouts);
3978 def_access_ibp_counter(pkt_drops);
3979 def_access_ibp_counter(dmawait);
3980 def_access_ibp_counter(rc_seqnak);
3981 def_access_ibp_counter(rc_dupreq);
3982 def_access_ibp_counter(rdma_seq);
3983 def_access_ibp_counter(unaligned);
3984 def_access_ibp_counter(seq_naks);
3985
3986 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
3987 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
3988 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
3989 CNTR_NORMAL),
3990 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
3991 CNTR_NORMAL),
3992 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
3993 RCV_TID_FLOW_GEN_MISMATCH_CNT,
3994 CNTR_NORMAL),
3995 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
3996 CNTR_NORMAL),
3997 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
3998 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
3999 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4000 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4001 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4002 CNTR_NORMAL),
4003 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4004 CNTR_NORMAL),
4005 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4006 CNTR_NORMAL),
4007 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4008 CNTR_NORMAL),
4009 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4010 CNTR_NORMAL),
4011 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4012 CNTR_NORMAL),
4013 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4014 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4015 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4016 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4017 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4018 CNTR_SYNTH),
4019 [C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
4020 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4021 CNTR_SYNTH),
4022 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4023 CNTR_SYNTH),
4024 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4025 CNTR_SYNTH),
4026 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4027 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4028 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4029 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4030 CNTR_SYNTH),
4031 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4032 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4033 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4034 CNTR_SYNTH),
4035 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4036 CNTR_SYNTH),
4037 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4038 CNTR_SYNTH),
4039 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4040 CNTR_SYNTH),
4041 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4042 CNTR_SYNTH),
4043 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4044 CNTR_SYNTH),
4045 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4046 CNTR_SYNTH),
4047 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4048 CNTR_SYNTH | CNTR_VL),
4049 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4050 CNTR_SYNTH | CNTR_VL),
4051 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4052 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4053 CNTR_SYNTH | CNTR_VL),
4054 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4055 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4056 CNTR_SYNTH | CNTR_VL),
4057 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4058 CNTR_SYNTH),
4059 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4060 CNTR_SYNTH | CNTR_VL),
4061 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4062 CNTR_SYNTH),
4063 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4064 CNTR_SYNTH | CNTR_VL),
4065 [C_DC_TOTAL_CRC] =
4066 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4067 CNTR_SYNTH),
4068 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4069 CNTR_SYNTH),
4070 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4071 CNTR_SYNTH),
4072 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4073 CNTR_SYNTH),
4074 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4075 CNTR_SYNTH),
4076 [C_DC_CRC_MULT_LN] =
4077 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4078 CNTR_SYNTH),
4079 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4080 CNTR_SYNTH),
4081 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4082 CNTR_SYNTH),
4083 [C_DC_SEQ_CRC_CNT] =
4084 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4085 CNTR_SYNTH),
4086 [C_DC_ESC0_ONLY_CNT] =
4087 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4088 CNTR_SYNTH),
4089 [C_DC_ESC0_PLUS1_CNT] =
4090 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4091 CNTR_SYNTH),
4092 [C_DC_ESC0_PLUS2_CNT] =
4093 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4094 CNTR_SYNTH),
4095 [C_DC_REINIT_FROM_PEER_CNT] =
4096 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4097 CNTR_SYNTH),
4098 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4099 CNTR_SYNTH),
4100 [C_DC_MISC_FLG_CNT] =
4101 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4102 CNTR_SYNTH),
4103 [C_DC_PRF_GOOD_LTP_CNT] =
4104 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4105 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4106 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4107 CNTR_SYNTH),
4108 [C_DC_PRF_RX_FLIT_CNT] =
4109 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4110 [C_DC_PRF_TX_FLIT_CNT] =
4111 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4112 [C_DC_PRF_CLK_CNTR] =
4113 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4114 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4115 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4116 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4117 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4118 CNTR_SYNTH),
4119 [C_DC_PG_STS_TX_SBE_CNT] =
4120 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4121 [C_DC_PG_STS_TX_MBE_CNT] =
4122 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4123 CNTR_SYNTH),
4124 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4125 access_sw_cpu_intr),
4126 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4127 access_sw_cpu_rcv_limit),
4128 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4129 access_sw_vtx_wait),
4130 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4131 access_sw_pio_wait),
4132 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4133 access_sw_pio_drain),
4134 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4135 access_sw_kmem_wait),
4136 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4137 access_sw_send_schedule),
4138 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4139 SEND_DMA_DESC_FETCHED_CNT, 0,
4140 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4141 dev_access_u32_csr),
4142 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4143 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4144 access_sde_int_cnt),
4145 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4146 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4147 access_sde_err_cnt),
4148 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4149 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4150 access_sde_idle_int_cnt),
4151 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4152 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4153 access_sde_progress_int_cnt),
4154 /* MISC_ERR_STATUS */
4155 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4156 CNTR_NORMAL,
4157 access_misc_pll_lock_fail_err_cnt),
4158 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4159 CNTR_NORMAL,
4160 access_misc_mbist_fail_err_cnt),
4161 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4162 CNTR_NORMAL,
4163 access_misc_invalid_eep_cmd_err_cnt),
4164 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4165 CNTR_NORMAL,
4166 access_misc_efuse_done_parity_err_cnt),
4167 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4168 CNTR_NORMAL,
4169 access_misc_efuse_write_err_cnt),
4170 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4171 0, CNTR_NORMAL,
4172 access_misc_efuse_read_bad_addr_err_cnt),
4173 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4174 CNTR_NORMAL,
4175 access_misc_efuse_csr_parity_err_cnt),
4176 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4177 CNTR_NORMAL,
4178 access_misc_fw_auth_failed_err_cnt),
4179 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4180 CNTR_NORMAL,
4181 access_misc_key_mismatch_err_cnt),
4182 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4183 CNTR_NORMAL,
4184 access_misc_sbus_write_failed_err_cnt),
4185 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4186 CNTR_NORMAL,
4187 access_misc_csr_write_bad_addr_err_cnt),
4188 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4189 CNTR_NORMAL,
4190 access_misc_csr_read_bad_addr_err_cnt),
4191 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4192 CNTR_NORMAL,
4193 access_misc_csr_parity_err_cnt),
4194 /* CceErrStatus */
4195 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4196 CNTR_NORMAL,
4197 access_sw_cce_err_status_aggregated_cnt),
4198 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4199 CNTR_NORMAL,
4200 access_cce_msix_csr_parity_err_cnt),
4201 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4202 CNTR_NORMAL,
4203 access_cce_int_map_unc_err_cnt),
4204 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4205 CNTR_NORMAL,
4206 access_cce_int_map_cor_err_cnt),
4207 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4208 CNTR_NORMAL,
4209 access_cce_msix_table_unc_err_cnt),
4210 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4211 CNTR_NORMAL,
4212 access_cce_msix_table_cor_err_cnt),
4213 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4214 0, CNTR_NORMAL,
4215 access_cce_rxdma_conv_fifo_parity_err_cnt),
4216 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4217 0, CNTR_NORMAL,
4218 access_cce_rcpl_async_fifo_parity_err_cnt),
4219 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4220 CNTR_NORMAL,
4221 access_cce_seg_write_bad_addr_err_cnt),
4222 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4223 CNTR_NORMAL,
4224 access_cce_seg_read_bad_addr_err_cnt),
4225 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4226 CNTR_NORMAL,
4227 access_la_triggered_cnt),
4228 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4229 CNTR_NORMAL,
4230 access_cce_trgt_cpl_timeout_err_cnt),
4231 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4232 CNTR_NORMAL,
4233 access_pcic_receive_parity_err_cnt),
4234 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4235 CNTR_NORMAL,
4236 access_pcic_transmit_back_parity_err_cnt),
4237 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4238 0, CNTR_NORMAL,
4239 access_pcic_transmit_front_parity_err_cnt),
4240 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4241 CNTR_NORMAL,
4242 access_pcic_cpl_dat_q_unc_err_cnt),
4243 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4244 CNTR_NORMAL,
4245 access_pcic_cpl_hd_q_unc_err_cnt),
4246 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4247 CNTR_NORMAL,
4248 access_pcic_post_dat_q_unc_err_cnt),
4249 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4250 CNTR_NORMAL,
4251 access_pcic_post_hd_q_unc_err_cnt),
4252 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4253 CNTR_NORMAL,
4254 access_pcic_retry_sot_mem_unc_err_cnt),
4255 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4256 CNTR_NORMAL,
4257 access_pcic_retry_mem_unc_err),
4258 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4259 CNTR_NORMAL,
4260 access_pcic_n_post_dat_q_parity_err_cnt),
4261 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4262 CNTR_NORMAL,
4263 access_pcic_n_post_h_q_parity_err_cnt),
4264 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4265 CNTR_NORMAL,
4266 access_pcic_cpl_dat_q_cor_err_cnt),
4267 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4268 CNTR_NORMAL,
4269 access_pcic_cpl_hd_q_cor_err_cnt),
4270 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4271 CNTR_NORMAL,
4272 access_pcic_post_dat_q_cor_err_cnt),
4273 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4274 CNTR_NORMAL,
4275 access_pcic_post_hd_q_cor_err_cnt),
4276 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4277 CNTR_NORMAL,
4278 access_pcic_retry_sot_mem_cor_err_cnt),
4279 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4280 CNTR_NORMAL,
4281 access_pcic_retry_mem_cor_err_cnt),
4282 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4283 "CceCli1AsyncFifoDbgParityError", 0, 0,
4284 CNTR_NORMAL,
4285 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4286 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4287 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4288 CNTR_NORMAL,
4289 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4290 ),
4291 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4292 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4293 CNTR_NORMAL,
4294 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4295 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4296 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4297 CNTR_NORMAL,
4298 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4299 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4300 0, CNTR_NORMAL,
4301 access_cce_cli2_async_fifo_parity_err_cnt),
4302 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4303 CNTR_NORMAL,
4304 access_cce_csr_cfg_bus_parity_err_cnt),
4305 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4306 0, CNTR_NORMAL,
4307 access_cce_cli0_async_fifo_parity_err_cnt),
4308 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4309 CNTR_NORMAL,
4310 access_cce_rspd_data_parity_err_cnt),
4311 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4312 CNTR_NORMAL,
4313 access_cce_trgt_access_err_cnt),
4314 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4315 0, CNTR_NORMAL,
4316 access_cce_trgt_async_fifo_parity_err_cnt),
4317 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4318 CNTR_NORMAL,
4319 access_cce_csr_write_bad_addr_err_cnt),
4320 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4321 CNTR_NORMAL,
4322 access_cce_csr_read_bad_addr_err_cnt),
4323 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4324 CNTR_NORMAL,
4325 access_ccs_csr_parity_err_cnt),
4326
4327 /* RcvErrStatus */
4328 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4329 CNTR_NORMAL,
4330 access_rx_csr_parity_err_cnt),
4331 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4332 CNTR_NORMAL,
4333 access_rx_csr_write_bad_addr_err_cnt),
4334 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4335 CNTR_NORMAL,
4336 access_rx_csr_read_bad_addr_err_cnt),
4337 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4338 CNTR_NORMAL,
4339 access_rx_dma_csr_unc_err_cnt),
4340 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4341 CNTR_NORMAL,
4342 access_rx_dma_dq_fsm_encoding_err_cnt),
4343 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4344 CNTR_NORMAL,
4345 access_rx_dma_eq_fsm_encoding_err_cnt),
4346 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4347 CNTR_NORMAL,
4348 access_rx_dma_csr_parity_err_cnt),
4349 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4350 CNTR_NORMAL,
4351 access_rx_rbuf_data_cor_err_cnt),
4352 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4353 CNTR_NORMAL,
4354 access_rx_rbuf_data_unc_err_cnt),
4355 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4356 CNTR_NORMAL,
4357 access_rx_dma_data_fifo_rd_cor_err_cnt),
4358 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4359 CNTR_NORMAL,
4360 access_rx_dma_data_fifo_rd_unc_err_cnt),
4361 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4362 CNTR_NORMAL,
4363 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4364 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4365 CNTR_NORMAL,
4366 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4367 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4368 CNTR_NORMAL,
4369 access_rx_rbuf_desc_part2_cor_err_cnt),
4370 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4371 CNTR_NORMAL,
4372 access_rx_rbuf_desc_part2_unc_err_cnt),
4373 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4374 CNTR_NORMAL,
4375 access_rx_rbuf_desc_part1_cor_err_cnt),
4376 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4377 CNTR_NORMAL,
4378 access_rx_rbuf_desc_part1_unc_err_cnt),
4379 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4380 CNTR_NORMAL,
4381 access_rx_hq_intr_fsm_err_cnt),
4382 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4383 CNTR_NORMAL,
4384 access_rx_hq_intr_csr_parity_err_cnt),
4385 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4386 CNTR_NORMAL,
4387 access_rx_lookup_csr_parity_err_cnt),
4388 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4389 CNTR_NORMAL,
4390 access_rx_lookup_rcv_array_cor_err_cnt),
4391 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4392 CNTR_NORMAL,
4393 access_rx_lookup_rcv_array_unc_err_cnt),
4394 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4395 0, CNTR_NORMAL,
4396 access_rx_lookup_des_part2_parity_err_cnt),
4397 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4398 0, CNTR_NORMAL,
4399 access_rx_lookup_des_part1_unc_cor_err_cnt),
4400 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4401 CNTR_NORMAL,
4402 access_rx_lookup_des_part1_unc_err_cnt),
4403 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4404 CNTR_NORMAL,
4405 access_rx_rbuf_next_free_buf_cor_err_cnt),
4406 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4407 CNTR_NORMAL,
4408 access_rx_rbuf_next_free_buf_unc_err_cnt),
4409 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4410 "RxRbufFlInitWrAddrParityErr", 0, 0,
4411 CNTR_NORMAL,
4412 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4413 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4414 0, CNTR_NORMAL,
4415 access_rx_rbuf_fl_initdone_parity_err_cnt),
4416 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4417 0, CNTR_NORMAL,
4418 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4419 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4420 CNTR_NORMAL,
4421 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4422 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4423 CNTR_NORMAL,
4424 access_rx_rbuf_empty_err_cnt),
4425 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4426 CNTR_NORMAL,
4427 access_rx_rbuf_full_err_cnt),
4428 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4429 CNTR_NORMAL,
4430 access_rbuf_bad_lookup_err_cnt),
4431 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4432 CNTR_NORMAL,
4433 access_rbuf_ctx_id_parity_err_cnt),
4434 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4435 CNTR_NORMAL,
4436 access_rbuf_csr_qeopdw_parity_err_cnt),
4437 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4438 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4439 CNTR_NORMAL,
4440 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4441 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4442 "RxRbufCsrQTlPtrParityErr", 0, 0,
4443 CNTR_NORMAL,
4444 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4445 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4446 0, CNTR_NORMAL,
4447 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4448 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4449 0, CNTR_NORMAL,
4450 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4451 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4452 0, 0, CNTR_NORMAL,
4453 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4454 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4455 0, CNTR_NORMAL,
4456 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4457 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4458 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4459 CNTR_NORMAL,
4460 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4461 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4462 0, CNTR_NORMAL,
4463 access_rx_rbuf_block_list_read_cor_err_cnt),
4464 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4465 0, CNTR_NORMAL,
4466 access_rx_rbuf_block_list_read_unc_err_cnt),
4467 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4468 CNTR_NORMAL,
4469 access_rx_rbuf_lookup_des_cor_err_cnt),
4470 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4471 CNTR_NORMAL,
4472 access_rx_rbuf_lookup_des_unc_err_cnt),
4473 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4474 "RxRbufLookupDesRegUncCorErr", 0, 0,
4475 CNTR_NORMAL,
4476 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4477 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4478 CNTR_NORMAL,
4479 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4480 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4481 CNTR_NORMAL,
4482 access_rx_rbuf_free_list_cor_err_cnt),
4483 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4484 CNTR_NORMAL,
4485 access_rx_rbuf_free_list_unc_err_cnt),
4486 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4487 CNTR_NORMAL,
4488 access_rx_rcv_fsm_encoding_err_cnt),
4489 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4490 CNTR_NORMAL,
4491 access_rx_dma_flag_cor_err_cnt),
4492 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4493 CNTR_NORMAL,
4494 access_rx_dma_flag_unc_err_cnt),
4495 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4496 CNTR_NORMAL,
4497 access_rx_dc_sop_eop_parity_err_cnt),
4498 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4499 CNTR_NORMAL,
4500 access_rx_rcv_csr_parity_err_cnt),
4501 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4502 CNTR_NORMAL,
4503 access_rx_rcv_qp_map_table_cor_err_cnt),
4504 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4505 CNTR_NORMAL,
4506 access_rx_rcv_qp_map_table_unc_err_cnt),
4507 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4508 CNTR_NORMAL,
4509 access_rx_rcv_data_cor_err_cnt),
4510 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4511 CNTR_NORMAL,
4512 access_rx_rcv_data_unc_err_cnt),
4513 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4514 CNTR_NORMAL,
4515 access_rx_rcv_hdr_cor_err_cnt),
4516 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4517 CNTR_NORMAL,
4518 access_rx_rcv_hdr_unc_err_cnt),
4519 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4520 CNTR_NORMAL,
4521 access_rx_dc_intf_parity_err_cnt),
4522 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4523 CNTR_NORMAL,
4524 access_rx_dma_csr_cor_err_cnt),
4525 /* SendPioErrStatus */
4526 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4527 CNTR_NORMAL,
4528 access_pio_pec_sop_head_parity_err_cnt),
4529 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4530 CNTR_NORMAL,
4531 access_pio_pcc_sop_head_parity_err_cnt),
4532 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4533 0, 0, CNTR_NORMAL,
4534 access_pio_last_returned_cnt_parity_err_cnt),
4535 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4536 0, CNTR_NORMAL,
4537 access_pio_current_free_cnt_parity_err_cnt),
4538 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4539 CNTR_NORMAL,
4540 access_pio_reserved_31_err_cnt),
4541 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4542 CNTR_NORMAL,
4543 access_pio_reserved_30_err_cnt),
4544 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4545 CNTR_NORMAL,
4546 access_pio_ppmc_sop_len_err_cnt),
4547 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4548 CNTR_NORMAL,
4549 access_pio_ppmc_bqc_mem_parity_err_cnt),
4550 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4551 CNTR_NORMAL,
4552 access_pio_vl_fifo_parity_err_cnt),
4553 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4554 CNTR_NORMAL,
4555 access_pio_vlf_sop_parity_err_cnt),
4556 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4557 CNTR_NORMAL,
4558 access_pio_vlf_v1_len_parity_err_cnt),
4559 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4560 CNTR_NORMAL,
4561 access_pio_block_qw_count_parity_err_cnt),
4562 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4563 CNTR_NORMAL,
4564 access_pio_write_qw_valid_parity_err_cnt),
4565 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4566 CNTR_NORMAL,
4567 access_pio_state_machine_err_cnt),
4568 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4569 CNTR_NORMAL,
4570 access_pio_write_data_parity_err_cnt),
4571 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4572 CNTR_NORMAL,
4573 access_pio_host_addr_mem_cor_err_cnt),
4574 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4575 CNTR_NORMAL,
4576 access_pio_host_addr_mem_unc_err_cnt),
4577 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4578 CNTR_NORMAL,
4579 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4580 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4581 CNTR_NORMAL,
4582 access_pio_init_sm_in_err_cnt),
4583 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4584 CNTR_NORMAL,
4585 access_pio_ppmc_pbl_fifo_err_cnt),
4586 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4587 0, CNTR_NORMAL,
4588 access_pio_credit_ret_fifo_parity_err_cnt),
4589 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4590 CNTR_NORMAL,
4591 access_pio_v1_len_mem_bank1_cor_err_cnt),
4592 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4593 CNTR_NORMAL,
4594 access_pio_v1_len_mem_bank0_cor_err_cnt),
4595 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4596 CNTR_NORMAL,
4597 access_pio_v1_len_mem_bank1_unc_err_cnt),
4598 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4599 CNTR_NORMAL,
4600 access_pio_v1_len_mem_bank0_unc_err_cnt),
4601 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4602 CNTR_NORMAL,
4603 access_pio_sm_pkt_reset_parity_err_cnt),
4604 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4605 CNTR_NORMAL,
4606 access_pio_pkt_evict_fifo_parity_err_cnt),
4607 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4608 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4609 CNTR_NORMAL,
4610 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4611 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4612 CNTR_NORMAL,
4613 access_pio_sbrdctl_crrel_parity_err_cnt),
4614 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4615 CNTR_NORMAL,
4616 access_pio_pec_fifo_parity_err_cnt),
4617 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4618 CNTR_NORMAL,
4619 access_pio_pcc_fifo_parity_err_cnt),
4620 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4621 CNTR_NORMAL,
4622 access_pio_sb_mem_fifo1_err_cnt),
4623 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4624 CNTR_NORMAL,
4625 access_pio_sb_mem_fifo0_err_cnt),
4626 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4627 CNTR_NORMAL,
4628 access_pio_csr_parity_err_cnt),
4629 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4630 CNTR_NORMAL,
4631 access_pio_write_addr_parity_err_cnt),
4632 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4633 CNTR_NORMAL,
4634 access_pio_write_bad_ctxt_err_cnt),
4635 /* SendDmaErrStatus */
4636 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4637 0, CNTR_NORMAL,
4638 access_sdma_pcie_req_tracking_cor_err_cnt),
4639 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4640 0, CNTR_NORMAL,
4641 access_sdma_pcie_req_tracking_unc_err_cnt),
4642 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4643 CNTR_NORMAL,
4644 access_sdma_csr_parity_err_cnt),
4645 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4646 CNTR_NORMAL,
4647 access_sdma_rpy_tag_err_cnt),
4648 /* SendEgressErrStatus */
4649 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4650 CNTR_NORMAL,
4651 access_tx_read_pio_memory_csr_unc_err_cnt),
4652 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4653 0, CNTR_NORMAL,
4654 access_tx_read_sdma_memory_csr_err_cnt),
4655 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4656 CNTR_NORMAL,
4657 access_tx_egress_fifo_cor_err_cnt),
4658 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4659 CNTR_NORMAL,
4660 access_tx_read_pio_memory_cor_err_cnt),
4661 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4662 CNTR_NORMAL,
4663 access_tx_read_sdma_memory_cor_err_cnt),
4664 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4665 CNTR_NORMAL,
4666 access_tx_sb_hdr_cor_err_cnt),
4667 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4668 CNTR_NORMAL,
4669 access_tx_credit_overrun_err_cnt),
4670 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4671 CNTR_NORMAL,
4672 access_tx_launch_fifo8_cor_err_cnt),
4673 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4674 CNTR_NORMAL,
4675 access_tx_launch_fifo7_cor_err_cnt),
4676 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4677 CNTR_NORMAL,
4678 access_tx_launch_fifo6_cor_err_cnt),
4679 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4680 CNTR_NORMAL,
4681 access_tx_launch_fifo5_cor_err_cnt),
4682 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4683 CNTR_NORMAL,
4684 access_tx_launch_fifo4_cor_err_cnt),
4685 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4686 CNTR_NORMAL,
4687 access_tx_launch_fifo3_cor_err_cnt),
4688 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4689 CNTR_NORMAL,
4690 access_tx_launch_fifo2_cor_err_cnt),
4691 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4692 CNTR_NORMAL,
4693 access_tx_launch_fifo1_cor_err_cnt),
4694 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4695 CNTR_NORMAL,
4696 access_tx_launch_fifo0_cor_err_cnt),
4697 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4698 CNTR_NORMAL,
4699 access_tx_credit_return_vl_err_cnt),
4700 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4701 CNTR_NORMAL,
4702 access_tx_hcrc_insertion_err_cnt),
4703 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4704 CNTR_NORMAL,
4705 access_tx_egress_fifo_unc_err_cnt),
4706 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4707 CNTR_NORMAL,
4708 access_tx_read_pio_memory_unc_err_cnt),
4709 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4710 CNTR_NORMAL,
4711 access_tx_read_sdma_memory_unc_err_cnt),
4712 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4713 CNTR_NORMAL,
4714 access_tx_sb_hdr_unc_err_cnt),
4715 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4716 CNTR_NORMAL,
4717 access_tx_credit_return_partiy_err_cnt),
4718 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4719 0, 0, CNTR_NORMAL,
4720 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4721 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4722 0, 0, CNTR_NORMAL,
4723 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4724 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4725 0, 0, CNTR_NORMAL,
4726 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4727 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4728 0, 0, CNTR_NORMAL,
4729 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4730 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4731 0, 0, CNTR_NORMAL,
4732 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4733 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4734 0, 0, CNTR_NORMAL,
4735 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4736 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4737 0, 0, CNTR_NORMAL,
4738 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4739 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4740 0, 0, CNTR_NORMAL,
4741 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4742 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4743 0, 0, CNTR_NORMAL,
4744 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4745 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4746 0, 0, CNTR_NORMAL,
4747 access_tx_sdma15_disallowed_packet_err_cnt),
4748 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4749 0, 0, CNTR_NORMAL,
4750 access_tx_sdma14_disallowed_packet_err_cnt),
4751 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4752 0, 0, CNTR_NORMAL,
4753 access_tx_sdma13_disallowed_packet_err_cnt),
4754 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4755 0, 0, CNTR_NORMAL,
4756 access_tx_sdma12_disallowed_packet_err_cnt),
4757 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4758 0, 0, CNTR_NORMAL,
4759 access_tx_sdma11_disallowed_packet_err_cnt),
4760 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4761 0, 0, CNTR_NORMAL,
4762 access_tx_sdma10_disallowed_packet_err_cnt),
4763 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4764 0, 0, CNTR_NORMAL,
4765 access_tx_sdma9_disallowed_packet_err_cnt),
4766 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4767 0, 0, CNTR_NORMAL,
4768 access_tx_sdma8_disallowed_packet_err_cnt),
4769 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4770 0, 0, CNTR_NORMAL,
4771 access_tx_sdma7_disallowed_packet_err_cnt),
4772 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4773 0, 0, CNTR_NORMAL,
4774 access_tx_sdma6_disallowed_packet_err_cnt),
4775 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4776 0, 0, CNTR_NORMAL,
4777 access_tx_sdma5_disallowed_packet_err_cnt),
4778 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4779 0, 0, CNTR_NORMAL,
4780 access_tx_sdma4_disallowed_packet_err_cnt),
4781 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4782 0, 0, CNTR_NORMAL,
4783 access_tx_sdma3_disallowed_packet_err_cnt),
4784 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4785 0, 0, CNTR_NORMAL,
4786 access_tx_sdma2_disallowed_packet_err_cnt),
4787 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4788 0, 0, CNTR_NORMAL,
4789 access_tx_sdma1_disallowed_packet_err_cnt),
4790 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4791 0, 0, CNTR_NORMAL,
4792 access_tx_sdma0_disallowed_packet_err_cnt),
4793 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4794 CNTR_NORMAL,
4795 access_tx_config_parity_err_cnt),
4796 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4797 CNTR_NORMAL,
4798 access_tx_sbrd_ctl_csr_parity_err_cnt),
4799 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4800 CNTR_NORMAL,
4801 access_tx_launch_csr_parity_err_cnt),
4802 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4803 CNTR_NORMAL,
4804 access_tx_illegal_vl_err_cnt),
4805 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4806 "TxSbrdCtlStateMachineParityErr", 0, 0,
4807 CNTR_NORMAL,
4808 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4809 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4810 CNTR_NORMAL,
4811 access_egress_reserved_10_err_cnt),
4812 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4813 CNTR_NORMAL,
4814 access_egress_reserved_9_err_cnt),
4815 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4816 0, 0, CNTR_NORMAL,
4817 access_tx_sdma_launch_intf_parity_err_cnt),
4818 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4819 CNTR_NORMAL,
4820 access_tx_pio_launch_intf_parity_err_cnt),
4821 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4822 CNTR_NORMAL,
4823 access_egress_reserved_6_err_cnt),
4824 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4825 CNTR_NORMAL,
4826 access_tx_incorrect_link_state_err_cnt),
4827 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4828 CNTR_NORMAL,
4829 access_tx_linkdown_err_cnt),
4830 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4831 "EgressFifoUnderrunOrParityErr", 0, 0,
4832 CNTR_NORMAL,
4833 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4834 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4835 CNTR_NORMAL,
4836 access_egress_reserved_2_err_cnt),
4837 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4838 CNTR_NORMAL,
4839 access_tx_pkt_integrity_mem_unc_err_cnt),
4840 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4841 CNTR_NORMAL,
4842 access_tx_pkt_integrity_mem_cor_err_cnt),
4843 /* SendErrStatus */
4844 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4845 CNTR_NORMAL,
4846 access_send_csr_write_bad_addr_err_cnt),
4847 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4848 CNTR_NORMAL,
4849 access_send_csr_read_bad_addr_err_cnt),
4850 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4851 CNTR_NORMAL,
4852 access_send_csr_parity_cnt),
4853 /* SendCtxtErrStatus */
4854 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4855 CNTR_NORMAL,
4856 access_pio_write_out_of_bounds_err_cnt),
4857 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4858 CNTR_NORMAL,
4859 access_pio_write_overflow_err_cnt),
4860 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4861 0, 0, CNTR_NORMAL,
4862 access_pio_write_crosses_boundary_err_cnt),
4863 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4864 CNTR_NORMAL,
4865 access_pio_disallowed_packet_err_cnt),
4866 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4867 CNTR_NORMAL,
4868 access_pio_inconsistent_sop_err_cnt),
4869 /* SendDmaEngErrStatus */
4870 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4871 0, 0, CNTR_NORMAL,
4872 access_sdma_header_request_fifo_cor_err_cnt),
4873 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4874 CNTR_NORMAL,
4875 access_sdma_header_storage_cor_err_cnt),
4876 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4877 CNTR_NORMAL,
4878 access_sdma_packet_tracking_cor_err_cnt),
4879 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4880 CNTR_NORMAL,
4881 access_sdma_assembly_cor_err_cnt),
4882 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4883 CNTR_NORMAL,
4884 access_sdma_desc_table_cor_err_cnt),
4885 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4886 0, 0, CNTR_NORMAL,
4887 access_sdma_header_request_fifo_unc_err_cnt),
4888 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4889 CNTR_NORMAL,
4890 access_sdma_header_storage_unc_err_cnt),
4891 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4892 CNTR_NORMAL,
4893 access_sdma_packet_tracking_unc_err_cnt),
4894 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4895 CNTR_NORMAL,
4896 access_sdma_assembly_unc_err_cnt),
4897 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4898 CNTR_NORMAL,
4899 access_sdma_desc_table_unc_err_cnt),
4900 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4901 CNTR_NORMAL,
4902 access_sdma_timeout_err_cnt),
4903 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4904 CNTR_NORMAL,
4905 access_sdma_header_length_err_cnt),
4906 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4907 CNTR_NORMAL,
4908 access_sdma_header_address_err_cnt),
4909 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4910 CNTR_NORMAL,
4911 access_sdma_header_select_err_cnt),
4912 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4913 CNTR_NORMAL,
4914 access_sdma_reserved_9_err_cnt),
4915 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4916 CNTR_NORMAL,
4917 access_sdma_packet_desc_overflow_err_cnt),
4918 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4919 CNTR_NORMAL,
4920 access_sdma_length_mismatch_err_cnt),
4921 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4922 CNTR_NORMAL,
4923 access_sdma_halt_err_cnt),
4924 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4925 CNTR_NORMAL,
4926 access_sdma_mem_read_err_cnt),
4927 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4928 CNTR_NORMAL,
4929 access_sdma_first_desc_err_cnt),
4930 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4931 CNTR_NORMAL,
4932 access_sdma_tail_out_of_bounds_err_cnt),
4933 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4934 CNTR_NORMAL,
4935 access_sdma_too_long_err_cnt),
4936 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4937 CNTR_NORMAL,
4938 access_sdma_gen_mismatch_err_cnt),
4939 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4940 CNTR_NORMAL,
4941 access_sdma_wrong_dw_err_cnt),
4942 };
4943
4944 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4945 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4946 CNTR_NORMAL),
4947 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4948 CNTR_NORMAL),
4949 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4950 CNTR_NORMAL),
4951 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4952 CNTR_NORMAL),
4953 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4954 CNTR_NORMAL),
4955 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4956 CNTR_NORMAL),
4957 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4958 CNTR_NORMAL),
4959 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4960 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4961 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4962 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4963 CNTR_SYNTH | CNTR_VL),
4964 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4965 CNTR_SYNTH | CNTR_VL),
4966 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
4967 CNTR_SYNTH | CNTR_VL),
4968 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
4969 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
4970 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4971 access_sw_link_dn_cnt),
4972 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4973 access_sw_link_up_cnt),
4974 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
4975 access_sw_unknown_frame_cnt),
4976 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4977 access_sw_xmit_discards),
4978 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
4979 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
4980 access_sw_xmit_discards),
4981 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
4982 access_xmit_constraint_errs),
4983 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
4984 access_rcv_constraint_errs),
4985 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
4986 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
4987 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
4988 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
4989 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
4990 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
4991 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
4992 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
4993 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
4994 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
4995 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
4996 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
4997 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
4998 access_sw_cpu_rc_acks),
4999 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5000 access_sw_cpu_rc_qacks),
5001 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5002 access_sw_cpu_rc_delayed_comp),
5003 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5004 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5005 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5006 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5007 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5008 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5009 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5010 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5011 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5012 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5013 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5014 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5015 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5016 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5017 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5018 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5019 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5020 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5021 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5022 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5023 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5024 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5025 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5026 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5027 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5028 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5029 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5030 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5031 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5032 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5033 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5034 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5035 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5036 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5037 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5038 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5039 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5040 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5041 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5042 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5043 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5044 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5045 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5046 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5047 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5048 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5049 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5050 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5051 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5052 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5053 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5054 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5055 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5056 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5057 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5058 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5059 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5060 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5061 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5062 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5063 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5064 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5065 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5066 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5067 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5068 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5069 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5070 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5071 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5072 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5073 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5074 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5075 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5076 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5077 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5078 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5079 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5080 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5081 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5082 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5083 };
5084
5085 /* ======================================================================== */
5086
5087 /* return true if this is chip revision revision a */
5088 int is_ax(struct hfi1_devdata *dd)
5089 {
5090 u8 chip_rev_minor =
5091 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5092 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5093 return (chip_rev_minor & 0xf0) == 0;
5094 }
5095
5096 /* return true if this is chip revision revision b */
5097 int is_bx(struct hfi1_devdata *dd)
5098 {
5099 u8 chip_rev_minor =
5100 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5101 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5102 return (chip_rev_minor & 0xF0) == 0x10;
5103 }
5104
5105 /*
5106 * Append string s to buffer buf. Arguments curp and len are the current
5107 * position and remaining length, respectively.
5108 *
5109 * return 0 on success, 1 on out of room
5110 */
5111 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5112 {
5113 char *p = *curp;
5114 int len = *lenp;
5115 int result = 0; /* success */
5116 char c;
5117
5118 /* add a comma, if first in the buffer */
5119 if (p != buf) {
5120 if (len == 0) {
5121 result = 1; /* out of room */
5122 goto done;
5123 }
5124 *p++ = ',';
5125 len--;
5126 }
5127
5128 /* copy the string */
5129 while ((c = *s++) != 0) {
5130 if (len == 0) {
5131 result = 1; /* out of room */
5132 goto done;
5133 }
5134 *p++ = c;
5135 len--;
5136 }
5137
5138 done:
5139 /* write return values */
5140 *curp = p;
5141 *lenp = len;
5142
5143 return result;
5144 }
5145
5146 /*
5147 * Using the given flag table, print a comma separated string into
5148 * the buffer. End in '*' if the buffer is too short.
5149 */
5150 static char *flag_string(char *buf, int buf_len, u64 flags,
5151 struct flag_table *table, int table_size)
5152 {
5153 char extra[32];
5154 char *p = buf;
5155 int len = buf_len;
5156 int no_room = 0;
5157 int i;
5158
5159 /* make sure there is at least 2 so we can form "*" */
5160 if (len < 2)
5161 return "";
5162
5163 len--; /* leave room for a nul */
5164 for (i = 0; i < table_size; i++) {
5165 if (flags & table[i].flag) {
5166 no_room = append_str(buf, &p, &len, table[i].str);
5167 if (no_room)
5168 break;
5169 flags &= ~table[i].flag;
5170 }
5171 }
5172
5173 /* any undocumented bits left? */
5174 if (!no_room && flags) {
5175 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5176 no_room = append_str(buf, &p, &len, extra);
5177 }
5178
5179 /* add * if ran out of room */
5180 if (no_room) {
5181 /* may need to back up to add space for a '*' */
5182 if (len == 0)
5183 --p;
5184 *p++ = '*';
5185 }
5186
5187 /* add final nul - space already allocated above */
5188 *p = 0;
5189 return buf;
5190 }
5191
5192 /* first 8 CCE error interrupt source names */
5193 static const char * const cce_misc_names[] = {
5194 "CceErrInt", /* 0 */
5195 "RxeErrInt", /* 1 */
5196 "MiscErrInt", /* 2 */
5197 "Reserved3", /* 3 */
5198 "PioErrInt", /* 4 */
5199 "SDmaErrInt", /* 5 */
5200 "EgressErrInt", /* 6 */
5201 "TxeErrInt" /* 7 */
5202 };
5203
5204 /*
5205 * Return the miscellaneous error interrupt name.
5206 */
5207 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5208 {
5209 if (source < ARRAY_SIZE(cce_misc_names))
5210 strncpy(buf, cce_misc_names[source], bsize);
5211 else
5212 snprintf(buf, bsize, "Reserved%u",
5213 source + IS_GENERAL_ERR_START);
5214
5215 return buf;
5216 }
5217
5218 /*
5219 * Return the SDMA engine error interrupt name.
5220 */
5221 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5222 {
5223 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5224 return buf;
5225 }
5226
5227 /*
5228 * Return the send context error interrupt name.
5229 */
5230 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5231 {
5232 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5233 return buf;
5234 }
5235
5236 static const char * const various_names[] = {
5237 "PbcInt",
5238 "GpioAssertInt",
5239 "Qsfp1Int",
5240 "Qsfp2Int",
5241 "TCritInt"
5242 };
5243
5244 /*
5245 * Return the various interrupt name.
5246 */
5247 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5248 {
5249 if (source < ARRAY_SIZE(various_names))
5250 strncpy(buf, various_names[source], bsize);
5251 else
5252 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5253 return buf;
5254 }
5255
5256 /*
5257 * Return the DC interrupt name.
5258 */
5259 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5260 {
5261 static const char * const dc_int_names[] = {
5262 "common",
5263 "lcb",
5264 "8051",
5265 "lbm" /* local block merge */
5266 };
5267
5268 if (source < ARRAY_SIZE(dc_int_names))
5269 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5270 else
5271 snprintf(buf, bsize, "DCInt%u", source);
5272 return buf;
5273 }
5274
5275 static const char * const sdma_int_names[] = {
5276 "SDmaInt",
5277 "SdmaIdleInt",
5278 "SdmaProgressInt",
5279 };
5280
5281 /*
5282 * Return the SDMA engine interrupt name.
5283 */
5284 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5285 {
5286 /* what interrupt */
5287 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5288 /* which engine */
5289 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5290
5291 if (likely(what < 3))
5292 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5293 else
5294 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5295 return buf;
5296 }
5297
5298 /*
5299 * Return the receive available interrupt name.
5300 */
5301 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5302 {
5303 snprintf(buf, bsize, "RcvAvailInt%u", source);
5304 return buf;
5305 }
5306
5307 /*
5308 * Return the receive urgent interrupt name.
5309 */
5310 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5311 {
5312 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5313 return buf;
5314 }
5315
5316 /*
5317 * Return the send credit interrupt name.
5318 */
5319 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5320 {
5321 snprintf(buf, bsize, "SendCreditInt%u", source);
5322 return buf;
5323 }
5324
5325 /*
5326 * Return the reserved interrupt name.
5327 */
5328 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5329 {
5330 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5331 return buf;
5332 }
5333
5334 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5335 {
5336 return flag_string(buf, buf_len, flags,
5337 cce_err_status_flags,
5338 ARRAY_SIZE(cce_err_status_flags));
5339 }
5340
5341 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5342 {
5343 return flag_string(buf, buf_len, flags,
5344 rxe_err_status_flags,
5345 ARRAY_SIZE(rxe_err_status_flags));
5346 }
5347
5348 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5349 {
5350 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5351 ARRAY_SIZE(misc_err_status_flags));
5352 }
5353
5354 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5355 {
5356 return flag_string(buf, buf_len, flags,
5357 pio_err_status_flags,
5358 ARRAY_SIZE(pio_err_status_flags));
5359 }
5360
5361 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5362 {
5363 return flag_string(buf, buf_len, flags,
5364 sdma_err_status_flags,
5365 ARRAY_SIZE(sdma_err_status_flags));
5366 }
5367
5368 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5369 {
5370 return flag_string(buf, buf_len, flags,
5371 egress_err_status_flags,
5372 ARRAY_SIZE(egress_err_status_flags));
5373 }
5374
5375 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5376 {
5377 return flag_string(buf, buf_len, flags,
5378 egress_err_info_flags,
5379 ARRAY_SIZE(egress_err_info_flags));
5380 }
5381
5382 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5383 {
5384 return flag_string(buf, buf_len, flags,
5385 send_err_status_flags,
5386 ARRAY_SIZE(send_err_status_flags));
5387 }
5388
5389 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5390 {
5391 char buf[96];
5392 int i = 0;
5393
5394 /*
5395 * For most these errors, there is nothing that can be done except
5396 * report or record it.
5397 */
5398 dd_dev_info(dd, "CCE Error: %s\n",
5399 cce_err_status_string(buf, sizeof(buf), reg));
5400
5401 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5402 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5403 /* this error requires a manual drop into SPC freeze mode */
5404 /* then a fix up */
5405 start_freeze_handling(dd->pport, FREEZE_SELF);
5406 }
5407
5408 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5409 if (reg & (1ull << i)) {
5410 incr_cntr64(&dd->cce_err_status_cnt[i]);
5411 /* maintain a counter over all cce_err_status errors */
5412 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5413 }
5414 }
5415 }
5416
5417 /*
5418 * Check counters for receive errors that do not have an interrupt
5419 * associated with them.
5420 */
5421 #define RCVERR_CHECK_TIME 10
5422 static void update_rcverr_timer(unsigned long opaque)
5423 {
5424 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5425 struct hfi1_pportdata *ppd = dd->pport;
5426 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5427
5428 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5429 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5430 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5431 set_link_down_reason(
5432 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5433 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5434 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5435 }
5436 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5437
5438 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5439 }
5440
5441 static int init_rcverr(struct hfi1_devdata *dd)
5442 {
5443 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5444 /* Assume the hardware counter has been reset */
5445 dd->rcv_ovfl_cnt = 0;
5446 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5447 }
5448
5449 static void free_rcverr(struct hfi1_devdata *dd)
5450 {
5451 if (dd->rcverr_timer.data)
5452 del_timer_sync(&dd->rcverr_timer);
5453 dd->rcverr_timer.data = 0;
5454 }
5455
5456 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5457 {
5458 char buf[96];
5459 int i = 0;
5460
5461 dd_dev_info(dd, "Receive Error: %s\n",
5462 rxe_err_status_string(buf, sizeof(buf), reg));
5463
5464 if (reg & ALL_RXE_FREEZE_ERR) {
5465 int flags = 0;
5466
5467 /*
5468 * Freeze mode recovery is disabled for the errors
5469 * in RXE_FREEZE_ABORT_MASK
5470 */
5471 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5472 flags = FREEZE_ABORT;
5473
5474 start_freeze_handling(dd->pport, flags);
5475 }
5476
5477 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5478 if (reg & (1ull << i))
5479 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5480 }
5481 }
5482
5483 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5484 {
5485 char buf[96];
5486 int i = 0;
5487
5488 dd_dev_info(dd, "Misc Error: %s",
5489 misc_err_status_string(buf, sizeof(buf), reg));
5490 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5491 if (reg & (1ull << i))
5492 incr_cntr64(&dd->misc_err_status_cnt[i]);
5493 }
5494 }
5495
5496 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5497 {
5498 char buf[96];
5499 int i = 0;
5500
5501 dd_dev_info(dd, "PIO Error: %s\n",
5502 pio_err_status_string(buf, sizeof(buf), reg));
5503
5504 if (reg & ALL_PIO_FREEZE_ERR)
5505 start_freeze_handling(dd->pport, 0);
5506
5507 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5508 if (reg & (1ull << i))
5509 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5510 }
5511 }
5512
5513 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5514 {
5515 char buf[96];
5516 int i = 0;
5517
5518 dd_dev_info(dd, "SDMA Error: %s\n",
5519 sdma_err_status_string(buf, sizeof(buf), reg));
5520
5521 if (reg & ALL_SDMA_FREEZE_ERR)
5522 start_freeze_handling(dd->pport, 0);
5523
5524 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5525 if (reg & (1ull << i))
5526 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5527 }
5528 }
5529
5530 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5531 {
5532 incr_cntr64(&ppd->port_xmit_discards);
5533 }
5534
5535 static void count_port_inactive(struct hfi1_devdata *dd)
5536 {
5537 __count_port_discards(dd->pport);
5538 }
5539
5540 /*
5541 * We have had a "disallowed packet" error during egress. Determine the
5542 * integrity check which failed, and update relevant error counter, etc.
5543 *
5544 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5545 * bit of state per integrity check, and so we can miss the reason for an
5546 * egress error if more than one packet fails the same integrity check
5547 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5548 */
5549 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5550 int vl)
5551 {
5552 struct hfi1_pportdata *ppd = dd->pport;
5553 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5554 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5555 char buf[96];
5556
5557 /* clear down all observed info as quickly as possible after read */
5558 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5559
5560 dd_dev_info(dd,
5561 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5562 info, egress_err_info_string(buf, sizeof(buf), info), src);
5563
5564 /* Eventually add other counters for each bit */
5565 if (info & PORT_DISCARD_EGRESS_ERRS) {
5566 int weight, i;
5567
5568 /*
5569 * Count all applicable bits as individual errors and
5570 * attribute them to the packet that triggered this handler.
5571 * This may not be completely accurate due to limitations
5572 * on the available hardware error information. There is
5573 * a single information register and any number of error
5574 * packets may have occurred and contributed to it before
5575 * this routine is called. This means that:
5576 * a) If multiple packets with the same error occur before
5577 * this routine is called, earlier packets are missed.
5578 * There is only a single bit for each error type.
5579 * b) Errors may not be attributed to the correct VL.
5580 * The driver is attributing all bits in the info register
5581 * to the packet that triggered this call, but bits
5582 * could be an accumulation of different packets with
5583 * different VLs.
5584 * c) A single error packet may have multiple counts attached
5585 * to it. There is no way for the driver to know if
5586 * multiple bits set in the info register are due to a
5587 * single packet or multiple packets. The driver assumes
5588 * multiple packets.
5589 */
5590 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5591 for (i = 0; i < weight; i++) {
5592 __count_port_discards(ppd);
5593 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5594 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5595 else if (vl == 15)
5596 incr_cntr64(&ppd->port_xmit_discards_vl
5597 [C_VL_15]);
5598 }
5599 }
5600 }
5601
5602 /*
5603 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5604 * register. Does it represent a 'port inactive' error?
5605 */
5606 static inline int port_inactive_err(u64 posn)
5607 {
5608 return (posn >= SEES(TX_LINKDOWN) &&
5609 posn <= SEES(TX_INCORRECT_LINK_STATE));
5610 }
5611
5612 /*
5613 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5614 * register. Does it represent a 'disallowed packet' error?
5615 */
5616 static inline int disallowed_pkt_err(int posn)
5617 {
5618 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5619 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5620 }
5621
5622 /*
5623 * Input value is a bit position of one of the SDMA engine disallowed
5624 * packet errors. Return which engine. Use of this must be guarded by
5625 * disallowed_pkt_err().
5626 */
5627 static inline int disallowed_pkt_engine(int posn)
5628 {
5629 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5630 }
5631
5632 /*
5633 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5634 * be done.
5635 */
5636 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5637 {
5638 struct sdma_vl_map *m;
5639 int vl;
5640
5641 /* range check */
5642 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5643 return -1;
5644
5645 rcu_read_lock();
5646 m = rcu_dereference(dd->sdma_map);
5647 vl = m->engine_to_vl[engine];
5648 rcu_read_unlock();
5649
5650 return vl;
5651 }
5652
5653 /*
5654 * Translate the send context (sofware index) into a VL. Return -1 if the
5655 * translation cannot be done.
5656 */
5657 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5658 {
5659 struct send_context_info *sci;
5660 struct send_context *sc;
5661 int i;
5662
5663 sci = &dd->send_contexts[sw_index];
5664
5665 /* there is no information for user (PSM) and ack contexts */
5666 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5667 return -1;
5668
5669 sc = sci->sc;
5670 if (!sc)
5671 return -1;
5672 if (dd->vld[15].sc == sc)
5673 return 15;
5674 for (i = 0; i < num_vls; i++)
5675 if (dd->vld[i].sc == sc)
5676 return i;
5677
5678 return -1;
5679 }
5680
5681 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5682 {
5683 u64 reg_copy = reg, handled = 0;
5684 char buf[96];
5685 int i = 0;
5686
5687 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5688 start_freeze_handling(dd->pport, 0);
5689 else if (is_ax(dd) &&
5690 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5691 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5692 start_freeze_handling(dd->pport, 0);
5693
5694 while (reg_copy) {
5695 int posn = fls64(reg_copy);
5696 /* fls64() returns a 1-based offset, we want it zero based */
5697 int shift = posn - 1;
5698 u64 mask = 1ULL << shift;
5699
5700 if (port_inactive_err(shift)) {
5701 count_port_inactive(dd);
5702 handled |= mask;
5703 } else if (disallowed_pkt_err(shift)) {
5704 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5705
5706 handle_send_egress_err_info(dd, vl);
5707 handled |= mask;
5708 }
5709 reg_copy &= ~mask;
5710 }
5711
5712 reg &= ~handled;
5713
5714 if (reg)
5715 dd_dev_info(dd, "Egress Error: %s\n",
5716 egress_err_status_string(buf, sizeof(buf), reg));
5717
5718 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5719 if (reg & (1ull << i))
5720 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5721 }
5722 }
5723
5724 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5725 {
5726 char buf[96];
5727 int i = 0;
5728
5729 dd_dev_info(dd, "Send Error: %s\n",
5730 send_err_status_string(buf, sizeof(buf), reg));
5731
5732 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5733 if (reg & (1ull << i))
5734 incr_cntr64(&dd->send_err_status_cnt[i]);
5735 }
5736 }
5737
5738 /*
5739 * The maximum number of times the error clear down will loop before
5740 * blocking a repeating error. This value is arbitrary.
5741 */
5742 #define MAX_CLEAR_COUNT 20
5743
5744 /*
5745 * Clear and handle an error register. All error interrupts are funneled
5746 * through here to have a central location to correctly handle single-
5747 * or multi-shot errors.
5748 *
5749 * For non per-context registers, call this routine with a context value
5750 * of 0 so the per-context offset is zero.
5751 *
5752 * If the handler loops too many times, assume that something is wrong
5753 * and can't be fixed, so mask the error bits.
5754 */
5755 static void interrupt_clear_down(struct hfi1_devdata *dd,
5756 u32 context,
5757 const struct err_reg_info *eri)
5758 {
5759 u64 reg;
5760 u32 count;
5761
5762 /* read in a loop until no more errors are seen */
5763 count = 0;
5764 while (1) {
5765 reg = read_kctxt_csr(dd, context, eri->status);
5766 if (reg == 0)
5767 break;
5768 write_kctxt_csr(dd, context, eri->clear, reg);
5769 if (likely(eri->handler))
5770 eri->handler(dd, context, reg);
5771 count++;
5772 if (count > MAX_CLEAR_COUNT) {
5773 u64 mask;
5774
5775 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5776 eri->desc, reg);
5777 /*
5778 * Read-modify-write so any other masked bits
5779 * remain masked.
5780 */
5781 mask = read_kctxt_csr(dd, context, eri->mask);
5782 mask &= ~reg;
5783 write_kctxt_csr(dd, context, eri->mask, mask);
5784 break;
5785 }
5786 }
5787 }
5788
5789 /*
5790 * CCE block "misc" interrupt. Source is < 16.
5791 */
5792 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5793 {
5794 const struct err_reg_info *eri = &misc_errs[source];
5795
5796 if (eri->handler) {
5797 interrupt_clear_down(dd, 0, eri);
5798 } else {
5799 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5800 source);
5801 }
5802 }
5803
5804 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5805 {
5806 return flag_string(buf, buf_len, flags,
5807 sc_err_status_flags,
5808 ARRAY_SIZE(sc_err_status_flags));
5809 }
5810
5811 /*
5812 * Send context error interrupt. Source (hw_context) is < 160.
5813 *
5814 * All send context errors cause the send context to halt. The normal
5815 * clear-down mechanism cannot be used because we cannot clear the
5816 * error bits until several other long-running items are done first.
5817 * This is OK because with the context halted, nothing else is going
5818 * to happen on it anyway.
5819 */
5820 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5821 unsigned int hw_context)
5822 {
5823 struct send_context_info *sci;
5824 struct send_context *sc;
5825 char flags[96];
5826 u64 status;
5827 u32 sw_index;
5828 int i = 0;
5829
5830 sw_index = dd->hw_to_sw[hw_context];
5831 if (sw_index >= dd->num_send_contexts) {
5832 dd_dev_err(dd,
5833 "out of range sw index %u for send context %u\n",
5834 sw_index, hw_context);
5835 return;
5836 }
5837 sci = &dd->send_contexts[sw_index];
5838 sc = sci->sc;
5839 if (!sc) {
5840 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5841 sw_index, hw_context);
5842 return;
5843 }
5844
5845 /* tell the software that a halt has begun */
5846 sc_stop(sc, SCF_HALTED);
5847
5848 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5849
5850 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5851 send_context_err_status_string(flags, sizeof(flags),
5852 status));
5853
5854 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5855 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5856
5857 /*
5858 * Automatically restart halted kernel contexts out of interrupt
5859 * context. User contexts must ask the driver to restart the context.
5860 */
5861 if (sc->type != SC_USER)
5862 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5863
5864 /*
5865 * Update the counters for the corresponding status bits.
5866 * Note that these particular counters are aggregated over all
5867 * 160 contexts.
5868 */
5869 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5870 if (status & (1ull << i))
5871 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5872 }
5873 }
5874
5875 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5876 unsigned int source, u64 status)
5877 {
5878 struct sdma_engine *sde;
5879 int i = 0;
5880
5881 sde = &dd->per_sdma[source];
5882 #ifdef CONFIG_SDMA_VERBOSITY
5883 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5884 slashstrip(__FILE__), __LINE__, __func__);
5885 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5886 sde->this_idx, source, (unsigned long long)status);
5887 #endif
5888 sde->err_cnt++;
5889 sdma_engine_error(sde, status);
5890
5891 /*
5892 * Update the counters for the corresponding status bits.
5893 * Note that these particular counters are aggregated over
5894 * all 16 DMA engines.
5895 */
5896 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5897 if (status & (1ull << i))
5898 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5899 }
5900 }
5901
5902 /*
5903 * CCE block SDMA error interrupt. Source is < 16.
5904 */
5905 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5906 {
5907 #ifdef CONFIG_SDMA_VERBOSITY
5908 struct sdma_engine *sde = &dd->per_sdma[source];
5909
5910 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5911 slashstrip(__FILE__), __LINE__, __func__);
5912 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5913 source);
5914 sdma_dumpstate(sde);
5915 #endif
5916 interrupt_clear_down(dd, source, &sdma_eng_err);
5917 }
5918
5919 /*
5920 * CCE block "various" interrupt. Source is < 8.
5921 */
5922 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5923 {
5924 const struct err_reg_info *eri = &various_err[source];
5925
5926 /*
5927 * TCritInt cannot go through interrupt_clear_down()
5928 * because it is not a second tier interrupt. The handler
5929 * should be called directly.
5930 */
5931 if (source == TCRIT_INT_SOURCE)
5932 handle_temp_err(dd);
5933 else if (eri->handler)
5934 interrupt_clear_down(dd, 0, eri);
5935 else
5936 dd_dev_info(dd,
5937 "%s: Unimplemented/reserved interrupt %d\n",
5938 __func__, source);
5939 }
5940
5941 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5942 {
5943 /* src_ctx is always zero */
5944 struct hfi1_pportdata *ppd = dd->pport;
5945 unsigned long flags;
5946 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5947
5948 if (reg & QSFP_HFI0_MODPRST_N) {
5949 if (!qsfp_mod_present(ppd)) {
5950 dd_dev_info(dd, "%s: QSFP module removed\n",
5951 __func__);
5952
5953 ppd->driver_link_ready = 0;
5954 /*
5955 * Cable removed, reset all our information about the
5956 * cache and cable capabilities
5957 */
5958
5959 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5960 /*
5961 * We don't set cache_refresh_required here as we expect
5962 * an interrupt when a cable is inserted
5963 */
5964 ppd->qsfp_info.cache_valid = 0;
5965 ppd->qsfp_info.reset_needed = 0;
5966 ppd->qsfp_info.limiting_active = 0;
5967 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5968 flags);
5969 /* Invert the ModPresent pin now to detect plug-in */
5970 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
5971 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
5972
5973 if ((ppd->offline_disabled_reason >
5974 HFI1_ODR_MASK(
5975 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
5976 (ppd->offline_disabled_reason ==
5977 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
5978 ppd->offline_disabled_reason =
5979 HFI1_ODR_MASK(
5980 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
5981
5982 if (ppd->host_link_state == HLS_DN_POLL) {
5983 /*
5984 * The link is still in POLL. This means
5985 * that the normal link down processing
5986 * will not happen. We have to do it here
5987 * before turning the DC off.
5988 */
5989 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
5990 }
5991 } else {
5992 dd_dev_info(dd, "%s: QSFP module inserted\n",
5993 __func__);
5994
5995 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5996 ppd->qsfp_info.cache_valid = 0;
5997 ppd->qsfp_info.cache_refresh_required = 1;
5998 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5999 flags);
6000
6001 /*
6002 * Stop inversion of ModPresent pin to detect
6003 * removal of the cable
6004 */
6005 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6006 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6007 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6008
6009 ppd->offline_disabled_reason =
6010 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6011 }
6012 }
6013
6014 if (reg & QSFP_HFI0_INT_N) {
6015 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6016 __func__);
6017 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6018 ppd->qsfp_info.check_interrupt_flags = 1;
6019 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6020 }
6021
6022 /* Schedule the QSFP work only if there is a cable attached. */
6023 if (qsfp_mod_present(ppd))
6024 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6025 }
6026
6027 static int request_host_lcb_access(struct hfi1_devdata *dd)
6028 {
6029 int ret;
6030
6031 ret = do_8051_command(dd, HCMD_MISC,
6032 (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6033 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6034 if (ret != HCMD_SUCCESS) {
6035 dd_dev_err(dd, "%s: command failed with error %d\n",
6036 __func__, ret);
6037 }
6038 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6039 }
6040
6041 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6042 {
6043 int ret;
6044
6045 ret = do_8051_command(dd, HCMD_MISC,
6046 (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6047 LOAD_DATA_FIELD_ID_SHIFT, NULL);
6048 if (ret != HCMD_SUCCESS) {
6049 dd_dev_err(dd, "%s: command failed with error %d\n",
6050 __func__, ret);
6051 }
6052 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6053 }
6054
6055 /*
6056 * Set the LCB selector - allow host access. The DCC selector always
6057 * points to the host.
6058 */
6059 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6060 {
6061 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6062 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6063 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6064 }
6065
6066 /*
6067 * Clear the LCB selector - allow 8051 access. The DCC selector always
6068 * points to the host.
6069 */
6070 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6071 {
6072 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6073 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6074 }
6075
6076 /*
6077 * Acquire LCB access from the 8051. If the host already has access,
6078 * just increment a counter. Otherwise, inform the 8051 that the
6079 * host is taking access.
6080 *
6081 * Returns:
6082 * 0 on success
6083 * -EBUSY if the 8051 has control and cannot be disturbed
6084 * -errno if unable to acquire access from the 8051
6085 */
6086 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6087 {
6088 struct hfi1_pportdata *ppd = dd->pport;
6089 int ret = 0;
6090
6091 /*
6092 * Use the host link state lock so the operation of this routine
6093 * { link state check, selector change, count increment } can occur
6094 * as a unit against a link state change. Otherwise there is a
6095 * race between the state change and the count increment.
6096 */
6097 if (sleep_ok) {
6098 mutex_lock(&ppd->hls_lock);
6099 } else {
6100 while (!mutex_trylock(&ppd->hls_lock))
6101 udelay(1);
6102 }
6103
6104 /* this access is valid only when the link is up */
6105 if ((ppd->host_link_state & HLS_UP) == 0) {
6106 dd_dev_info(dd, "%s: link state %s not up\n",
6107 __func__, link_state_name(ppd->host_link_state));
6108 ret = -EBUSY;
6109 goto done;
6110 }
6111
6112 if (dd->lcb_access_count == 0) {
6113 ret = request_host_lcb_access(dd);
6114 if (ret) {
6115 dd_dev_err(dd,
6116 "%s: unable to acquire LCB access, err %d\n",
6117 __func__, ret);
6118 goto done;
6119 }
6120 set_host_lcb_access(dd);
6121 }
6122 dd->lcb_access_count++;
6123 done:
6124 mutex_unlock(&ppd->hls_lock);
6125 return ret;
6126 }
6127
6128 /*
6129 * Release LCB access by decrementing the use count. If the count is moving
6130 * from 1 to 0, inform 8051 that it has control back.
6131 *
6132 * Returns:
6133 * 0 on success
6134 * -errno if unable to release access to the 8051
6135 */
6136 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6137 {
6138 int ret = 0;
6139
6140 /*
6141 * Use the host link state lock because the acquire needed it.
6142 * Here, we only need to keep { selector change, count decrement }
6143 * as a unit.
6144 */
6145 if (sleep_ok) {
6146 mutex_lock(&dd->pport->hls_lock);
6147 } else {
6148 while (!mutex_trylock(&dd->pport->hls_lock))
6149 udelay(1);
6150 }
6151
6152 if (dd->lcb_access_count == 0) {
6153 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6154 __func__);
6155 goto done;
6156 }
6157
6158 if (dd->lcb_access_count == 1) {
6159 set_8051_lcb_access(dd);
6160 ret = request_8051_lcb_access(dd);
6161 if (ret) {
6162 dd_dev_err(dd,
6163 "%s: unable to release LCB access, err %d\n",
6164 __func__, ret);
6165 /* restore host access if the grant didn't work */
6166 set_host_lcb_access(dd);
6167 goto done;
6168 }
6169 }
6170 dd->lcb_access_count--;
6171 done:
6172 mutex_unlock(&dd->pport->hls_lock);
6173 return ret;
6174 }
6175
6176 /*
6177 * Initialize LCB access variables and state. Called during driver load,
6178 * after most of the initialization is finished.
6179 *
6180 * The DC default is LCB access on for the host. The driver defaults to
6181 * leaving access to the 8051. Assign access now - this constrains the call
6182 * to this routine to be after all LCB set-up is done. In particular, after
6183 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6184 */
6185 static void init_lcb_access(struct hfi1_devdata *dd)
6186 {
6187 dd->lcb_access_count = 0;
6188 }
6189
6190 /*
6191 * Write a response back to a 8051 request.
6192 */
6193 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6194 {
6195 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6196 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6197 (u64)return_code <<
6198 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6199 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6200 }
6201
6202 /*
6203 * Handle host requests from the 8051.
6204 */
6205 static void handle_8051_request(struct hfi1_pportdata *ppd)
6206 {
6207 struct hfi1_devdata *dd = ppd->dd;
6208 u64 reg;
6209 u16 data = 0;
6210 u8 type;
6211
6212 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6213 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6214 return; /* no request */
6215
6216 /* zero out COMPLETED so the response is seen */
6217 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6218
6219 /* extract request details */
6220 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6221 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6222 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6223 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6224
6225 switch (type) {
6226 case HREQ_LOAD_CONFIG:
6227 case HREQ_SAVE_CONFIG:
6228 case HREQ_READ_CONFIG:
6229 case HREQ_SET_TX_EQ_ABS:
6230 case HREQ_SET_TX_EQ_REL:
6231 case HREQ_ENABLE:
6232 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6233 type);
6234 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6235 break;
6236 case HREQ_CONFIG_DONE:
6237 hreq_response(dd, HREQ_SUCCESS, 0);
6238 break;
6239
6240 case HREQ_INTERFACE_TEST:
6241 hreq_response(dd, HREQ_SUCCESS, data);
6242 break;
6243 default:
6244 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6245 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6246 break;
6247 }
6248 }
6249
6250 static void write_global_credit(struct hfi1_devdata *dd,
6251 u8 vau, u16 total, u16 shared)
6252 {
6253 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6254 ((u64)total <<
6255 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6256 ((u64)shared <<
6257 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6258 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6259 }
6260
6261 /*
6262 * Set up initial VL15 credits of the remote. Assumes the rest of
6263 * the CM credit registers are zero from a previous global or credit reset .
6264 */
6265 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6266 {
6267 /* leave shared count at zero for both global and VL15 */
6268 write_global_credit(dd, vau, vl15buf, 0);
6269
6270 /* We may need some credits for another VL when sending packets
6271 * with the snoop interface. Dividing it down the middle for VL15
6272 * and VL0 should suffice.
6273 */
6274 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6275 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6276 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6277 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6278 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6279 } else {
6280 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6281 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6282 }
6283 }
6284
6285 /*
6286 * Zero all credit details from the previous connection and
6287 * reset the CM manager's internal counters.
6288 */
6289 void reset_link_credits(struct hfi1_devdata *dd)
6290 {
6291 int i;
6292
6293 /* remove all previous VL credit limits */
6294 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6295 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6296 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6297 write_global_credit(dd, 0, 0, 0);
6298 /* reset the CM block */
6299 pio_send_control(dd, PSC_CM_RESET);
6300 }
6301
6302 /* convert a vCU to a CU */
6303 static u32 vcu_to_cu(u8 vcu)
6304 {
6305 return 1 << vcu;
6306 }
6307
6308 /* convert a CU to a vCU */
6309 static u8 cu_to_vcu(u32 cu)
6310 {
6311 return ilog2(cu);
6312 }
6313
6314 /* convert a vAU to an AU */
6315 static u32 vau_to_au(u8 vau)
6316 {
6317 return 8 * (1 << vau);
6318 }
6319
6320 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6321 {
6322 ppd->sm_trap_qp = 0x0;
6323 ppd->sa_qp = 0x1;
6324 }
6325
6326 /*
6327 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6328 */
6329 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6330 {
6331 u64 reg;
6332
6333 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6334 write_csr(dd, DC_LCB_CFG_RUN, 0);
6335 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6336 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6337 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6338 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6339 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6340 reg = read_csr(dd, DCC_CFG_RESET);
6341 write_csr(dd, DCC_CFG_RESET, reg |
6342 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6343 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6344 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6345 if (!abort) {
6346 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6347 write_csr(dd, DCC_CFG_RESET, reg);
6348 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6349 }
6350 }
6351
6352 /*
6353 * This routine should be called after the link has been transitioned to
6354 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6355 * reset).
6356 *
6357 * The expectation is that the caller of this routine would have taken
6358 * care of properly transitioning the link into the correct state.
6359 */
6360 static void dc_shutdown(struct hfi1_devdata *dd)
6361 {
6362 unsigned long flags;
6363
6364 spin_lock_irqsave(&dd->dc8051_lock, flags);
6365 if (dd->dc_shutdown) {
6366 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6367 return;
6368 }
6369 dd->dc_shutdown = 1;
6370 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6371 /* Shutdown the LCB */
6372 lcb_shutdown(dd, 1);
6373 /*
6374 * Going to OFFLINE would have causes the 8051 to put the
6375 * SerDes into reset already. Just need to shut down the 8051,
6376 * itself.
6377 */
6378 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6379 }
6380
6381 /*
6382 * Calling this after the DC has been brought out of reset should not
6383 * do any damage.
6384 */
6385 static void dc_start(struct hfi1_devdata *dd)
6386 {
6387 unsigned long flags;
6388 int ret;
6389
6390 spin_lock_irqsave(&dd->dc8051_lock, flags);
6391 if (!dd->dc_shutdown)
6392 goto done;
6393 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6394 /* Take the 8051 out of reset */
6395 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6396 /* Wait until 8051 is ready */
6397 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6398 if (ret) {
6399 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6400 __func__);
6401 }
6402 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6403 write_csr(dd, DCC_CFG_RESET, 0x10);
6404 /* lcb_shutdown() with abort=1 does not restore these */
6405 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6406 spin_lock_irqsave(&dd->dc8051_lock, flags);
6407 dd->dc_shutdown = 0;
6408 done:
6409 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6410 }
6411
6412 /*
6413 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6414 */
6415 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6416 {
6417 u64 rx_radr, tx_radr;
6418 u32 version;
6419
6420 if (dd->icode != ICODE_FPGA_EMULATION)
6421 return;
6422
6423 /*
6424 * These LCB defaults on emulator _s are good, nothing to do here:
6425 * LCB_CFG_TX_FIFOS_RADR
6426 * LCB_CFG_RX_FIFOS_RADR
6427 * LCB_CFG_LN_DCLK
6428 * LCB_CFG_IGNORE_LOST_RCLK
6429 */
6430 if (is_emulator_s(dd))
6431 return;
6432 /* else this is _p */
6433
6434 version = emulator_rev(dd);
6435 if (!is_ax(dd))
6436 version = 0x2d; /* all B0 use 0x2d or higher settings */
6437
6438 if (version <= 0x12) {
6439 /* release 0x12 and below */
6440
6441 /*
6442 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6443 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6444 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6445 */
6446 rx_radr =
6447 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6448 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6449 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6450 /*
6451 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6452 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6453 */
6454 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6455 } else if (version <= 0x18) {
6456 /* release 0x13 up to 0x18 */
6457 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6458 rx_radr =
6459 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6460 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6461 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6462 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6463 } else if (version == 0x19) {
6464 /* release 0x19 */
6465 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6466 rx_radr =
6467 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6468 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6469 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6470 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6471 } else if (version == 0x1a) {
6472 /* release 0x1a */
6473 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6474 rx_radr =
6475 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6476 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6477 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6478 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6479 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6480 } else {
6481 /* release 0x1b and higher */
6482 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6483 rx_radr =
6484 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6485 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6486 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6487 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6488 }
6489
6490 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6491 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6492 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6493 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6494 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6495 }
6496
6497 /*
6498 * Handle a SMA idle message
6499 *
6500 * This is a work-queue function outside of the interrupt.
6501 */
6502 void handle_sma_message(struct work_struct *work)
6503 {
6504 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6505 sma_message_work);
6506 struct hfi1_devdata *dd = ppd->dd;
6507 u64 msg;
6508 int ret;
6509
6510 /*
6511 * msg is bytes 1-4 of the 40-bit idle message - the command code
6512 * is stripped off
6513 */
6514 ret = read_idle_sma(dd, &msg);
6515 if (ret)
6516 return;
6517 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6518 /*
6519 * React to the SMA message. Byte[1] (0 for us) is the command.
6520 */
6521 switch (msg & 0xff) {
6522 case SMA_IDLE_ARM:
6523 /*
6524 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6525 * State Transitions
6526 *
6527 * Only expected in INIT or ARMED, discard otherwise.
6528 */
6529 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6530 ppd->neighbor_normal = 1;
6531 break;
6532 case SMA_IDLE_ACTIVE:
6533 /*
6534 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6535 * State Transitions
6536 *
6537 * Can activate the node. Discard otherwise.
6538 */
6539 if (ppd->host_link_state == HLS_UP_ARMED &&
6540 ppd->is_active_optimize_enabled) {
6541 ppd->neighbor_normal = 1;
6542 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6543 if (ret)
6544 dd_dev_err(
6545 dd,
6546 "%s: received Active SMA idle message, couldn't set link to Active\n",
6547 __func__);
6548 }
6549 break;
6550 default:
6551 dd_dev_err(dd,
6552 "%s: received unexpected SMA idle message 0x%llx\n",
6553 __func__, msg);
6554 break;
6555 }
6556 }
6557
6558 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6559 {
6560 u64 rcvctrl;
6561 unsigned long flags;
6562
6563 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6564 rcvctrl = read_csr(dd, RCV_CTRL);
6565 rcvctrl |= add;
6566 rcvctrl &= ~clear;
6567 write_csr(dd, RCV_CTRL, rcvctrl);
6568 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6569 }
6570
6571 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6572 {
6573 adjust_rcvctrl(dd, add, 0);
6574 }
6575
6576 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6577 {
6578 adjust_rcvctrl(dd, 0, clear);
6579 }
6580
6581 /*
6582 * Called from all interrupt handlers to start handling an SPC freeze.
6583 */
6584 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6585 {
6586 struct hfi1_devdata *dd = ppd->dd;
6587 struct send_context *sc;
6588 int i;
6589
6590 if (flags & FREEZE_SELF)
6591 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6592
6593 /* enter frozen mode */
6594 dd->flags |= HFI1_FROZEN;
6595
6596 /* notify all SDMA engines that they are going into a freeze */
6597 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6598
6599 /* do halt pre-handling on all enabled send contexts */
6600 for (i = 0; i < dd->num_send_contexts; i++) {
6601 sc = dd->send_contexts[i].sc;
6602 if (sc && (sc->flags & SCF_ENABLED))
6603 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6604 }
6605
6606 /* Send context are frozen. Notify user space */
6607 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6608
6609 if (flags & FREEZE_ABORT) {
6610 dd_dev_err(dd,
6611 "Aborted freeze recovery. Please REBOOT system\n");
6612 return;
6613 }
6614 /* queue non-interrupt handler */
6615 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6616 }
6617
6618 /*
6619 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6620 * depending on the "freeze" parameter.
6621 *
6622 * No need to return an error if it times out, our only option
6623 * is to proceed anyway.
6624 */
6625 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6626 {
6627 unsigned long timeout;
6628 u64 reg;
6629
6630 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6631 while (1) {
6632 reg = read_csr(dd, CCE_STATUS);
6633 if (freeze) {
6634 /* waiting until all indicators are set */
6635 if ((reg & ALL_FROZE) == ALL_FROZE)
6636 return; /* all done */
6637 } else {
6638 /* waiting until all indicators are clear */
6639 if ((reg & ALL_FROZE) == 0)
6640 return; /* all done */
6641 }
6642
6643 if (time_after(jiffies, timeout)) {
6644 dd_dev_err(dd,
6645 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6646 freeze ? "" : "un", reg & ALL_FROZE,
6647 freeze ? ALL_FROZE : 0ull);
6648 return;
6649 }
6650 usleep_range(80, 120);
6651 }
6652 }
6653
6654 /*
6655 * Do all freeze handling for the RXE block.
6656 */
6657 static void rxe_freeze(struct hfi1_devdata *dd)
6658 {
6659 int i;
6660
6661 /* disable port */
6662 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6663
6664 /* disable all receive contexts */
6665 for (i = 0; i < dd->num_rcv_contexts; i++)
6666 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6667 }
6668
6669 /*
6670 * Unfreeze handling for the RXE block - kernel contexts only.
6671 * This will also enable the port. User contexts will do unfreeze
6672 * handling on a per-context basis as they call into the driver.
6673 *
6674 */
6675 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6676 {
6677 u32 rcvmask;
6678 int i;
6679
6680 /* enable all kernel contexts */
6681 for (i = 0; i < dd->n_krcv_queues; i++) {
6682 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6683 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6684 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6685 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6686 hfi1_rcvctrl(dd, rcvmask, i);
6687 }
6688
6689 /* enable port */
6690 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6691 }
6692
6693 /*
6694 * Non-interrupt SPC freeze handling.
6695 *
6696 * This is a work-queue function outside of the triggering interrupt.
6697 */
6698 void handle_freeze(struct work_struct *work)
6699 {
6700 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6701 freeze_work);
6702 struct hfi1_devdata *dd = ppd->dd;
6703
6704 /* wait for freeze indicators on all affected blocks */
6705 wait_for_freeze_status(dd, 1);
6706
6707 /* SPC is now frozen */
6708
6709 /* do send PIO freeze steps */
6710 pio_freeze(dd);
6711
6712 /* do send DMA freeze steps */
6713 sdma_freeze(dd);
6714
6715 /* do send egress freeze steps - nothing to do */
6716
6717 /* do receive freeze steps */
6718 rxe_freeze(dd);
6719
6720 /*
6721 * Unfreeze the hardware - clear the freeze, wait for each
6722 * block's frozen bit to clear, then clear the frozen flag.
6723 */
6724 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6725 wait_for_freeze_status(dd, 0);
6726
6727 if (is_ax(dd)) {
6728 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6729 wait_for_freeze_status(dd, 1);
6730 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6731 wait_for_freeze_status(dd, 0);
6732 }
6733
6734 /* do send PIO unfreeze steps for kernel contexts */
6735 pio_kernel_unfreeze(dd);
6736
6737 /* do send DMA unfreeze steps */
6738 sdma_unfreeze(dd);
6739
6740 /* do send egress unfreeze steps - nothing to do */
6741
6742 /* do receive unfreeze steps for kernel contexts */
6743 rxe_kernel_unfreeze(dd);
6744
6745 /*
6746 * The unfreeze procedure touches global device registers when
6747 * it disables and re-enables RXE. Mark the device unfrozen
6748 * after all that is done so other parts of the driver waiting
6749 * for the device to unfreeze don't do things out of order.
6750 *
6751 * The above implies that the meaning of HFI1_FROZEN flag is
6752 * "Device has gone into freeze mode and freeze mode handling
6753 * is still in progress."
6754 *
6755 * The flag will be removed when freeze mode processing has
6756 * completed.
6757 */
6758 dd->flags &= ~HFI1_FROZEN;
6759 wake_up(&dd->event_queue);
6760
6761 /* no longer frozen */
6762 }
6763
6764 /*
6765 * Handle a link up interrupt from the 8051.
6766 *
6767 * This is a work-queue function outside of the interrupt.
6768 */
6769 void handle_link_up(struct work_struct *work)
6770 {
6771 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6772 link_up_work);
6773 set_link_state(ppd, HLS_UP_INIT);
6774
6775 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6776 read_ltp_rtt(ppd->dd);
6777 /*
6778 * OPA specifies that certain counters are cleared on a transition
6779 * to link up, so do that.
6780 */
6781 clear_linkup_counters(ppd->dd);
6782 /*
6783 * And (re)set link up default values.
6784 */
6785 set_linkup_defaults(ppd);
6786
6787 /* enforce link speed enabled */
6788 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6789 /* oops - current speed is not enabled, bounce */
6790 dd_dev_err(ppd->dd,
6791 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6792 ppd->link_speed_active, ppd->link_speed_enabled);
6793 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6794 OPA_LINKDOWN_REASON_SPEED_POLICY);
6795 set_link_state(ppd, HLS_DN_OFFLINE);
6796 tune_serdes(ppd);
6797 start_link(ppd);
6798 }
6799 }
6800
6801 /*
6802 * Several pieces of LNI information were cached for SMA in ppd.
6803 * Reset these on link down
6804 */
6805 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6806 {
6807 ppd->neighbor_guid = 0;
6808 ppd->neighbor_port_number = 0;
6809 ppd->neighbor_type = 0;
6810 ppd->neighbor_fm_security = 0;
6811 }
6812
6813 /*
6814 * Handle a link down interrupt from the 8051.
6815 *
6816 * This is a work-queue function outside of the interrupt.
6817 */
6818 void handle_link_down(struct work_struct *work)
6819 {
6820 u8 lcl_reason, neigh_reason = 0;
6821 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6822 link_down_work);
6823
6824 if ((ppd->host_link_state &
6825 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6826 ppd->port_type == PORT_TYPE_FIXED)
6827 ppd->offline_disabled_reason =
6828 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6829
6830 /* Go offline first, then deal with reading/writing through 8051 */
6831 set_link_state(ppd, HLS_DN_OFFLINE);
6832
6833 lcl_reason = 0;
6834 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6835
6836 /*
6837 * If no reason, assume peer-initiated but missed
6838 * LinkGoingDown idle flits.
6839 */
6840 if (neigh_reason == 0)
6841 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6842
6843 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6844
6845 reset_neighbor_info(ppd);
6846
6847 /* disable the port */
6848 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6849
6850 /*
6851 * If there is no cable attached, turn the DC off. Otherwise,
6852 * start the link bring up.
6853 */
6854 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) {
6855 dc_shutdown(ppd->dd);
6856 } else {
6857 tune_serdes(ppd);
6858 start_link(ppd);
6859 }
6860 }
6861
6862 void handle_link_bounce(struct work_struct *work)
6863 {
6864 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6865 link_bounce_work);
6866
6867 /*
6868 * Only do something if the link is currently up.
6869 */
6870 if (ppd->host_link_state & HLS_UP) {
6871 set_link_state(ppd, HLS_DN_OFFLINE);
6872 tune_serdes(ppd);
6873 start_link(ppd);
6874 } else {
6875 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
6876 __func__, link_state_name(ppd->host_link_state));
6877 }
6878 }
6879
6880 /*
6881 * Mask conversion: Capability exchange to Port LTP. The capability
6882 * exchange has an implicit 16b CRC that is mandatory.
6883 */
6884 static int cap_to_port_ltp(int cap)
6885 {
6886 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
6887
6888 if (cap & CAP_CRC_14B)
6889 port_ltp |= PORT_LTP_CRC_MODE_14;
6890 if (cap & CAP_CRC_48B)
6891 port_ltp |= PORT_LTP_CRC_MODE_48;
6892 if (cap & CAP_CRC_12B_16B_PER_LANE)
6893 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
6894
6895 return port_ltp;
6896 }
6897
6898 /*
6899 * Convert an OPA Port LTP mask to capability mask
6900 */
6901 int port_ltp_to_cap(int port_ltp)
6902 {
6903 int cap_mask = 0;
6904
6905 if (port_ltp & PORT_LTP_CRC_MODE_14)
6906 cap_mask |= CAP_CRC_14B;
6907 if (port_ltp & PORT_LTP_CRC_MODE_48)
6908 cap_mask |= CAP_CRC_48B;
6909 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
6910 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
6911
6912 return cap_mask;
6913 }
6914
6915 /*
6916 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
6917 */
6918 static int lcb_to_port_ltp(int lcb_crc)
6919 {
6920 int port_ltp = 0;
6921
6922 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
6923 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
6924 else if (lcb_crc == LCB_CRC_48B)
6925 port_ltp = PORT_LTP_CRC_MODE_48;
6926 else if (lcb_crc == LCB_CRC_14B)
6927 port_ltp = PORT_LTP_CRC_MODE_14;
6928 else
6929 port_ltp = PORT_LTP_CRC_MODE_16;
6930
6931 return port_ltp;
6932 }
6933
6934 /*
6935 * Our neighbor has indicated that we are allowed to act as a fabric
6936 * manager, so place the full management partition key in the second
6937 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
6938 * that we should already have the limited management partition key in
6939 * array element 1, and also that the port is not yet up when
6940 * add_full_mgmt_pkey() is invoked.
6941 */
6942 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
6943 {
6944 struct hfi1_devdata *dd = ppd->dd;
6945
6946 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
6947 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
6948 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
6949 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
6950 ppd->pkeys[2] = FULL_MGMT_P_KEY;
6951 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
6952 }
6953
6954 /*
6955 * Convert the given link width to the OPA link width bitmask.
6956 */
6957 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
6958 {
6959 switch (width) {
6960 case 0:
6961 /*
6962 * Simulator and quick linkup do not set the width.
6963 * Just set it to 4x without complaint.
6964 */
6965 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
6966 return OPA_LINK_WIDTH_4X;
6967 return 0; /* no lanes up */
6968 case 1: return OPA_LINK_WIDTH_1X;
6969 case 2: return OPA_LINK_WIDTH_2X;
6970 case 3: return OPA_LINK_WIDTH_3X;
6971 default:
6972 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
6973 __func__, width);
6974 /* fall through */
6975 case 4: return OPA_LINK_WIDTH_4X;
6976 }
6977 }
6978
6979 /*
6980 * Do a population count on the bottom nibble.
6981 */
6982 static const u8 bit_counts[16] = {
6983 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
6984 };
6985
6986 static inline u8 nibble_to_count(u8 nibble)
6987 {
6988 return bit_counts[nibble & 0xf];
6989 }
6990
6991 /*
6992 * Read the active lane information from the 8051 registers and return
6993 * their widths.
6994 *
6995 * Active lane information is found in these 8051 registers:
6996 * enable_lane_tx
6997 * enable_lane_rx
6998 */
6999 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7000 u16 *rx_width)
7001 {
7002 u16 tx, rx;
7003 u8 enable_lane_rx;
7004 u8 enable_lane_tx;
7005 u8 tx_polarity_inversion;
7006 u8 rx_polarity_inversion;
7007 u8 max_rate;
7008
7009 /* read the active lanes */
7010 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7011 &rx_polarity_inversion, &max_rate);
7012 read_local_lni(dd, &enable_lane_rx);
7013
7014 /* convert to counts */
7015 tx = nibble_to_count(enable_lane_tx);
7016 rx = nibble_to_count(enable_lane_rx);
7017
7018 /*
7019 * Set link_speed_active here, overriding what was set in
7020 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7021 * set the max_rate field in handle_verify_cap until v0.19.
7022 */
7023 if ((dd->icode == ICODE_RTL_SILICON) &&
7024 (dd->dc8051_ver < dc8051_ver(0, 19))) {
7025 /* max_rate: 0 = 12.5G, 1 = 25G */
7026 switch (max_rate) {
7027 case 0:
7028 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7029 break;
7030 default:
7031 dd_dev_err(dd,
7032 "%s: unexpected max rate %d, using 25Gb\n",
7033 __func__, (int)max_rate);
7034 /* fall through */
7035 case 1:
7036 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7037 break;
7038 }
7039 }
7040
7041 dd_dev_info(dd,
7042 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7043 enable_lane_tx, tx, enable_lane_rx, rx);
7044 *tx_width = link_width_to_bits(dd, tx);
7045 *rx_width = link_width_to_bits(dd, rx);
7046 }
7047
7048 /*
7049 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7050 * Valid after the end of VerifyCap and during LinkUp. Does not change
7051 * after link up. I.e. look elsewhere for downgrade information.
7052 *
7053 * Bits are:
7054 * + bits [7:4] contain the number of active transmitters
7055 * + bits [3:0] contain the number of active receivers
7056 * These are numbers 1 through 4 and can be different values if the
7057 * link is asymmetric.
7058 *
7059 * verify_cap_local_fm_link_width[0] retains its original value.
7060 */
7061 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7062 u16 *rx_width)
7063 {
7064 u16 widths, tx, rx;
7065 u8 misc_bits, local_flags;
7066 u16 active_tx, active_rx;
7067
7068 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7069 tx = widths >> 12;
7070 rx = (widths >> 8) & 0xf;
7071
7072 *tx_width = link_width_to_bits(dd, tx);
7073 *rx_width = link_width_to_bits(dd, rx);
7074
7075 /* print the active widths */
7076 get_link_widths(dd, &active_tx, &active_rx);
7077 }
7078
7079 /*
7080 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7081 * hardware information when the link first comes up.
7082 *
7083 * The link width is not available until after VerifyCap.AllFramesReceived
7084 * (the trigger for handle_verify_cap), so this is outside that routine
7085 * and should be called when the 8051 signals linkup.
7086 */
7087 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7088 {
7089 u16 tx_width, rx_width;
7090
7091 /* get end-of-LNI link widths */
7092 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7093
7094 /* use tx_width as the link is supposed to be symmetric on link up */
7095 ppd->link_width_active = tx_width;
7096 /* link width downgrade active (LWD.A) starts out matching LW.A */
7097 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7098 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7099 /* per OPA spec, on link up LWD.E resets to LWD.S */
7100 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7101 /* cache the active egress rate (units {10^6 bits/sec]) */
7102 ppd->current_egress_rate = active_egress_rate(ppd);
7103 }
7104
7105 /*
7106 * Handle a verify capabilities interrupt from the 8051.
7107 *
7108 * This is a work-queue function outside of the interrupt.
7109 */
7110 void handle_verify_cap(struct work_struct *work)
7111 {
7112 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7113 link_vc_work);
7114 struct hfi1_devdata *dd = ppd->dd;
7115 u64 reg;
7116 u8 power_management;
7117 u8 continious;
7118 u8 vcu;
7119 u8 vau;
7120 u8 z;
7121 u16 vl15buf;
7122 u16 link_widths;
7123 u16 crc_mask;
7124 u16 crc_val;
7125 u16 device_id;
7126 u16 active_tx, active_rx;
7127 u8 partner_supported_crc;
7128 u8 remote_tx_rate;
7129 u8 device_rev;
7130
7131 set_link_state(ppd, HLS_VERIFY_CAP);
7132
7133 lcb_shutdown(dd, 0);
7134 adjust_lcb_for_fpga_serdes(dd);
7135
7136 /*
7137 * These are now valid:
7138 * remote VerifyCap fields in the general LNI config
7139 * CSR DC8051_STS_REMOTE_GUID
7140 * CSR DC8051_STS_REMOTE_NODE_TYPE
7141 * CSR DC8051_STS_REMOTE_FM_SECURITY
7142 * CSR DC8051_STS_REMOTE_PORT_NO
7143 */
7144
7145 read_vc_remote_phy(dd, &power_management, &continious);
7146 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7147 &partner_supported_crc);
7148 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7149 read_remote_device_id(dd, &device_id, &device_rev);
7150 /*
7151 * And the 'MgmtAllowed' information, which is exchanged during
7152 * LNI, is also be available at this point.
7153 */
7154 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7155 /* print the active widths */
7156 get_link_widths(dd, &active_tx, &active_rx);
7157 dd_dev_info(dd,
7158 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7159 (int)power_management, (int)continious);
7160 dd_dev_info(dd,
7161 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7162 (int)vau, (int)z, (int)vcu, (int)vl15buf,
7163 (int)partner_supported_crc);
7164 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7165 (u32)remote_tx_rate, (u32)link_widths);
7166 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7167 (u32)device_id, (u32)device_rev);
7168 /*
7169 * The peer vAU value just read is the peer receiver value. HFI does
7170 * not support a transmit vAU of 0 (AU == 8). We advertised that
7171 * with Z=1 in the fabric capabilities sent to the peer. The peer
7172 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7173 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7174 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7175 * subject to the Z value exception.
7176 */
7177 if (vau == 0)
7178 vau = 1;
7179 set_up_vl15(dd, vau, vl15buf);
7180
7181 /* set up the LCB CRC mode */
7182 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7183
7184 /* order is important: use the lowest bit in common */
7185 if (crc_mask & CAP_CRC_14B)
7186 crc_val = LCB_CRC_14B;
7187 else if (crc_mask & CAP_CRC_48B)
7188 crc_val = LCB_CRC_48B;
7189 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7190 crc_val = LCB_CRC_12B_16B_PER_LANE;
7191 else
7192 crc_val = LCB_CRC_16B;
7193
7194 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7195 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7196 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7197
7198 /* set (14b only) or clear sideband credit */
7199 reg = read_csr(dd, SEND_CM_CTRL);
7200 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7201 write_csr(dd, SEND_CM_CTRL,
7202 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7203 } else {
7204 write_csr(dd, SEND_CM_CTRL,
7205 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7206 }
7207
7208 ppd->link_speed_active = 0; /* invalid value */
7209 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7210 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7211 switch (remote_tx_rate) {
7212 case 0:
7213 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7214 break;
7215 case 1:
7216 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7217 break;
7218 }
7219 } else {
7220 /* actual rate is highest bit of the ANDed rates */
7221 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7222
7223 if (rate & 2)
7224 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7225 else if (rate & 1)
7226 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7227 }
7228 if (ppd->link_speed_active == 0) {
7229 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7230 __func__, (int)remote_tx_rate);
7231 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7232 }
7233
7234 /*
7235 * Cache the values of the supported, enabled, and active
7236 * LTP CRC modes to return in 'portinfo' queries. But the bit
7237 * flags that are returned in the portinfo query differ from
7238 * what's in the link_crc_mask, crc_sizes, and crc_val
7239 * variables. Convert these here.
7240 */
7241 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7242 /* supported crc modes */
7243 ppd->port_ltp_crc_mode |=
7244 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7245 /* enabled crc modes */
7246 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7247 /* active crc mode */
7248
7249 /* set up the remote credit return table */
7250 assign_remote_cm_au_table(dd, vcu);
7251
7252 /*
7253 * The LCB is reset on entry to handle_verify_cap(), so this must
7254 * be applied on every link up.
7255 *
7256 * Adjust LCB error kill enable to kill the link if
7257 * these RBUF errors are seen:
7258 * REPLAY_BUF_MBE_SMASK
7259 * FLIT_INPUT_BUF_MBE_SMASK
7260 */
7261 if (is_ax(dd)) { /* fixed in B0 */
7262 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7263 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7264 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7265 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7266 }
7267
7268 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7269 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7270
7271 /* give 8051 access to the LCB CSRs */
7272 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7273 set_8051_lcb_access(dd);
7274
7275 ppd->neighbor_guid =
7276 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7277 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7278 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7279 ppd->neighbor_type =
7280 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7281 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7282 ppd->neighbor_fm_security =
7283 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7284 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7285 dd_dev_info(dd,
7286 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7287 ppd->neighbor_guid, ppd->neighbor_type,
7288 ppd->mgmt_allowed, ppd->neighbor_fm_security);
7289 if (ppd->mgmt_allowed)
7290 add_full_mgmt_pkey(ppd);
7291
7292 /* tell the 8051 to go to LinkUp */
7293 set_link_state(ppd, HLS_GOING_UP);
7294 }
7295
7296 /*
7297 * Apply the link width downgrade enabled policy against the current active
7298 * link widths.
7299 *
7300 * Called when the enabled policy changes or the active link widths change.
7301 */
7302 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7303 {
7304 int do_bounce = 0;
7305 int tries;
7306 u16 lwde;
7307 u16 tx, rx;
7308
7309 /* use the hls lock to avoid a race with actual link up */
7310 tries = 0;
7311 retry:
7312 mutex_lock(&ppd->hls_lock);
7313 /* only apply if the link is up */
7314 if (!(ppd->host_link_state & HLS_UP)) {
7315 /* still going up..wait and retry */
7316 if (ppd->host_link_state & HLS_GOING_UP) {
7317 if (++tries < 1000) {
7318 mutex_unlock(&ppd->hls_lock);
7319 usleep_range(100, 120); /* arbitrary */
7320 goto retry;
7321 }
7322 dd_dev_err(ppd->dd,
7323 "%s: giving up waiting for link state change\n",
7324 __func__);
7325 }
7326 goto done;
7327 }
7328
7329 lwde = ppd->link_width_downgrade_enabled;
7330
7331 if (refresh_widths) {
7332 get_link_widths(ppd->dd, &tx, &rx);
7333 ppd->link_width_downgrade_tx_active = tx;
7334 ppd->link_width_downgrade_rx_active = rx;
7335 }
7336
7337 if (lwde == 0) {
7338 /* downgrade is disabled */
7339
7340 /* bounce if not at starting active width */
7341 if ((ppd->link_width_active !=
7342 ppd->link_width_downgrade_tx_active) ||
7343 (ppd->link_width_active !=
7344 ppd->link_width_downgrade_rx_active)) {
7345 dd_dev_err(ppd->dd,
7346 "Link downgrade is disabled and link has downgraded, downing link\n");
7347 dd_dev_err(ppd->dd,
7348 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7349 ppd->link_width_active,
7350 ppd->link_width_downgrade_tx_active,
7351 ppd->link_width_downgrade_rx_active);
7352 do_bounce = 1;
7353 }
7354 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7355 (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7356 /* Tx or Rx is outside the enabled policy */
7357 dd_dev_err(ppd->dd,
7358 "Link is outside of downgrade allowed, downing link\n");
7359 dd_dev_err(ppd->dd,
7360 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7361 lwde, ppd->link_width_downgrade_tx_active,
7362 ppd->link_width_downgrade_rx_active);
7363 do_bounce = 1;
7364 }
7365
7366 done:
7367 mutex_unlock(&ppd->hls_lock);
7368
7369 if (do_bounce) {
7370 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7371 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7372 set_link_state(ppd, HLS_DN_OFFLINE);
7373 tune_serdes(ppd);
7374 start_link(ppd);
7375 }
7376 }
7377
7378 /*
7379 * Handle a link downgrade interrupt from the 8051.
7380 *
7381 * This is a work-queue function outside of the interrupt.
7382 */
7383 void handle_link_downgrade(struct work_struct *work)
7384 {
7385 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7386 link_downgrade_work);
7387
7388 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7389 apply_link_downgrade_policy(ppd, 1);
7390 }
7391
7392 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7393 {
7394 return flag_string(buf, buf_len, flags, dcc_err_flags,
7395 ARRAY_SIZE(dcc_err_flags));
7396 }
7397
7398 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7399 {
7400 return flag_string(buf, buf_len, flags, lcb_err_flags,
7401 ARRAY_SIZE(lcb_err_flags));
7402 }
7403
7404 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7405 {
7406 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7407 ARRAY_SIZE(dc8051_err_flags));
7408 }
7409
7410 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7411 {
7412 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7413 ARRAY_SIZE(dc8051_info_err_flags));
7414 }
7415
7416 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7417 {
7418 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7419 ARRAY_SIZE(dc8051_info_host_msg_flags));
7420 }
7421
7422 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7423 {
7424 struct hfi1_pportdata *ppd = dd->pport;
7425 u64 info, err, host_msg;
7426 int queue_link_down = 0;
7427 char buf[96];
7428
7429 /* look at the flags */
7430 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7431 /* 8051 information set by firmware */
7432 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7433 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7434 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7435 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7436 host_msg = (info >>
7437 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7438 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7439
7440 /*
7441 * Handle error flags.
7442 */
7443 if (err & FAILED_LNI) {
7444 /*
7445 * LNI error indications are cleared by the 8051
7446 * only when starting polling. Only pay attention
7447 * to them when in the states that occur during
7448 * LNI.
7449 */
7450 if (ppd->host_link_state
7451 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7452 queue_link_down = 1;
7453 dd_dev_info(dd, "Link error: %s\n",
7454 dc8051_info_err_string(buf,
7455 sizeof(buf),
7456 err &
7457 FAILED_LNI));
7458 }
7459 err &= ~(u64)FAILED_LNI;
7460 }
7461 /* unknown frames can happen durning LNI, just count */
7462 if (err & UNKNOWN_FRAME) {
7463 ppd->unknown_frame_count++;
7464 err &= ~(u64)UNKNOWN_FRAME;
7465 }
7466 if (err) {
7467 /* report remaining errors, but do not do anything */
7468 dd_dev_err(dd, "8051 info error: %s\n",
7469 dc8051_info_err_string(buf, sizeof(buf),
7470 err));
7471 }
7472
7473 /*
7474 * Handle host message flags.
7475 */
7476 if (host_msg & HOST_REQ_DONE) {
7477 /*
7478 * Presently, the driver does a busy wait for
7479 * host requests to complete. This is only an
7480 * informational message.
7481 * NOTE: The 8051 clears the host message
7482 * information *on the next 8051 command*.
7483 * Therefore, when linkup is achieved,
7484 * this flag will still be set.
7485 */
7486 host_msg &= ~(u64)HOST_REQ_DONE;
7487 }
7488 if (host_msg & BC_SMA_MSG) {
7489 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7490 host_msg &= ~(u64)BC_SMA_MSG;
7491 }
7492 if (host_msg & LINKUP_ACHIEVED) {
7493 dd_dev_info(dd, "8051: Link up\n");
7494 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7495 host_msg &= ~(u64)LINKUP_ACHIEVED;
7496 }
7497 if (host_msg & EXT_DEVICE_CFG_REQ) {
7498 handle_8051_request(ppd);
7499 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7500 }
7501 if (host_msg & VERIFY_CAP_FRAME) {
7502 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7503 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7504 }
7505 if (host_msg & LINK_GOING_DOWN) {
7506 const char *extra = "";
7507 /* no downgrade action needed if going down */
7508 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7509 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7510 extra = " (ignoring downgrade)";
7511 }
7512 dd_dev_info(dd, "8051: Link down%s\n", extra);
7513 queue_link_down = 1;
7514 host_msg &= ~(u64)LINK_GOING_DOWN;
7515 }
7516 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7517 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7518 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7519 }
7520 if (host_msg) {
7521 /* report remaining messages, but do not do anything */
7522 dd_dev_info(dd, "8051 info host message: %s\n",
7523 dc8051_info_host_msg_string(buf,
7524 sizeof(buf),
7525 host_msg));
7526 }
7527
7528 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7529 }
7530 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7531 /*
7532 * Lost the 8051 heartbeat. If this happens, we
7533 * receive constant interrupts about it. Disable
7534 * the interrupt after the first.
7535 */
7536 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7537 write_csr(dd, DC_DC8051_ERR_EN,
7538 read_csr(dd, DC_DC8051_ERR_EN) &
7539 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7540
7541 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7542 }
7543 if (reg) {
7544 /* report the error, but do not do anything */
7545 dd_dev_err(dd, "8051 error: %s\n",
7546 dc8051_err_string(buf, sizeof(buf), reg));
7547 }
7548
7549 if (queue_link_down) {
7550 /*
7551 * if the link is already going down or disabled, do not
7552 * queue another
7553 */
7554 if ((ppd->host_link_state &
7555 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7556 ppd->link_enabled == 0) {
7557 dd_dev_info(dd, "%s: not queuing link down\n",
7558 __func__);
7559 } else {
7560 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7561 }
7562 }
7563 }
7564
7565 static const char * const fm_config_txt[] = {
7566 [0] =
7567 "BadHeadDist: Distance violation between two head flits",
7568 [1] =
7569 "BadTailDist: Distance violation between two tail flits",
7570 [2] =
7571 "BadCtrlDist: Distance violation between two credit control flits",
7572 [3] =
7573 "BadCrdAck: Credits return for unsupported VL",
7574 [4] =
7575 "UnsupportedVLMarker: Received VL Marker",
7576 [5] =
7577 "BadPreempt: Exceeded the preemption nesting level",
7578 [6] =
7579 "BadControlFlit: Received unsupported control flit",
7580 /* no 7 */
7581 [8] =
7582 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7583 };
7584
7585 static const char * const port_rcv_txt[] = {
7586 [1] =
7587 "BadPktLen: Illegal PktLen",
7588 [2] =
7589 "PktLenTooLong: Packet longer than PktLen",
7590 [3] =
7591 "PktLenTooShort: Packet shorter than PktLen",
7592 [4] =
7593 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7594 [5] =
7595 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7596 [6] =
7597 "BadL2: Illegal L2 opcode",
7598 [7] =
7599 "BadSC: Unsupported SC",
7600 [9] =
7601 "BadRC: Illegal RC",
7602 [11] =
7603 "PreemptError: Preempting with same VL",
7604 [12] =
7605 "PreemptVL15: Preempting a VL15 packet",
7606 };
7607
7608 #define OPA_LDR_FMCONFIG_OFFSET 16
7609 #define OPA_LDR_PORTRCV_OFFSET 0
7610 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7611 {
7612 u64 info, hdr0, hdr1;
7613 const char *extra;
7614 char buf[96];
7615 struct hfi1_pportdata *ppd = dd->pport;
7616 u8 lcl_reason = 0;
7617 int do_bounce = 0;
7618
7619 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7620 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7621 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7622 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7623 /* set status bit */
7624 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7625 }
7626 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7627 }
7628
7629 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7630 struct hfi1_pportdata *ppd = dd->pport;
7631 /* this counter saturates at (2^32) - 1 */
7632 if (ppd->link_downed < (u32)UINT_MAX)
7633 ppd->link_downed++;
7634 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7635 }
7636
7637 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7638 u8 reason_valid = 1;
7639
7640 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7641 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7642 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7643 /* set status bit */
7644 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7645 }
7646 switch (info) {
7647 case 0:
7648 case 1:
7649 case 2:
7650 case 3:
7651 case 4:
7652 case 5:
7653 case 6:
7654 extra = fm_config_txt[info];
7655 break;
7656 case 8:
7657 extra = fm_config_txt[info];
7658 if (ppd->port_error_action &
7659 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7660 do_bounce = 1;
7661 /*
7662 * lcl_reason cannot be derived from info
7663 * for this error
7664 */
7665 lcl_reason =
7666 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7667 }
7668 break;
7669 default:
7670 reason_valid = 0;
7671 snprintf(buf, sizeof(buf), "reserved%lld", info);
7672 extra = buf;
7673 break;
7674 }
7675
7676 if (reason_valid && !do_bounce) {
7677 do_bounce = ppd->port_error_action &
7678 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7679 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7680 }
7681
7682 /* just report this */
7683 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7684 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7685 }
7686
7687 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7688 u8 reason_valid = 1;
7689
7690 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7691 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7692 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7693 if (!(dd->err_info_rcvport.status_and_code &
7694 OPA_EI_STATUS_SMASK)) {
7695 dd->err_info_rcvport.status_and_code =
7696 info & OPA_EI_CODE_SMASK;
7697 /* set status bit */
7698 dd->err_info_rcvport.status_and_code |=
7699 OPA_EI_STATUS_SMASK;
7700 /*
7701 * save first 2 flits in the packet that caused
7702 * the error
7703 */
7704 dd->err_info_rcvport.packet_flit1 = hdr0;
7705 dd->err_info_rcvport.packet_flit2 = hdr1;
7706 }
7707 switch (info) {
7708 case 1:
7709 case 2:
7710 case 3:
7711 case 4:
7712 case 5:
7713 case 6:
7714 case 7:
7715 case 9:
7716 case 11:
7717 case 12:
7718 extra = port_rcv_txt[info];
7719 break;
7720 default:
7721 reason_valid = 0;
7722 snprintf(buf, sizeof(buf), "reserved%lld", info);
7723 extra = buf;
7724 break;
7725 }
7726
7727 if (reason_valid && !do_bounce) {
7728 do_bounce = ppd->port_error_action &
7729 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7730 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7731 }
7732
7733 /* just report this */
7734 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7735 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
7736 hdr0, hdr1);
7737
7738 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7739 }
7740
7741 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7742 /* informative only */
7743 dd_dev_info(dd, "8051 access to LCB blocked\n");
7744 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7745 }
7746 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7747 /* informative only */
7748 dd_dev_info(dd, "host access to LCB blocked\n");
7749 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7750 }
7751
7752 /* report any remaining errors */
7753 if (reg)
7754 dd_dev_info(dd, "DCC Error: %s\n",
7755 dcc_err_string(buf, sizeof(buf), reg));
7756
7757 if (lcl_reason == 0)
7758 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7759
7760 if (do_bounce) {
7761 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7762 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7763 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7764 }
7765 }
7766
7767 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7768 {
7769 char buf[96];
7770
7771 dd_dev_info(dd, "LCB Error: %s\n",
7772 lcb_err_string(buf, sizeof(buf), reg));
7773 }
7774
7775 /*
7776 * CCE block DC interrupt. Source is < 8.
7777 */
7778 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7779 {
7780 const struct err_reg_info *eri = &dc_errs[source];
7781
7782 if (eri->handler) {
7783 interrupt_clear_down(dd, 0, eri);
7784 } else if (source == 3 /* dc_lbm_int */) {
7785 /*
7786 * This indicates that a parity error has occurred on the
7787 * address/control lines presented to the LBM. The error
7788 * is a single pulse, there is no associated error flag,
7789 * and it is non-maskable. This is because if a parity
7790 * error occurs on the request the request is dropped.
7791 * This should never occur, but it is nice to know if it
7792 * ever does.
7793 */
7794 dd_dev_err(dd, "Parity error in DC LBM block\n");
7795 } else {
7796 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7797 }
7798 }
7799
7800 /*
7801 * TX block send credit interrupt. Source is < 160.
7802 */
7803 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7804 {
7805 sc_group_release_update(dd, source);
7806 }
7807
7808 /*
7809 * TX block SDMA interrupt. Source is < 48.
7810 *
7811 * SDMA interrupts are grouped by type:
7812 *
7813 * 0 - N-1 = SDma
7814 * N - 2N-1 = SDmaProgress
7815 * 2N - 3N-1 = SDmaIdle
7816 */
7817 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7818 {
7819 /* what interrupt */
7820 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7821 /* which engine */
7822 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7823
7824 #ifdef CONFIG_SDMA_VERBOSITY
7825 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7826 slashstrip(__FILE__), __LINE__, __func__);
7827 sdma_dumpstate(&dd->per_sdma[which]);
7828 #endif
7829
7830 if (likely(what < 3 && which < dd->num_sdma)) {
7831 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7832 } else {
7833 /* should not happen */
7834 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7835 }
7836 }
7837
7838 /*
7839 * RX block receive available interrupt. Source is < 160.
7840 */
7841 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7842 {
7843 struct hfi1_ctxtdata *rcd;
7844 char *err_detail;
7845
7846 if (likely(source < dd->num_rcv_contexts)) {
7847 rcd = dd->rcd[source];
7848 if (rcd) {
7849 if (source < dd->first_user_ctxt)
7850 rcd->do_interrupt(rcd, 0);
7851 else
7852 handle_user_interrupt(rcd);
7853 return; /* OK */
7854 }
7855 /* received an interrupt, but no rcd */
7856 err_detail = "dataless";
7857 } else {
7858 /* received an interrupt, but are not using that context */
7859 err_detail = "out of range";
7860 }
7861 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
7862 err_detail, source);
7863 }
7864
7865 /*
7866 * RX block receive urgent interrupt. Source is < 160.
7867 */
7868 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
7869 {
7870 struct hfi1_ctxtdata *rcd;
7871 char *err_detail;
7872
7873 if (likely(source < dd->num_rcv_contexts)) {
7874 rcd = dd->rcd[source];
7875 if (rcd) {
7876 /* only pay attention to user urgent interrupts */
7877 if (source >= dd->first_user_ctxt)
7878 handle_user_interrupt(rcd);
7879 return; /* OK */
7880 }
7881 /* received an interrupt, but no rcd */
7882 err_detail = "dataless";
7883 } else {
7884 /* received an interrupt, but are not using that context */
7885 err_detail = "out of range";
7886 }
7887 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
7888 err_detail, source);
7889 }
7890
7891 /*
7892 * Reserved range interrupt. Should not be called in normal operation.
7893 */
7894 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
7895 {
7896 char name[64];
7897
7898 dd_dev_err(dd, "unexpected %s interrupt\n",
7899 is_reserved_name(name, sizeof(name), source));
7900 }
7901
7902 static const struct is_table is_table[] = {
7903 /*
7904 * start end
7905 * name func interrupt func
7906 */
7907 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
7908 is_misc_err_name, is_misc_err_int },
7909 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
7910 is_sdma_eng_err_name, is_sdma_eng_err_int },
7911 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
7912 is_sendctxt_err_name, is_sendctxt_err_int },
7913 { IS_SDMA_START, IS_SDMA_END,
7914 is_sdma_eng_name, is_sdma_eng_int },
7915 { IS_VARIOUS_START, IS_VARIOUS_END,
7916 is_various_name, is_various_int },
7917 { IS_DC_START, IS_DC_END,
7918 is_dc_name, is_dc_int },
7919 { IS_RCVAVAIL_START, IS_RCVAVAIL_END,
7920 is_rcv_avail_name, is_rcv_avail_int },
7921 { IS_RCVURGENT_START, IS_RCVURGENT_END,
7922 is_rcv_urgent_name, is_rcv_urgent_int },
7923 { IS_SENDCREDIT_START, IS_SENDCREDIT_END,
7924 is_send_credit_name, is_send_credit_int},
7925 { IS_RESERVED_START, IS_RESERVED_END,
7926 is_reserved_name, is_reserved_int},
7927 };
7928
7929 /*
7930 * Interrupt source interrupt - called when the given source has an interrupt.
7931 * Source is a bit index into an array of 64-bit integers.
7932 */
7933 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
7934 {
7935 const struct is_table *entry;
7936
7937 /* avoids a double compare by walking the table in-order */
7938 for (entry = &is_table[0]; entry->is_name; entry++) {
7939 if (source < entry->end) {
7940 trace_hfi1_interrupt(dd, entry, source);
7941 entry->is_int(dd, source - entry->start);
7942 return;
7943 }
7944 }
7945 /* fell off the end */
7946 dd_dev_err(dd, "invalid interrupt source %u\n", source);
7947 }
7948
7949 /*
7950 * General interrupt handler. This is able to correctly handle
7951 * all interrupts in case INTx is used.
7952 */
7953 static irqreturn_t general_interrupt(int irq, void *data)
7954 {
7955 struct hfi1_devdata *dd = data;
7956 u64 regs[CCE_NUM_INT_CSRS];
7957 u32 bit;
7958 int i;
7959
7960 this_cpu_inc(*dd->int_counter);
7961
7962 /* phase 1: scan and clear all handled interrupts */
7963 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
7964 if (dd->gi_mask[i] == 0) {
7965 regs[i] = 0; /* used later */
7966 continue;
7967 }
7968 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
7969 dd->gi_mask[i];
7970 /* only clear if anything is set */
7971 if (regs[i])
7972 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
7973 }
7974
7975 /* phase 2: call the appropriate handler */
7976 for_each_set_bit(bit, (unsigned long *)&regs[0],
7977 CCE_NUM_INT_CSRS * 64) {
7978 is_interrupt(dd, bit);
7979 }
7980
7981 return IRQ_HANDLED;
7982 }
7983
7984 static irqreturn_t sdma_interrupt(int irq, void *data)
7985 {
7986 struct sdma_engine *sde = data;
7987 struct hfi1_devdata *dd = sde->dd;
7988 u64 status;
7989
7990 #ifdef CONFIG_SDMA_VERBOSITY
7991 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
7992 slashstrip(__FILE__), __LINE__, __func__);
7993 sdma_dumpstate(sde);
7994 #endif
7995
7996 this_cpu_inc(*dd->int_counter);
7997
7998 /* This read_csr is really bad in the hot path */
7999 status = read_csr(dd,
8000 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8001 & sde->imask;
8002 if (likely(status)) {
8003 /* clear the interrupt(s) */
8004 write_csr(dd,
8005 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8006 status);
8007
8008 /* handle the interrupt(s) */
8009 sdma_engine_interrupt(sde, status);
8010 } else
8011 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8012 sde->this_idx);
8013
8014 return IRQ_HANDLED;
8015 }
8016
8017 /*
8018 * Clear the receive interrupt. Use a read of the interrupt clear CSR
8019 * to insure that the write completed. This does NOT guarantee that
8020 * queued DMA writes to memory from the chip are pushed.
8021 */
8022 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8023 {
8024 struct hfi1_devdata *dd = rcd->dd;
8025 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8026
8027 mmiowb(); /* make sure everything before is written */
8028 write_csr(dd, addr, rcd->imask);
8029 /* force the above write on the chip and get a value back */
8030 (void)read_csr(dd, addr);
8031 }
8032
8033 /* force the receive interrupt */
8034 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8035 {
8036 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8037 }
8038
8039 /*
8040 * Return non-zero if a packet is present.
8041 *
8042 * This routine is called when rechecking for packets after the RcvAvail
8043 * interrupt has been cleared down. First, do a quick check of memory for
8044 * a packet present. If not found, use an expensive CSR read of the context
8045 * tail to determine the actual tail. The CSR read is necessary because there
8046 * is no method to push pending DMAs to memory other than an interrupt and we
8047 * are trying to determine if we need to force an interrupt.
8048 */
8049 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8050 {
8051 u32 tail;
8052 int present;
8053
8054 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8055 present = (rcd->seq_cnt ==
8056 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8057 else /* is RDMA rtail */
8058 present = (rcd->head != get_rcvhdrtail(rcd));
8059
8060 if (present)
8061 return 1;
8062
8063 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8064 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8065 return rcd->head != tail;
8066 }
8067
8068 /*
8069 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8070 * This routine will try to handle packets immediately (latency), but if
8071 * it finds too many, it will invoke the thread handler (bandwitdh). The
8072 * chip receive interrupt is *not* cleared down until this or the thread (if
8073 * invoked) is finished. The intent is to avoid extra interrupts while we
8074 * are processing packets anyway.
8075 */
8076 static irqreturn_t receive_context_interrupt(int irq, void *data)
8077 {
8078 struct hfi1_ctxtdata *rcd = data;
8079 struct hfi1_devdata *dd = rcd->dd;
8080 int disposition;
8081 int present;
8082
8083 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8084 this_cpu_inc(*dd->int_counter);
8085 aspm_ctx_disable(rcd);
8086
8087 /* receive interrupt remains blocked while processing packets */
8088 disposition = rcd->do_interrupt(rcd, 0);
8089
8090 /*
8091 * Too many packets were seen while processing packets in this
8092 * IRQ handler. Invoke the handler thread. The receive interrupt
8093 * remains blocked.
8094 */
8095 if (disposition == RCV_PKT_LIMIT)
8096 return IRQ_WAKE_THREAD;
8097
8098 /*
8099 * The packet processor detected no more packets. Clear the receive
8100 * interrupt and recheck for a packet packet that may have arrived
8101 * after the previous check and interrupt clear. If a packet arrived,
8102 * force another interrupt.
8103 */
8104 clear_recv_intr(rcd);
8105 present = check_packet_present(rcd);
8106 if (present)
8107 force_recv_intr(rcd);
8108
8109 return IRQ_HANDLED;
8110 }
8111
8112 /*
8113 * Receive packet thread handler. This expects to be invoked with the
8114 * receive interrupt still blocked.
8115 */
8116 static irqreturn_t receive_context_thread(int irq, void *data)
8117 {
8118 struct hfi1_ctxtdata *rcd = data;
8119 int present;
8120
8121 /* receive interrupt is still blocked from the IRQ handler */
8122 (void)rcd->do_interrupt(rcd, 1);
8123
8124 /*
8125 * The packet processor will only return if it detected no more
8126 * packets. Hold IRQs here so we can safely clear the interrupt and
8127 * recheck for a packet that may have arrived after the previous
8128 * check and the interrupt clear. If a packet arrived, force another
8129 * interrupt.
8130 */
8131 local_irq_disable();
8132 clear_recv_intr(rcd);
8133 present = check_packet_present(rcd);
8134 if (present)
8135 force_recv_intr(rcd);
8136 local_irq_enable();
8137
8138 return IRQ_HANDLED;
8139 }
8140
8141 /* ========================================================================= */
8142
8143 u32 read_physical_state(struct hfi1_devdata *dd)
8144 {
8145 u64 reg;
8146
8147 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8148 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8149 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8150 }
8151
8152 u32 read_logical_state(struct hfi1_devdata *dd)
8153 {
8154 u64 reg;
8155
8156 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8157 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8158 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8159 }
8160
8161 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8162 {
8163 u64 reg;
8164
8165 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8166 /* clear current state, set new state */
8167 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8168 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8169 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8170 }
8171
8172 /*
8173 * Use the 8051 to read a LCB CSR.
8174 */
8175 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8176 {
8177 u32 regno;
8178 int ret;
8179
8180 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8181 if (acquire_lcb_access(dd, 0) == 0) {
8182 *data = read_csr(dd, addr);
8183 release_lcb_access(dd, 0);
8184 return 0;
8185 }
8186 return -EBUSY;
8187 }
8188
8189 /* register is an index of LCB registers: (offset - base) / 8 */
8190 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8191 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8192 if (ret != HCMD_SUCCESS)
8193 return -EBUSY;
8194 return 0;
8195 }
8196
8197 /*
8198 * Read an LCB CSR. Access may not be in host control, so check.
8199 * Return 0 on success, -EBUSY on failure.
8200 */
8201 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8202 {
8203 struct hfi1_pportdata *ppd = dd->pport;
8204
8205 /* if up, go through the 8051 for the value */
8206 if (ppd->host_link_state & HLS_UP)
8207 return read_lcb_via_8051(dd, addr, data);
8208 /* if going up or down, no access */
8209 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8210 return -EBUSY;
8211 /* otherwise, host has access */
8212 *data = read_csr(dd, addr);
8213 return 0;
8214 }
8215
8216 /*
8217 * Use the 8051 to write a LCB CSR.
8218 */
8219 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8220 {
8221 u32 regno;
8222 int ret;
8223
8224 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8225 (dd->dc8051_ver < dc8051_ver(0, 20))) {
8226 if (acquire_lcb_access(dd, 0) == 0) {
8227 write_csr(dd, addr, data);
8228 release_lcb_access(dd, 0);
8229 return 0;
8230 }
8231 return -EBUSY;
8232 }
8233
8234 /* register is an index of LCB registers: (offset - base) / 8 */
8235 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8236 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8237 if (ret != HCMD_SUCCESS)
8238 return -EBUSY;
8239 return 0;
8240 }
8241
8242 /*
8243 * Write an LCB CSR. Access may not be in host control, so check.
8244 * Return 0 on success, -EBUSY on failure.
8245 */
8246 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8247 {
8248 struct hfi1_pportdata *ppd = dd->pport;
8249
8250 /* if up, go through the 8051 for the value */
8251 if (ppd->host_link_state & HLS_UP)
8252 return write_lcb_via_8051(dd, addr, data);
8253 /* if going up or down, no access */
8254 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8255 return -EBUSY;
8256 /* otherwise, host has access */
8257 write_csr(dd, addr, data);
8258 return 0;
8259 }
8260
8261 /*
8262 * Returns:
8263 * < 0 = Linux error, not able to get access
8264 * > 0 = 8051 command RETURN_CODE
8265 */
8266 static int do_8051_command(
8267 struct hfi1_devdata *dd,
8268 u32 type,
8269 u64 in_data,
8270 u64 *out_data)
8271 {
8272 u64 reg, completed;
8273 int return_code;
8274 unsigned long flags;
8275 unsigned long timeout;
8276
8277 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8278
8279 /*
8280 * Alternative to holding the lock for a long time:
8281 * - keep busy wait - have other users bounce off
8282 */
8283 spin_lock_irqsave(&dd->dc8051_lock, flags);
8284
8285 /* We can't send any commands to the 8051 if it's in reset */
8286 if (dd->dc_shutdown) {
8287 return_code = -ENODEV;
8288 goto fail;
8289 }
8290
8291 /*
8292 * If an 8051 host command timed out previously, then the 8051 is
8293 * stuck.
8294 *
8295 * On first timeout, attempt to reset and restart the entire DC
8296 * block (including 8051). (Is this too big of a hammer?)
8297 *
8298 * If the 8051 times out a second time, the reset did not bring it
8299 * back to healthy life. In that case, fail any subsequent commands.
8300 */
8301 if (dd->dc8051_timed_out) {
8302 if (dd->dc8051_timed_out > 1) {
8303 dd_dev_err(dd,
8304 "Previous 8051 host command timed out, skipping command %u\n",
8305 type);
8306 return_code = -ENXIO;
8307 goto fail;
8308 }
8309 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8310 dc_shutdown(dd);
8311 dc_start(dd);
8312 spin_lock_irqsave(&dd->dc8051_lock, flags);
8313 }
8314
8315 /*
8316 * If there is no timeout, then the 8051 command interface is
8317 * waiting for a command.
8318 */
8319
8320 /*
8321 * When writing a LCB CSR, out_data contains the full value to
8322 * to be written, while in_data contains the relative LCB
8323 * address in 7:0. Do the work here, rather than the caller,
8324 * of distrubting the write data to where it needs to go:
8325 *
8326 * Write data
8327 * 39:00 -> in_data[47:8]
8328 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8329 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8330 */
8331 if (type == HCMD_WRITE_LCB_CSR) {
8332 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8333 reg = ((((*out_data) >> 40) & 0xff) <<
8334 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8335 | ((((*out_data) >> 48) & 0xffff) <<
8336 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8337 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8338 }
8339
8340 /*
8341 * Do two writes: the first to stabilize the type and req_data, the
8342 * second to activate.
8343 */
8344 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8345 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8346 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8347 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8348 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8349 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8350 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8351
8352 /* wait for completion, alternate: interrupt */
8353 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8354 while (1) {
8355 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8356 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8357 if (completed)
8358 break;
8359 if (time_after(jiffies, timeout)) {
8360 dd->dc8051_timed_out++;
8361 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8362 if (out_data)
8363 *out_data = 0;
8364 return_code = -ETIMEDOUT;
8365 goto fail;
8366 }
8367 udelay(2);
8368 }
8369
8370 if (out_data) {
8371 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8372 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8373 if (type == HCMD_READ_LCB_CSR) {
8374 /* top 16 bits are in a different register */
8375 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8376 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8377 << (48
8378 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8379 }
8380 }
8381 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8382 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8383 dd->dc8051_timed_out = 0;
8384 /*
8385 * Clear command for next user.
8386 */
8387 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8388
8389 fail:
8390 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8391
8392 return return_code;
8393 }
8394
8395 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8396 {
8397 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8398 }
8399
8400 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8401 u8 lane_id, u32 config_data)
8402 {
8403 u64 data;
8404 int ret;
8405
8406 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8407 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8408 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8409 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8410 if (ret != HCMD_SUCCESS) {
8411 dd_dev_err(dd,
8412 "load 8051 config: field id %d, lane %d, err %d\n",
8413 (int)field_id, (int)lane_id, ret);
8414 }
8415 return ret;
8416 }
8417
8418 /*
8419 * Read the 8051 firmware "registers". Use the RAM directly. Always
8420 * set the result, even on error.
8421 * Return 0 on success, -errno on failure
8422 */
8423 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8424 u32 *result)
8425 {
8426 u64 big_data;
8427 u32 addr;
8428 int ret;
8429
8430 /* address start depends on the lane_id */
8431 if (lane_id < 4)
8432 addr = (4 * NUM_GENERAL_FIELDS)
8433 + (lane_id * 4 * NUM_LANE_FIELDS);
8434 else
8435 addr = 0;
8436 addr += field_id * 4;
8437
8438 /* read is in 8-byte chunks, hardware will truncate the address down */
8439 ret = read_8051_data(dd, addr, 8, &big_data);
8440
8441 if (ret == 0) {
8442 /* extract the 4 bytes we want */
8443 if (addr & 0x4)
8444 *result = (u32)(big_data >> 32);
8445 else
8446 *result = (u32)big_data;
8447 } else {
8448 *result = 0;
8449 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8450 __func__, lane_id, field_id);
8451 }
8452
8453 return ret;
8454 }
8455
8456 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8457 u8 continuous)
8458 {
8459 u32 frame;
8460
8461 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8462 | power_management << POWER_MANAGEMENT_SHIFT;
8463 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8464 GENERAL_CONFIG, frame);
8465 }
8466
8467 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8468 u16 vl15buf, u8 crc_sizes)
8469 {
8470 u32 frame;
8471
8472 frame = (u32)vau << VAU_SHIFT
8473 | (u32)z << Z_SHIFT
8474 | (u32)vcu << VCU_SHIFT
8475 | (u32)vl15buf << VL15BUF_SHIFT
8476 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8477 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8478 GENERAL_CONFIG, frame);
8479 }
8480
8481 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8482 u8 *flag_bits, u16 *link_widths)
8483 {
8484 u32 frame;
8485
8486 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8487 &frame);
8488 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8489 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8490 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8491 }
8492
8493 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8494 u8 misc_bits,
8495 u8 flag_bits,
8496 u16 link_widths)
8497 {
8498 u32 frame;
8499
8500 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8501 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8502 | (u32)link_widths << LINK_WIDTH_SHIFT;
8503 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8504 frame);
8505 }
8506
8507 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8508 u8 device_rev)
8509 {
8510 u32 frame;
8511
8512 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8513 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8514 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8515 }
8516
8517 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8518 u8 *device_rev)
8519 {
8520 u32 frame;
8521
8522 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8523 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8524 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8525 & REMOTE_DEVICE_REV_MASK;
8526 }
8527
8528 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8529 {
8530 u32 frame;
8531
8532 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8533 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8534 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8535 }
8536
8537 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8538 u8 *continuous)
8539 {
8540 u32 frame;
8541
8542 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8543 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8544 & POWER_MANAGEMENT_MASK;
8545 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8546 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8547 }
8548
8549 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8550 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8551 {
8552 u32 frame;
8553
8554 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8555 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8556 *z = (frame >> Z_SHIFT) & Z_MASK;
8557 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8558 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8559 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8560 }
8561
8562 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8563 u8 *remote_tx_rate,
8564 u16 *link_widths)
8565 {
8566 u32 frame;
8567
8568 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8569 &frame);
8570 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8571 & REMOTE_TX_RATE_MASK;
8572 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8573 }
8574
8575 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8576 {
8577 u32 frame;
8578
8579 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8580 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8581 }
8582
8583 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8584 {
8585 u32 frame;
8586
8587 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8588 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8589 }
8590
8591 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8592 {
8593 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8594 }
8595
8596 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8597 {
8598 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8599 }
8600
8601 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8602 {
8603 u32 frame;
8604 int ret;
8605
8606 *link_quality = 0;
8607 if (dd->pport->host_link_state & HLS_UP) {
8608 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8609 &frame);
8610 if (ret == 0)
8611 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8612 & LINK_QUALITY_MASK;
8613 }
8614 }
8615
8616 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8617 {
8618 u32 frame;
8619
8620 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8621 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8622 }
8623
8624 static int read_tx_settings(struct hfi1_devdata *dd,
8625 u8 *enable_lane_tx,
8626 u8 *tx_polarity_inversion,
8627 u8 *rx_polarity_inversion,
8628 u8 *max_rate)
8629 {
8630 u32 frame;
8631 int ret;
8632
8633 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8634 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8635 & ENABLE_LANE_TX_MASK;
8636 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8637 & TX_POLARITY_INVERSION_MASK;
8638 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8639 & RX_POLARITY_INVERSION_MASK;
8640 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8641 return ret;
8642 }
8643
8644 static int write_tx_settings(struct hfi1_devdata *dd,
8645 u8 enable_lane_tx,
8646 u8 tx_polarity_inversion,
8647 u8 rx_polarity_inversion,
8648 u8 max_rate)
8649 {
8650 u32 frame;
8651
8652 /* no need to mask, all variable sizes match field widths */
8653 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8654 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8655 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8656 | max_rate << MAX_RATE_SHIFT;
8657 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8658 }
8659
8660 static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
8661 {
8662 u32 frame, version, prod_id;
8663 int ret, lane;
8664
8665 /* 4 lanes */
8666 for (lane = 0; lane < 4; lane++) {
8667 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
8668 if (ret) {
8669 dd_dev_err(dd,
8670 "Unable to read lane %d firmware details\n",
8671 lane);
8672 continue;
8673 }
8674 version = (frame >> SPICO_ROM_VERSION_SHIFT)
8675 & SPICO_ROM_VERSION_MASK;
8676 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
8677 & SPICO_ROM_PROD_ID_MASK;
8678 dd_dev_info(dd,
8679 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
8680 lane, version, prod_id);
8681 }
8682 }
8683
8684 /*
8685 * Read an idle LCB message.
8686 *
8687 * Returns 0 on success, -EINVAL on error
8688 */
8689 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8690 {
8691 int ret;
8692
8693 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8694 if (ret != HCMD_SUCCESS) {
8695 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8696 (u32)type, ret);
8697 return -EINVAL;
8698 }
8699 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8700 /* return only the payload as we already know the type */
8701 *data_out >>= IDLE_PAYLOAD_SHIFT;
8702 return 0;
8703 }
8704
8705 /*
8706 * Read an idle SMA message. To be done in response to a notification from
8707 * the 8051.
8708 *
8709 * Returns 0 on success, -EINVAL on error
8710 */
8711 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8712 {
8713 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8714 data);
8715 }
8716
8717 /*
8718 * Send an idle LCB message.
8719 *
8720 * Returns 0 on success, -EINVAL on error
8721 */
8722 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8723 {
8724 int ret;
8725
8726 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8727 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8728 if (ret != HCMD_SUCCESS) {
8729 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8730 data, ret);
8731 return -EINVAL;
8732 }
8733 return 0;
8734 }
8735
8736 /*
8737 * Send an idle SMA message.
8738 *
8739 * Returns 0 on success, -EINVAL on error
8740 */
8741 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8742 {
8743 u64 data;
8744
8745 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8746 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8747 return send_idle_message(dd, data);
8748 }
8749
8750 /*
8751 * Initialize the LCB then do a quick link up. This may or may not be
8752 * in loopback.
8753 *
8754 * return 0 on success, -errno on error
8755 */
8756 static int do_quick_linkup(struct hfi1_devdata *dd)
8757 {
8758 u64 reg;
8759 unsigned long timeout;
8760 int ret;
8761
8762 lcb_shutdown(dd, 0);
8763
8764 if (loopback) {
8765 /* LCB_CFG_LOOPBACK.VAL = 2 */
8766 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8767 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8768 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8769 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8770 }
8771
8772 /* start the LCBs */
8773 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8774 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8775
8776 /* simulator only loopback steps */
8777 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8778 /* LCB_CFG_RUN.EN = 1 */
8779 write_csr(dd, DC_LCB_CFG_RUN,
8780 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8781
8782 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8783 timeout = jiffies + msecs_to_jiffies(10);
8784 while (1) {
8785 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8786 if (reg)
8787 break;
8788 if (time_after(jiffies, timeout)) {
8789 dd_dev_err(dd,
8790 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8791 return -ETIMEDOUT;
8792 }
8793 udelay(2);
8794 }
8795
8796 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8797 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8798 }
8799
8800 if (!loopback) {
8801 /*
8802 * When doing quick linkup and not in loopback, both
8803 * sides must be done with LCB set-up before either
8804 * starts the quick linkup. Put a delay here so that
8805 * both sides can be started and have a chance to be
8806 * done with LCB set up before resuming.
8807 */
8808 dd_dev_err(dd,
8809 "Pausing for peer to be finished with LCB set up\n");
8810 msleep(5000);
8811 dd_dev_err(dd, "Continuing with quick linkup\n");
8812 }
8813
8814 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8815 set_8051_lcb_access(dd);
8816
8817 /*
8818 * State "quick" LinkUp request sets the physical link state to
8819 * LinkUp without a verify capability sequence.
8820 * This state is in simulator v37 and later.
8821 */
8822 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8823 if (ret != HCMD_SUCCESS) {
8824 dd_dev_err(dd,
8825 "%s: set physical link state to quick LinkUp failed with return %d\n",
8826 __func__, ret);
8827
8828 set_host_lcb_access(dd);
8829 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8830
8831 if (ret >= 0)
8832 ret = -EINVAL;
8833 return ret;
8834 }
8835
8836 return 0; /* success */
8837 }
8838
8839 /*
8840 * Set the SerDes to internal loopback mode.
8841 * Returns 0 on success, -errno on error.
8842 */
8843 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8844 {
8845 int ret;
8846
8847 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8848 if (ret == HCMD_SUCCESS)
8849 return 0;
8850 dd_dev_err(dd,
8851 "Set physical link state to SerDes Loopback failed with return %d\n",
8852 ret);
8853 if (ret >= 0)
8854 ret = -EINVAL;
8855 return ret;
8856 }
8857
8858 /*
8859 * Do all special steps to set up loopback.
8860 */
8861 static int init_loopback(struct hfi1_devdata *dd)
8862 {
8863 dd_dev_info(dd, "Entering loopback mode\n");
8864
8865 /* all loopbacks should disable self GUID check */
8866 write_csr(dd, DC_DC8051_CFG_MODE,
8867 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
8868
8869 /*
8870 * The simulator has only one loopback option - LCB. Switch
8871 * to that option, which includes quick link up.
8872 *
8873 * Accept all valid loopback values.
8874 */
8875 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
8876 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
8877 loopback == LOOPBACK_CABLE)) {
8878 loopback = LOOPBACK_LCB;
8879 quick_linkup = 1;
8880 return 0;
8881 }
8882
8883 /* handle serdes loopback */
8884 if (loopback == LOOPBACK_SERDES) {
8885 /* internal serdes loopack needs quick linkup on RTL */
8886 if (dd->icode == ICODE_RTL_SILICON)
8887 quick_linkup = 1;
8888 return set_serdes_loopback_mode(dd);
8889 }
8890
8891 /* LCB loopback - handled at poll time */
8892 if (loopback == LOOPBACK_LCB) {
8893 quick_linkup = 1; /* LCB is always quick linkup */
8894
8895 /* not supported in emulation due to emulation RTL changes */
8896 if (dd->icode == ICODE_FPGA_EMULATION) {
8897 dd_dev_err(dd,
8898 "LCB loopback not supported in emulation\n");
8899 return -EINVAL;
8900 }
8901 return 0;
8902 }
8903
8904 /* external cable loopback requires no extra steps */
8905 if (loopback == LOOPBACK_CABLE)
8906 return 0;
8907
8908 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
8909 return -EINVAL;
8910 }
8911
8912 /*
8913 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
8914 * used in the Verify Capability link width attribute.
8915 */
8916 static u16 opa_to_vc_link_widths(u16 opa_widths)
8917 {
8918 int i;
8919 u16 result = 0;
8920
8921 static const struct link_bits {
8922 u16 from;
8923 u16 to;
8924 } opa_link_xlate[] = {
8925 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
8926 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
8927 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
8928 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
8929 };
8930
8931 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
8932 if (opa_widths & opa_link_xlate[i].from)
8933 result |= opa_link_xlate[i].to;
8934 }
8935 return result;
8936 }
8937
8938 /*
8939 * Set link attributes before moving to polling.
8940 */
8941 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
8942 {
8943 struct hfi1_devdata *dd = ppd->dd;
8944 u8 enable_lane_tx;
8945 u8 tx_polarity_inversion;
8946 u8 rx_polarity_inversion;
8947 int ret;
8948
8949 /* reset our fabric serdes to clear any lingering problems */
8950 fabric_serdes_reset(dd);
8951
8952 /* set the local tx rate - need to read-modify-write */
8953 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
8954 &rx_polarity_inversion, &ppd->local_tx_rate);
8955 if (ret)
8956 goto set_local_link_attributes_fail;
8957
8958 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
8959 /* set the tx rate to the fastest enabled */
8960 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8961 ppd->local_tx_rate = 1;
8962 else
8963 ppd->local_tx_rate = 0;
8964 } else {
8965 /* set the tx rate to all enabled */
8966 ppd->local_tx_rate = 0;
8967 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8968 ppd->local_tx_rate |= 2;
8969 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
8970 ppd->local_tx_rate |= 1;
8971 }
8972
8973 enable_lane_tx = 0xF; /* enable all four lanes */
8974 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
8975 rx_polarity_inversion, ppd->local_tx_rate);
8976 if (ret != HCMD_SUCCESS)
8977 goto set_local_link_attributes_fail;
8978
8979 /*
8980 * DC supports continuous updates.
8981 */
8982 ret = write_vc_local_phy(dd,
8983 0 /* no power management */,
8984 1 /* continuous updates */);
8985 if (ret != HCMD_SUCCESS)
8986 goto set_local_link_attributes_fail;
8987
8988 /* z=1 in the next call: AU of 0 is not supported by the hardware */
8989 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
8990 ppd->port_crc_mode_enabled);
8991 if (ret != HCMD_SUCCESS)
8992 goto set_local_link_attributes_fail;
8993
8994 ret = write_vc_local_link_width(dd, 0, 0,
8995 opa_to_vc_link_widths(
8996 ppd->link_width_enabled));
8997 if (ret != HCMD_SUCCESS)
8998 goto set_local_link_attributes_fail;
8999
9000 /* let peer know who we are */
9001 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9002 if (ret == HCMD_SUCCESS)
9003 return 0;
9004
9005 set_local_link_attributes_fail:
9006 dd_dev_err(dd,
9007 "Failed to set local link attributes, return 0x%x\n",
9008 ret);
9009 return ret;
9010 }
9011
9012 /*
9013 * Call this to start the link.
9014 * Do not do anything if the link is disabled.
9015 * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9016 */
9017 int start_link(struct hfi1_pportdata *ppd)
9018 {
9019 if (!ppd->link_enabled) {
9020 dd_dev_info(ppd->dd,
9021 "%s: stopping link start because link is disabled\n",
9022 __func__);
9023 return 0;
9024 }
9025 if (!ppd->driver_link_ready) {
9026 dd_dev_info(ppd->dd,
9027 "%s: stopping link start because driver is not ready\n",
9028 __func__);
9029 return 0;
9030 }
9031
9032 return set_link_state(ppd, HLS_DN_POLL);
9033 }
9034
9035 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9036 {
9037 struct hfi1_devdata *dd = ppd->dd;
9038 u64 mask;
9039 unsigned long timeout;
9040
9041 /*
9042 * Check for QSFP interrupt for t_init (SFF 8679)
9043 */
9044 timeout = jiffies + msecs_to_jiffies(2000);
9045 while (1) {
9046 mask = read_csr(dd, dd->hfi1_id ?
9047 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9048 if (!(mask & QSFP_HFI0_INT_N)) {
9049 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR :
9050 ASIC_QSFP1_CLEAR, QSFP_HFI0_INT_N);
9051 break;
9052 }
9053 if (time_after(jiffies, timeout)) {
9054 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9055 __func__);
9056 break;
9057 }
9058 udelay(2);
9059 }
9060 }
9061
9062 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9063 {
9064 struct hfi1_devdata *dd = ppd->dd;
9065 u64 mask;
9066
9067 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9068 if (enable)
9069 mask |= (u64)QSFP_HFI0_INT_N;
9070 else
9071 mask &= ~(u64)QSFP_HFI0_INT_N;
9072 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9073 }
9074
9075 void reset_qsfp(struct hfi1_pportdata *ppd)
9076 {
9077 struct hfi1_devdata *dd = ppd->dd;
9078 u64 mask, qsfp_mask;
9079
9080 /* Disable INT_N from triggering QSFP interrupts */
9081 set_qsfp_int_n(ppd, 0);
9082
9083 /* Reset the QSFP */
9084 mask = (u64)QSFP_HFI0_RESET_N;
9085 qsfp_mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
9086 qsfp_mask |= mask;
9087 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE, qsfp_mask);
9088
9089 qsfp_mask = read_csr(dd,
9090 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9091 qsfp_mask &= ~mask;
9092 write_csr(dd,
9093 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9094
9095 udelay(10);
9096
9097 qsfp_mask |= mask;
9098 write_csr(dd,
9099 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9100
9101 wait_for_qsfp_init(ppd);
9102
9103 /*
9104 * Allow INT_N to trigger the QSFP interrupt to watch
9105 * for alarms and warnings
9106 */
9107 set_qsfp_int_n(ppd, 1);
9108 }
9109
9110 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9111 u8 *qsfp_interrupt_status)
9112 {
9113 struct hfi1_devdata *dd = ppd->dd;
9114
9115 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9116 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9117 dd_dev_info(dd, "%s: QSFP cable on fire\n",
9118 __func__);
9119
9120 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9121 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9122 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9123 __func__);
9124
9125 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9126 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9127 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9128 __func__);
9129
9130 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9131 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9132 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9133 __func__);
9134
9135 /* Byte 2 is vendor specific */
9136
9137 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9138 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9139 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9140 __func__);
9141
9142 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9143 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9144 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9145 __func__);
9146
9147 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9148 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9149 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9150 __func__);
9151
9152 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9153 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9154 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9155 __func__);
9156
9157 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9158 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9159 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9160 __func__);
9161
9162 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9163 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9164 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9165 __func__);
9166
9167 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9168 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9169 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9170 __func__);
9171
9172 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9173 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9174 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9175 __func__);
9176
9177 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9178 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9179 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9180 __func__);
9181
9182 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9183 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9184 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9185 __func__);
9186
9187 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9188 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9189 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9190 __func__);
9191
9192 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9193 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9194 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9195 __func__);
9196
9197 /* Bytes 9-10 and 11-12 are reserved */
9198 /* Bytes 13-15 are vendor specific */
9199
9200 return 0;
9201 }
9202
9203 /* This routine will only be scheduled if the QSFP module present is asserted */
9204 void qsfp_event(struct work_struct *work)
9205 {
9206 struct qsfp_data *qd;
9207 struct hfi1_pportdata *ppd;
9208 struct hfi1_devdata *dd;
9209
9210 qd = container_of(work, struct qsfp_data, qsfp_work);
9211 ppd = qd->ppd;
9212 dd = ppd->dd;
9213
9214 /* Sanity check */
9215 if (!qsfp_mod_present(ppd))
9216 return;
9217
9218 /*
9219 * Turn DC back on after cables has been
9220 * re-inserted. Up until now, the DC has been in
9221 * reset to save power.
9222 */
9223 dc_start(dd);
9224
9225 if (qd->cache_refresh_required) {
9226 set_qsfp_int_n(ppd, 0);
9227
9228 wait_for_qsfp_init(ppd);
9229
9230 /*
9231 * Allow INT_N to trigger the QSFP interrupt to watch
9232 * for alarms and warnings
9233 */
9234 set_qsfp_int_n(ppd, 1);
9235
9236 tune_serdes(ppd);
9237
9238 start_link(ppd);
9239 }
9240
9241 if (qd->check_interrupt_flags) {
9242 u8 qsfp_interrupt_status[16] = {0,};
9243
9244 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9245 &qsfp_interrupt_status[0], 16) != 16) {
9246 dd_dev_info(dd,
9247 "%s: Failed to read status of QSFP module\n",
9248 __func__);
9249 } else {
9250 unsigned long flags;
9251
9252 handle_qsfp_error_conditions(
9253 ppd, qsfp_interrupt_status);
9254 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9255 ppd->qsfp_info.check_interrupt_flags = 0;
9256 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9257 flags);
9258 }
9259 }
9260 }
9261
9262 static void init_qsfp_int(struct hfi1_devdata *dd)
9263 {
9264 struct hfi1_pportdata *ppd = dd->pport;
9265 u64 qsfp_mask, cce_int_mask;
9266 const int qsfp1_int_smask = QSFP1_INT % 64;
9267 const int qsfp2_int_smask = QSFP2_INT % 64;
9268
9269 /*
9270 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9271 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9272 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9273 * the index of the appropriate CSR in the CCEIntMask CSR array
9274 */
9275 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9276 (8 * (QSFP1_INT / 64)));
9277 if (dd->hfi1_id) {
9278 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9279 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9280 cce_int_mask);
9281 } else {
9282 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9283 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9284 cce_int_mask);
9285 }
9286
9287 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9288 /* Clear current status to avoid spurious interrupts */
9289 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9290 qsfp_mask);
9291 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9292 qsfp_mask);
9293
9294 set_qsfp_int_n(ppd, 0);
9295
9296 /* Handle active low nature of INT_N and MODPRST_N pins */
9297 if (qsfp_mod_present(ppd))
9298 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9299 write_csr(dd,
9300 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9301 qsfp_mask);
9302 }
9303
9304 /*
9305 * Do a one-time initialize of the LCB block.
9306 */
9307 static void init_lcb(struct hfi1_devdata *dd)
9308 {
9309 /* simulator does not correctly handle LCB cclk loopback, skip */
9310 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9311 return;
9312
9313 /* the DC has been reset earlier in the driver load */
9314
9315 /* set LCB for cclk loopback on the port */
9316 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9317 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9318 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9319 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9320 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9321 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9322 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9323 }
9324
9325 int bringup_serdes(struct hfi1_pportdata *ppd)
9326 {
9327 struct hfi1_devdata *dd = ppd->dd;
9328 u64 guid;
9329 int ret;
9330
9331 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9332 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9333
9334 guid = ppd->guid;
9335 if (!guid) {
9336 if (dd->base_guid)
9337 guid = dd->base_guid + ppd->port - 1;
9338 ppd->guid = guid;
9339 }
9340
9341 /* Set linkinit_reason on power up per OPA spec */
9342 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9343
9344 /* one-time init of the LCB */
9345 init_lcb(dd);
9346
9347 if (loopback) {
9348 ret = init_loopback(dd);
9349 if (ret < 0)
9350 return ret;
9351 }
9352
9353 /* tune the SERDES to a ballpark setting for
9354 * optimal signal and bit error rate
9355 * Needs to be done before starting the link
9356 */
9357 tune_serdes(ppd);
9358
9359 return start_link(ppd);
9360 }
9361
9362 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9363 {
9364 struct hfi1_devdata *dd = ppd->dd;
9365
9366 /*
9367 * Shut down the link and keep it down. First turn off that the
9368 * driver wants to allow the link to be up (driver_link_ready).
9369 * Then make sure the link is not automatically restarted
9370 * (link_enabled). Cancel any pending restart. And finally
9371 * go offline.
9372 */
9373 ppd->driver_link_ready = 0;
9374 ppd->link_enabled = 0;
9375
9376 ppd->offline_disabled_reason =
9377 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9378 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9379 OPA_LINKDOWN_REASON_SMA_DISABLED);
9380 set_link_state(ppd, HLS_DN_OFFLINE);
9381
9382 /* disable the port */
9383 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9384 }
9385
9386 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9387 {
9388 struct hfi1_pportdata *ppd;
9389 int i;
9390
9391 ppd = (struct hfi1_pportdata *)(dd + 1);
9392 for (i = 0; i < dd->num_pports; i++, ppd++) {
9393 ppd->ibport_data.rvp.rc_acks = NULL;
9394 ppd->ibport_data.rvp.rc_qacks = NULL;
9395 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9396 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9397 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9398 if (!ppd->ibport_data.rvp.rc_acks ||
9399 !ppd->ibport_data.rvp.rc_delayed_comp ||
9400 !ppd->ibport_data.rvp.rc_qacks)
9401 return -ENOMEM;
9402 }
9403
9404 return 0;
9405 }
9406
9407 static const char * const pt_names[] = {
9408 "expected",
9409 "eager",
9410 "invalid"
9411 };
9412
9413 static const char *pt_name(u32 type)
9414 {
9415 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9416 }
9417
9418 /*
9419 * index is the index into the receive array
9420 */
9421 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9422 u32 type, unsigned long pa, u16 order)
9423 {
9424 u64 reg;
9425 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9426 (dd->kregbase + RCV_ARRAY));
9427
9428 if (!(dd->flags & HFI1_PRESENT))
9429 goto done;
9430
9431 if (type == PT_INVALID) {
9432 pa = 0;
9433 } else if (type > PT_INVALID) {
9434 dd_dev_err(dd,
9435 "unexpected receive array type %u for index %u, not handled\n",
9436 type, index);
9437 goto done;
9438 }
9439
9440 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9441 pt_name(type), index, pa, (unsigned long)order);
9442
9443 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9444 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9445 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9446 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9447 << RCV_ARRAY_RT_ADDR_SHIFT;
9448 writeq(reg, base + (index * 8));
9449
9450 if (type == PT_EAGER)
9451 /*
9452 * Eager entries are written one-by-one so we have to push them
9453 * after we write the entry.
9454 */
9455 flush_wc();
9456 done:
9457 return;
9458 }
9459
9460 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9461 {
9462 struct hfi1_devdata *dd = rcd->dd;
9463 u32 i;
9464
9465 /* this could be optimized */
9466 for (i = rcd->eager_base; i < rcd->eager_base +
9467 rcd->egrbufs.alloced; i++)
9468 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9469
9470 for (i = rcd->expected_base;
9471 i < rcd->expected_base + rcd->expected_count; i++)
9472 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9473 }
9474
9475 int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
9476 struct hfi1_ctxt_info *kinfo)
9477 {
9478 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
9479 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
9480 return 0;
9481 }
9482
9483 struct hfi1_message_header *hfi1_get_msgheader(
9484 struct hfi1_devdata *dd, __le32 *rhf_addr)
9485 {
9486 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9487
9488 return (struct hfi1_message_header *)
9489 (rhf_addr - dd->rhf_offset + offset);
9490 }
9491
9492 static const char * const ib_cfg_name_strings[] = {
9493 "HFI1_IB_CFG_LIDLMC",
9494 "HFI1_IB_CFG_LWID_DG_ENB",
9495 "HFI1_IB_CFG_LWID_ENB",
9496 "HFI1_IB_CFG_LWID",
9497 "HFI1_IB_CFG_SPD_ENB",
9498 "HFI1_IB_CFG_SPD",
9499 "HFI1_IB_CFG_RXPOL_ENB",
9500 "HFI1_IB_CFG_LREV_ENB",
9501 "HFI1_IB_CFG_LINKLATENCY",
9502 "HFI1_IB_CFG_HRTBT",
9503 "HFI1_IB_CFG_OP_VLS",
9504 "HFI1_IB_CFG_VL_HIGH_CAP",
9505 "HFI1_IB_CFG_VL_LOW_CAP",
9506 "HFI1_IB_CFG_OVERRUN_THRESH",
9507 "HFI1_IB_CFG_PHYERR_THRESH",
9508 "HFI1_IB_CFG_LINKDEFAULT",
9509 "HFI1_IB_CFG_PKEYS",
9510 "HFI1_IB_CFG_MTU",
9511 "HFI1_IB_CFG_LSTATE",
9512 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9513 "HFI1_IB_CFG_PMA_TICKS",
9514 "HFI1_IB_CFG_PORT"
9515 };
9516
9517 static const char *ib_cfg_name(int which)
9518 {
9519 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9520 return "invalid";
9521 return ib_cfg_name_strings[which];
9522 }
9523
9524 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9525 {
9526 struct hfi1_devdata *dd = ppd->dd;
9527 int val = 0;
9528
9529 switch (which) {
9530 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9531 val = ppd->link_width_enabled;
9532 break;
9533 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9534 val = ppd->link_width_active;
9535 break;
9536 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9537 val = ppd->link_speed_enabled;
9538 break;
9539 case HFI1_IB_CFG_SPD: /* current Link speed */
9540 val = ppd->link_speed_active;
9541 break;
9542
9543 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9544 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9545 case HFI1_IB_CFG_LINKLATENCY:
9546 goto unimplemented;
9547
9548 case HFI1_IB_CFG_OP_VLS:
9549 val = ppd->vls_operational;
9550 break;
9551 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9552 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9553 break;
9554 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9555 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9556 break;
9557 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9558 val = ppd->overrun_threshold;
9559 break;
9560 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9561 val = ppd->phy_error_threshold;
9562 break;
9563 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9564 val = dd->link_default;
9565 break;
9566
9567 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9568 case HFI1_IB_CFG_PMA_TICKS:
9569 default:
9570 unimplemented:
9571 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9572 dd_dev_info(
9573 dd,
9574 "%s: which %s: not implemented\n",
9575 __func__,
9576 ib_cfg_name(which));
9577 break;
9578 }
9579
9580 return val;
9581 }
9582
9583 /*
9584 * The largest MAD packet size.
9585 */
9586 #define MAX_MAD_PACKET 2048
9587
9588 /*
9589 * Return the maximum header bytes that can go on the _wire_
9590 * for this device. This count includes the ICRC which is
9591 * not part of the packet held in memory but it is appended
9592 * by the HW.
9593 * This is dependent on the device's receive header entry size.
9594 * HFI allows this to be set per-receive context, but the
9595 * driver presently enforces a global value.
9596 */
9597 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9598 {
9599 /*
9600 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9601 * the Receive Header Entry Size minus the PBC (or RHF) size
9602 * plus one DW for the ICRC appended by HW.
9603 *
9604 * dd->rcd[0].rcvhdrqentsize is in DW.
9605 * We use rcd[0] as all context will have the same value. Also,
9606 * the first kernel context would have been allocated by now so
9607 * we are guaranteed a valid value.
9608 */
9609 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9610 }
9611
9612 /*
9613 * Set Send Length
9614 * @ppd - per port data
9615 *
9616 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9617 * registers compare against LRH.PktLen, so use the max bytes included
9618 * in the LRH.
9619 *
9620 * This routine changes all VL values except VL15, which it maintains at
9621 * the same value.
9622 */
9623 static void set_send_length(struct hfi1_pportdata *ppd)
9624 {
9625 struct hfi1_devdata *dd = ppd->dd;
9626 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9627 u32 maxvlmtu = dd->vld[15].mtu;
9628 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9629 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9630 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9631 int i;
9632 u32 thres;
9633
9634 for (i = 0; i < ppd->vls_supported; i++) {
9635 if (dd->vld[i].mtu > maxvlmtu)
9636 maxvlmtu = dd->vld[i].mtu;
9637 if (i <= 3)
9638 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9639 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9640 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9641 else
9642 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9643 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9644 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9645 }
9646 write_csr(dd, SEND_LEN_CHECK0, len1);
9647 write_csr(dd, SEND_LEN_CHECK1, len2);
9648 /* adjust kernel credit return thresholds based on new MTUs */
9649 /* all kernel receive contexts have the same hdrqentsize */
9650 for (i = 0; i < ppd->vls_supported; i++) {
9651 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9652 sc_mtu_to_threshold(dd->vld[i].sc,
9653 dd->vld[i].mtu,
9654 dd->rcd[0]->rcvhdrqentsize));
9655 sc_set_cr_threshold(dd->vld[i].sc, thres);
9656 }
9657 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9658 sc_mtu_to_threshold(dd->vld[15].sc,
9659 dd->vld[15].mtu,
9660 dd->rcd[0]->rcvhdrqentsize));
9661 sc_set_cr_threshold(dd->vld[15].sc, thres);
9662
9663 /* Adjust maximum MTU for the port in DC */
9664 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9665 (ilog2(maxvlmtu >> 8) + 1);
9666 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9667 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9668 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9669 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9670 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9671 }
9672
9673 static void set_lidlmc(struct hfi1_pportdata *ppd)
9674 {
9675 int i;
9676 u64 sreg = 0;
9677 struct hfi1_devdata *dd = ppd->dd;
9678 u32 mask = ~((1U << ppd->lmc) - 1);
9679 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9680
9681 if (dd->hfi1_snoop.mode_flag)
9682 dd_dev_info(dd, "Set lid/lmc while snooping");
9683
9684 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9685 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9686 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9687 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9688 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9689 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9690 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9691
9692 /*
9693 * Iterate over all the send contexts and set their SLID check
9694 */
9695 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9696 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9697 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9698 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9699
9700 for (i = 0; i < dd->chip_send_contexts; i++) {
9701 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9702 i, (u32)sreg);
9703 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9704 }
9705
9706 /* Now we have to do the same thing for the sdma engines */
9707 sdma_update_lmc(dd, mask, ppd->lid);
9708 }
9709
9710 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9711 {
9712 unsigned long timeout;
9713 u32 curr_state;
9714
9715 timeout = jiffies + msecs_to_jiffies(msecs);
9716 while (1) {
9717 curr_state = read_physical_state(dd);
9718 if (curr_state == state)
9719 break;
9720 if (time_after(jiffies, timeout)) {
9721 dd_dev_err(dd,
9722 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9723 state, curr_state);
9724 return -ETIMEDOUT;
9725 }
9726 usleep_range(1950, 2050); /* sleep 2ms-ish */
9727 }
9728
9729 return 0;
9730 }
9731
9732 /*
9733 * Helper for set_link_state(). Do not call except from that routine.
9734 * Expects ppd->hls_mutex to be held.
9735 *
9736 * @rem_reason value to be sent to the neighbor
9737 *
9738 * LinkDownReasons only set if transition succeeds.
9739 */
9740 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
9741 {
9742 struct hfi1_devdata *dd = ppd->dd;
9743 u32 pstate, previous_state;
9744 u32 last_local_state;
9745 u32 last_remote_state;
9746 int ret;
9747 int do_transition;
9748 int do_wait;
9749
9750 previous_state = ppd->host_link_state;
9751 ppd->host_link_state = HLS_GOING_OFFLINE;
9752 pstate = read_physical_state(dd);
9753 if (pstate == PLS_OFFLINE) {
9754 do_transition = 0; /* in right state */
9755 do_wait = 0; /* ...no need to wait */
9756 } else if ((pstate & 0xff) == PLS_OFFLINE) {
9757 do_transition = 0; /* in an offline transient state */
9758 do_wait = 1; /* ...wait for it to settle */
9759 } else {
9760 do_transition = 1; /* need to move to offline */
9761 do_wait = 1; /* ...will need to wait */
9762 }
9763
9764 if (do_transition) {
9765 ret = set_physical_link_state(dd,
9766 (rem_reason << 8) | PLS_OFFLINE);
9767
9768 if (ret != HCMD_SUCCESS) {
9769 dd_dev_err(dd,
9770 "Failed to transition to Offline link state, return %d\n",
9771 ret);
9772 return -EINVAL;
9773 }
9774 if (ppd->offline_disabled_reason ==
9775 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
9776 ppd->offline_disabled_reason =
9777 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
9778 }
9779
9780 if (do_wait) {
9781 /* it can take a while for the link to go down */
9782 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
9783 if (ret < 0)
9784 return ret;
9785 }
9786
9787 /* make sure the logical state is also down */
9788 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
9789
9790 /*
9791 * Now in charge of LCB - must be after the physical state is
9792 * offline.quiet and before host_link_state is changed.
9793 */
9794 set_host_lcb_access(dd);
9795 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9796 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
9797
9798 if (ppd->port_type == PORT_TYPE_QSFP &&
9799 ppd->qsfp_info.limiting_active &&
9800 qsfp_mod_present(ppd)) {
9801 int ret;
9802
9803 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
9804 if (ret == 0) {
9805 set_qsfp_tx(ppd, 0);
9806 release_chip_resource(dd, qsfp_resource(dd));
9807 } else {
9808 /* not fatal, but should warn */
9809 dd_dev_err(dd,
9810 "Unable to acquire lock to turn off QSFP TX\n");
9811 }
9812 }
9813
9814 /*
9815 * The LNI has a mandatory wait time after the physical state
9816 * moves to Offline.Quiet. The wait time may be different
9817 * depending on how the link went down. The 8051 firmware
9818 * will observe the needed wait time and only move to ready
9819 * when that is completed. The largest of the quiet timeouts
9820 * is 6s, so wait that long and then at least 0.5s more for
9821 * other transitions, and another 0.5s for a buffer.
9822 */
9823 ret = wait_fm_ready(dd, 7000);
9824 if (ret) {
9825 dd_dev_err(dd,
9826 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
9827 /* state is really offline, so make it so */
9828 ppd->host_link_state = HLS_DN_OFFLINE;
9829 return ret;
9830 }
9831
9832 /*
9833 * The state is now offline and the 8051 is ready to accept host
9834 * requests.
9835 * - change our state
9836 * - notify others if we were previously in a linkup state
9837 */
9838 ppd->host_link_state = HLS_DN_OFFLINE;
9839 if (previous_state & HLS_UP) {
9840 /* went down while link was up */
9841 handle_linkup_change(dd, 0);
9842 } else if (previous_state
9843 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
9844 /* went down while attempting link up */
9845 /* byte 1 of last_*_state is the failure reason */
9846 read_last_local_state(dd, &last_local_state);
9847 read_last_remote_state(dd, &last_remote_state);
9848 dd_dev_err(dd,
9849 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
9850 last_local_state, last_remote_state);
9851 }
9852
9853 /* the active link width (downgrade) is 0 on link down */
9854 ppd->link_width_active = 0;
9855 ppd->link_width_downgrade_tx_active = 0;
9856 ppd->link_width_downgrade_rx_active = 0;
9857 ppd->current_egress_rate = 0;
9858 return 0;
9859 }
9860
9861 /* return the link state name */
9862 static const char *link_state_name(u32 state)
9863 {
9864 const char *name;
9865 int n = ilog2(state);
9866 static const char * const names[] = {
9867 [__HLS_UP_INIT_BP] = "INIT",
9868 [__HLS_UP_ARMED_BP] = "ARMED",
9869 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
9870 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
9871 [__HLS_DN_POLL_BP] = "POLL",
9872 [__HLS_DN_DISABLE_BP] = "DISABLE",
9873 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
9874 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
9875 [__HLS_GOING_UP_BP] = "GOING_UP",
9876 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
9877 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
9878 };
9879
9880 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
9881 return name ? name : "unknown";
9882 }
9883
9884 /* return the link state reason name */
9885 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
9886 {
9887 if (state == HLS_UP_INIT) {
9888 switch (ppd->linkinit_reason) {
9889 case OPA_LINKINIT_REASON_LINKUP:
9890 return "(LINKUP)";
9891 case OPA_LINKINIT_REASON_FLAPPING:
9892 return "(FLAPPING)";
9893 case OPA_LINKINIT_OUTSIDE_POLICY:
9894 return "(OUTSIDE_POLICY)";
9895 case OPA_LINKINIT_QUARANTINED:
9896 return "(QUARANTINED)";
9897 case OPA_LINKINIT_INSUFIC_CAPABILITY:
9898 return "(INSUFIC_CAPABILITY)";
9899 default:
9900 break;
9901 }
9902 }
9903 return "";
9904 }
9905
9906 /*
9907 * driver_physical_state - convert the driver's notion of a port's
9908 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
9909 * Return -1 (converted to a u32) to indicate error.
9910 */
9911 u32 driver_physical_state(struct hfi1_pportdata *ppd)
9912 {
9913 switch (ppd->host_link_state) {
9914 case HLS_UP_INIT:
9915 case HLS_UP_ARMED:
9916 case HLS_UP_ACTIVE:
9917 return IB_PORTPHYSSTATE_LINKUP;
9918 case HLS_DN_POLL:
9919 return IB_PORTPHYSSTATE_POLLING;
9920 case HLS_DN_DISABLE:
9921 return IB_PORTPHYSSTATE_DISABLED;
9922 case HLS_DN_OFFLINE:
9923 return OPA_PORTPHYSSTATE_OFFLINE;
9924 case HLS_VERIFY_CAP:
9925 return IB_PORTPHYSSTATE_POLLING;
9926 case HLS_GOING_UP:
9927 return IB_PORTPHYSSTATE_POLLING;
9928 case HLS_GOING_OFFLINE:
9929 return OPA_PORTPHYSSTATE_OFFLINE;
9930 case HLS_LINK_COOLDOWN:
9931 return OPA_PORTPHYSSTATE_OFFLINE;
9932 case HLS_DN_DOWNDEF:
9933 default:
9934 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9935 ppd->host_link_state);
9936 return -1;
9937 }
9938 }
9939
9940 /*
9941 * driver_logical_state - convert the driver's notion of a port's
9942 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
9943 * (converted to a u32) to indicate error.
9944 */
9945 u32 driver_logical_state(struct hfi1_pportdata *ppd)
9946 {
9947 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
9948 return IB_PORT_DOWN;
9949
9950 switch (ppd->host_link_state & HLS_UP) {
9951 case HLS_UP_INIT:
9952 return IB_PORT_INIT;
9953 case HLS_UP_ARMED:
9954 return IB_PORT_ARMED;
9955 case HLS_UP_ACTIVE:
9956 return IB_PORT_ACTIVE;
9957 default:
9958 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9959 ppd->host_link_state);
9960 return -1;
9961 }
9962 }
9963
9964 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
9965 u8 neigh_reason, u8 rem_reason)
9966 {
9967 if (ppd->local_link_down_reason.latest == 0 &&
9968 ppd->neigh_link_down_reason.latest == 0) {
9969 ppd->local_link_down_reason.latest = lcl_reason;
9970 ppd->neigh_link_down_reason.latest = neigh_reason;
9971 ppd->remote_link_down_reason = rem_reason;
9972 }
9973 }
9974
9975 /*
9976 * Change the physical and/or logical link state.
9977 *
9978 * Do not call this routine while inside an interrupt. It contains
9979 * calls to routines that can take multiple seconds to finish.
9980 *
9981 * Returns 0 on success, -errno on failure.
9982 */
9983 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
9984 {
9985 struct hfi1_devdata *dd = ppd->dd;
9986 struct ib_event event = {.device = NULL};
9987 int ret1, ret = 0;
9988 int was_up, is_down;
9989 int orig_new_state, poll_bounce;
9990
9991 mutex_lock(&ppd->hls_lock);
9992
9993 orig_new_state = state;
9994 if (state == HLS_DN_DOWNDEF)
9995 state = dd->link_default;
9996
9997 /* interpret poll -> poll as a link bounce */
9998 poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
9999 state == HLS_DN_POLL;
10000
10001 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10002 link_state_name(ppd->host_link_state),
10003 link_state_name(orig_new_state),
10004 poll_bounce ? "(bounce) " : "",
10005 link_state_reason_name(ppd, state));
10006
10007 was_up = !!(ppd->host_link_state & HLS_UP);
10008
10009 /*
10010 * If we're going to a (HLS_*) link state that implies the logical
10011 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10012 * reset is_sm_config_started to 0.
10013 */
10014 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10015 ppd->is_sm_config_started = 0;
10016
10017 /*
10018 * Do nothing if the states match. Let a poll to poll link bounce
10019 * go through.
10020 */
10021 if (ppd->host_link_state == state && !poll_bounce)
10022 goto done;
10023
10024 switch (state) {
10025 case HLS_UP_INIT:
10026 if (ppd->host_link_state == HLS_DN_POLL &&
10027 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10028 /*
10029 * Quick link up jumps from polling to here.
10030 *
10031 * Whether in normal or loopback mode, the
10032 * simulator jumps from polling to link up.
10033 * Accept that here.
10034 */
10035 /* OK */
10036 } else if (ppd->host_link_state != HLS_GOING_UP) {
10037 goto unexpected;
10038 }
10039
10040 ppd->host_link_state = HLS_UP_INIT;
10041 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10042 if (ret) {
10043 /* logical state didn't change, stay at going_up */
10044 ppd->host_link_state = HLS_GOING_UP;
10045 dd_dev_err(dd,
10046 "%s: logical state did not change to INIT\n",
10047 __func__);
10048 } else {
10049 /* clear old transient LINKINIT_REASON code */
10050 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10051 ppd->linkinit_reason =
10052 OPA_LINKINIT_REASON_LINKUP;
10053
10054 /* enable the port */
10055 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10056
10057 handle_linkup_change(dd, 1);
10058 }
10059 break;
10060 case HLS_UP_ARMED:
10061 if (ppd->host_link_state != HLS_UP_INIT)
10062 goto unexpected;
10063
10064 ppd->host_link_state = HLS_UP_ARMED;
10065 set_logical_state(dd, LSTATE_ARMED);
10066 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10067 if (ret) {
10068 /* logical state didn't change, stay at init */
10069 ppd->host_link_state = HLS_UP_INIT;
10070 dd_dev_err(dd,
10071 "%s: logical state did not change to ARMED\n",
10072 __func__);
10073 }
10074 /*
10075 * The simulator does not currently implement SMA messages,
10076 * so neighbor_normal is not set. Set it here when we first
10077 * move to Armed.
10078 */
10079 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10080 ppd->neighbor_normal = 1;
10081 break;
10082 case HLS_UP_ACTIVE:
10083 if (ppd->host_link_state != HLS_UP_ARMED)
10084 goto unexpected;
10085
10086 ppd->host_link_state = HLS_UP_ACTIVE;
10087 set_logical_state(dd, LSTATE_ACTIVE);
10088 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10089 if (ret) {
10090 /* logical state didn't change, stay at armed */
10091 ppd->host_link_state = HLS_UP_ARMED;
10092 dd_dev_err(dd,
10093 "%s: logical state did not change to ACTIVE\n",
10094 __func__);
10095 } else {
10096 /* tell all engines to go running */
10097 sdma_all_running(dd);
10098
10099 /* Signal the IB layer that the port has went active */
10100 event.device = &dd->verbs_dev.rdi.ibdev;
10101 event.element.port_num = ppd->port;
10102 event.event = IB_EVENT_PORT_ACTIVE;
10103 }
10104 break;
10105 case HLS_DN_POLL:
10106 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10107 ppd->host_link_state == HLS_DN_OFFLINE) &&
10108 dd->dc_shutdown)
10109 dc_start(dd);
10110 /* Hand LED control to the DC */
10111 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10112
10113 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10114 u8 tmp = ppd->link_enabled;
10115
10116 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10117 if (ret) {
10118 ppd->link_enabled = tmp;
10119 break;
10120 }
10121 ppd->remote_link_down_reason = 0;
10122
10123 if (ppd->driver_link_ready)
10124 ppd->link_enabled = 1;
10125 }
10126
10127 set_all_slowpath(ppd->dd);
10128 ret = set_local_link_attributes(ppd);
10129 if (ret)
10130 break;
10131
10132 ppd->port_error_action = 0;
10133 ppd->host_link_state = HLS_DN_POLL;
10134
10135 if (quick_linkup) {
10136 /* quick linkup does not go into polling */
10137 ret = do_quick_linkup(dd);
10138 } else {
10139 ret1 = set_physical_link_state(dd, PLS_POLLING);
10140 if (ret1 != HCMD_SUCCESS) {
10141 dd_dev_err(dd,
10142 "Failed to transition to Polling link state, return 0x%x\n",
10143 ret1);
10144 ret = -EINVAL;
10145 }
10146 }
10147 ppd->offline_disabled_reason =
10148 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10149 /*
10150 * If an error occurred above, go back to offline. The
10151 * caller may reschedule another attempt.
10152 */
10153 if (ret)
10154 goto_offline(ppd, 0);
10155 break;
10156 case HLS_DN_DISABLE:
10157 /* link is disabled */
10158 ppd->link_enabled = 0;
10159
10160 /* allow any state to transition to disabled */
10161
10162 /* must transition to offline first */
10163 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10164 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10165 if (ret)
10166 break;
10167 ppd->remote_link_down_reason = 0;
10168 }
10169
10170 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10171 if (ret1 != HCMD_SUCCESS) {
10172 dd_dev_err(dd,
10173 "Failed to transition to Disabled link state, return 0x%x\n",
10174 ret1);
10175 ret = -EINVAL;
10176 break;
10177 }
10178 ppd->host_link_state = HLS_DN_DISABLE;
10179 dc_shutdown(dd);
10180 break;
10181 case HLS_DN_OFFLINE:
10182 if (ppd->host_link_state == HLS_DN_DISABLE)
10183 dc_start(dd);
10184
10185 /* allow any state to transition to offline */
10186 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10187 if (!ret)
10188 ppd->remote_link_down_reason = 0;
10189 break;
10190 case HLS_VERIFY_CAP:
10191 if (ppd->host_link_state != HLS_DN_POLL)
10192 goto unexpected;
10193 ppd->host_link_state = HLS_VERIFY_CAP;
10194 break;
10195 case HLS_GOING_UP:
10196 if (ppd->host_link_state != HLS_VERIFY_CAP)
10197 goto unexpected;
10198
10199 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10200 if (ret1 != HCMD_SUCCESS) {
10201 dd_dev_err(dd,
10202 "Failed to transition to link up state, return 0x%x\n",
10203 ret1);
10204 ret = -EINVAL;
10205 break;
10206 }
10207 ppd->host_link_state = HLS_GOING_UP;
10208 break;
10209
10210 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10211 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10212 default:
10213 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10214 __func__, state);
10215 ret = -EINVAL;
10216 break;
10217 }
10218
10219 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
10220 HLS_DN_DISABLE | HLS_DN_OFFLINE));
10221
10222 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
10223 ppd->neigh_link_down_reason.sma == 0) {
10224 ppd->local_link_down_reason.sma =
10225 ppd->local_link_down_reason.latest;
10226 ppd->neigh_link_down_reason.sma =
10227 ppd->neigh_link_down_reason.latest;
10228 }
10229
10230 goto done;
10231
10232 unexpected:
10233 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10234 __func__, link_state_name(ppd->host_link_state),
10235 link_state_name(state));
10236 ret = -EINVAL;
10237
10238 done:
10239 mutex_unlock(&ppd->hls_lock);
10240
10241 if (event.device)
10242 ib_dispatch_event(&event);
10243
10244 return ret;
10245 }
10246
10247 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10248 {
10249 u64 reg;
10250 int ret = 0;
10251
10252 switch (which) {
10253 case HFI1_IB_CFG_LIDLMC:
10254 set_lidlmc(ppd);
10255 break;
10256 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10257 /*
10258 * The VL Arbitrator high limit is sent in units of 4k
10259 * bytes, while HFI stores it in units of 64 bytes.
10260 */
10261 val *= 4096 / 64;
10262 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10263 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10264 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10265 break;
10266 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10267 /* HFI only supports POLL as the default link down state */
10268 if (val != HLS_DN_POLL)
10269 ret = -EINVAL;
10270 break;
10271 case HFI1_IB_CFG_OP_VLS:
10272 if (ppd->vls_operational != val) {
10273 ppd->vls_operational = val;
10274 if (!ppd->port)
10275 ret = -EINVAL;
10276 }
10277 break;
10278 /*
10279 * For link width, link width downgrade, and speed enable, always AND
10280 * the setting with what is actually supported. This has two benefits.
10281 * First, enabled can't have unsupported values, no matter what the
10282 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10283 * "fill in with your supported value" have all the bits in the
10284 * field set, so simply ANDing with supported has the desired result.
10285 */
10286 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10287 ppd->link_width_enabled = val & ppd->link_width_supported;
10288 break;
10289 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10290 ppd->link_width_downgrade_enabled =
10291 val & ppd->link_width_downgrade_supported;
10292 break;
10293 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10294 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10295 break;
10296 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10297 /*
10298 * HFI does not follow IB specs, save this value
10299 * so we can report it, if asked.
10300 */
10301 ppd->overrun_threshold = val;
10302 break;
10303 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10304 /*
10305 * HFI does not follow IB specs, save this value
10306 * so we can report it, if asked.
10307 */
10308 ppd->phy_error_threshold = val;
10309 break;
10310
10311 case HFI1_IB_CFG_MTU:
10312 set_send_length(ppd);
10313 break;
10314
10315 case HFI1_IB_CFG_PKEYS:
10316 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10317 set_partition_keys(ppd);
10318 break;
10319
10320 default:
10321 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10322 dd_dev_info(ppd->dd,
10323 "%s: which %s, val 0x%x: not implemented\n",
10324 __func__, ib_cfg_name(which), val);
10325 break;
10326 }
10327 return ret;
10328 }
10329
10330 /* begin functions related to vl arbitration table caching */
10331 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10332 {
10333 int i;
10334
10335 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10336 VL_ARB_LOW_PRIO_TABLE_SIZE);
10337 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10338 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10339
10340 /*
10341 * Note that we always return values directly from the
10342 * 'vl_arb_cache' (and do no CSR reads) in response to a
10343 * 'Get(VLArbTable)'. This is obviously correct after a
10344 * 'Set(VLArbTable)', since the cache will then be up to
10345 * date. But it's also correct prior to any 'Set(VLArbTable)'
10346 * since then both the cache, and the relevant h/w registers
10347 * will be zeroed.
10348 */
10349
10350 for (i = 0; i < MAX_PRIO_TABLE; i++)
10351 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10352 }
10353
10354 /*
10355 * vl_arb_lock_cache
10356 *
10357 * All other vl_arb_* functions should be called only after locking
10358 * the cache.
10359 */
10360 static inline struct vl_arb_cache *
10361 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10362 {
10363 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10364 return NULL;
10365 spin_lock(&ppd->vl_arb_cache[idx].lock);
10366 return &ppd->vl_arb_cache[idx];
10367 }
10368
10369 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10370 {
10371 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10372 }
10373
10374 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10375 struct ib_vl_weight_elem *vl)
10376 {
10377 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10378 }
10379
10380 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10381 struct ib_vl_weight_elem *vl)
10382 {
10383 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10384 }
10385
10386 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10387 struct ib_vl_weight_elem *vl)
10388 {
10389 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10390 }
10391
10392 /* end functions related to vl arbitration table caching */
10393
10394 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10395 u32 size, struct ib_vl_weight_elem *vl)
10396 {
10397 struct hfi1_devdata *dd = ppd->dd;
10398 u64 reg;
10399 unsigned int i, is_up = 0;
10400 int drain, ret = 0;
10401
10402 mutex_lock(&ppd->hls_lock);
10403
10404 if (ppd->host_link_state & HLS_UP)
10405 is_up = 1;
10406
10407 drain = !is_ax(dd) && is_up;
10408
10409 if (drain)
10410 /*
10411 * Before adjusting VL arbitration weights, empty per-VL
10412 * FIFOs, otherwise a packet whose VL weight is being
10413 * set to 0 could get stuck in a FIFO with no chance to
10414 * egress.
10415 */
10416 ret = stop_drain_data_vls(dd);
10417
10418 if (ret) {
10419 dd_dev_err(
10420 dd,
10421 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10422 __func__);
10423 goto err;
10424 }
10425
10426 for (i = 0; i < size; i++, vl++) {
10427 /*
10428 * NOTE: The low priority shift and mask are used here, but
10429 * they are the same for both the low and high registers.
10430 */
10431 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10432 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10433 | (((u64)vl->weight
10434 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10435 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10436 write_csr(dd, target + (i * 8), reg);
10437 }
10438 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10439
10440 if (drain)
10441 open_fill_data_vls(dd); /* reopen all VLs */
10442
10443 err:
10444 mutex_unlock(&ppd->hls_lock);
10445
10446 return ret;
10447 }
10448
10449 /*
10450 * Read one credit merge VL register.
10451 */
10452 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10453 struct vl_limit *vll)
10454 {
10455 u64 reg = read_csr(dd, csr);
10456
10457 vll->dedicated = cpu_to_be16(
10458 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10459 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10460 vll->shared = cpu_to_be16(
10461 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10462 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10463 }
10464
10465 /*
10466 * Read the current credit merge limits.
10467 */
10468 static int get_buffer_control(struct hfi1_devdata *dd,
10469 struct buffer_control *bc, u16 *overall_limit)
10470 {
10471 u64 reg;
10472 int i;
10473
10474 /* not all entries are filled in */
10475 memset(bc, 0, sizeof(*bc));
10476
10477 /* OPA and HFI have a 1-1 mapping */
10478 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10479 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10480
10481 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10482 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10483
10484 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10485 bc->overall_shared_limit = cpu_to_be16(
10486 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10487 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10488 if (overall_limit)
10489 *overall_limit = (reg
10490 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10491 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10492 return sizeof(struct buffer_control);
10493 }
10494
10495 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10496 {
10497 u64 reg;
10498 int i;
10499
10500 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10501 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10502 for (i = 0; i < sizeof(u64); i++) {
10503 u8 byte = *(((u8 *)&reg) + i);
10504
10505 dp->vlnt[2 * i] = byte & 0xf;
10506 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10507 }
10508
10509 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10510 for (i = 0; i < sizeof(u64); i++) {
10511 u8 byte = *(((u8 *)&reg) + i);
10512
10513 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10514 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10515 }
10516 return sizeof(struct sc2vlnt);
10517 }
10518
10519 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10520 struct ib_vl_weight_elem *vl)
10521 {
10522 unsigned int i;
10523
10524 for (i = 0; i < nelems; i++, vl++) {
10525 vl->vl = 0xf;
10526 vl->weight = 0;
10527 }
10528 }
10529
10530 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10531 {
10532 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10533 DC_SC_VL_VAL(15_0,
10534 0, dp->vlnt[0] & 0xf,
10535 1, dp->vlnt[1] & 0xf,
10536 2, dp->vlnt[2] & 0xf,
10537 3, dp->vlnt[3] & 0xf,
10538 4, dp->vlnt[4] & 0xf,
10539 5, dp->vlnt[5] & 0xf,
10540 6, dp->vlnt[6] & 0xf,
10541 7, dp->vlnt[7] & 0xf,
10542 8, dp->vlnt[8] & 0xf,
10543 9, dp->vlnt[9] & 0xf,
10544 10, dp->vlnt[10] & 0xf,
10545 11, dp->vlnt[11] & 0xf,
10546 12, dp->vlnt[12] & 0xf,
10547 13, dp->vlnt[13] & 0xf,
10548 14, dp->vlnt[14] & 0xf,
10549 15, dp->vlnt[15] & 0xf));
10550 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10551 DC_SC_VL_VAL(31_16,
10552 16, dp->vlnt[16] & 0xf,
10553 17, dp->vlnt[17] & 0xf,
10554 18, dp->vlnt[18] & 0xf,
10555 19, dp->vlnt[19] & 0xf,
10556 20, dp->vlnt[20] & 0xf,
10557 21, dp->vlnt[21] & 0xf,
10558 22, dp->vlnt[22] & 0xf,
10559 23, dp->vlnt[23] & 0xf,
10560 24, dp->vlnt[24] & 0xf,
10561 25, dp->vlnt[25] & 0xf,
10562 26, dp->vlnt[26] & 0xf,
10563 27, dp->vlnt[27] & 0xf,
10564 28, dp->vlnt[28] & 0xf,
10565 29, dp->vlnt[29] & 0xf,
10566 30, dp->vlnt[30] & 0xf,
10567 31, dp->vlnt[31] & 0xf));
10568 }
10569
10570 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10571 u16 limit)
10572 {
10573 if (limit != 0)
10574 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10575 what, (int)limit, idx);
10576 }
10577
10578 /* change only the shared limit portion of SendCmGLobalCredit */
10579 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10580 {
10581 u64 reg;
10582
10583 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10584 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10585 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10586 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10587 }
10588
10589 /* change only the total credit limit portion of SendCmGLobalCredit */
10590 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10591 {
10592 u64 reg;
10593
10594 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10595 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10596 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10597 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10598 }
10599
10600 /* set the given per-VL shared limit */
10601 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10602 {
10603 u64 reg;
10604 u32 addr;
10605
10606 if (vl < TXE_NUM_DATA_VL)
10607 addr = SEND_CM_CREDIT_VL + (8 * vl);
10608 else
10609 addr = SEND_CM_CREDIT_VL15;
10610
10611 reg = read_csr(dd, addr);
10612 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10613 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10614 write_csr(dd, addr, reg);
10615 }
10616
10617 /* set the given per-VL dedicated limit */
10618 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10619 {
10620 u64 reg;
10621 u32 addr;
10622
10623 if (vl < TXE_NUM_DATA_VL)
10624 addr = SEND_CM_CREDIT_VL + (8 * vl);
10625 else
10626 addr = SEND_CM_CREDIT_VL15;
10627
10628 reg = read_csr(dd, addr);
10629 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10630 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10631 write_csr(dd, addr, reg);
10632 }
10633
10634 /* spin until the given per-VL status mask bits clear */
10635 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10636 const char *which)
10637 {
10638 unsigned long timeout;
10639 u64 reg;
10640
10641 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10642 while (1) {
10643 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10644
10645 if (reg == 0)
10646 return; /* success */
10647 if (time_after(jiffies, timeout))
10648 break; /* timed out */
10649 udelay(1);
10650 }
10651
10652 dd_dev_err(dd,
10653 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10654 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10655 /*
10656 * If this occurs, it is likely there was a credit loss on the link.
10657 * The only recovery from that is a link bounce.
10658 */
10659 dd_dev_err(dd,
10660 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
10661 }
10662
10663 /*
10664 * The number of credits on the VLs may be changed while everything
10665 * is "live", but the following algorithm must be followed due to
10666 * how the hardware is actually implemented. In particular,
10667 * Return_Credit_Status[] is the only correct status check.
10668 *
10669 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
10670 * set Global_Shared_Credit_Limit = 0
10671 * use_all_vl = 1
10672 * mask0 = all VLs that are changing either dedicated or shared limits
10673 * set Shared_Limit[mask0] = 0
10674 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
10675 * if (changing any dedicated limit)
10676 * mask1 = all VLs that are lowering dedicated limits
10677 * lower Dedicated_Limit[mask1]
10678 * spin until Return_Credit_Status[mask1] == 0
10679 * raise Dedicated_Limits
10680 * raise Shared_Limits
10681 * raise Global_Shared_Credit_Limit
10682 *
10683 * lower = if the new limit is lower, set the limit to the new value
10684 * raise = if the new limit is higher than the current value (may be changed
10685 * earlier in the algorithm), set the new limit to the new value
10686 */
10687 int set_buffer_control(struct hfi1_pportdata *ppd,
10688 struct buffer_control *new_bc)
10689 {
10690 struct hfi1_devdata *dd = ppd->dd;
10691 u64 changing_mask, ld_mask, stat_mask;
10692 int change_count;
10693 int i, use_all_mask;
10694 int this_shared_changing;
10695 int vl_count = 0, ret;
10696 /*
10697 * A0: add the variable any_shared_limit_changing below and in the
10698 * algorithm above. If removing A0 support, it can be removed.
10699 */
10700 int any_shared_limit_changing;
10701 struct buffer_control cur_bc;
10702 u8 changing[OPA_MAX_VLS];
10703 u8 lowering_dedicated[OPA_MAX_VLS];
10704 u16 cur_total;
10705 u32 new_total = 0;
10706 const u64 all_mask =
10707 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
10708 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
10709 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
10710 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
10711 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
10712 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
10713 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
10714 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
10715 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
10716
10717 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
10718 #define NUM_USABLE_VLS 16 /* look at VL15 and less */
10719
10720 /* find the new total credits, do sanity check on unused VLs */
10721 for (i = 0; i < OPA_MAX_VLS; i++) {
10722 if (valid_vl(i)) {
10723 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
10724 continue;
10725 }
10726 nonzero_msg(dd, i, "dedicated",
10727 be16_to_cpu(new_bc->vl[i].dedicated));
10728 nonzero_msg(dd, i, "shared",
10729 be16_to_cpu(new_bc->vl[i].shared));
10730 new_bc->vl[i].dedicated = 0;
10731 new_bc->vl[i].shared = 0;
10732 }
10733 new_total += be16_to_cpu(new_bc->overall_shared_limit);
10734
10735 /* fetch the current values */
10736 get_buffer_control(dd, &cur_bc, &cur_total);
10737
10738 /*
10739 * Create the masks we will use.
10740 */
10741 memset(changing, 0, sizeof(changing));
10742 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
10743 /*
10744 * NOTE: Assumes that the individual VL bits are adjacent and in
10745 * increasing order
10746 */
10747 stat_mask =
10748 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
10749 changing_mask = 0;
10750 ld_mask = 0;
10751 change_count = 0;
10752 any_shared_limit_changing = 0;
10753 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
10754 if (!valid_vl(i))
10755 continue;
10756 this_shared_changing = new_bc->vl[i].shared
10757 != cur_bc.vl[i].shared;
10758 if (this_shared_changing)
10759 any_shared_limit_changing = 1;
10760 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
10761 this_shared_changing) {
10762 changing[i] = 1;
10763 changing_mask |= stat_mask;
10764 change_count++;
10765 }
10766 if (be16_to_cpu(new_bc->vl[i].dedicated) <
10767 be16_to_cpu(cur_bc.vl[i].dedicated)) {
10768 lowering_dedicated[i] = 1;
10769 ld_mask |= stat_mask;
10770 }
10771 }
10772
10773 /* bracket the credit change with a total adjustment */
10774 if (new_total > cur_total)
10775 set_global_limit(dd, new_total);
10776
10777 /*
10778 * Start the credit change algorithm.
10779 */
10780 use_all_mask = 0;
10781 if ((be16_to_cpu(new_bc->overall_shared_limit) <
10782 be16_to_cpu(cur_bc.overall_shared_limit)) ||
10783 (is_ax(dd) && any_shared_limit_changing)) {
10784 set_global_shared(dd, 0);
10785 cur_bc.overall_shared_limit = 0;
10786 use_all_mask = 1;
10787 }
10788
10789 for (i = 0; i < NUM_USABLE_VLS; i++) {
10790 if (!valid_vl(i))
10791 continue;
10792
10793 if (changing[i]) {
10794 set_vl_shared(dd, i, 0);
10795 cur_bc.vl[i].shared = 0;
10796 }
10797 }
10798
10799 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
10800 "shared");
10801
10802 if (change_count > 0) {
10803 for (i = 0; i < NUM_USABLE_VLS; i++) {
10804 if (!valid_vl(i))
10805 continue;
10806
10807 if (lowering_dedicated[i]) {
10808 set_vl_dedicated(dd, i,
10809 be16_to_cpu(new_bc->
10810 vl[i].dedicated));
10811 cur_bc.vl[i].dedicated =
10812 new_bc->vl[i].dedicated;
10813 }
10814 }
10815
10816 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
10817
10818 /* now raise all dedicated that are going up */
10819 for (i = 0; i < NUM_USABLE_VLS; i++) {
10820 if (!valid_vl(i))
10821 continue;
10822
10823 if (be16_to_cpu(new_bc->vl[i].dedicated) >
10824 be16_to_cpu(cur_bc.vl[i].dedicated))
10825 set_vl_dedicated(dd, i,
10826 be16_to_cpu(new_bc->
10827 vl[i].dedicated));
10828 }
10829 }
10830
10831 /* next raise all shared that are going up */
10832 for (i = 0; i < NUM_USABLE_VLS; i++) {
10833 if (!valid_vl(i))
10834 continue;
10835
10836 if (be16_to_cpu(new_bc->vl[i].shared) >
10837 be16_to_cpu(cur_bc.vl[i].shared))
10838 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
10839 }
10840
10841 /* finally raise the global shared */
10842 if (be16_to_cpu(new_bc->overall_shared_limit) >
10843 be16_to_cpu(cur_bc.overall_shared_limit))
10844 set_global_shared(dd,
10845 be16_to_cpu(new_bc->overall_shared_limit));
10846
10847 /* bracket the credit change with a total adjustment */
10848 if (new_total < cur_total)
10849 set_global_limit(dd, new_total);
10850
10851 /*
10852 * Determine the actual number of operational VLS using the number of
10853 * dedicated and shared credits for each VL.
10854 */
10855 if (change_count > 0) {
10856 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10857 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
10858 be16_to_cpu(new_bc->vl[i].shared) > 0)
10859 vl_count++;
10860 ppd->actual_vls_operational = vl_count;
10861 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
10862 ppd->actual_vls_operational :
10863 ppd->vls_operational,
10864 NULL);
10865 if (ret == 0)
10866 ret = pio_map_init(dd, ppd->port - 1, vl_count ?
10867 ppd->actual_vls_operational :
10868 ppd->vls_operational, NULL);
10869 if (ret)
10870 return ret;
10871 }
10872 return 0;
10873 }
10874
10875 /*
10876 * Read the given fabric manager table. Return the size of the
10877 * table (in bytes) on success, and a negative error code on
10878 * failure.
10879 */
10880 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
10881
10882 {
10883 int size;
10884 struct vl_arb_cache *vlc;
10885
10886 switch (which) {
10887 case FM_TBL_VL_HIGH_ARB:
10888 size = 256;
10889 /*
10890 * OPA specifies 128 elements (of 2 bytes each), though
10891 * HFI supports only 16 elements in h/w.
10892 */
10893 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10894 vl_arb_get_cache(vlc, t);
10895 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10896 break;
10897 case FM_TBL_VL_LOW_ARB:
10898 size = 256;
10899 /*
10900 * OPA specifies 128 elements (of 2 bytes each), though
10901 * HFI supports only 16 elements in h/w.
10902 */
10903 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10904 vl_arb_get_cache(vlc, t);
10905 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10906 break;
10907 case FM_TBL_BUFFER_CONTROL:
10908 size = get_buffer_control(ppd->dd, t, NULL);
10909 break;
10910 case FM_TBL_SC2VLNT:
10911 size = get_sc2vlnt(ppd->dd, t);
10912 break;
10913 case FM_TBL_VL_PREEMPT_ELEMS:
10914 size = 256;
10915 /* OPA specifies 128 elements, of 2 bytes each */
10916 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
10917 break;
10918 case FM_TBL_VL_PREEMPT_MATRIX:
10919 size = 256;
10920 /*
10921 * OPA specifies that this is the same size as the VL
10922 * arbitration tables (i.e., 256 bytes).
10923 */
10924 break;
10925 default:
10926 return -EINVAL;
10927 }
10928 return size;
10929 }
10930
10931 /*
10932 * Write the given fabric manager table.
10933 */
10934 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
10935 {
10936 int ret = 0;
10937 struct vl_arb_cache *vlc;
10938
10939 switch (which) {
10940 case FM_TBL_VL_HIGH_ARB:
10941 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10942 if (vl_arb_match_cache(vlc, t)) {
10943 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10944 break;
10945 }
10946 vl_arb_set_cache(vlc, t);
10947 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10948 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
10949 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
10950 break;
10951 case FM_TBL_VL_LOW_ARB:
10952 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10953 if (vl_arb_match_cache(vlc, t)) {
10954 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10955 break;
10956 }
10957 vl_arb_set_cache(vlc, t);
10958 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10959 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
10960 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
10961 break;
10962 case FM_TBL_BUFFER_CONTROL:
10963 ret = set_buffer_control(ppd, t);
10964 break;
10965 case FM_TBL_SC2VLNT:
10966 set_sc2vlnt(ppd->dd, t);
10967 break;
10968 default:
10969 ret = -EINVAL;
10970 }
10971 return ret;
10972 }
10973
10974 /*
10975 * Disable all data VLs.
10976 *
10977 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
10978 */
10979 static int disable_data_vls(struct hfi1_devdata *dd)
10980 {
10981 if (is_ax(dd))
10982 return 1;
10983
10984 pio_send_control(dd, PSC_DATA_VL_DISABLE);
10985
10986 return 0;
10987 }
10988
10989 /*
10990 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
10991 * Just re-enables all data VLs (the "fill" part happens
10992 * automatically - the name was chosen for symmetry with
10993 * stop_drain_data_vls()).
10994 *
10995 * Return 0 if successful, non-zero if the VLs cannot be enabled.
10996 */
10997 int open_fill_data_vls(struct hfi1_devdata *dd)
10998 {
10999 if (is_ax(dd))
11000 return 1;
11001
11002 pio_send_control(dd, PSC_DATA_VL_ENABLE);
11003
11004 return 0;
11005 }
11006
11007 /*
11008 * drain_data_vls() - assumes that disable_data_vls() has been called,
11009 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11010 * engines to drop to 0.
11011 */
11012 static void drain_data_vls(struct hfi1_devdata *dd)
11013 {
11014 sc_wait(dd);
11015 sdma_wait(dd);
11016 pause_for_credit_return(dd);
11017 }
11018
11019 /*
11020 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11021 *
11022 * Use open_fill_data_vls() to resume using data VLs. This pair is
11023 * meant to be used like this:
11024 *
11025 * stop_drain_data_vls(dd);
11026 * // do things with per-VL resources
11027 * open_fill_data_vls(dd);
11028 */
11029 int stop_drain_data_vls(struct hfi1_devdata *dd)
11030 {
11031 int ret;
11032
11033 ret = disable_data_vls(dd);
11034 if (ret == 0)
11035 drain_data_vls(dd);
11036
11037 return ret;
11038 }
11039
11040 /*
11041 * Convert a nanosecond time to a cclock count. No matter how slow
11042 * the cclock, a non-zero ns will always have a non-zero result.
11043 */
11044 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11045 {
11046 u32 cclocks;
11047
11048 if (dd->icode == ICODE_FPGA_EMULATION)
11049 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11050 else /* simulation pretends to be ASIC */
11051 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11052 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11053 cclocks = 1;
11054 return cclocks;
11055 }
11056
11057 /*
11058 * Convert a cclock count to nanoseconds. Not matter how slow
11059 * the cclock, a non-zero cclocks will always have a non-zero result.
11060 */
11061 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11062 {
11063 u32 ns;
11064
11065 if (dd->icode == ICODE_FPGA_EMULATION)
11066 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11067 else /* simulation pretends to be ASIC */
11068 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11069 if (cclocks && !ns)
11070 ns = 1;
11071 return ns;
11072 }
11073
11074 /*
11075 * Dynamically adjust the receive interrupt timeout for a context based on
11076 * incoming packet rate.
11077 *
11078 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11079 */
11080 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11081 {
11082 struct hfi1_devdata *dd = rcd->dd;
11083 u32 timeout = rcd->rcvavail_timeout;
11084
11085 /*
11086 * This algorithm doubles or halves the timeout depending on whether
11087 * the number of packets received in this interrupt were less than or
11088 * greater equal the interrupt count.
11089 *
11090 * The calculations below do not allow a steady state to be achieved.
11091 * Only at the endpoints it is possible to have an unchanging
11092 * timeout.
11093 */
11094 if (npkts < rcv_intr_count) {
11095 /*
11096 * Not enough packets arrived before the timeout, adjust
11097 * timeout downward.
11098 */
11099 if (timeout < 2) /* already at minimum? */
11100 return;
11101 timeout >>= 1;
11102 } else {
11103 /*
11104 * More than enough packets arrived before the timeout, adjust
11105 * timeout upward.
11106 */
11107 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11108 return;
11109 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11110 }
11111
11112 rcd->rcvavail_timeout = timeout;
11113 /*
11114 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11115 * been verified to be in range
11116 */
11117 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11118 (u64)timeout <<
11119 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11120 }
11121
11122 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11123 u32 intr_adjust, u32 npkts)
11124 {
11125 struct hfi1_devdata *dd = rcd->dd;
11126 u64 reg;
11127 u32 ctxt = rcd->ctxt;
11128
11129 /*
11130 * Need to write timeout register before updating RcvHdrHead to ensure
11131 * that a new value is used when the HW decides to restart counting.
11132 */
11133 if (intr_adjust)
11134 adjust_rcv_timeout(rcd, npkts);
11135 if (updegr) {
11136 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11137 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11138 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11139 }
11140 mmiowb();
11141 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11142 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11143 << RCV_HDR_HEAD_HEAD_SHIFT);
11144 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11145 mmiowb();
11146 }
11147
11148 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11149 {
11150 u32 head, tail;
11151
11152 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11153 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11154
11155 if (rcd->rcvhdrtail_kvaddr)
11156 tail = get_rcvhdrtail(rcd);
11157 else
11158 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11159
11160 return head == tail;
11161 }
11162
11163 /*
11164 * Context Control and Receive Array encoding for buffer size:
11165 * 0x0 invalid
11166 * 0x1 4 KB
11167 * 0x2 8 KB
11168 * 0x3 16 KB
11169 * 0x4 32 KB
11170 * 0x5 64 KB
11171 * 0x6 128 KB
11172 * 0x7 256 KB
11173 * 0x8 512 KB (Receive Array only)
11174 * 0x9 1 MB (Receive Array only)
11175 * 0xa 2 MB (Receive Array only)
11176 *
11177 * 0xB-0xF - reserved (Receive Array only)
11178 *
11179 *
11180 * This routine assumes that the value has already been sanity checked.
11181 */
11182 static u32 encoded_size(u32 size)
11183 {
11184 switch (size) {
11185 case 4 * 1024: return 0x1;
11186 case 8 * 1024: return 0x2;
11187 case 16 * 1024: return 0x3;
11188 case 32 * 1024: return 0x4;
11189 case 64 * 1024: return 0x5;
11190 case 128 * 1024: return 0x6;
11191 case 256 * 1024: return 0x7;
11192 case 512 * 1024: return 0x8;
11193 case 1 * 1024 * 1024: return 0x9;
11194 case 2 * 1024 * 1024: return 0xa;
11195 }
11196 return 0x1; /* if invalid, go with the minimum size */
11197 }
11198
11199 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11200 {
11201 struct hfi1_ctxtdata *rcd;
11202 u64 rcvctrl, reg;
11203 int did_enable = 0;
11204
11205 rcd = dd->rcd[ctxt];
11206 if (!rcd)
11207 return;
11208
11209 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11210
11211 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11212 /* if the context already enabled, don't do the extra steps */
11213 if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11214 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11215 /* reset the tail and hdr addresses, and sequence count */
11216 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11217 rcd->rcvhdrq_phys);
11218 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11219 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11220 rcd->rcvhdrqtailaddr_phys);
11221 rcd->seq_cnt = 1;
11222
11223 /* reset the cached receive header queue head value */
11224 rcd->head = 0;
11225
11226 /*
11227 * Zero the receive header queue so we don't get false
11228 * positives when checking the sequence number. The
11229 * sequence numbers could land exactly on the same spot.
11230 * E.g. a rcd restart before the receive header wrapped.
11231 */
11232 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11233
11234 /* starting timeout */
11235 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11236
11237 /* enable the context */
11238 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11239
11240 /* clean the egr buffer size first */
11241 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11242 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11243 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11244 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11245
11246 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11247 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11248 did_enable = 1;
11249
11250 /* zero RcvEgrIndexHead */
11251 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11252
11253 /* set eager count and base index */
11254 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11255 & RCV_EGR_CTRL_EGR_CNT_MASK)
11256 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11257 (((rcd->eager_base >> RCV_SHIFT)
11258 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11259 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11260 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11261
11262 /*
11263 * Set TID (expected) count and base index.
11264 * rcd->expected_count is set to individual RcvArray entries,
11265 * not pairs, and the CSR takes a pair-count in groups of
11266 * four, so divide by 8.
11267 */
11268 reg = (((rcd->expected_count >> RCV_SHIFT)
11269 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11270 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11271 (((rcd->expected_base >> RCV_SHIFT)
11272 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11273 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11274 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11275 if (ctxt == HFI1_CTRL_CTXT)
11276 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11277 }
11278 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11279 write_csr(dd, RCV_VL15, 0);
11280 /*
11281 * When receive context is being disabled turn on tail
11282 * update with a dummy tail address and then disable
11283 * receive context.
11284 */
11285 if (dd->rcvhdrtail_dummy_physaddr) {
11286 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11287 dd->rcvhdrtail_dummy_physaddr);
11288 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11289 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11290 }
11291
11292 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11293 }
11294 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11295 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11296 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11297 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11298 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11299 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11300 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11301 /* See comment on RcvCtxtCtrl.TailUpd above */
11302 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11303 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11304 }
11305 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11306 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11307 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11308 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11309 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11310 /*
11311 * In one-packet-per-eager mode, the size comes from
11312 * the RcvArray entry.
11313 */
11314 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11315 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11316 }
11317 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11318 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11319 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11320 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11321 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11322 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11323 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11324 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11325 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11326 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11327 rcd->rcvctrl = rcvctrl;
11328 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11329 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11330
11331 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11332 if (did_enable &&
11333 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11334 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11335 if (reg != 0) {
11336 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11337 ctxt, reg);
11338 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11339 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11340 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11341 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11342 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11343 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11344 ctxt, reg, reg == 0 ? "not" : "still");
11345 }
11346 }
11347
11348 if (did_enable) {
11349 /*
11350 * The interrupt timeout and count must be set after
11351 * the context is enabled to take effect.
11352 */
11353 /* set interrupt timeout */
11354 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11355 (u64)rcd->rcvavail_timeout <<
11356 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11357
11358 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11359 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11360 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11361 }
11362
11363 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11364 /*
11365 * If the context has been disabled and the Tail Update has
11366 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11367 * so it doesn't contain an address that is invalid.
11368 */
11369 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11370 dd->rcvhdrtail_dummy_physaddr);
11371 }
11372
11373 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11374 {
11375 int ret;
11376 u64 val = 0;
11377
11378 if (namep) {
11379 ret = dd->cntrnameslen;
11380 *namep = dd->cntrnames;
11381 } else {
11382 const struct cntr_entry *entry;
11383 int i, j;
11384
11385 ret = (dd->ndevcntrs) * sizeof(u64);
11386
11387 /* Get the start of the block of counters */
11388 *cntrp = dd->cntrs;
11389
11390 /*
11391 * Now go and fill in each counter in the block.
11392 */
11393 for (i = 0; i < DEV_CNTR_LAST; i++) {
11394 entry = &dev_cntrs[i];
11395 hfi1_cdbg(CNTR, "reading %s", entry->name);
11396 if (entry->flags & CNTR_DISABLED) {
11397 /* Nothing */
11398 hfi1_cdbg(CNTR, "\tDisabled\n");
11399 } else {
11400 if (entry->flags & CNTR_VL) {
11401 hfi1_cdbg(CNTR, "\tPer VL\n");
11402 for (j = 0; j < C_VL_COUNT; j++) {
11403 val = entry->rw_cntr(entry,
11404 dd, j,
11405 CNTR_MODE_R,
11406 0);
11407 hfi1_cdbg(
11408 CNTR,
11409 "\t\tRead 0x%llx for %d\n",
11410 val, j);
11411 dd->cntrs[entry->offset + j] =
11412 val;
11413 }
11414 } else if (entry->flags & CNTR_SDMA) {
11415 hfi1_cdbg(CNTR,
11416 "\t Per SDMA Engine\n");
11417 for (j = 0; j < dd->chip_sdma_engines;
11418 j++) {
11419 val =
11420 entry->rw_cntr(entry, dd, j,
11421 CNTR_MODE_R, 0);
11422 hfi1_cdbg(CNTR,
11423 "\t\tRead 0x%llx for %d\n",
11424 val, j);
11425 dd->cntrs[entry->offset + j] =
11426 val;
11427 }
11428 } else {
11429 val = entry->rw_cntr(entry, dd,
11430 CNTR_INVALID_VL,
11431 CNTR_MODE_R, 0);
11432 dd->cntrs[entry->offset] = val;
11433 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11434 }
11435 }
11436 }
11437 }
11438 return ret;
11439 }
11440
11441 /*
11442 * Used by sysfs to create files for hfi stats to read
11443 */
11444 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11445 {
11446 int ret;
11447 u64 val = 0;
11448
11449 if (namep) {
11450 ret = ppd->dd->portcntrnameslen;
11451 *namep = ppd->dd->portcntrnames;
11452 } else {
11453 const struct cntr_entry *entry;
11454 int i, j;
11455
11456 ret = ppd->dd->nportcntrs * sizeof(u64);
11457 *cntrp = ppd->cntrs;
11458
11459 for (i = 0; i < PORT_CNTR_LAST; i++) {
11460 entry = &port_cntrs[i];
11461 hfi1_cdbg(CNTR, "reading %s", entry->name);
11462 if (entry->flags & CNTR_DISABLED) {
11463 /* Nothing */
11464 hfi1_cdbg(CNTR, "\tDisabled\n");
11465 continue;
11466 }
11467
11468 if (entry->flags & CNTR_VL) {
11469 hfi1_cdbg(CNTR, "\tPer VL");
11470 for (j = 0; j < C_VL_COUNT; j++) {
11471 val = entry->rw_cntr(entry, ppd, j,
11472 CNTR_MODE_R,
11473 0);
11474 hfi1_cdbg(
11475 CNTR,
11476 "\t\tRead 0x%llx for %d",
11477 val, j);
11478 ppd->cntrs[entry->offset + j] = val;
11479 }
11480 } else {
11481 val = entry->rw_cntr(entry, ppd,
11482 CNTR_INVALID_VL,
11483 CNTR_MODE_R,
11484 0);
11485 ppd->cntrs[entry->offset] = val;
11486 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11487 }
11488 }
11489 }
11490 return ret;
11491 }
11492
11493 static void free_cntrs(struct hfi1_devdata *dd)
11494 {
11495 struct hfi1_pportdata *ppd;
11496 int i;
11497
11498 if (dd->synth_stats_timer.data)
11499 del_timer_sync(&dd->synth_stats_timer);
11500 dd->synth_stats_timer.data = 0;
11501 ppd = (struct hfi1_pportdata *)(dd + 1);
11502 for (i = 0; i < dd->num_pports; i++, ppd++) {
11503 kfree(ppd->cntrs);
11504 kfree(ppd->scntrs);
11505 free_percpu(ppd->ibport_data.rvp.rc_acks);
11506 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11507 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11508 ppd->cntrs = NULL;
11509 ppd->scntrs = NULL;
11510 ppd->ibport_data.rvp.rc_acks = NULL;
11511 ppd->ibport_data.rvp.rc_qacks = NULL;
11512 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11513 }
11514 kfree(dd->portcntrnames);
11515 dd->portcntrnames = NULL;
11516 kfree(dd->cntrs);
11517 dd->cntrs = NULL;
11518 kfree(dd->scntrs);
11519 dd->scntrs = NULL;
11520 kfree(dd->cntrnames);
11521 dd->cntrnames = NULL;
11522 }
11523
11524 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
11525 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
11526
11527 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11528 u64 *psval, void *context, int vl)
11529 {
11530 u64 val;
11531 u64 sval = *psval;
11532
11533 if (entry->flags & CNTR_DISABLED) {
11534 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11535 return 0;
11536 }
11537
11538 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11539
11540 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11541
11542 /* If its a synthetic counter there is more work we need to do */
11543 if (entry->flags & CNTR_SYNTH) {
11544 if (sval == CNTR_MAX) {
11545 /* No need to read already saturated */
11546 return CNTR_MAX;
11547 }
11548
11549 if (entry->flags & CNTR_32BIT) {
11550 /* 32bit counters can wrap multiple times */
11551 u64 upper = sval >> 32;
11552 u64 lower = (sval << 32) >> 32;
11553
11554 if (lower > val) { /* hw wrapped */
11555 if (upper == CNTR_32BIT_MAX)
11556 val = CNTR_MAX;
11557 else
11558 upper++;
11559 }
11560
11561 if (val != CNTR_MAX)
11562 val = (upper << 32) | val;
11563
11564 } else {
11565 /* If we rolled we are saturated */
11566 if ((val < sval) || (val > CNTR_MAX))
11567 val = CNTR_MAX;
11568 }
11569 }
11570
11571 *psval = val;
11572
11573 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11574
11575 return val;
11576 }
11577
11578 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11579 struct cntr_entry *entry,
11580 u64 *psval, void *context, int vl, u64 data)
11581 {
11582 u64 val;
11583
11584 if (entry->flags & CNTR_DISABLED) {
11585 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11586 return 0;
11587 }
11588
11589 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11590
11591 if (entry->flags & CNTR_SYNTH) {
11592 *psval = data;
11593 if (entry->flags & CNTR_32BIT) {
11594 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11595 (data << 32) >> 32);
11596 val = data; /* return the full 64bit value */
11597 } else {
11598 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11599 data);
11600 }
11601 } else {
11602 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11603 }
11604
11605 *psval = val;
11606
11607 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11608
11609 return val;
11610 }
11611
11612 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11613 {
11614 struct cntr_entry *entry;
11615 u64 *sval;
11616
11617 entry = &dev_cntrs[index];
11618 sval = dd->scntrs + entry->offset;
11619
11620 if (vl != CNTR_INVALID_VL)
11621 sval += vl;
11622
11623 return read_dev_port_cntr(dd, entry, sval, dd, vl);
11624 }
11625
11626 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11627 {
11628 struct cntr_entry *entry;
11629 u64 *sval;
11630
11631 entry = &dev_cntrs[index];
11632 sval = dd->scntrs + entry->offset;
11633
11634 if (vl != CNTR_INVALID_VL)
11635 sval += vl;
11636
11637 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11638 }
11639
11640 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11641 {
11642 struct cntr_entry *entry;
11643 u64 *sval;
11644
11645 entry = &port_cntrs[index];
11646 sval = ppd->scntrs + entry->offset;
11647
11648 if (vl != CNTR_INVALID_VL)
11649 sval += vl;
11650
11651 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11652 (index <= C_RCV_HDR_OVF_LAST)) {
11653 /* We do not want to bother for disabled contexts */
11654 return 0;
11655 }
11656
11657 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11658 }
11659
11660 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11661 {
11662 struct cntr_entry *entry;
11663 u64 *sval;
11664
11665 entry = &port_cntrs[index];
11666 sval = ppd->scntrs + entry->offset;
11667
11668 if (vl != CNTR_INVALID_VL)
11669 sval += vl;
11670
11671 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11672 (index <= C_RCV_HDR_OVF_LAST)) {
11673 /* We do not want to bother for disabled contexts */
11674 return 0;
11675 }
11676
11677 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
11678 }
11679
11680 static void update_synth_timer(unsigned long opaque)
11681 {
11682 u64 cur_tx;
11683 u64 cur_rx;
11684 u64 total_flits;
11685 u8 update = 0;
11686 int i, j, vl;
11687 struct hfi1_pportdata *ppd;
11688 struct cntr_entry *entry;
11689
11690 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
11691
11692 /*
11693 * Rather than keep beating on the CSRs pick a minimal set that we can
11694 * check to watch for potential roll over. We can do this by looking at
11695 * the number of flits sent/recv. If the total flits exceeds 32bits then
11696 * we have to iterate all the counters and update.
11697 */
11698 entry = &dev_cntrs[C_DC_RCV_FLITS];
11699 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11700
11701 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11702 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11703
11704 hfi1_cdbg(
11705 CNTR,
11706 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
11707 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
11708
11709 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
11710 /*
11711 * May not be strictly necessary to update but it won't hurt and
11712 * simplifies the logic here.
11713 */
11714 update = 1;
11715 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
11716 dd->unit);
11717 } else {
11718 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
11719 hfi1_cdbg(CNTR,
11720 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
11721 total_flits, (u64)CNTR_32BIT_MAX);
11722 if (total_flits >= CNTR_32BIT_MAX) {
11723 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
11724 dd->unit);
11725 update = 1;
11726 }
11727 }
11728
11729 if (update) {
11730 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
11731 for (i = 0; i < DEV_CNTR_LAST; i++) {
11732 entry = &dev_cntrs[i];
11733 if (entry->flags & CNTR_VL) {
11734 for (vl = 0; vl < C_VL_COUNT; vl++)
11735 read_dev_cntr(dd, i, vl);
11736 } else {
11737 read_dev_cntr(dd, i, CNTR_INVALID_VL);
11738 }
11739 }
11740 ppd = (struct hfi1_pportdata *)(dd + 1);
11741 for (i = 0; i < dd->num_pports; i++, ppd++) {
11742 for (j = 0; j < PORT_CNTR_LAST; j++) {
11743 entry = &port_cntrs[j];
11744 if (entry->flags & CNTR_VL) {
11745 for (vl = 0; vl < C_VL_COUNT; vl++)
11746 read_port_cntr(ppd, j, vl);
11747 } else {
11748 read_port_cntr(ppd, j, CNTR_INVALID_VL);
11749 }
11750 }
11751 }
11752
11753 /*
11754 * We want the value in the register. The goal is to keep track
11755 * of the number of "ticks" not the counter value. In other
11756 * words if the register rolls we want to notice it and go ahead
11757 * and force an update.
11758 */
11759 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11760 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11761 CNTR_MODE_R, 0);
11762
11763 entry = &dev_cntrs[C_DC_RCV_FLITS];
11764 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11765 CNTR_MODE_R, 0);
11766
11767 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
11768 dd->unit, dd->last_tx, dd->last_rx);
11769
11770 } else {
11771 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
11772 }
11773
11774 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
11775 }
11776
11777 #define C_MAX_NAME 13 /* 12 chars + one for /0 */
11778 static int init_cntrs(struct hfi1_devdata *dd)
11779 {
11780 int i, rcv_ctxts, j;
11781 size_t sz;
11782 char *p;
11783 char name[C_MAX_NAME];
11784 struct hfi1_pportdata *ppd;
11785 const char *bit_type_32 = ",32";
11786 const int bit_type_32_sz = strlen(bit_type_32);
11787
11788 /* set up the stats timer; the add_timer is done at the end */
11789 setup_timer(&dd->synth_stats_timer, update_synth_timer,
11790 (unsigned long)dd);
11791
11792 /***********************/
11793 /* per device counters */
11794 /***********************/
11795
11796 /* size names and determine how many we have*/
11797 dd->ndevcntrs = 0;
11798 sz = 0;
11799
11800 for (i = 0; i < DEV_CNTR_LAST; i++) {
11801 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11802 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
11803 continue;
11804 }
11805
11806 if (dev_cntrs[i].flags & CNTR_VL) {
11807 dev_cntrs[i].offset = dd->ndevcntrs;
11808 for (j = 0; j < C_VL_COUNT; j++) {
11809 snprintf(name, C_MAX_NAME, "%s%d",
11810 dev_cntrs[i].name, vl_from_idx(j));
11811 sz += strlen(name);
11812 /* Add ",32" for 32-bit counters */
11813 if (dev_cntrs[i].flags & CNTR_32BIT)
11814 sz += bit_type_32_sz;
11815 sz++;
11816 dd->ndevcntrs++;
11817 }
11818 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11819 dev_cntrs[i].offset = dd->ndevcntrs;
11820 for (j = 0; j < dd->chip_sdma_engines; j++) {
11821 snprintf(name, C_MAX_NAME, "%s%d",
11822 dev_cntrs[i].name, j);
11823 sz += strlen(name);
11824 /* Add ",32" for 32-bit counters */
11825 if (dev_cntrs[i].flags & CNTR_32BIT)
11826 sz += bit_type_32_sz;
11827 sz++;
11828 dd->ndevcntrs++;
11829 }
11830 } else {
11831 /* +1 for newline. */
11832 sz += strlen(dev_cntrs[i].name) + 1;
11833 /* Add ",32" for 32-bit counters */
11834 if (dev_cntrs[i].flags & CNTR_32BIT)
11835 sz += bit_type_32_sz;
11836 dev_cntrs[i].offset = dd->ndevcntrs;
11837 dd->ndevcntrs++;
11838 }
11839 }
11840
11841 /* allocate space for the counter values */
11842 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
11843 if (!dd->cntrs)
11844 goto bail;
11845
11846 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
11847 if (!dd->scntrs)
11848 goto bail;
11849
11850 /* allocate space for the counter names */
11851 dd->cntrnameslen = sz;
11852 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
11853 if (!dd->cntrnames)
11854 goto bail;
11855
11856 /* fill in the names */
11857 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
11858 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11859 /* Nothing */
11860 } else if (dev_cntrs[i].flags & CNTR_VL) {
11861 for (j = 0; j < C_VL_COUNT; j++) {
11862 snprintf(name, C_MAX_NAME, "%s%d",
11863 dev_cntrs[i].name,
11864 vl_from_idx(j));
11865 memcpy(p, name, strlen(name));
11866 p += strlen(name);
11867
11868 /* Counter is 32 bits */
11869 if (dev_cntrs[i].flags & CNTR_32BIT) {
11870 memcpy(p, bit_type_32, bit_type_32_sz);
11871 p += bit_type_32_sz;
11872 }
11873
11874 *p++ = '\n';
11875 }
11876 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11877 for (j = 0; j < dd->chip_sdma_engines; j++) {
11878 snprintf(name, C_MAX_NAME, "%s%d",
11879 dev_cntrs[i].name, j);
11880 memcpy(p, name, strlen(name));
11881 p += strlen(name);
11882
11883 /* Counter is 32 bits */
11884 if (dev_cntrs[i].flags & CNTR_32BIT) {
11885 memcpy(p, bit_type_32, bit_type_32_sz);
11886 p += bit_type_32_sz;
11887 }
11888
11889 *p++ = '\n';
11890 }
11891 } else {
11892 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
11893 p += strlen(dev_cntrs[i].name);
11894
11895 /* Counter is 32 bits */
11896 if (dev_cntrs[i].flags & CNTR_32BIT) {
11897 memcpy(p, bit_type_32, bit_type_32_sz);
11898 p += bit_type_32_sz;
11899 }
11900
11901 *p++ = '\n';
11902 }
11903 }
11904
11905 /*********************/
11906 /* per port counters */
11907 /*********************/
11908
11909 /*
11910 * Go through the counters for the overflows and disable the ones we
11911 * don't need. This varies based on platform so we need to do it
11912 * dynamically here.
11913 */
11914 rcv_ctxts = dd->num_rcv_contexts;
11915 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
11916 i <= C_RCV_HDR_OVF_LAST; i++) {
11917 port_cntrs[i].flags |= CNTR_DISABLED;
11918 }
11919
11920 /* size port counter names and determine how many we have*/
11921 sz = 0;
11922 dd->nportcntrs = 0;
11923 for (i = 0; i < PORT_CNTR_LAST; i++) {
11924 if (port_cntrs[i].flags & CNTR_DISABLED) {
11925 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
11926 continue;
11927 }
11928
11929 if (port_cntrs[i].flags & CNTR_VL) {
11930 port_cntrs[i].offset = dd->nportcntrs;
11931 for (j = 0; j < C_VL_COUNT; j++) {
11932 snprintf(name, C_MAX_NAME, "%s%d",
11933 port_cntrs[i].name, vl_from_idx(j));
11934 sz += strlen(name);
11935 /* Add ",32" for 32-bit counters */
11936 if (port_cntrs[i].flags & CNTR_32BIT)
11937 sz += bit_type_32_sz;
11938 sz++;
11939 dd->nportcntrs++;
11940 }
11941 } else {
11942 /* +1 for newline */
11943 sz += strlen(port_cntrs[i].name) + 1;
11944 /* Add ",32" for 32-bit counters */
11945 if (port_cntrs[i].flags & CNTR_32BIT)
11946 sz += bit_type_32_sz;
11947 port_cntrs[i].offset = dd->nportcntrs;
11948 dd->nportcntrs++;
11949 }
11950 }
11951
11952 /* allocate space for the counter names */
11953 dd->portcntrnameslen = sz;
11954 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
11955 if (!dd->portcntrnames)
11956 goto bail;
11957
11958 /* fill in port cntr names */
11959 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
11960 if (port_cntrs[i].flags & CNTR_DISABLED)
11961 continue;
11962
11963 if (port_cntrs[i].flags & CNTR_VL) {
11964 for (j = 0; j < C_VL_COUNT; j++) {
11965 snprintf(name, C_MAX_NAME, "%s%d",
11966 port_cntrs[i].name, vl_from_idx(j));
11967 memcpy(p, name, strlen(name));
11968 p += strlen(name);
11969
11970 /* Counter is 32 bits */
11971 if (port_cntrs[i].flags & CNTR_32BIT) {
11972 memcpy(p, bit_type_32, bit_type_32_sz);
11973 p += bit_type_32_sz;
11974 }
11975
11976 *p++ = '\n';
11977 }
11978 } else {
11979 memcpy(p, port_cntrs[i].name,
11980 strlen(port_cntrs[i].name));
11981 p += strlen(port_cntrs[i].name);
11982
11983 /* Counter is 32 bits */
11984 if (port_cntrs[i].flags & CNTR_32BIT) {
11985 memcpy(p, bit_type_32, bit_type_32_sz);
11986 p += bit_type_32_sz;
11987 }
11988
11989 *p++ = '\n';
11990 }
11991 }
11992
11993 /* allocate per port storage for counter values */
11994 ppd = (struct hfi1_pportdata *)(dd + 1);
11995 for (i = 0; i < dd->num_pports; i++, ppd++) {
11996 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
11997 if (!ppd->cntrs)
11998 goto bail;
11999
12000 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12001 if (!ppd->scntrs)
12002 goto bail;
12003 }
12004
12005 /* CPU counters need to be allocated and zeroed */
12006 if (init_cpu_counters(dd))
12007 goto bail;
12008
12009 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12010 return 0;
12011 bail:
12012 free_cntrs(dd);
12013 return -ENOMEM;
12014 }
12015
12016 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12017 {
12018 switch (chip_lstate) {
12019 default:
12020 dd_dev_err(dd,
12021 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12022 chip_lstate);
12023 /* fall through */
12024 case LSTATE_DOWN:
12025 return IB_PORT_DOWN;
12026 case LSTATE_INIT:
12027 return IB_PORT_INIT;
12028 case LSTATE_ARMED:
12029 return IB_PORT_ARMED;
12030 case LSTATE_ACTIVE:
12031 return IB_PORT_ACTIVE;
12032 }
12033 }
12034
12035 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12036 {
12037 /* look at the HFI meta-states only */
12038 switch (chip_pstate & 0xf0) {
12039 default:
12040 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12041 chip_pstate);
12042 /* fall through */
12043 case PLS_DISABLED:
12044 return IB_PORTPHYSSTATE_DISABLED;
12045 case PLS_OFFLINE:
12046 return OPA_PORTPHYSSTATE_OFFLINE;
12047 case PLS_POLLING:
12048 return IB_PORTPHYSSTATE_POLLING;
12049 case PLS_CONFIGPHY:
12050 return IB_PORTPHYSSTATE_TRAINING;
12051 case PLS_LINKUP:
12052 return IB_PORTPHYSSTATE_LINKUP;
12053 case PLS_PHYTEST:
12054 return IB_PORTPHYSSTATE_PHY_TEST;
12055 }
12056 }
12057
12058 /* return the OPA port logical state name */
12059 const char *opa_lstate_name(u32 lstate)
12060 {
12061 static const char * const port_logical_names[] = {
12062 "PORT_NOP",
12063 "PORT_DOWN",
12064 "PORT_INIT",
12065 "PORT_ARMED",
12066 "PORT_ACTIVE",
12067 "PORT_ACTIVE_DEFER",
12068 };
12069 if (lstate < ARRAY_SIZE(port_logical_names))
12070 return port_logical_names[lstate];
12071 return "unknown";
12072 }
12073
12074 /* return the OPA port physical state name */
12075 const char *opa_pstate_name(u32 pstate)
12076 {
12077 static const char * const port_physical_names[] = {
12078 "PHYS_NOP",
12079 "reserved1",
12080 "PHYS_POLL",
12081 "PHYS_DISABLED",
12082 "PHYS_TRAINING",
12083 "PHYS_LINKUP",
12084 "PHYS_LINK_ERR_RECOVER",
12085 "PHYS_PHY_TEST",
12086 "reserved8",
12087 "PHYS_OFFLINE",
12088 "PHYS_GANGED",
12089 "PHYS_TEST",
12090 };
12091 if (pstate < ARRAY_SIZE(port_physical_names))
12092 return port_physical_names[pstate];
12093 return "unknown";
12094 }
12095
12096 /*
12097 * Read the hardware link state and set the driver's cached value of it.
12098 * Return the (new) current value.
12099 */
12100 u32 get_logical_state(struct hfi1_pportdata *ppd)
12101 {
12102 u32 new_state;
12103
12104 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12105 if (new_state != ppd->lstate) {
12106 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12107 opa_lstate_name(new_state), new_state);
12108 ppd->lstate = new_state;
12109 }
12110 /*
12111 * Set port status flags in the page mapped into userspace
12112 * memory. Do it here to ensure a reliable state - this is
12113 * the only function called by all state handling code.
12114 * Always set the flags due to the fact that the cache value
12115 * might have been changed explicitly outside of this
12116 * function.
12117 */
12118 if (ppd->statusp) {
12119 switch (ppd->lstate) {
12120 case IB_PORT_DOWN:
12121 case IB_PORT_INIT:
12122 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12123 HFI1_STATUS_IB_READY);
12124 break;
12125 case IB_PORT_ARMED:
12126 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12127 break;
12128 case IB_PORT_ACTIVE:
12129 *ppd->statusp |= HFI1_STATUS_IB_READY;
12130 break;
12131 }
12132 }
12133 return ppd->lstate;
12134 }
12135
12136 /**
12137 * wait_logical_linkstate - wait for an IB link state change to occur
12138 * @ppd: port device
12139 * @state: the state to wait for
12140 * @msecs: the number of milliseconds to wait
12141 *
12142 * Wait up to msecs milliseconds for IB link state change to occur.
12143 * For now, take the easy polling route.
12144 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12145 */
12146 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12147 int msecs)
12148 {
12149 unsigned long timeout;
12150
12151 timeout = jiffies + msecs_to_jiffies(msecs);
12152 while (1) {
12153 if (get_logical_state(ppd) == state)
12154 return 0;
12155 if (time_after(jiffies, timeout))
12156 break;
12157 msleep(20);
12158 }
12159 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12160
12161 return -ETIMEDOUT;
12162 }
12163
12164 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12165 {
12166 u32 pstate;
12167 u32 ib_pstate;
12168
12169 pstate = read_physical_state(ppd->dd);
12170 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12171 if (ppd->last_pstate != ib_pstate) {
12172 dd_dev_info(ppd->dd,
12173 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12174 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12175 pstate);
12176 ppd->last_pstate = ib_pstate;
12177 }
12178 return ib_pstate;
12179 }
12180
12181 /*
12182 * Read/modify/write ASIC_QSFP register bits as selected by mask
12183 * data: 0 or 1 in the positions depending on what needs to be written
12184 * dir: 0 for read, 1 for write
12185 * mask: select by setting
12186 * I2CCLK (bit 0)
12187 * I2CDATA (bit 1)
12188 */
12189 u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
12190 u32 mask)
12191 {
12192 u64 qsfp_oe, target_oe;
12193
12194 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
12195 if (mask) {
12196 /* We are writing register bits, so lock access */
12197 dir &= mask;
12198 data &= mask;
12199
12200 qsfp_oe = read_csr(dd, target_oe);
12201 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
12202 write_csr(dd, target_oe, qsfp_oe);
12203 }
12204 /* We are exclusively reading bits here, but it is unlikely
12205 * we'll get valid data when we set the direction of the pin
12206 * in the same call, so read should call this function again
12207 * to get valid data
12208 */
12209 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
12210 }
12211
12212 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12213 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12214
12215 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12216 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12217
12218 int hfi1_init_ctxt(struct send_context *sc)
12219 {
12220 if (sc) {
12221 struct hfi1_devdata *dd = sc->dd;
12222 u64 reg;
12223 u8 set = (sc->type == SC_USER ?
12224 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12225 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12226 reg = read_kctxt_csr(dd, sc->hw_context,
12227 SEND_CTXT_CHECK_ENABLE);
12228 if (set)
12229 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12230 else
12231 SET_STATIC_RATE_CONTROL_SMASK(reg);
12232 write_kctxt_csr(dd, sc->hw_context,
12233 SEND_CTXT_CHECK_ENABLE, reg);
12234 }
12235 return 0;
12236 }
12237
12238 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12239 {
12240 int ret = 0;
12241 u64 reg;
12242
12243 if (dd->icode != ICODE_RTL_SILICON) {
12244 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12245 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12246 __func__);
12247 return -EINVAL;
12248 }
12249 reg = read_csr(dd, ASIC_STS_THERM);
12250 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12251 ASIC_STS_THERM_CURR_TEMP_MASK);
12252 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12253 ASIC_STS_THERM_LO_TEMP_MASK);
12254 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12255 ASIC_STS_THERM_HI_TEMP_MASK);
12256 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12257 ASIC_STS_THERM_CRIT_TEMP_MASK);
12258 /* triggers is a 3-bit value - 1 bit per trigger. */
12259 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12260
12261 return ret;
12262 }
12263
12264 /* ========================================================================= */
12265
12266 /*
12267 * Enable/disable chip from delivering interrupts.
12268 */
12269 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12270 {
12271 int i;
12272
12273 /*
12274 * In HFI, the mask needs to be 1 to allow interrupts.
12275 */
12276 if (enable) {
12277 /* enable all interrupts */
12278 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12279 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12280
12281 init_qsfp_int(dd);
12282 } else {
12283 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12284 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12285 }
12286 }
12287
12288 /*
12289 * Clear all interrupt sources on the chip.
12290 */
12291 static void clear_all_interrupts(struct hfi1_devdata *dd)
12292 {
12293 int i;
12294
12295 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12296 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12297
12298 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12299 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12300 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12301 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12302 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12303 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12304 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12305 for (i = 0; i < dd->chip_send_contexts; i++)
12306 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12307 for (i = 0; i < dd->chip_sdma_engines; i++)
12308 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12309
12310 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12311 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12312 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12313 }
12314
12315 /* Move to pcie.c? */
12316 static void disable_intx(struct pci_dev *pdev)
12317 {
12318 pci_intx(pdev, 0);
12319 }
12320
12321 static void clean_up_interrupts(struct hfi1_devdata *dd)
12322 {
12323 int i;
12324
12325 /* remove irqs - must happen before disabling/turning off */
12326 if (dd->num_msix_entries) {
12327 /* MSI-X */
12328 struct hfi1_msix_entry *me = dd->msix_entries;
12329
12330 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12331 if (!me->arg) /* => no irq, no affinity */
12332 continue;
12333 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12334 free_irq(me->msix.vector, me->arg);
12335 }
12336 } else {
12337 /* INTx */
12338 if (dd->requested_intx_irq) {
12339 free_irq(dd->pcidev->irq, dd);
12340 dd->requested_intx_irq = 0;
12341 }
12342 }
12343
12344 /* turn off interrupts */
12345 if (dd->num_msix_entries) {
12346 /* MSI-X */
12347 pci_disable_msix(dd->pcidev);
12348 } else {
12349 /* INTx */
12350 disable_intx(dd->pcidev);
12351 }
12352
12353 /* clean structures */
12354 kfree(dd->msix_entries);
12355 dd->msix_entries = NULL;
12356 dd->num_msix_entries = 0;
12357 }
12358
12359 /*
12360 * Remap the interrupt source from the general handler to the given MSI-X
12361 * interrupt.
12362 */
12363 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12364 {
12365 u64 reg;
12366 int m, n;
12367
12368 /* clear from the handled mask of the general interrupt */
12369 m = isrc / 64;
12370 n = isrc % 64;
12371 dd->gi_mask[m] &= ~((u64)1 << n);
12372
12373 /* direct the chip source to the given MSI-X interrupt */
12374 m = isrc / 8;
12375 n = isrc % 8;
12376 reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12377 reg &= ~((u64)0xff << (8 * n));
12378 reg |= ((u64)msix_intr & 0xff) << (8 * n);
12379 write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12380 }
12381
12382 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12383 int engine, int msix_intr)
12384 {
12385 /*
12386 * SDMA engine interrupt sources grouped by type, rather than
12387 * engine. Per-engine interrupts are as follows:
12388 * SDMA
12389 * SDMAProgress
12390 * SDMAIdle
12391 */
12392 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12393 msix_intr);
12394 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12395 msix_intr);
12396 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12397 msix_intr);
12398 }
12399
12400 static int request_intx_irq(struct hfi1_devdata *dd)
12401 {
12402 int ret;
12403
12404 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12405 dd->unit);
12406 ret = request_irq(dd->pcidev->irq, general_interrupt,
12407 IRQF_SHARED, dd->intx_name, dd);
12408 if (ret)
12409 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12410 ret);
12411 else
12412 dd->requested_intx_irq = 1;
12413 return ret;
12414 }
12415
12416 static int request_msix_irqs(struct hfi1_devdata *dd)
12417 {
12418 int first_general, last_general;
12419 int first_sdma, last_sdma;
12420 int first_rx, last_rx;
12421 int i, ret = 0;
12422
12423 /* calculate the ranges we are going to use */
12424 first_general = 0;
12425 last_general = first_general + 1;
12426 first_sdma = last_general;
12427 last_sdma = first_sdma + dd->num_sdma;
12428 first_rx = last_sdma;
12429 last_rx = first_rx + dd->n_krcv_queues;
12430
12431 /*
12432 * Sanity check - the code expects all SDMA chip source
12433 * interrupts to be in the same CSR, starting at bit 0. Verify
12434 * that this is true by checking the bit location of the start.
12435 */
12436 BUILD_BUG_ON(IS_SDMA_START % 64);
12437
12438 for (i = 0; i < dd->num_msix_entries; i++) {
12439 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12440 const char *err_info;
12441 irq_handler_t handler;
12442 irq_handler_t thread = NULL;
12443 void *arg;
12444 int idx;
12445 struct hfi1_ctxtdata *rcd = NULL;
12446 struct sdma_engine *sde = NULL;
12447
12448 /* obtain the arguments to request_irq */
12449 if (first_general <= i && i < last_general) {
12450 idx = i - first_general;
12451 handler = general_interrupt;
12452 arg = dd;
12453 snprintf(me->name, sizeof(me->name),
12454 DRIVER_NAME "_%d", dd->unit);
12455 err_info = "general";
12456 me->type = IRQ_GENERAL;
12457 } else if (first_sdma <= i && i < last_sdma) {
12458 idx = i - first_sdma;
12459 sde = &dd->per_sdma[idx];
12460 handler = sdma_interrupt;
12461 arg = sde;
12462 snprintf(me->name, sizeof(me->name),
12463 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12464 err_info = "sdma";
12465 remap_sdma_interrupts(dd, idx, i);
12466 me->type = IRQ_SDMA;
12467 } else if (first_rx <= i && i < last_rx) {
12468 idx = i - first_rx;
12469 rcd = dd->rcd[idx];
12470 /* no interrupt if no rcd */
12471 if (!rcd)
12472 continue;
12473 /*
12474 * Set the interrupt register and mask for this
12475 * context's interrupt.
12476 */
12477 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12478 rcd->imask = ((u64)1) <<
12479 ((IS_RCVAVAIL_START + idx) % 64);
12480 handler = receive_context_interrupt;
12481 thread = receive_context_thread;
12482 arg = rcd;
12483 snprintf(me->name, sizeof(me->name),
12484 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
12485 err_info = "receive context";
12486 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12487 me->type = IRQ_RCVCTXT;
12488 } else {
12489 /* not in our expected range - complain, then
12490 * ignore it
12491 */
12492 dd_dev_err(dd,
12493 "Unexpected extra MSI-X interrupt %d\n", i);
12494 continue;
12495 }
12496 /* no argument, no interrupt */
12497 if (!arg)
12498 continue;
12499 /* make sure the name is terminated */
12500 me->name[sizeof(me->name) - 1] = 0;
12501
12502 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12503 me->name, arg);
12504 if (ret) {
12505 dd_dev_err(dd,
12506 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12507 err_info, me->msix.vector, idx, ret);
12508 return ret;
12509 }
12510 /*
12511 * assign arg after request_irq call, so it will be
12512 * cleaned up
12513 */
12514 me->arg = arg;
12515
12516 ret = hfi1_get_irq_affinity(dd, me);
12517 if (ret)
12518 dd_dev_err(dd,
12519 "unable to pin IRQ %d\n", ret);
12520 }
12521
12522 return ret;
12523 }
12524
12525 /*
12526 * Set the general handler to accept all interrupts, remap all
12527 * chip interrupts back to MSI-X 0.
12528 */
12529 static void reset_interrupts(struct hfi1_devdata *dd)
12530 {
12531 int i;
12532
12533 /* all interrupts handled by the general handler */
12534 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12535 dd->gi_mask[i] = ~(u64)0;
12536
12537 /* all chip interrupts map to MSI-X 0 */
12538 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12539 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12540 }
12541
12542 static int set_up_interrupts(struct hfi1_devdata *dd)
12543 {
12544 struct hfi1_msix_entry *entries;
12545 u32 total, request;
12546 int i, ret;
12547 int single_interrupt = 0; /* we expect to have all the interrupts */
12548
12549 /*
12550 * Interrupt count:
12551 * 1 general, "slow path" interrupt (includes the SDMA engines
12552 * slow source, SDMACleanupDone)
12553 * N interrupts - one per used SDMA engine
12554 * M interrupt - one per kernel receive context
12555 */
12556 total = 1 + dd->num_sdma + dd->n_krcv_queues;
12557
12558 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12559 if (!entries) {
12560 ret = -ENOMEM;
12561 goto fail;
12562 }
12563 /* 1-1 MSI-X entry assignment */
12564 for (i = 0; i < total; i++)
12565 entries[i].msix.entry = i;
12566
12567 /* ask for MSI-X interrupts */
12568 request = total;
12569 request_msix(dd, &request, entries);
12570
12571 if (request == 0) {
12572 /* using INTx */
12573 /* dd->num_msix_entries already zero */
12574 kfree(entries);
12575 single_interrupt = 1;
12576 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12577 } else {
12578 /* using MSI-X */
12579 dd->num_msix_entries = request;
12580 dd->msix_entries = entries;
12581
12582 if (request != total) {
12583 /* using MSI-X, with reduced interrupts */
12584 dd_dev_err(
12585 dd,
12586 "cannot handle reduced interrupt case, want %u, got %u\n",
12587 total, request);
12588 ret = -EINVAL;
12589 goto fail;
12590 }
12591 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12592 }
12593
12594 /* mask all interrupts */
12595 set_intr_state(dd, 0);
12596 /* clear all pending interrupts */
12597 clear_all_interrupts(dd);
12598
12599 /* reset general handler mask, chip MSI-X mappings */
12600 reset_interrupts(dd);
12601
12602 if (single_interrupt)
12603 ret = request_intx_irq(dd);
12604 else
12605 ret = request_msix_irqs(dd);
12606 if (ret)
12607 goto fail;
12608
12609 return 0;
12610
12611 fail:
12612 clean_up_interrupts(dd);
12613 return ret;
12614 }
12615
12616 /*
12617 * Set up context values in dd. Sets:
12618 *
12619 * num_rcv_contexts - number of contexts being used
12620 * n_krcv_queues - number of kernel contexts
12621 * first_user_ctxt - first non-kernel context in array of contexts
12622 * freectxts - number of free user contexts
12623 * num_send_contexts - number of PIO send contexts being used
12624 */
12625 static int set_up_context_variables(struct hfi1_devdata *dd)
12626 {
12627 int num_kernel_contexts;
12628 int total_contexts;
12629 int ret;
12630 unsigned ngroups;
12631
12632 /*
12633 * Kernel receive contexts:
12634 * - min of 2 or 1 context/numa (excluding control context)
12635 * - Context 0 - control context (VL15/multicast/error)
12636 * - Context 1 - first kernel context
12637 * - Context 2 - second kernel context
12638 * ...
12639 */
12640 if (n_krcvqs)
12641 /*
12642 * n_krcvqs is the sum of module parameter kernel receive
12643 * contexts, krcvqs[]. It does not include the control
12644 * context, so add that.
12645 */
12646 num_kernel_contexts = n_krcvqs + 1;
12647 else
12648 num_kernel_contexts = num_online_nodes() + 1;
12649 num_kernel_contexts =
12650 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
12651 /*
12652 * Every kernel receive context needs an ACK send context.
12653 * one send context is allocated for each VL{0-7} and VL15
12654 */
12655 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12656 dd_dev_err(dd,
12657 "Reducing # kernel rcv contexts to: %d, from %d\n",
12658 (int)(dd->chip_send_contexts - num_vls - 1),
12659 (int)num_kernel_contexts);
12660 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12661 }
12662 /*
12663 * User contexts:
12664 * - default to 1 user context per real (non-HT) CPU core if
12665 * num_user_contexts is negative
12666 */
12667 if (num_user_contexts < 0)
12668 num_user_contexts =
12669 cpumask_weight(&dd->affinity->real_cpu_mask);
12670
12671 total_contexts = num_kernel_contexts + num_user_contexts;
12672
12673 /*
12674 * Adjust the counts given a global max.
12675 */
12676 if (total_contexts > dd->chip_rcv_contexts) {
12677 dd_dev_err(dd,
12678 "Reducing # user receive contexts to: %d, from %d\n",
12679 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12680 (int)num_user_contexts);
12681 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12682 /* recalculate */
12683 total_contexts = num_kernel_contexts + num_user_contexts;
12684 }
12685
12686 /* the first N are kernel contexts, the rest are user contexts */
12687 dd->num_rcv_contexts = total_contexts;
12688 dd->n_krcv_queues = num_kernel_contexts;
12689 dd->first_user_ctxt = num_kernel_contexts;
12690 dd->num_user_contexts = num_user_contexts;
12691 dd->freectxts = num_user_contexts;
12692 dd_dev_info(dd,
12693 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
12694 (int)dd->chip_rcv_contexts,
12695 (int)dd->num_rcv_contexts,
12696 (int)dd->n_krcv_queues,
12697 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
12698
12699 /*
12700 * Receive array allocation:
12701 * All RcvArray entries are divided into groups of 8. This
12702 * is required by the hardware and will speed up writes to
12703 * consecutive entries by using write-combining of the entire
12704 * cacheline.
12705 *
12706 * The number of groups are evenly divided among all contexts.
12707 * any left over groups will be given to the first N user
12708 * contexts.
12709 */
12710 dd->rcv_entries.group_size = RCV_INCREMENT;
12711 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
12712 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
12713 dd->rcv_entries.nctxt_extra = ngroups -
12714 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
12715 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
12716 dd->rcv_entries.ngroups,
12717 dd->rcv_entries.nctxt_extra);
12718 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
12719 MAX_EAGER_ENTRIES * 2) {
12720 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
12721 dd->rcv_entries.group_size;
12722 dd_dev_info(dd,
12723 "RcvArray group count too high, change to %u\n",
12724 dd->rcv_entries.ngroups);
12725 dd->rcv_entries.nctxt_extra = 0;
12726 }
12727 /*
12728 * PIO send contexts
12729 */
12730 ret = init_sc_pools_and_sizes(dd);
12731 if (ret >= 0) { /* success */
12732 dd->num_send_contexts = ret;
12733 dd_dev_info(
12734 dd,
12735 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
12736 dd->chip_send_contexts,
12737 dd->num_send_contexts,
12738 dd->sc_sizes[SC_KERNEL].count,
12739 dd->sc_sizes[SC_ACK].count,
12740 dd->sc_sizes[SC_USER].count,
12741 dd->sc_sizes[SC_VL15].count);
12742 ret = 0; /* success */
12743 }
12744
12745 return ret;
12746 }
12747
12748 /*
12749 * Set the device/port partition key table. The MAD code
12750 * will ensure that, at least, the partial management
12751 * partition key is present in the table.
12752 */
12753 static void set_partition_keys(struct hfi1_pportdata *ppd)
12754 {
12755 struct hfi1_devdata *dd = ppd->dd;
12756 u64 reg = 0;
12757 int i;
12758
12759 dd_dev_info(dd, "Setting partition keys\n");
12760 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
12761 reg |= (ppd->pkeys[i] &
12762 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
12763 ((i % 4) *
12764 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
12765 /* Each register holds 4 PKey values. */
12766 if ((i % 4) == 3) {
12767 write_csr(dd, RCV_PARTITION_KEY +
12768 ((i - 3) * 2), reg);
12769 reg = 0;
12770 }
12771 }
12772
12773 /* Always enable HW pkeys check when pkeys table is set */
12774 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
12775 }
12776
12777 /*
12778 * These CSRs and memories are uninitialized on reset and must be
12779 * written before reading to set the ECC/parity bits.
12780 *
12781 * NOTE: All user context CSRs that are not mmaped write-only
12782 * (e.g. the TID flows) must be initialized even if the driver never
12783 * reads them.
12784 */
12785 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
12786 {
12787 int i, j;
12788
12789 /* CceIntMap */
12790 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12791 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12792
12793 /* SendCtxtCreditReturnAddr */
12794 for (i = 0; i < dd->chip_send_contexts; i++)
12795 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
12796
12797 /* PIO Send buffers */
12798 /* SDMA Send buffers */
12799 /*
12800 * These are not normally read, and (presently) have no method
12801 * to be read, so are not pre-initialized
12802 */
12803
12804 /* RcvHdrAddr */
12805 /* RcvHdrTailAddr */
12806 /* RcvTidFlowTable */
12807 for (i = 0; i < dd->chip_rcv_contexts; i++) {
12808 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
12809 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
12810 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
12811 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
12812 }
12813
12814 /* RcvArray */
12815 for (i = 0; i < dd->chip_rcv_array_count; i++)
12816 write_csr(dd, RCV_ARRAY + (8 * i),
12817 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
12818
12819 /* RcvQPMapTable */
12820 for (i = 0; i < 32; i++)
12821 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
12822 }
12823
12824 /*
12825 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
12826 */
12827 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
12828 u64 ctrl_bits)
12829 {
12830 unsigned long timeout;
12831 u64 reg;
12832
12833 /* is the condition present? */
12834 reg = read_csr(dd, CCE_STATUS);
12835 if ((reg & status_bits) == 0)
12836 return;
12837
12838 /* clear the condition */
12839 write_csr(dd, CCE_CTRL, ctrl_bits);
12840
12841 /* wait for the condition to clear */
12842 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
12843 while (1) {
12844 reg = read_csr(dd, CCE_STATUS);
12845 if ((reg & status_bits) == 0)
12846 return;
12847 if (time_after(jiffies, timeout)) {
12848 dd_dev_err(dd,
12849 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
12850 status_bits, reg & status_bits);
12851 return;
12852 }
12853 udelay(1);
12854 }
12855 }
12856
12857 /* set CCE CSRs to chip reset defaults */
12858 static void reset_cce_csrs(struct hfi1_devdata *dd)
12859 {
12860 int i;
12861
12862 /* CCE_REVISION read-only */
12863 /* CCE_REVISION2 read-only */
12864 /* CCE_CTRL - bits clear automatically */
12865 /* CCE_STATUS read-only, use CceCtrl to clear */
12866 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
12867 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
12868 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
12869 for (i = 0; i < CCE_NUM_SCRATCH; i++)
12870 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
12871 /* CCE_ERR_STATUS read-only */
12872 write_csr(dd, CCE_ERR_MASK, 0);
12873 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
12874 /* CCE_ERR_FORCE leave alone */
12875 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
12876 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
12877 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
12878 /* CCE_PCIE_CTRL leave alone */
12879 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
12880 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
12881 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
12882 CCE_MSIX_TABLE_UPPER_RESETCSR);
12883 }
12884 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
12885 /* CCE_MSIX_PBA read-only */
12886 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
12887 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
12888 }
12889 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12890 write_csr(dd, CCE_INT_MAP, 0);
12891 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12892 /* CCE_INT_STATUS read-only */
12893 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
12894 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
12895 /* CCE_INT_FORCE leave alone */
12896 /* CCE_INT_BLOCKED read-only */
12897 }
12898 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
12899 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
12900 }
12901
12902 /* set MISC CSRs to chip reset defaults */
12903 static void reset_misc_csrs(struct hfi1_devdata *dd)
12904 {
12905 int i;
12906
12907 for (i = 0; i < 32; i++) {
12908 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
12909 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
12910 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
12911 }
12912 /*
12913 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
12914 * only be written 128-byte chunks
12915 */
12916 /* init RSA engine to clear lingering errors */
12917 write_csr(dd, MISC_CFG_RSA_CMD, 1);
12918 write_csr(dd, MISC_CFG_RSA_MU, 0);
12919 write_csr(dd, MISC_CFG_FW_CTRL, 0);
12920 /* MISC_STS_8051_DIGEST read-only */
12921 /* MISC_STS_SBM_DIGEST read-only */
12922 /* MISC_STS_PCIE_DIGEST read-only */
12923 /* MISC_STS_FAB_DIGEST read-only */
12924 /* MISC_ERR_STATUS read-only */
12925 write_csr(dd, MISC_ERR_MASK, 0);
12926 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
12927 /* MISC_ERR_FORCE leave alone */
12928 }
12929
12930 /* set TXE CSRs to chip reset defaults */
12931 static void reset_txe_csrs(struct hfi1_devdata *dd)
12932 {
12933 int i;
12934
12935 /*
12936 * TXE Kernel CSRs
12937 */
12938 write_csr(dd, SEND_CTRL, 0);
12939 __cm_reset(dd, 0); /* reset CM internal state */
12940 /* SEND_CONTEXTS read-only */
12941 /* SEND_DMA_ENGINES read-only */
12942 /* SEND_PIO_MEM_SIZE read-only */
12943 /* SEND_DMA_MEM_SIZE read-only */
12944 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
12945 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
12946 /* SEND_PIO_ERR_STATUS read-only */
12947 write_csr(dd, SEND_PIO_ERR_MASK, 0);
12948 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
12949 /* SEND_PIO_ERR_FORCE leave alone */
12950 /* SEND_DMA_ERR_STATUS read-only */
12951 write_csr(dd, SEND_DMA_ERR_MASK, 0);
12952 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
12953 /* SEND_DMA_ERR_FORCE leave alone */
12954 /* SEND_EGRESS_ERR_STATUS read-only */
12955 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
12956 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
12957 /* SEND_EGRESS_ERR_FORCE leave alone */
12958 write_csr(dd, SEND_BTH_QP, 0);
12959 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
12960 write_csr(dd, SEND_SC2VLT0, 0);
12961 write_csr(dd, SEND_SC2VLT1, 0);
12962 write_csr(dd, SEND_SC2VLT2, 0);
12963 write_csr(dd, SEND_SC2VLT3, 0);
12964 write_csr(dd, SEND_LEN_CHECK0, 0);
12965 write_csr(dd, SEND_LEN_CHECK1, 0);
12966 /* SEND_ERR_STATUS read-only */
12967 write_csr(dd, SEND_ERR_MASK, 0);
12968 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
12969 /* SEND_ERR_FORCE read-only */
12970 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
12971 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
12972 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
12973 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
12974 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
12975 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
12976 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
12977 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
12978 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
12979 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
12980 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
12981 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
12982 /* SEND_CM_CREDIT_USED_STATUS read-only */
12983 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
12984 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
12985 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
12986 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
12987 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
12988 for (i = 0; i < TXE_NUM_DATA_VL; i++)
12989 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
12990 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
12991 /* SEND_CM_CREDIT_USED_VL read-only */
12992 /* SEND_CM_CREDIT_USED_VL15 read-only */
12993 /* SEND_EGRESS_CTXT_STATUS read-only */
12994 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
12995 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
12996 /* SEND_EGRESS_ERR_INFO read-only */
12997 /* SEND_EGRESS_ERR_SOURCE read-only */
12998
12999 /*
13000 * TXE Per-Context CSRs
13001 */
13002 for (i = 0; i < dd->chip_send_contexts; i++) {
13003 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13004 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13005 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13006 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13007 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13008 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13009 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13010 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13011 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13012 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13013 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13014 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13015 }
13016
13017 /*
13018 * TXE Per-SDMA CSRs
13019 */
13020 for (i = 0; i < dd->chip_sdma_engines; i++) {
13021 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13022 /* SEND_DMA_STATUS read-only */
13023 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13024 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13025 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13026 /* SEND_DMA_HEAD read-only */
13027 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13028 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13029 /* SEND_DMA_IDLE_CNT read-only */
13030 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13031 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13032 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13033 /* SEND_DMA_ENG_ERR_STATUS read-only */
13034 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13035 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13036 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13037 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13038 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13039 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13040 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13041 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13042 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13043 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13044 }
13045 }
13046
13047 /*
13048 * Expect on entry:
13049 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13050 */
13051 static void init_rbufs(struct hfi1_devdata *dd)
13052 {
13053 u64 reg;
13054 int count;
13055
13056 /*
13057 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13058 * clear.
13059 */
13060 count = 0;
13061 while (1) {
13062 reg = read_csr(dd, RCV_STATUS);
13063 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13064 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13065 break;
13066 /*
13067 * Give up after 1ms - maximum wait time.
13068 *
13069 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
13070 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13071 * 148 KB / (66% * 250MB/s) = 920us
13072 */
13073 if (count++ > 500) {
13074 dd_dev_err(dd,
13075 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13076 __func__, reg);
13077 break;
13078 }
13079 udelay(2); /* do not busy-wait the CSR */
13080 }
13081
13082 /* start the init - expect RcvCtrl to be 0 */
13083 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13084
13085 /*
13086 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13087 * period after the write before RcvStatus.RxRbufInitDone is valid.
13088 * The delay in the first run through the loop below is sufficient and
13089 * required before the first read of RcvStatus.RxRbufInintDone.
13090 */
13091 read_csr(dd, RCV_CTRL);
13092
13093 /* wait for the init to finish */
13094 count = 0;
13095 while (1) {
13096 /* delay is required first time through - see above */
13097 udelay(2); /* do not busy-wait the CSR */
13098 reg = read_csr(dd, RCV_STATUS);
13099 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13100 break;
13101
13102 /* give up after 100us - slowest possible at 33MHz is 73us */
13103 if (count++ > 50) {
13104 dd_dev_err(dd,
13105 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13106 __func__);
13107 break;
13108 }
13109 }
13110 }
13111
13112 /* set RXE CSRs to chip reset defaults */
13113 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13114 {
13115 int i, j;
13116
13117 /*
13118 * RXE Kernel CSRs
13119 */
13120 write_csr(dd, RCV_CTRL, 0);
13121 init_rbufs(dd);
13122 /* RCV_STATUS read-only */
13123 /* RCV_CONTEXTS read-only */
13124 /* RCV_ARRAY_CNT read-only */
13125 /* RCV_BUF_SIZE read-only */
13126 write_csr(dd, RCV_BTH_QP, 0);
13127 write_csr(dd, RCV_MULTICAST, 0);
13128 write_csr(dd, RCV_BYPASS, 0);
13129 write_csr(dd, RCV_VL15, 0);
13130 /* this is a clear-down */
13131 write_csr(dd, RCV_ERR_INFO,
13132 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13133 /* RCV_ERR_STATUS read-only */
13134 write_csr(dd, RCV_ERR_MASK, 0);
13135 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13136 /* RCV_ERR_FORCE leave alone */
13137 for (i = 0; i < 32; i++)
13138 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13139 for (i = 0; i < 4; i++)
13140 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13141 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13142 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13143 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13144 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13145 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13146 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13147 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13148 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13149 }
13150 for (i = 0; i < 32; i++)
13151 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13152
13153 /*
13154 * RXE Kernel and User Per-Context CSRs
13155 */
13156 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13157 /* kernel */
13158 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13159 /* RCV_CTXT_STATUS read-only */
13160 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13161 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13162 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13163 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13164 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13165 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13166 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13167 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13168 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13169 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13170
13171 /* user */
13172 /* RCV_HDR_TAIL read-only */
13173 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13174 /* RCV_EGR_INDEX_TAIL read-only */
13175 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13176 /* RCV_EGR_OFFSET_TAIL read-only */
13177 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13178 write_uctxt_csr(dd, i,
13179 RCV_TID_FLOW_TABLE + (8 * j), 0);
13180 }
13181 }
13182 }
13183
13184 /*
13185 * Set sc2vl tables.
13186 *
13187 * They power on to zeros, so to avoid send context errors
13188 * they need to be set:
13189 *
13190 * SC 0-7 -> VL 0-7 (respectively)
13191 * SC 15 -> VL 15
13192 * otherwise
13193 * -> VL 0
13194 */
13195 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13196 {
13197 int i;
13198 /* init per architecture spec, constrained by hardware capability */
13199
13200 /* HFI maps sent packets */
13201 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13202 0,
13203 0, 0, 1, 1,
13204 2, 2, 3, 3,
13205 4, 4, 5, 5,
13206 6, 6, 7, 7));
13207 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13208 1,
13209 8, 0, 9, 0,
13210 10, 0, 11, 0,
13211 12, 0, 13, 0,
13212 14, 0, 15, 15));
13213 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13214 2,
13215 16, 0, 17, 0,
13216 18, 0, 19, 0,
13217 20, 0, 21, 0,
13218 22, 0, 23, 0));
13219 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13220 3,
13221 24, 0, 25, 0,
13222 26, 0, 27, 0,
13223 28, 0, 29, 0,
13224 30, 0, 31, 0));
13225
13226 /* DC maps received packets */
13227 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13228 15_0,
13229 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13230 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13231 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13232 31_16,
13233 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13234 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13235
13236 /* initialize the cached sc2vl values consistently with h/w */
13237 for (i = 0; i < 32; i++) {
13238 if (i < 8 || i == 15)
13239 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13240 else
13241 *((u8 *)(dd->sc2vl) + i) = 0;
13242 }
13243 }
13244
13245 /*
13246 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13247 * depend on the chip going through a power-on reset - a driver may be loaded
13248 * and unloaded many times.
13249 *
13250 * Do not write any CSR values to the chip in this routine - there may be
13251 * a reset following the (possible) FLR in this routine.
13252 *
13253 */
13254 static void init_chip(struct hfi1_devdata *dd)
13255 {
13256 int i;
13257
13258 /*
13259 * Put the HFI CSRs in a known state.
13260 * Combine this with a DC reset.
13261 *
13262 * Stop the device from doing anything while we do a
13263 * reset. We know there are no other active users of
13264 * the device since we are now in charge. Turn off
13265 * off all outbound and inbound traffic and make sure
13266 * the device does not generate any interrupts.
13267 */
13268
13269 /* disable send contexts and SDMA engines */
13270 write_csr(dd, SEND_CTRL, 0);
13271 for (i = 0; i < dd->chip_send_contexts; i++)
13272 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13273 for (i = 0; i < dd->chip_sdma_engines; i++)
13274 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13275 /* disable port (turn off RXE inbound traffic) and contexts */
13276 write_csr(dd, RCV_CTRL, 0);
13277 for (i = 0; i < dd->chip_rcv_contexts; i++)
13278 write_csr(dd, RCV_CTXT_CTRL, 0);
13279 /* mask all interrupt sources */
13280 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13281 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13282
13283 /*
13284 * DC Reset: do a full DC reset before the register clear.
13285 * A recommended length of time to hold is one CSR read,
13286 * so reread the CceDcCtrl. Then, hold the DC in reset
13287 * across the clear.
13288 */
13289 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13290 (void)read_csr(dd, CCE_DC_CTRL);
13291
13292 if (use_flr) {
13293 /*
13294 * A FLR will reset the SPC core and part of the PCIe.
13295 * The parts that need to be restored have already been
13296 * saved.
13297 */
13298 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13299
13300 /* do the FLR, the DC reset will remain */
13301 hfi1_pcie_flr(dd);
13302
13303 /* restore command and BARs */
13304 restore_pci_variables(dd);
13305
13306 if (is_ax(dd)) {
13307 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13308 hfi1_pcie_flr(dd);
13309 restore_pci_variables(dd);
13310 }
13311 } else {
13312 dd_dev_info(dd, "Resetting CSRs with writes\n");
13313 reset_cce_csrs(dd);
13314 reset_txe_csrs(dd);
13315 reset_rxe_csrs(dd);
13316 reset_misc_csrs(dd);
13317 }
13318 /* clear the DC reset */
13319 write_csr(dd, CCE_DC_CTRL, 0);
13320
13321 /* Set the LED off */
13322 setextled(dd, 0);
13323
13324 /*
13325 * Clear the QSFP reset.
13326 * An FLR enforces a 0 on all out pins. The driver does not touch
13327 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
13328 * anything plugged constantly in reset, if it pays attention
13329 * to RESET_N.
13330 * Prime examples of this are optical cables. Set all pins high.
13331 * I2CCLK and I2CDAT will change per direction, and INT_N and
13332 * MODPRS_N are input only and their value is ignored.
13333 */
13334 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13335 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13336 init_chip_resources(dd);
13337 }
13338
13339 static void init_early_variables(struct hfi1_devdata *dd)
13340 {
13341 int i;
13342
13343 /* assign link credit variables */
13344 dd->vau = CM_VAU;
13345 dd->link_credits = CM_GLOBAL_CREDITS;
13346 if (is_ax(dd))
13347 dd->link_credits--;
13348 dd->vcu = cu_to_vcu(hfi1_cu);
13349 /* enough room for 8 MAD packets plus header - 17K */
13350 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13351 if (dd->vl15_init > dd->link_credits)
13352 dd->vl15_init = dd->link_credits;
13353
13354 write_uninitialized_csrs_and_memories(dd);
13355
13356 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13357 for (i = 0; i < dd->num_pports; i++) {
13358 struct hfi1_pportdata *ppd = &dd->pport[i];
13359
13360 set_partition_keys(ppd);
13361 }
13362 init_sc2vl_tables(dd);
13363 }
13364
13365 static void init_kdeth_qp(struct hfi1_devdata *dd)
13366 {
13367 /* user changed the KDETH_QP */
13368 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13369 /* out of range or illegal value */
13370 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13371 kdeth_qp = 0;
13372 }
13373 if (kdeth_qp == 0) /* not set, or failed range check */
13374 kdeth_qp = DEFAULT_KDETH_QP;
13375
13376 write_csr(dd, SEND_BTH_QP,
13377 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13378 SEND_BTH_QP_KDETH_QP_SHIFT);
13379
13380 write_csr(dd, RCV_BTH_QP,
13381 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13382 RCV_BTH_QP_KDETH_QP_SHIFT);
13383 }
13384
13385 /**
13386 * init_qpmap_table
13387 * @dd - device data
13388 * @first_ctxt - first context
13389 * @last_ctxt - first context
13390 *
13391 * This return sets the qpn mapping table that
13392 * is indexed by qpn[8:1].
13393 *
13394 * The routine will round robin the 256 settings
13395 * from first_ctxt to last_ctxt.
13396 *
13397 * The first/last looks ahead to having specialized
13398 * receive contexts for mgmt and bypass. Normal
13399 * verbs traffic will assumed to be on a range
13400 * of receive contexts.
13401 */
13402 static void init_qpmap_table(struct hfi1_devdata *dd,
13403 u32 first_ctxt,
13404 u32 last_ctxt)
13405 {
13406 u64 reg = 0;
13407 u64 regno = RCV_QP_MAP_TABLE;
13408 int i;
13409 u64 ctxt = first_ctxt;
13410
13411 for (i = 0; i < 256; i++) {
13412 reg |= ctxt << (8 * (i % 8));
13413 ctxt++;
13414 if (ctxt > last_ctxt)
13415 ctxt = first_ctxt;
13416 if (i % 8 == 7) {
13417 write_csr(dd, regno, reg);
13418 reg = 0;
13419 regno += 8;
13420 }
13421 }
13422
13423 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13424 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13425 }
13426
13427 struct rsm_map_table {
13428 u64 map[NUM_MAP_REGS];
13429 unsigned int used;
13430 };
13431
13432 struct rsm_rule_data {
13433 u8 offset;
13434 u8 pkt_type;
13435 u32 field1_off;
13436 u32 field2_off;
13437 u32 index1_off;
13438 u32 index1_width;
13439 u32 index2_off;
13440 u32 index2_width;
13441 u32 mask1;
13442 u32 value1;
13443 u32 mask2;
13444 u32 value2;
13445 };
13446
13447 /*
13448 * Return an initialized RMT map table for users to fill in. OK if it
13449 * returns NULL, indicating no table.
13450 */
13451 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13452 {
13453 struct rsm_map_table *rmt;
13454 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
13455
13456 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
13457 if (rmt) {
13458 memset(rmt->map, rxcontext, sizeof(rmt->map));
13459 rmt->used = 0;
13460 }
13461
13462 return rmt;
13463 }
13464
13465 /*
13466 * Write the final RMT map table to the chip and free the table. OK if
13467 * table is NULL.
13468 */
13469 static void complete_rsm_map_table(struct hfi1_devdata *dd,
13470 struct rsm_map_table *rmt)
13471 {
13472 int i;
13473
13474 if (rmt) {
13475 /* write table to chip */
13476 for (i = 0; i < NUM_MAP_REGS; i++)
13477 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
13478
13479 /* enable RSM */
13480 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13481 }
13482 }
13483
13484 /*
13485 * Add a receive side mapping rule.
13486 */
13487 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
13488 struct rsm_rule_data *rrd)
13489 {
13490 write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
13491 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
13492 1ull << rule_index | /* enable bit */
13493 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13494 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
13495 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13496 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13497 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13498 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13499 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13500 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13501 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
13502 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
13503 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
13504 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
13505 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
13506 }
13507
13508 /* return the number of RSM map table entries that will be used for QOS */
13509 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
13510 unsigned int *np)
13511 {
13512 int i;
13513 unsigned int m, n;
13514 u8 max_by_vl = 0;
13515
13516 /* is QOS active at all? */
13517 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13518 num_vls == 1 ||
13519 krcvqsset <= 1)
13520 goto no_qos;
13521
13522 /* determine bits for qpn */
13523 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
13524 if (krcvqs[i] > max_by_vl)
13525 max_by_vl = krcvqs[i];
13526 if (max_by_vl > 32)
13527 goto no_qos;
13528 m = ilog2(__roundup_pow_of_two(max_by_vl));
13529
13530 /* determine bits for vl */
13531 n = ilog2(__roundup_pow_of_two(num_vls));
13532
13533 /* reject if too much is used */
13534 if ((m + n) > 7)
13535 goto no_qos;
13536
13537 if (mp)
13538 *mp = m;
13539 if (np)
13540 *np = n;
13541
13542 return 1 << (m + n);
13543
13544 no_qos:
13545 if (mp)
13546 *mp = 0;
13547 if (np)
13548 *np = 0;
13549 return 0;
13550 }
13551
13552 /**
13553 * init_qos - init RX qos
13554 * @dd - device data
13555 * @rmt - RSM map table
13556 *
13557 * This routine initializes Rule 0 and the RSM map table to implement
13558 * quality of service (qos).
13559 *
13560 * If all of the limit tests succeed, qos is applied based on the array
13561 * interpretation of krcvqs where entry 0 is VL0.
13562 *
13563 * The number of vl bits (n) and the number of qpn bits (m) are computed to
13564 * feed both the RSM map table and the single rule.
13565 */
13566 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
13567 {
13568 struct rsm_rule_data rrd;
13569 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13570 unsigned int rmt_entries;
13571 u64 reg;
13572
13573 if (!rmt)
13574 goto bail;
13575 rmt_entries = qos_rmt_entries(dd, &m, &n);
13576 if (rmt_entries == 0)
13577 goto bail;
13578 qpns_per_vl = 1 << m;
13579
13580 /* enough room in the map table? */
13581 rmt_entries = 1 << (m + n);
13582 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
13583 goto bail;
13584
13585 /* add qos entries to the the RSM map table */
13586 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
13587 unsigned tctxt;
13588
13589 for (qpn = 0, tctxt = ctxt;
13590 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13591 unsigned idx, regoff, regidx;
13592
13593 /* generate the index the hardware will produce */
13594 idx = rmt->used + ((qpn << n) ^ i);
13595 regoff = (idx % 8) * 8;
13596 regidx = idx / 8;
13597 /* replace default with context number */
13598 reg = rmt->map[regidx];
13599 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13600 << regoff);
13601 reg |= (u64)(tctxt++) << regoff;
13602 rmt->map[regidx] = reg;
13603 if (tctxt == ctxt + krcvqs[i])
13604 tctxt = ctxt;
13605 }
13606 ctxt += krcvqs[i];
13607 }
13608
13609 rrd.offset = rmt->used;
13610 rrd.pkt_type = 2;
13611 rrd.field1_off = LRH_BTH_MATCH_OFFSET;
13612 rrd.field2_off = LRH_SC_MATCH_OFFSET;
13613 rrd.index1_off = LRH_SC_SELECT_OFFSET;
13614 rrd.index1_width = n;
13615 rrd.index2_off = QPN_SELECT_OFFSET;
13616 rrd.index2_width = m + n;
13617 rrd.mask1 = LRH_BTH_MASK;
13618 rrd.value1 = LRH_BTH_VALUE;
13619 rrd.mask2 = LRH_SC_MASK;
13620 rrd.value2 = LRH_SC_VALUE;
13621
13622 /* add rule 0 */
13623 add_rsm_rule(dd, 0, &rrd);
13624
13625 /* mark RSM map entries as used */
13626 rmt->used += rmt_entries;
13627 /* map everything else to the mcast/err/vl15 context */
13628 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
13629 dd->qos_shift = n + 1;
13630 return;
13631 bail:
13632 dd->qos_shift = 1;
13633 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
13634 }
13635
13636 static void init_rxe(struct hfi1_devdata *dd)
13637 {
13638 struct rsm_map_table *rmt;
13639
13640 /* enable all receive errors */
13641 write_csr(dd, RCV_ERR_MASK, ~0ull);
13642
13643 rmt = alloc_rsm_map_table(dd);
13644 /* set up QOS, including the QPN map table */
13645 init_qos(dd, rmt);
13646 complete_rsm_map_table(dd, rmt);
13647 kfree(rmt);
13648
13649 /*
13650 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
13651 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
13652 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
13653 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
13654 * Max_PayLoad_Size set to its minimum of 128.
13655 *
13656 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
13657 * (64 bytes). Max_Payload_Size is possibly modified upward in
13658 * tune_pcie_caps() which is called after this routine.
13659 */
13660 }
13661
13662 static void init_other(struct hfi1_devdata *dd)
13663 {
13664 /* enable all CCE errors */
13665 write_csr(dd, CCE_ERR_MASK, ~0ull);
13666 /* enable *some* Misc errors */
13667 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
13668 /* enable all DC errors, except LCB */
13669 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
13670 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
13671 }
13672
13673 /*
13674 * Fill out the given AU table using the given CU. A CU is defined in terms
13675 * AUs. The table is a an encoding: given the index, how many AUs does that
13676 * represent?
13677 *
13678 * NOTE: Assumes that the register layout is the same for the
13679 * local and remote tables.
13680 */
13681 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
13682 u32 csr0to3, u32 csr4to7)
13683 {
13684 write_csr(dd, csr0to3,
13685 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
13686 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
13687 2ull * cu <<
13688 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
13689 4ull * cu <<
13690 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
13691 write_csr(dd, csr4to7,
13692 8ull * cu <<
13693 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
13694 16ull * cu <<
13695 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
13696 32ull * cu <<
13697 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
13698 64ull * cu <<
13699 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
13700 }
13701
13702 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13703 {
13704 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
13705 SEND_CM_LOCAL_AU_TABLE4_TO7);
13706 }
13707
13708 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13709 {
13710 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
13711 SEND_CM_REMOTE_AU_TABLE4_TO7);
13712 }
13713
13714 static void init_txe(struct hfi1_devdata *dd)
13715 {
13716 int i;
13717
13718 /* enable all PIO, SDMA, general, and Egress errors */
13719 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
13720 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
13721 write_csr(dd, SEND_ERR_MASK, ~0ull);
13722 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
13723
13724 /* enable all per-context and per-SDMA engine errors */
13725 for (i = 0; i < dd->chip_send_contexts; i++)
13726 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
13727 for (i = 0; i < dd->chip_sdma_engines; i++)
13728 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
13729
13730 /* set the local CU to AU mapping */
13731 assign_local_cm_au_table(dd, dd->vcu);
13732
13733 /*
13734 * Set reasonable default for Credit Return Timer
13735 * Don't set on Simulator - causes it to choke.
13736 */
13737 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
13738 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
13739 }
13740
13741 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
13742 {
13743 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13744 unsigned sctxt;
13745 int ret = 0;
13746 u64 reg;
13747
13748 if (!rcd || !rcd->sc) {
13749 ret = -EINVAL;
13750 goto done;
13751 }
13752 sctxt = rcd->sc->hw_context;
13753 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
13754 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
13755 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
13756 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
13757 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
13758 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
13759 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
13760 /*
13761 * Enable send-side J_KEY integrity check, unless this is A0 h/w
13762 */
13763 if (!is_ax(dd)) {
13764 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13765 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13766 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13767 }
13768
13769 /* Enable J_KEY check on receive context. */
13770 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
13771 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
13772 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
13773 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
13774 done:
13775 return ret;
13776 }
13777
13778 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
13779 {
13780 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13781 unsigned sctxt;
13782 int ret = 0;
13783 u64 reg;
13784
13785 if (!rcd || !rcd->sc) {
13786 ret = -EINVAL;
13787 goto done;
13788 }
13789 sctxt = rcd->sc->hw_context;
13790 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
13791 /*
13792 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
13793 * This check would not have been enabled for A0 h/w, see
13794 * set_ctxt_jkey().
13795 */
13796 if (!is_ax(dd)) {
13797 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13798 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13799 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13800 }
13801 /* Turn off the J_KEY on the receive side */
13802 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
13803 done:
13804 return ret;
13805 }
13806
13807 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
13808 {
13809 struct hfi1_ctxtdata *rcd;
13810 unsigned sctxt;
13811 int ret = 0;
13812 u64 reg;
13813
13814 if (ctxt < dd->num_rcv_contexts) {
13815 rcd = dd->rcd[ctxt];
13816 } else {
13817 ret = -EINVAL;
13818 goto done;
13819 }
13820 if (!rcd || !rcd->sc) {
13821 ret = -EINVAL;
13822 goto done;
13823 }
13824 sctxt = rcd->sc->hw_context;
13825 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
13826 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
13827 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
13828 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13829 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13830 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
13831 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13832 done:
13833 return ret;
13834 }
13835
13836 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
13837 {
13838 struct hfi1_ctxtdata *rcd;
13839 unsigned sctxt;
13840 int ret = 0;
13841 u64 reg;
13842
13843 if (ctxt < dd->num_rcv_contexts) {
13844 rcd = dd->rcd[ctxt];
13845 } else {
13846 ret = -EINVAL;
13847 goto done;
13848 }
13849 if (!rcd || !rcd->sc) {
13850 ret = -EINVAL;
13851 goto done;
13852 }
13853 sctxt = rcd->sc->hw_context;
13854 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13855 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13856 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13857 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13858 done:
13859 return ret;
13860 }
13861
13862 /*
13863 * Start doing the clean up the the chip. Our clean up happens in multiple
13864 * stages and this is just the first.
13865 */
13866 void hfi1_start_cleanup(struct hfi1_devdata *dd)
13867 {
13868 aspm_exit(dd);
13869 free_cntrs(dd);
13870 free_rcverr(dd);
13871 clean_up_interrupts(dd);
13872 finish_chip_resources(dd);
13873 }
13874
13875 #define HFI_BASE_GUID(dev) \
13876 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
13877
13878 /*
13879 * Information can be shared between the two HFIs on the same ASIC
13880 * in the same OS. This function finds the peer device and sets
13881 * up a shared structure.
13882 */
13883 static int init_asic_data(struct hfi1_devdata *dd)
13884 {
13885 unsigned long flags;
13886 struct hfi1_devdata *tmp, *peer = NULL;
13887 int ret = 0;
13888
13889 spin_lock_irqsave(&hfi1_devs_lock, flags);
13890 /* Find our peer device */
13891 list_for_each_entry(tmp, &hfi1_dev_list, list) {
13892 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
13893 dd->unit != tmp->unit) {
13894 peer = tmp;
13895 break;
13896 }
13897 }
13898
13899 if (peer) {
13900 dd->asic_data = peer->asic_data;
13901 } else {
13902 dd->asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
13903 if (!dd->asic_data) {
13904 ret = -ENOMEM;
13905 goto done;
13906 }
13907 mutex_init(&dd->asic_data->asic_resource_mutex);
13908 }
13909 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
13910
13911 done:
13912 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
13913 return ret;
13914 }
13915
13916 /*
13917 * Set dd->boardname. Use a generic name if a name is not returned from
13918 * EFI variable space.
13919 *
13920 * Return 0 on success, -ENOMEM if space could not be allocated.
13921 */
13922 static int obtain_boardname(struct hfi1_devdata *dd)
13923 {
13924 /* generic board description */
13925 const char generic[] =
13926 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
13927 unsigned long size;
13928 int ret;
13929
13930 ret = read_hfi1_efi_var(dd, "description", &size,
13931 (void **)&dd->boardname);
13932 if (ret) {
13933 dd_dev_info(dd, "Board description not found\n");
13934 /* use generic description */
13935 dd->boardname = kstrdup(generic, GFP_KERNEL);
13936 if (!dd->boardname)
13937 return -ENOMEM;
13938 }
13939 return 0;
13940 }
13941
13942 /*
13943 * Check the interrupt registers to make sure that they are mapped correctly.
13944 * It is intended to help user identify any mismapping by VMM when the driver
13945 * is running in a VM. This function should only be called before interrupt
13946 * is set up properly.
13947 *
13948 * Return 0 on success, -EINVAL on failure.
13949 */
13950 static int check_int_registers(struct hfi1_devdata *dd)
13951 {
13952 u64 reg;
13953 u64 all_bits = ~(u64)0;
13954 u64 mask;
13955
13956 /* Clear CceIntMask[0] to avoid raising any interrupts */
13957 mask = read_csr(dd, CCE_INT_MASK);
13958 write_csr(dd, CCE_INT_MASK, 0ull);
13959 reg = read_csr(dd, CCE_INT_MASK);
13960 if (reg)
13961 goto err_exit;
13962
13963 /* Clear all interrupt status bits */
13964 write_csr(dd, CCE_INT_CLEAR, all_bits);
13965 reg = read_csr(dd, CCE_INT_STATUS);
13966 if (reg)
13967 goto err_exit;
13968
13969 /* Set all interrupt status bits */
13970 write_csr(dd, CCE_INT_FORCE, all_bits);
13971 reg = read_csr(dd, CCE_INT_STATUS);
13972 if (reg != all_bits)
13973 goto err_exit;
13974
13975 /* Restore the interrupt mask */
13976 write_csr(dd, CCE_INT_CLEAR, all_bits);
13977 write_csr(dd, CCE_INT_MASK, mask);
13978
13979 return 0;
13980 err_exit:
13981 write_csr(dd, CCE_INT_MASK, mask);
13982 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
13983 return -EINVAL;
13984 }
13985
13986 /**
13987 * Allocate and initialize the device structure for the hfi.
13988 * @dev: the pci_dev for hfi1_ib device
13989 * @ent: pci_device_id struct for this dev
13990 *
13991 * Also allocates, initializes, and returns the devdata struct for this
13992 * device instance
13993 *
13994 * This is global, and is called directly at init to set up the
13995 * chip-specific function pointers for later use.
13996 */
13997 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
13998 const struct pci_device_id *ent)
13999 {
14000 struct hfi1_devdata *dd;
14001 struct hfi1_pportdata *ppd;
14002 u64 reg;
14003 int i, ret;
14004 static const char * const inames[] = { /* implementation names */
14005 "RTL silicon",
14006 "RTL VCS simulation",
14007 "RTL FPGA emulation",
14008 "Functional simulator"
14009 };
14010 struct pci_dev *parent = pdev->bus->self;
14011
14012 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14013 sizeof(struct hfi1_pportdata));
14014 if (IS_ERR(dd))
14015 goto bail;
14016 ppd = dd->pport;
14017 for (i = 0; i < dd->num_pports; i++, ppd++) {
14018 int vl;
14019 /* init common fields */
14020 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14021 /* DC supports 4 link widths */
14022 ppd->link_width_supported =
14023 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14024 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14025 ppd->link_width_downgrade_supported =
14026 ppd->link_width_supported;
14027 /* start out enabling only 4X */
14028 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14029 ppd->link_width_downgrade_enabled =
14030 ppd->link_width_downgrade_supported;
14031 /* link width active is 0 when link is down */
14032 /* link width downgrade active is 0 when link is down */
14033
14034 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14035 num_vls > HFI1_MAX_VLS_SUPPORTED) {
14036 hfi1_early_err(&pdev->dev,
14037 "Invalid num_vls %u, using %u VLs\n",
14038 num_vls, HFI1_MAX_VLS_SUPPORTED);
14039 num_vls = HFI1_MAX_VLS_SUPPORTED;
14040 }
14041 ppd->vls_supported = num_vls;
14042 ppd->vls_operational = ppd->vls_supported;
14043 ppd->actual_vls_operational = ppd->vls_supported;
14044 /* Set the default MTU. */
14045 for (vl = 0; vl < num_vls; vl++)
14046 dd->vld[vl].mtu = hfi1_max_mtu;
14047 dd->vld[15].mtu = MAX_MAD_PACKET;
14048 /*
14049 * Set the initial values to reasonable default, will be set
14050 * for real when link is up.
14051 */
14052 ppd->lstate = IB_PORT_DOWN;
14053 ppd->overrun_threshold = 0x4;
14054 ppd->phy_error_threshold = 0xf;
14055 ppd->port_crc_mode_enabled = link_crc_mask;
14056 /* initialize supported LTP CRC mode */
14057 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14058 /* initialize enabled LTP CRC mode */
14059 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14060 /* start in offline */
14061 ppd->host_link_state = HLS_DN_OFFLINE;
14062 init_vl_arb_caches(ppd);
14063 ppd->last_pstate = 0xff; /* invalid value */
14064 }
14065
14066 dd->link_default = HLS_DN_POLL;
14067
14068 /*
14069 * Do remaining PCIe setup and save PCIe values in dd.
14070 * Any error printing is already done by the init code.
14071 * On return, we have the chip mapped.
14072 */
14073 ret = hfi1_pcie_ddinit(dd, pdev, ent);
14074 if (ret < 0)
14075 goto bail_free;
14076
14077 /* verify that reads actually work, save revision for reset check */
14078 dd->revision = read_csr(dd, CCE_REVISION);
14079 if (dd->revision == ~(u64)0) {
14080 dd_dev_err(dd, "cannot read chip CSRs\n");
14081 ret = -EINVAL;
14082 goto bail_cleanup;
14083 }
14084 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14085 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14086 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14087 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14088
14089 /*
14090 * Check interrupt registers mapping if the driver has no access to
14091 * the upstream component. In this case, it is likely that the driver
14092 * is running in a VM.
14093 */
14094 if (!parent) {
14095 ret = check_int_registers(dd);
14096 if (ret)
14097 goto bail_cleanup;
14098 }
14099
14100 /*
14101 * obtain the hardware ID - NOT related to unit, which is a
14102 * software enumeration
14103 */
14104 reg = read_csr(dd, CCE_REVISION2);
14105 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14106 & CCE_REVISION2_HFI_ID_MASK;
14107 /* the variable size will remove unwanted bits */
14108 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14109 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14110 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14111 dd->icode < ARRAY_SIZE(inames) ?
14112 inames[dd->icode] : "unknown", (int)dd->irev);
14113
14114 /* speeds the hardware can support */
14115 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14116 /* speeds allowed to run at */
14117 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14118 /* give a reasonable active value, will be set on link up */
14119 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14120
14121 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14122 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14123 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14124 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14125 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14126 /* fix up link widths for emulation _p */
14127 ppd = dd->pport;
14128 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14129 ppd->link_width_supported =
14130 ppd->link_width_enabled =
14131 ppd->link_width_downgrade_supported =
14132 ppd->link_width_downgrade_enabled =
14133 OPA_LINK_WIDTH_1X;
14134 }
14135 /* insure num_vls isn't larger than number of sdma engines */
14136 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14137 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14138 num_vls, dd->chip_sdma_engines);
14139 num_vls = dd->chip_sdma_engines;
14140 ppd->vls_supported = dd->chip_sdma_engines;
14141 ppd->vls_operational = ppd->vls_supported;
14142 }
14143
14144 /*
14145 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14146 * Limit the max if larger than the field holds. If timeout is
14147 * non-zero, then the calculated field will be at least 1.
14148 *
14149 * Must be after icode is set up - the cclock rate depends
14150 * on knowing the hardware being used.
14151 */
14152 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14153 if (dd->rcv_intr_timeout_csr >
14154 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14155 dd->rcv_intr_timeout_csr =
14156 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14157 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14158 dd->rcv_intr_timeout_csr = 1;
14159
14160 /* needs to be done before we look for the peer device */
14161 read_guid(dd);
14162
14163 /* set up shared ASIC data with peer device */
14164 ret = init_asic_data(dd);
14165 if (ret)
14166 goto bail_cleanup;
14167
14168 /* obtain chip sizes, reset chip CSRs */
14169 init_chip(dd);
14170
14171 /* read in the PCIe link speed information */
14172 ret = pcie_speeds(dd);
14173 if (ret)
14174 goto bail_cleanup;
14175
14176 /* Needs to be called before hfi1_firmware_init */
14177 get_platform_config(dd);
14178
14179 /* read in firmware */
14180 ret = hfi1_firmware_init(dd);
14181 if (ret)
14182 goto bail_cleanup;
14183
14184 /*
14185 * In general, the PCIe Gen3 transition must occur after the
14186 * chip has been idled (so it won't initiate any PCIe transactions
14187 * e.g. an interrupt) and before the driver changes any registers
14188 * (the transition will reset the registers).
14189 *
14190 * In particular, place this call after:
14191 * - init_chip() - the chip will not initiate any PCIe transactions
14192 * - pcie_speeds() - reads the current link speed
14193 * - hfi1_firmware_init() - the needed firmware is ready to be
14194 * downloaded
14195 */
14196 ret = do_pcie_gen3_transition(dd);
14197 if (ret)
14198 goto bail_cleanup;
14199
14200 /* start setting dd values and adjusting CSRs */
14201 init_early_variables(dd);
14202
14203 parse_platform_config(dd);
14204
14205 ret = obtain_boardname(dd);
14206 if (ret)
14207 goto bail_cleanup;
14208
14209 snprintf(dd->boardversion, BOARD_VERS_MAX,
14210 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14211 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14212 (u32)dd->majrev,
14213 (u32)dd->minrev,
14214 (dd->revision >> CCE_REVISION_SW_SHIFT)
14215 & CCE_REVISION_SW_MASK);
14216
14217 /*
14218 * The real cpu mask is part of the affinity struct but has to be
14219 * initialized earlier than the rest of the affinity struct because it
14220 * is needed to calculate the number of user contexts in
14221 * set_up_context_variables(). However, hfi1_dev_affinity_init(),
14222 * which initializes the rest of the affinity struct members,
14223 * depends on set_up_context_variables() for the number of kernel
14224 * contexts, so it cannot be called before set_up_context_variables().
14225 */
14226 ret = init_real_cpu_mask(dd);
14227 if (ret)
14228 goto bail_cleanup;
14229
14230 ret = set_up_context_variables(dd);
14231 if (ret)
14232 goto bail_cleanup;
14233
14234 /* set initial RXE CSRs */
14235 init_rxe(dd);
14236 /* set initial TXE CSRs */
14237 init_txe(dd);
14238 /* set initial non-RXE, non-TXE CSRs */
14239 init_other(dd);
14240 /* set up KDETH QP prefix in both RX and TX CSRs */
14241 init_kdeth_qp(dd);
14242
14243 hfi1_dev_affinity_init(dd);
14244
14245 /* send contexts must be set up before receive contexts */
14246 ret = init_send_contexts(dd);
14247 if (ret)
14248 goto bail_cleanup;
14249
14250 ret = hfi1_create_ctxts(dd);
14251 if (ret)
14252 goto bail_cleanup;
14253
14254 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14255 /*
14256 * rcd[0] is guaranteed to be valid by this point. Also, all
14257 * context are using the same value, as per the module parameter.
14258 */
14259 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14260
14261 ret = init_pervl_scs(dd);
14262 if (ret)
14263 goto bail_cleanup;
14264
14265 /* sdma init */
14266 for (i = 0; i < dd->num_pports; ++i) {
14267 ret = sdma_init(dd, i);
14268 if (ret)
14269 goto bail_cleanup;
14270 }
14271
14272 /* use contexts created by hfi1_create_ctxts */
14273 ret = set_up_interrupts(dd);
14274 if (ret)
14275 goto bail_cleanup;
14276
14277 /* set up LCB access - must be after set_up_interrupts() */
14278 init_lcb_access(dd);
14279
14280 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14281 dd->base_guid & 0xFFFFFF);
14282
14283 dd->oui1 = dd->base_guid >> 56 & 0xFF;
14284 dd->oui2 = dd->base_guid >> 48 & 0xFF;
14285 dd->oui3 = dd->base_guid >> 40 & 0xFF;
14286
14287 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14288 if (ret)
14289 goto bail_clear_intr;
14290 check_fabric_firmware_versions(dd);
14291
14292 thermal_init(dd);
14293
14294 ret = init_cntrs(dd);
14295 if (ret)
14296 goto bail_clear_intr;
14297
14298 ret = init_rcverr(dd);
14299 if (ret)
14300 goto bail_free_cntrs;
14301
14302 ret = eprom_init(dd);
14303 if (ret)
14304 goto bail_free_rcverr;
14305
14306 goto bail;
14307
14308 bail_free_rcverr:
14309 free_rcverr(dd);
14310 bail_free_cntrs:
14311 free_cntrs(dd);
14312 bail_clear_intr:
14313 clean_up_interrupts(dd);
14314 bail_cleanup:
14315 hfi1_pcie_ddcleanup(dd);
14316 bail_free:
14317 hfi1_free_devdata(dd);
14318 dd = ERR_PTR(ret);
14319 bail:
14320 return dd;
14321 }
14322
14323 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14324 u32 dw_len)
14325 {
14326 u32 delta_cycles;
14327 u32 current_egress_rate = ppd->current_egress_rate;
14328 /* rates here are in units of 10^6 bits/sec */
14329
14330 if (desired_egress_rate == -1)
14331 return 0; /* shouldn't happen */
14332
14333 if (desired_egress_rate >= current_egress_rate)
14334 return 0; /* we can't help go faster, only slower */
14335
14336 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14337 egress_cycles(dw_len * 4, current_egress_rate);
14338
14339 return (u16)delta_cycles;
14340 }
14341
14342 /**
14343 * create_pbc - build a pbc for transmission
14344 * @flags: special case flags or-ed in built pbc
14345 * @srate: static rate
14346 * @vl: vl
14347 * @dwlen: dword length (header words + data words + pbc words)
14348 *
14349 * Create a PBC with the given flags, rate, VL, and length.
14350 *
14351 * NOTE: The PBC created will not insert any HCRC - all callers but one are
14352 * for verbs, which does not use this PSM feature. The lone other caller
14353 * is for the diagnostic interface which calls this if the user does not
14354 * supply their own PBC.
14355 */
14356 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14357 u32 dw_len)
14358 {
14359 u64 pbc, delay = 0;
14360
14361 if (unlikely(srate_mbs))
14362 delay = delay_cycles(ppd, srate_mbs, dw_len);
14363
14364 pbc = flags
14365 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14366 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14367 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14368 | (dw_len & PBC_LENGTH_DWS_MASK)
14369 << PBC_LENGTH_DWS_SHIFT;
14370
14371 return pbc;
14372 }
14373
14374 #define SBUS_THERMAL 0x4f
14375 #define SBUS_THERM_MONITOR_MODE 0x1
14376
14377 #define THERM_FAILURE(dev, ret, reason) \
14378 dd_dev_err((dd), \
14379 "Thermal sensor initialization failed: %s (%d)\n", \
14380 (reason), (ret))
14381
14382 /*
14383 * Initialize the Avago Thermal sensor.
14384 *
14385 * After initialization, enable polling of thermal sensor through
14386 * SBus interface. In order for this to work, the SBus Master
14387 * firmware has to be loaded due to the fact that the HW polling
14388 * logic uses SBus interrupts, which are not supported with
14389 * default firmware. Otherwise, no data will be returned through
14390 * the ASIC_STS_THERM CSR.
14391 */
14392 static int thermal_init(struct hfi1_devdata *dd)
14393 {
14394 int ret = 0;
14395
14396 if (dd->icode != ICODE_RTL_SILICON ||
14397 check_chip_resource(dd, CR_THERM_INIT, NULL))
14398 return ret;
14399
14400 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14401 if (ret) {
14402 THERM_FAILURE(dd, ret, "Acquire SBus");
14403 return ret;
14404 }
14405
14406 dd_dev_info(dd, "Initializing thermal sensor\n");
14407 /* Disable polling of thermal readings */
14408 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14409 msleep(100);
14410 /* Thermal Sensor Initialization */
14411 /* Step 1: Reset the Thermal SBus Receiver */
14412 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14413 RESET_SBUS_RECEIVER, 0);
14414 if (ret) {
14415 THERM_FAILURE(dd, ret, "Bus Reset");
14416 goto done;
14417 }
14418 /* Step 2: Set Reset bit in Thermal block */
14419 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14420 WRITE_SBUS_RECEIVER, 0x1);
14421 if (ret) {
14422 THERM_FAILURE(dd, ret, "Therm Block Reset");
14423 goto done;
14424 }
14425 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
14426 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14427 WRITE_SBUS_RECEIVER, 0x32);
14428 if (ret) {
14429 THERM_FAILURE(dd, ret, "Write Clock Div");
14430 goto done;
14431 }
14432 /* Step 4: Select temperature mode */
14433 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14434 WRITE_SBUS_RECEIVER,
14435 SBUS_THERM_MONITOR_MODE);
14436 if (ret) {
14437 THERM_FAILURE(dd, ret, "Write Mode Sel");
14438 goto done;
14439 }
14440 /* Step 5: De-assert block reset and start conversion */
14441 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14442 WRITE_SBUS_RECEIVER, 0x2);
14443 if (ret) {
14444 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14445 goto done;
14446 }
14447 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
14448 msleep(22);
14449
14450 /* Enable polling of thermal readings */
14451 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14452
14453 /* Set initialized flag */
14454 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
14455 if (ret)
14456 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
14457
14458 done:
14459 release_chip_resource(dd, CR_SBUS);
14460 return ret;
14461 }
14462
14463 static void handle_temp_err(struct hfi1_devdata *dd)
14464 {
14465 struct hfi1_pportdata *ppd = &dd->pport[0];
14466 /*
14467 * Thermal Critical Interrupt
14468 * Put the device into forced freeze mode, take link down to
14469 * offline, and put DC into reset.
14470 */
14471 dd_dev_emerg(dd,
14472 "Critical temperature reached! Forcing device into freeze mode!\n");
14473 dd->flags |= HFI1_FORCED_FREEZE;
14474 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
14475 /*
14476 * Shut DC down as much and as quickly as possible.
14477 *
14478 * Step 1: Take the link down to OFFLINE. This will cause the
14479 * 8051 to put the Serdes in reset. However, we don't want to
14480 * go through the entire link state machine since we want to
14481 * shutdown ASAP. Furthermore, this is not a graceful shutdown
14482 * but rather an attempt to save the chip.
14483 * Code below is almost the same as quiet_serdes() but avoids
14484 * all the extra work and the sleeps.
14485 */
14486 ppd->driver_link_ready = 0;
14487 ppd->link_enabled = 0;
14488 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14489 PLS_OFFLINE);
14490 /*
14491 * Step 2: Shutdown LCB and 8051
14492 * After shutdown, do not restore DC_CFG_RESET value.
14493 */
14494 dc_shutdown(dd);
14495 }
This page took 0.554937 seconds and 5 git commands to generate.