Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm into next
[deliverable/linux.git] / drivers / staging / rtl8192ee / efuse.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2009-2010 Realtek Corporation.
4 *
5 * Tmis program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called LICENSE.
16 *
17 * Contact Information:
18 * wlanfae <wlanfae@realtek.com>
19 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20 * Hsinchu 300, Taiwan.
21 *
22 * Larry Finger <Larry.Finger@lwfinger.net>
23 *
24 *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27
28 static const u8 MAX_PGPKT_SIZE = 9;
29 static const u8 PGPKT_DATA_SIZE = 8;
30 static const int EFUSE_MAX_SIZE = 512;
31
32 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
33 {0, 0, 0, 2},
34 {0, 1, 0, 2},
35 {0, 2, 0, 2},
36 {1, 0, 0, 1},
37 {1, 0, 1, 1},
38 {1, 1, 0, 1},
39 {1, 1, 1, 3},
40 {1, 3, 0, 17},
41 {3, 3, 1, 48},
42 {10, 0, 0, 6},
43 {10, 3, 0, 1},
44 {10, 3, 1, 1},
45 {11, 0, 0, 28}
46 };
47
48 static void efuse92e_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
49 u8 *value);
50 static void efuse92e_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
51 u16 *value);
52 static void efuse92e_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
53 u32 *value);
54 static void efuse92e_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
55 u8 value);
56 static void efuse92e_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
57 u16 value);
58 static void efuse92e_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
59 u32 value);
60 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
61 u8 data);
62 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
63 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
64 u8 *data);
65 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
66 u8 word_en, u8 *data);
67 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
68 u8 *targetdata);
69 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
70 u16 efuse_addr, u8 word_en, u8 *data);
71 static void efuse_power_switch(struct ieee80211_hw *hw, u8 bwrite,
72 u8 pwrstate);
73 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
74 static u8 efuse_calculate_word_cnts(u8 word_en);
75
76 void efuse92e_initialize(struct ieee80211_hw *hw)
77 {
78 struct rtl_priv *rtlpriv = rtl_priv(hw);
79 u8 bytetemp;
80 u8 temp;
81
82 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
83 temp = bytetemp | 0x20;
84 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
85
86 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
87 temp = bytetemp & 0xFE;
88 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
89
90 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
91 temp = bytetemp | 0x80;
92 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
93
94 rtl_write_byte(rtlpriv, 0x2F8, 0x3);
95
96 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
97 }
98
99 u8 stg_efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
100 {
101 struct rtl_priv *rtlpriv = rtl_priv(hw);
102 u8 data;
103 u8 bytetemp;
104 u8 temp;
105 u32 k = 0;
106 const u32 efuse_real_content_len =
107 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
108
109 if (address < efuse_real_content_len) {
110 temp = address & 0xFF;
111 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
112 temp);
113 bytetemp = rtl_read_byte(rtlpriv,
114 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
115 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
116 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
117 temp);
118
119 bytetemp = rtl_read_byte(rtlpriv,
120 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
121 temp = bytetemp & 0x7F;
122 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
123 temp);
124
125 bytetemp = rtl_read_byte(rtlpriv,
126 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
127 while (!(bytetemp & 0x80)) {
128 bytetemp = rtl_read_byte(rtlpriv,
129 rtlpriv->cfg->
130 maps[EFUSE_CTRL] + 3);
131 k++;
132 if (k == 1000) {
133 k = 0;
134 break;
135 }
136 }
137 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
138 return data;
139 } else {
140 return 0xFF;
141 }
142 }
143 EXPORT_SYMBOL(stg_efuse_read_1byte);
144
145 void efuse92e_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
146 {
147 struct rtl_priv *rtlpriv = rtl_priv(hw);
148 u8 bytetemp;
149 u8 temp;
150 u32 k = 0;
151 const u32 efuse_real_content_len =
152 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
153
154 RT_TRACE(COMP_EFUSE, DBG_LOUD,
155 ("Addr=%x Data =%x\n", address, value));
156
157 if (address < efuse_real_content_len) {
158 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
159
160 temp = address & 0xFF;
161 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
162 temp);
163 bytetemp = rtl_read_byte(rtlpriv,
164 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
165
166 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
167 rtl_write_byte(rtlpriv,
168 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
169
170 bytetemp = rtl_read_byte(rtlpriv,
171 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
172 temp = bytetemp | 0x80;
173 rtl_write_byte(rtlpriv,
174 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
175
176 bytetemp = rtl_read_byte(rtlpriv,
177 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
178
179 while (bytetemp & 0x80) {
180 bytetemp = rtl_read_byte(rtlpriv,
181 rtlpriv->cfg->
182 maps[EFUSE_CTRL] + 3);
183 k++;
184 if (k == 100) {
185 k = 0;
186 break;
187 }
188 }
189 }
190 }
191
192 void read92e_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
193 {
194 struct rtl_priv *rtlpriv = rtl_priv(hw);
195 u32 value32;
196 u8 readbyte;
197 u16 retry;
198
199 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
200 (_offset & 0xff));
201 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
202 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
203 ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
204
205 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
206 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
207 (readbyte & 0x7f));
208
209 retry = 0;
210 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
211 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
212 value32 = rtl_read_dword(rtlpriv,
213 rtlpriv->cfg->maps[EFUSE_CTRL]);
214 retry++;
215 }
216
217 udelay(50);
218 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
219
220 *pbuf = (u8) (value32 & 0xff);
221 }
222
223 void read92e_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte,
224 u8 *pbuf)
225 {
226 struct rtl_priv *rtlpriv = rtl_priv(hw);
227 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
228 u8 *efuse_tbl;
229 u8 rtemp8[1];
230 u16 efuse_addr = 0;
231 u8 offset, wren;
232 u8 u1temp = 0;
233 u16 i;
234 u16 j;
235 const u16 efuse_max_section =
236 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
237 const u32 efuse_real_content_len =
238 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
239 u16 **efuse_word;
240 u16 efuse_utilized = 0;
241 u8 efuse_usage;
242
243 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
244 RT_TRACE(COMP_EFUSE, DBG_LOUD,
245 ("read92e_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
246 _offset, _size_byte));
247 return;
248 }
249
250 /* allocate memory for efuse_tbl and efuse_word */
251 efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
252 sizeof(u8), GFP_ATOMIC);
253 if (!efuse_tbl)
254 return;
255 efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
256 if (!efuse_word)
257 goto out;
258 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
259 efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
260 GFP_ATOMIC);
261 if (!efuse_word[i])
262 goto done;
263 }
264
265 for (i = 0; i < efuse_max_section; i++)
266 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
267 efuse_word[j][j] = 0xFFFF;
268
269 read92e_efuse_byte(hw, efuse_addr, rtemp8);
270 if (*rtemp8 != 0xFF) {
271 efuse_utilized++;
272 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
273 "Addr=%d\n", efuse_addr);
274 efuse_addr++;
275 }
276
277 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_real_content_len)) {
278 /* Check PG header for section num. */
279 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
280 u1temp = ((*rtemp8 & 0xE0) >> 5);
281 read92e_efuse_byte(hw, efuse_addr, rtemp8);
282
283 if ((*rtemp8 & 0x0F) == 0x0F) {
284 efuse_addr++;
285 read92e_efuse_byte(hw, efuse_addr, rtemp8);
286
287 if (*rtemp8 != 0xFF &&
288 (efuse_addr < efuse_real_content_len)) {
289 efuse_addr++;
290 }
291 continue;
292 } else {
293 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
294 wren = (*rtemp8 & 0x0F);
295 efuse_addr++;
296 }
297 } else {
298 offset = ((*rtemp8 >> 4) & 0x0f);
299 wren = (*rtemp8 & 0x0f);
300 }
301
302 if (offset < efuse_max_section) {
303 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
304 "offset-%d Worden=%x\n", offset, wren);
305
306 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
307 if (!(wren & 0x01)) {
308 RTPRINT(rtlpriv, FEEPROM,
309 EFUSE_READ_ALL, "Addr=%d\n",
310 efuse_addr);
311
312 read92e_efuse_byte(hw, efuse_addr,
313 rtemp8);
314 efuse_addr++;
315 efuse_utilized++;
316 efuse_word[i][offset] = (*rtemp8 &
317 0xff);
318
319 if (efuse_addr >=
320 efuse_real_content_len)
321 break;
322
323 RTPRINT(rtlpriv, FEEPROM,
324 EFUSE_READ_ALL, "Addr=%d\n",
325 efuse_addr);
326
327 read92e_efuse_byte(hw, efuse_addr,
328 rtemp8);
329 efuse_addr++;
330 efuse_utilized++;
331 efuse_word[i][offset] |=
332 (((u16) *rtemp8 << 8) & 0xff00);
333
334 if (efuse_addr >=
335 efuse_real_content_len)
336 break;
337 }
338
339 wren >>= 1;
340 }
341 }
342
343 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
344 "Addr=%d\n", efuse_addr);
345 read92e_efuse_byte(hw, efuse_addr, rtemp8);
346 if (*rtemp8 != 0xFF && (efuse_addr < efuse_real_content_len)) {
347 efuse_utilized++;
348 efuse_addr++;
349 }
350 }
351
352 for (i = 0; i < efuse_max_section; i++) {
353 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
354 efuse_tbl[(i * 8) + (j * 2)] =
355 (efuse_word[j][i] & 0xff);
356 efuse_tbl[(i * 8) + ((j * 2) + 1)] =
357 ((efuse_word[j][i] >> 8) & 0xff);
358 }
359 }
360
361 for (i = 0; i < _size_byte; i++)
362 pbuf[i] = efuse_tbl[_offset + i];
363
364 rtlefuse->efuse_usedbytes = efuse_utilized;
365 efuse_usage = (u8) ((efuse_utilized * 100) / efuse_real_content_len);
366 rtlefuse->efuse_usedpercentage = efuse_usage;
367 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
368 (u8 *)&efuse_utilized);
369 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
370 (u8 *)&efuse_usage);
371 done:
372 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
373 kfree(efuse_word[i]);
374 kfree(efuse_word);
375 out:
376 kfree(efuse_tbl);
377 }
378
379 bool efuse92e_shadow_update_chk(struct ieee80211_hw *hw)
380 {
381 struct rtl_priv *rtlpriv = rtl_priv(hw);
382 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
383 u8 section_idx, i, Base;
384 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
385 bool bwordchanged, bresult = true;
386
387 for (section_idx = 0; section_idx < 16; section_idx++) {
388 Base = section_idx * 8;
389 bwordchanged = false;
390
391 for (i = 0; i < 8; i = i + 2) {
392 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
393 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
394 (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
395 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
396 1])) {
397 words_need++;
398 bwordchanged = true;
399 }
400 }
401
402 if (bwordchanged)
403 hdr_num++;
404 }
405
406 totalbytes = hdr_num + words_need * 2;
407 efuse_used = rtlefuse->efuse_usedbytes;
408
409 if ((totalbytes + efuse_used) >=
410 (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
411 bresult = false;
412
413 RT_TRACE(COMP_EFUSE, DBG_LOUD,
414 ("efuse92e_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
415 totalbytes, hdr_num, words_need, efuse_used));
416
417 return bresult;
418 }
419
420 void efuse92e_shadow_read(struct ieee80211_hw *hw, u8 type,
421 u16 offset, u32 *value)
422 {
423 if (type == 1)
424 efuse92e_shadow_read_1byte(hw, offset, (u8 *)value);
425 else if (type == 2)
426 efuse92e_shadow_read_2byte(hw, offset, (u16 *)value);
427 else if (type == 4)
428 efuse92e_shadow_read_4byte(hw, offset, (u32 *)value);
429 }
430 EXPORT_SYMBOL(efuse92e_shadow_read);
431
432 void efuse92e_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
433 u32 value)
434 {
435 if (type == 1)
436 efuse92e_shadow_write_1byte(hw, offset, (u8)value);
437 else if (type == 2)
438 efuse92e_shadow_write_2byte(hw, offset, (u16)value);
439 else if (type == 4)
440 efuse92e_shadow_write_4byte(hw, offset, (u32)value);
441 }
442
443 bool efuse92e_shadow_update(struct ieee80211_hw *hw)
444 {
445 struct rtl_priv *rtlpriv = rtl_priv(hw);
446 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
447 u16 i, offset, base;
448 u8 word_en = 0x0F;
449 u8 first_pg = false;
450
451 RT_TRACE(COMP_EFUSE, DBG_LOUD, ("\n"));
452
453 if (!efuse92e_shadow_update_chk(hw)) {
454 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
455 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
456 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
457 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
458
459 RT_TRACE(COMP_EFUSE, DBG_LOUD,
460 ("efuse out of capacity!!\n"));
461 return false;
462 }
463 efuse_power_switch(hw, true, true);
464
465 for (offset = 0; offset < 16; offset++) {
466 word_en = 0x0F;
467 base = offset * 8;
468
469 for (i = 0; i < 8; i++) {
470 if (first_pg) {
471 word_en &= ~(BIT(i / 2));
472
473 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
474 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
475 } else {
476 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
477 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
478 word_en &= ~(BIT(i / 2));
479
480 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
481 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
482 }
483 }
484 }
485
486 if (word_en != 0x0F) {
487 u8 tmpdata[8];
488 memcpy(tmpdata,
489 (&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base]),
490 8);
491 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
492 "U-efuse\n", tmpdata, 8);
493
494 if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
495 tmpdata)) {
496 RT_TRACE(COMP_ERR, DBG_WARNING,
497 ("PG section(%#x) fail!!\n", offset));
498 break;
499 }
500 }
501 }
502
503 efuse_power_switch(hw, true, false);
504 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
505
506 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
507 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
508 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
509
510 RT_TRACE(COMP_EFUSE, DBG_LOUD, ("\n"));
511 return true;
512 }
513
514 void stg_rtl_efuse92e_shadow_map_update(struct ieee80211_hw *hw)
515 {
516 struct rtl_priv *rtlpriv = rtl_priv(hw);
517 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
518
519 if (rtlefuse->autoload_failflag) {
520 memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
521 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
522 } else {
523 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
524 }
525
526 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
527 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
528 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
529 }
530 EXPORT_SYMBOL(stg_rtl_efuse92e_shadow_map_update);
531
532 void efuse92e_force_write_vendor_Id(struct ieee80211_hw *hw)
533 {
534 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
535
536 efuse_power_switch(hw, true, true);
537 efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
538 efuse_power_switch(hw, true, false);
539 }
540
541 void efuse92e_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
542 {
543 }
544
545 static void efuse92e_shadow_read_1byte(struct ieee80211_hw *hw,
546 u16 offset, u8 *value)
547 {
548 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
549 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
550 }
551
552 static void efuse92e_shadow_read_2byte(struct ieee80211_hw *hw,
553 u16 offset, u16 *value)
554 {
555 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
556
557 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
558 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
559 }
560
561 static void efuse92e_shadow_read_4byte(struct ieee80211_hw *hw,
562 u16 offset, u32 *value)
563 {
564 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
565
566 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
567 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
568 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
569 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
570 }
571
572 static void efuse92e_shadow_write_1byte(struct ieee80211_hw *hw,
573 u16 offset, u8 value)
574 {
575 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
576
577 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
578 }
579
580 static void efuse92e_shadow_write_2byte(struct ieee80211_hw *hw,
581 u16 offset, u16 value)
582 {
583 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
584
585 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
586 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
587 }
588
589 static void efuse92e_shadow_write_4byte(struct ieee80211_hw *hw,
590 u16 offset, u32 value)
591 {
592 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
593
594 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
595 (u8) (value & 0x000000FF);
596 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
597 (u8) ((value >> 8) & 0x0000FF);
598 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
599 (u8) ((value >> 16) & 0x00FF);
600 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
601 (u8) ((value >> 24) & 0xFF);
602 }
603
604 int stg_efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
605 {
606 struct rtl_priv *rtlpriv = rtl_priv(hw);
607 u8 tmpidx = 0;
608 int bresult;
609
610 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
611 (u8) (addr & 0xff));
612 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
613 ((u8) ((addr >> 8) & 0x03)) |
614 (rtl_read_byte(rtlpriv,
615 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
616 0xFC));
617
618 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
619
620 while (!(0x80 & rtl_read_byte(rtlpriv,
621 rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
622 (tmpidx < 100)) {
623 tmpidx++;
624 }
625
626 if (tmpidx < 100) {
627 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
628 bresult = true;
629 } else {
630 *data = 0xff;
631 bresult = false;
632 }
633 return bresult;
634 }
635 EXPORT_SYMBOL(stg_efuse_one_byte_read);
636
637 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
638 {
639 struct rtl_priv *rtlpriv = rtl_priv(hw);
640 u8 tmpidx = 0;
641 bool bresult;
642
643 RT_TRACE(COMP_EFUSE, DBG_LOUD,
644 ("Addr = %x Data=%x\n", addr, data));
645
646 rtl_write_byte(rtlpriv,
647 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
648 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
649 (rtl_read_byte(rtlpriv,
650 rtlpriv->cfg->maps[EFUSE_CTRL] +
651 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
652
653 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
654 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
655
656 while ((0x80 & rtl_read_byte(rtlpriv,
657 rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
658 (tmpidx < 100)) {
659 tmpidx++;
660 }
661
662 if (tmpidx < 100)
663 bresult = true;
664 else
665 bresult = false;
666
667 return bresult;
668 }
669
670 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
671 {
672 struct rtl_priv *rtlpriv = rtl_priv(hw);
673 efuse_power_switch(hw, false, true);
674 read92e_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
675 efuse_power_switch(hw, false, false);
676 }
677
678 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
679 u8 efuse_data, u8 offset, u8 *tmpdata,
680 u8 *readstate)
681 {
682 bool bdataempty = true;
683 u8 hoffset;
684 u8 tmpidx;
685 u8 hworden;
686 u8 word_cnts;
687
688 hoffset = (efuse_data >> 4) & 0x0F;
689 hworden = efuse_data & 0x0F;
690 word_cnts = efuse_calculate_word_cnts(hworden);
691
692 if (hoffset == offset) {
693 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
694 if (stg_efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
695 &efuse_data)) {
696 tmpdata[tmpidx] = efuse_data;
697 if (efuse_data != 0xff)
698 bdataempty = false;
699 }
700 }
701
702 if (!bdataempty) {
703 *readstate = PG_STATE_DATA;
704 } else {
705 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
706 *readstate = PG_STATE_HEADER;
707 }
708
709 } else {
710 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
711 *readstate = PG_STATE_HEADER;
712 }
713 }
714
715 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
716 {
717 u8 readstate = PG_STATE_HEADER;
718
719 bool bcontinual = true;
720
721 u8 efuse_data, word_cnts = 0;
722 u16 efuse_addr = 0;
723 u8 hworden = 0;
724 u8 tmpdata[8];
725
726 if (data == NULL)
727 return false;
728 if (offset > 15)
729 return false;
730
731 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
732 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
733
734 while (bcontinual && (efuse_addr < EFUSE_MAX_SIZE)) {
735 if (readstate & PG_STATE_HEADER) {
736 if (stg_efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
737 (efuse_data != 0xFF))
738 efuse_read_data_case1(hw, &efuse_addr,
739 efuse_data, offset,
740 tmpdata, &readstate);
741 else
742 bcontinual = false;
743 } else if (readstate & PG_STATE_DATA) {
744 efuse_word_enable_data_read(hworden, tmpdata, data);
745 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
746 readstate = PG_STATE_HEADER;
747 }
748 }
749
750 if ((data[0] == 0xff) && (data[1] == 0xff) &&
751 (data[2] == 0xff) && (data[3] == 0xff) &&
752 (data[4] == 0xff) && (data[5] == 0xff) &&
753 (data[6] == 0xff) && (data[7] == 0xff))
754 return false;
755 else
756 return true;
757 }
758
759 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
760 u8 efuse_data, u8 offset,
761 int *bcontinual, u8 *write_state,
762 struct pgpkt_struct *target_pkt,
763 int *repeat_times, int *bresult, u8 word_en)
764 {
765 struct rtl_priv *rtlpriv = rtl_priv(hw);
766 struct pgpkt_struct tmp_pkt;
767 int bdataempty = true;
768 u8 originaldata[8 * sizeof(u8)];
769 u8 badworden = 0x0F;
770 u8 match_word_en, tmp_word_en;
771 u8 tmpindex;
772 u8 tmp_header = efuse_data;
773 u8 tmp_word_cnts;
774
775 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
776 tmp_pkt.word_en = tmp_header & 0x0F;
777 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
778
779 if (tmp_pkt.offset != target_pkt->offset) {
780 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
781 *write_state = PG_STATE_HEADER;
782 } else {
783 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
784 if (stg_efuse_one_byte_read(hw,
785 (*efuse_addr + 1 + tmpindex),
786 &efuse_data) &&
787 (efuse_data != 0xFF))
788 bdataempty = false;
789 }
790
791 if (!bdataempty) {
792 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
793 *write_state = PG_STATE_HEADER;
794 } else {
795 match_word_en = 0x0F;
796 if (!((target_pkt->word_en & BIT(0)) |
797 (tmp_pkt.word_en & BIT(0))))
798 match_word_en &= (~BIT(0));
799
800 if (!((target_pkt->word_en & BIT(1)) |
801 (tmp_pkt.word_en & BIT(1))))
802 match_word_en &= (~BIT(1));
803
804 if (!((target_pkt->word_en & BIT(2)) |
805 (tmp_pkt.word_en & BIT(2))))
806 match_word_en &= (~BIT(2));
807
808 if (!((target_pkt->word_en & BIT(3)) |
809 (tmp_pkt.word_en & BIT(3))))
810 match_word_en &= (~BIT(3));
811
812 if ((match_word_en & 0x0F) != 0x0F) {
813 badworden = efuse_word_enable_data_write(hw,
814 *efuse_addr + 1,
815 tmp_pkt.word_en,
816 target_pkt->data);
817
818 if (0x0F != (badworden & 0x0F)) {
819 u8 reorg_offset = offset;
820 u8 reorg_worden = badworden;
821 efuse_pg_packet_write(hw, reorg_offset,
822 reorg_worden,
823 originaldata);
824 }
825
826 tmp_word_en = 0x0F;
827 if ((target_pkt->word_en & BIT(0)) ^
828 (match_word_en & BIT(0)))
829 tmp_word_en &= (~BIT(0));
830
831 if ((target_pkt->word_en & BIT(1)) ^
832 (match_word_en & BIT(1)))
833 tmp_word_en &= (~BIT(1));
834
835 if ((target_pkt->word_en & BIT(2)) ^
836 (match_word_en & BIT(2)))
837 tmp_word_en &= (~BIT(2));
838
839 if ((target_pkt->word_en & BIT(3)) ^
840 (match_word_en & BIT(3)))
841 tmp_word_en &= (~BIT(3));
842
843 if ((tmp_word_en & 0x0F) != 0x0F) {
844 *efuse_addr = efuse_get_current_size(hw);
845 target_pkt->offset = offset;
846 target_pkt->word_en = tmp_word_en;
847 } else {
848 *bcontinual = false;
849 }
850 *write_state = PG_STATE_HEADER;
851 *repeat_times += 1;
852 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
853 *bcontinual = false;
854 *bresult = false;
855 }
856 } else {
857 *efuse_addr += (2 * tmp_word_cnts) + 1;
858 target_pkt->offset = offset;
859 target_pkt->word_en = word_en;
860 *write_state = PG_STATE_HEADER;
861 }
862 }
863 }
864 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
865 }
866
867 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
868 int *bcontinual, u8 *write_state,
869 struct pgpkt_struct target_pkt,
870 int *repeat_times, int *bresult)
871 {
872 struct rtl_priv *rtlpriv = rtl_priv(hw);
873 struct pgpkt_struct tmp_pkt;
874 u8 pg_header;
875 u8 tmp_header;
876 u8 originaldata[8 * sizeof(u8)];
877 u8 tmp_word_cnts;
878 u8 badworden = 0x0F;
879
880 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
881 efuse_one_byte_write(hw, *efuse_addr, pg_header);
882 stg_efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
883
884 if (tmp_header == pg_header) {
885 *write_state = PG_STATE_DATA;
886 } else if (tmp_header == 0xFF) {
887 *write_state = PG_STATE_HEADER;
888 *repeat_times += 1;
889 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
890 *bcontinual = false;
891 *bresult = false;
892 }
893 } else {
894 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
895 tmp_pkt.word_en = tmp_header & 0x0F;
896
897 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
898
899 memset(originaldata, 0xff, 8 * sizeof(u8));
900
901 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
902 badworden = efuse_word_enable_data_write(hw,
903 *efuse_addr + 1,
904 tmp_pkt.word_en,
905 originaldata);
906
907 if (0x0F != (badworden & 0x0F)) {
908 u8 reorg_offset = tmp_pkt.offset;
909 u8 reorg_worden = badworden;
910 efuse_pg_packet_write(hw, reorg_offset,
911 reorg_worden,
912 originaldata);
913 *efuse_addr = efuse_get_current_size(hw);
914 } else {
915 *efuse_addr = *efuse_addr +
916 (tmp_word_cnts * 2) + 1;
917 }
918 } else {
919 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
920 }
921
922 *write_state = PG_STATE_HEADER;
923 *repeat_times += 1;
924 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
925 *bcontinual = false;
926 *bresult = false;
927 }
928
929 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
930 "efuse PG_STATE_HEADER-2\n");
931 }
932 }
933
934 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
935 u8 offset, u8 word_en, u8 *data)
936 {
937 struct rtl_priv *rtlpriv = rtl_priv(hw);
938 struct pgpkt_struct target_pkt;
939 u8 write_state = PG_STATE_HEADER;
940 int bcontinual = true, bdataempty = true, bresult = true;
941 u16 efuse_addr = 0;
942 u8 efuse_data;
943 u8 target_word_cnts = 0;
944 u8 badworden = 0x0F;
945 static int repeat_times;
946
947 if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
948 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
949 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
950 "efuse_pg_packet_write error\n");
951 return false;
952 }
953
954 target_pkt.offset = offset;
955 target_pkt.word_en = word_en;
956
957 memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
958
959 efuse_word_enable_data_read(word_en, data, target_pkt.data);
960 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
961
962 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
963
964 while (bcontinual && (efuse_addr < (EFUSE_MAX_SIZE -
965 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
966 if (write_state == PG_STATE_HEADER) {
967 bdataempty = true;
968 badworden = 0x0F;
969 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
970 "efuse PG_STATE_HEADER\n");
971
972 if (stg_efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
973 (efuse_data != 0xFF))
974 efuse_write_data_case1(hw, &efuse_addr,
975 efuse_data, offset,
976 &bcontinual,
977 &write_state,
978 &target_pkt,
979 &repeat_times, &bresult,
980 word_en);
981 else
982 efuse_write_data_case2(hw, &efuse_addr,
983 &bcontinual,
984 &write_state,
985 target_pkt,
986 &repeat_times,
987 &bresult);
988
989 } else if (write_state == PG_STATE_DATA) {
990 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
991 "efuse PG_STATE_DATA\n");
992 badworden = 0x0f;
993 badworden =
994 efuse_word_enable_data_write(hw, efuse_addr + 1,
995 target_pkt.word_en,
996 target_pkt.data);
997
998 if ((badworden & 0x0F) == 0x0F) {
999 bcontinual = false;
1000 } else {
1001 efuse_addr =
1002 efuse_addr + (2 * target_word_cnts) + 1;
1003
1004 target_pkt.offset = offset;
1005 target_pkt.word_en = badworden;
1006 target_word_cnts =
1007 efuse_calculate_word_cnts(target_pkt.
1008 word_en);
1009 write_state = PG_STATE_HEADER;
1010 repeat_times++;
1011 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1012 bcontinual = false;
1013 bresult = false;
1014 }
1015 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1016 "efuse PG_STATE_HEADER-3\n");
1017 }
1018 }
1019 }
1020
1021 if (efuse_addr >= (EFUSE_MAX_SIZE -
1022 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1023 RT_TRACE(COMP_EFUSE, DBG_LOUD,
1024 ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
1025 }
1026
1027 return true;
1028 }
1029
1030 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1031 u8 *targetdata)
1032 {
1033 if (!(word_en & BIT(0))) {
1034 targetdata[0] = sourdata[0];
1035 targetdata[1] = sourdata[1];
1036 }
1037
1038 if (!(word_en & BIT(1))) {
1039 targetdata[2] = sourdata[2];
1040 targetdata[3] = sourdata[3];
1041 }
1042
1043 if (!(word_en & BIT(2))) {
1044 targetdata[4] = sourdata[4];
1045 targetdata[5] = sourdata[5];
1046 }
1047
1048 if (!(word_en & BIT(3))) {
1049 targetdata[6] = sourdata[6];
1050 targetdata[7] = sourdata[7];
1051 }
1052 }
1053
1054 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1055 u16 efuse_addr, u8 word_en, u8 *data)
1056 {
1057 struct rtl_priv *rtlpriv = rtl_priv(hw);
1058 u16 tmpaddr;
1059 u16 start_addr = efuse_addr;
1060 u8 badworden = 0x0F;
1061 u8 tmpdata[8];
1062
1063 memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1064 RT_TRACE(COMP_EFUSE, DBG_LOUD,
1065 ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
1066
1067 if (!(word_en & BIT(0))) {
1068 tmpaddr = start_addr;
1069 efuse_one_byte_write(hw, start_addr++, data[0]);
1070 efuse_one_byte_write(hw, start_addr++, data[1]);
1071
1072 stg_efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1073 stg_efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1074 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1075 badworden &= (~BIT(0));
1076 }
1077
1078 if (!(word_en & BIT(1))) {
1079 tmpaddr = start_addr;
1080 efuse_one_byte_write(hw, start_addr++, data[2]);
1081 efuse_one_byte_write(hw, start_addr++, data[3]);
1082
1083 stg_efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1084 stg_efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1085 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1086 badworden &= (~BIT(1));
1087 }
1088
1089 if (!(word_en & BIT(2))) {
1090 tmpaddr = start_addr;
1091 efuse_one_byte_write(hw, start_addr++, data[4]);
1092 efuse_one_byte_write(hw, start_addr++, data[5]);
1093
1094 stg_efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1095 stg_efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1096 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1097 badworden &= (~BIT(2));
1098 }
1099
1100 if (!(word_en & BIT(3))) {
1101 tmpaddr = start_addr;
1102 efuse_one_byte_write(hw, start_addr++, data[6]);
1103 efuse_one_byte_write(hw, start_addr++, data[7]);
1104
1105 stg_efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1106 stg_efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1107 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1108 badworden &= (~BIT(3));
1109 }
1110
1111 return badworden;
1112 }
1113
1114 static void efuse_power_switch(struct ieee80211_hw *hw, u8 bwrite, u8 pwrstate)
1115 {
1116 struct rtl_priv *rtlpriv = rtl_priv(hw);
1117 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1118 u8 tempval;
1119 u16 tmpv16;
1120
1121 if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1122 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1123 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1124 rtl_write_byte(rtlpriv,
1125 rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1126 } else {
1127 tmpv16 = rtl_read_word(rtlpriv,
1128 rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1129 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1130 tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1131 rtl_write_word(rtlpriv,
1132 rtlpriv->cfg->maps[SYS_ISO_CTRL],
1133 tmpv16);
1134 }
1135 }
1136 tmpv16 = rtl_read_word(rtlpriv,
1137 rtlpriv->cfg->maps[SYS_FUNC_EN]);
1138 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1139 tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1140 rtl_write_word(rtlpriv,
1141 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
1142 }
1143
1144 tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1145 if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1146 (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1147 tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1148 rtlpriv->cfg->maps[EFUSE_ANA8M]);
1149 rtl_write_word(rtlpriv,
1150 rtlpriv->cfg->maps[SYS_CLK], tmpv16);
1151 }
1152 }
1153
1154 if (pwrstate) {
1155 if (bwrite) {
1156 tempval = rtl_read_byte(rtlpriv,
1157 rtlpriv->cfg->maps[EFUSE_TEST] +
1158 3);
1159
1160 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1161 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1162 tempval |= (VOLTAGE_V25 << 3);
1163 } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1164 tempval &= 0x0F;
1165 tempval |= (VOLTAGE_V25 << 4);
1166 }
1167
1168 rtl_write_byte(rtlpriv,
1169 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1170 (tempval | 0x80));
1171 }
1172
1173 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1174 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1175 0x03);
1176 }
1177 } else {
1178 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1179 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1180 rtl_write_byte(rtlpriv,
1181 rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1182 if (bwrite) {
1183 tempval = rtl_read_byte(rtlpriv,
1184 rtlpriv->cfg->maps[EFUSE_TEST] +
1185 3);
1186 rtl_write_byte(rtlpriv,
1187 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1188 (tempval & 0x7F));
1189 }
1190
1191 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1192 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1193 0x02);
1194 }
1195 }
1196 }
1197
1198 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1199 {
1200 int bcontinual = true;
1201 u16 efuse_addr = 0;
1202 u8 hoffset, hworden;
1203 u8 efuse_data, word_cnts;
1204
1205 while (bcontinual &&
1206 stg_efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1207 (efuse_addr < EFUSE_MAX_SIZE)) {
1208 if (efuse_data != 0xFF) {
1209 hoffset = (efuse_data >> 4) & 0x0F;
1210 hworden = efuse_data & 0x0F;
1211 word_cnts = efuse_calculate_word_cnts(hworden);
1212 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1213 } else {
1214 bcontinual = false;
1215 }
1216 }
1217
1218 return efuse_addr;
1219 }
1220
1221 static u8 efuse_calculate_word_cnts(u8 word_en)
1222 {
1223 u8 word_cnts = 0;
1224 if (!(word_en & BIT(0)))
1225 word_cnts++;
1226 if (!(word_en & BIT(1)))
1227 word_cnts++;
1228 if (!(word_en & BIT(2)))
1229 word_cnts++;
1230 if (!(word_en & BIT(3)))
1231 word_cnts++;
1232 return word_cnts;
1233 }
This page took 0.057192 seconds and 6 git commands to generate.