Merge tag 'mmc-v4.7-rc1' of git://git.linaro.org/people/ulf.hansson/mmc
[deliverable/linux.git] / drivers / staging / skein / skein_block.c
1 /***********************************************************************
2 **
3 ** Implementation of the Skein block functions.
4 **
5 ** Source code author: Doug Whiting, 2008.
6 **
7 ** This algorithm and source code is released to the public domain.
8 **
9 ** Compile-time switches:
10 **
11 ** SKEIN_USE_ASM -- set bits (256/512/1024) to select which
12 ** versions use ASM code for block processing
13 ** [default: use C for all block sizes]
14 **
15 ************************************************************************/
16
17 #include <linux/string.h>
18 #include <linux/bitops.h>
19 #include "skein_base.h"
20 #include "skein_block.h"
21
22 #ifndef SKEIN_USE_ASM
23 #define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
24 #endif
25
26 #ifndef SKEIN_LOOP
27 #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
28 #endif
29
30 #define BLK_BITS (WCNT * 64) /* some useful definitions for code here */
31 #define KW_TWK_BASE (0)
32 #define KW_KEY_BASE (3)
33 #define ks (kw + KW_KEY_BASE)
34 #define ts (kw + KW_TWK_BASE)
35
36 #ifdef SKEIN_DEBUG
37 #define debug_save_tweak(ctx) \
38 { \
39 ctx->h.tweak[0] = ts[0]; \
40 ctx->h.tweak[1] = ts[1]; \
41 }
42 #else
43 #define debug_save_tweak(ctx)
44 #endif
45
46 #if !(SKEIN_USE_ASM & 256)
47 #undef RCNT
48 #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
49 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
50 #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
51 #else
52 #define SKEIN_UNROLL_256 (0)
53 #endif
54
55 #if SKEIN_UNROLL_256
56 #if (RCNT % SKEIN_UNROLL_256)
57 #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
58 #endif
59 #endif
60 #define ROUND256(p0, p1, p2, p3, ROT, r_num) \
61 do { \
62 X##p0 += X##p1; \
63 X##p1 = rol64(X##p1, ROT##_0); \
64 X##p1 ^= X##p0; \
65 X##p2 += X##p3; \
66 X##p3 = rol64(X##p3, ROT##_1); \
67 X##p3 ^= X##p2; \
68 } while (0)
69
70 #if SKEIN_UNROLL_256 == 0
71 #define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
72 ROUND256(p0, p1, p2, p3, ROT, r_num)
73
74 #define I256(R) \
75 do { \
76 /* inject the key schedule value */ \
77 X0 += ks[((R) + 1) % 5]; \
78 X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \
79 X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \
80 X3 += ks[((R) + 4) % 5] + (R) + 1; \
81 } while (0)
82 #else
83 /* looping version */
84 #define R256(p0, p1, p2, p3, ROT, r_num) ROUND256(p0, p1, p2, p3, ROT, r_num)
85
86 #define I256(R) \
87 do { \
88 /* inject the key schedule value */ \
89 X0 += ks[r + (R) + 0]; \
90 X1 += ks[r + (R) + 1] + ts[r + (R) + 0];\
91 X2 += ks[r + (R) + 2] + ts[r + (R) + 1];\
92 X3 += ks[r + (R) + 3] + r + (R); \
93 /* rotate key schedule */ \
94 ks[r + (R) + 4] = ks[r + (R) - 1]; \
95 ts[r + (R) + 2] = ts[r + (R) - 1]; \
96 } while (0)
97 #endif
98 #define R256_8_ROUNDS(R) \
99 do { \
100 R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
101 R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
102 R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
103 R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
104 I256(2 * (R)); \
105 R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
106 R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
107 R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
108 R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
109 I256(2 * (R) + 1); \
110 } while (0)
111
112 #define R256_UNROLL_R(NN) \
113 ((SKEIN_UNROLL_256 == 0 && \
114 SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
115 (SKEIN_UNROLL_256 > (NN)))
116
117 #if (SKEIN_UNROLL_256 > 14)
118 #error "need more unrolling in skein_256_process_block"
119 #endif
120 #endif
121
122 #if !(SKEIN_USE_ASM & 512)
123 #undef RCNT
124 #define RCNT (SKEIN_512_ROUNDS_TOTAL / 8)
125
126 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
127 #define SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
128 #else
129 #define SKEIN_UNROLL_512 (0)
130 #endif
131
132 #if SKEIN_UNROLL_512
133 #if (RCNT % SKEIN_UNROLL_512)
134 #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
135 #endif
136 #endif
137 #define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
138 do { \
139 X##p0 += X##p1; \
140 X##p1 = rol64(X##p1, ROT##_0); \
141 X##p1 ^= X##p0; \
142 X##p2 += X##p3; \
143 X##p3 = rol64(X##p3, ROT##_1); \
144 X##p3 ^= X##p2; \
145 X##p4 += X##p5; \
146 X##p5 = rol64(X##p5, ROT##_2); \
147 X##p5 ^= X##p4; \
148 X##p6 += X##p7; \
149 X##p7 = rol64(X##p7, ROT##_3); \
150 X##p7 ^= X##p6; \
151 } while (0)
152
153 #if SKEIN_UNROLL_512 == 0
154 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \
155 ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)
156
157 #define I512(R) \
158 do { \
159 /* inject the key schedule value */ \
160 X0 += ks[((R) + 1) % 9]; \
161 X1 += ks[((R) + 2) % 9]; \
162 X2 += ks[((R) + 3) % 9]; \
163 X3 += ks[((R) + 4) % 9]; \
164 X4 += ks[((R) + 5) % 9]; \
165 X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
166 X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
167 X7 += ks[((R) + 8) % 9] + (R) + 1; \
168 } while (0)
169
170 #else /* looping version */
171 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
172 ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
173
174 #define I512(R) \
175 do { \
176 /* inject the key schedule value */ \
177 X0 += ks[r + (R) + 0]; \
178 X1 += ks[r + (R) + 1]; \
179 X2 += ks[r + (R) + 2]; \
180 X3 += ks[r + (R) + 3]; \
181 X4 += ks[r + (R) + 4]; \
182 X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
183 X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
184 X7 += ks[r + (R) + 7] + r + (R); \
185 /* rotate key schedule */ \
186 ks[r + (R) + 8] = ks[r + (R) - 1]; \
187 ts[r + (R) + 2] = ts[r + (R) - 1]; \
188 } while (0)
189 #endif /* end of looped code definitions */
190 #define R512_8_ROUNDS(R) /* do 8 full rounds */ \
191 do { \
192 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
193 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
194 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
195 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
196 I512(2 * (R)); \
197 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
198 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
199 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
200 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
201 I512(2 * (R) + 1); /* and key injection */ \
202 } while (0)
203 #define R512_UNROLL_R(NN) \
204 ((SKEIN_UNROLL_512 == 0 && \
205 SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
206 (SKEIN_UNROLL_512 > (NN)))
207
208 #if (SKEIN_UNROLL_512 > 14)
209 #error "need more unrolling in skein_512_process_block"
210 #endif
211 #endif
212
213 #if !(SKEIN_USE_ASM & 1024)
214 #undef RCNT
215 #define RCNT (SKEIN_1024_ROUNDS_TOTAL / 8)
216 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
217 #define SKEIN_UNROLL_1024 ((SKEIN_LOOP) % 10)
218 #else
219 #define SKEIN_UNROLL_1024 (0)
220 #endif
221
222 #if (SKEIN_UNROLL_1024 != 0)
223 #if (RCNT % SKEIN_UNROLL_1024)
224 #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
225 #endif
226 #endif
227 #define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
228 pF, ROT, r_num) \
229 do { \
230 X##p0 += X##p1; \
231 X##p1 = rol64(X##p1, ROT##_0); \
232 X##p1 ^= X##p0; \
233 X##p2 += X##p3; \
234 X##p3 = rol64(X##p3, ROT##_1); \
235 X##p3 ^= X##p2; \
236 X##p4 += X##p5; \
237 X##p5 = rol64(X##p5, ROT##_2); \
238 X##p5 ^= X##p4; \
239 X##p6 += X##p7; \
240 X##p7 = rol64(X##p7, ROT##_3); \
241 X##p7 ^= X##p6; \
242 X##p8 += X##p9; \
243 X##p9 = rol64(X##p9, ROT##_4); \
244 X##p9 ^= X##p8; \
245 X##pA += X##pB; \
246 X##pB = rol64(X##pB, ROT##_5); \
247 X##pB ^= X##pA; \
248 X##pC += X##pD; \
249 X##pD = rol64(X##pD, ROT##_6); \
250 X##pD ^= X##pC; \
251 X##pE += X##pF; \
252 X##pF = rol64(X##pF, ROT##_7); \
253 X##pF ^= X##pE; \
254 } while (0)
255
256 #if SKEIN_UNROLL_1024 == 0
257 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
258 ROT, rn) \
259 ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
260 pF, ROT, rn) \
261
262 #define I1024(R) \
263 do { \
264 /* inject the key schedule value */ \
265 X00 += ks[((R) + 1) % 17]; \
266 X01 += ks[((R) + 2) % 17]; \
267 X02 += ks[((R) + 3) % 17]; \
268 X03 += ks[((R) + 4) % 17]; \
269 X04 += ks[((R) + 5) % 17]; \
270 X05 += ks[((R) + 6) % 17]; \
271 X06 += ks[((R) + 7) % 17]; \
272 X07 += ks[((R) + 8) % 17]; \
273 X08 += ks[((R) + 9) % 17]; \
274 X09 += ks[((R) + 10) % 17]; \
275 X10 += ks[((R) + 11) % 17]; \
276 X11 += ks[((R) + 12) % 17]; \
277 X12 += ks[((R) + 13) % 17]; \
278 X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
279 X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
280 X15 += ks[((R) + 16) % 17] + (R) + 1; \
281 } while (0)
282 #else /* looping version */
283 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
284 ROT, rn) \
285 ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
286 pF, ROT, rn) \
287
288 #define I1024(R) \
289 do { \
290 /* inject the key schedule value */ \
291 X00 += ks[r + (R) + 0]; \
292 X01 += ks[r + (R) + 1]; \
293 X02 += ks[r + (R) + 2]; \
294 X03 += ks[r + (R) + 3]; \
295 X04 += ks[r + (R) + 4]; \
296 X05 += ks[r + (R) + 5]; \
297 X06 += ks[r + (R) + 6]; \
298 X07 += ks[r + (R) + 7]; \
299 X08 += ks[r + (R) + 8]; \
300 X09 += ks[r + (R) + 9]; \
301 X10 += ks[r + (R) + 10]; \
302 X11 += ks[r + (R) + 11]; \
303 X12 += ks[r + (R) + 12]; \
304 X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
305 X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
306 X15 += ks[r + (R) + 15] + r + (R); \
307 /* rotate key schedule */ \
308 ks[r + (R) + 16] = ks[r + (R) - 1]; \
309 ts[r + (R) + 2] = ts[r + (R) - 1]; \
310 } while (0)
311
312 #endif
313 #define R1024_8_ROUNDS(R) \
314 do { \
315 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, \
316 13, 14, 15, R1024_0, 8 * (R) + 1); \
317 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, \
318 05, 08, 01, R1024_1, 8 * (R) + 2); \
319 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, \
320 11, 10, 09, R1024_2, 8 * (R) + 3); \
321 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, \
322 03, 12, 07, R1024_3, 8 * (R) + 4); \
323 I1024(2 * (R)); \
324 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, \
325 13, 14, 15, R1024_4, 8 * (R) + 5); \
326 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, \
327 05, 08, 01, R1024_5, 8 * (R) + 6); \
328 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, \
329 11, 10, 09, R1024_6, 8 * (R) + 7); \
330 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, \
331 03, 12, 07, R1024_7, 8 * (R) + 8); \
332 I1024(2 * (R) + 1); \
333 } while (0)
334
335 #define R1024_UNROLL_R(NN) \
336 ((SKEIN_UNROLL_1024 == 0 && \
337 SKEIN_1024_ROUNDS_TOTAL / 8 > (NN)) || \
338 (SKEIN_UNROLL_1024 > (NN)))
339
340 #if (SKEIN_UNROLL_1024 > 14)
341 #error "need more unrolling in Skein_1024_Process_Block"
342 #endif
343 #endif
344
345 /***************************** SKEIN_256 ******************************/
346 #if !(SKEIN_USE_ASM & 256)
347 void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
348 size_t blk_cnt, size_t byte_cnt_add)
349 { /* do it in C */
350 enum {
351 WCNT = SKEIN_256_STATE_WORDS
352 };
353 size_t r;
354 #if SKEIN_UNROLL_256
355 /* key schedule: chaining vars + tweak + "rot"*/
356 u64 kw[WCNT + 4 + (RCNT * 2)];
357 #else
358 /* key schedule words : chaining vars + tweak */
359 u64 kw[WCNT + 4];
360 #endif
361 u64 X0, X1, X2, X3; /* local copy of context vars, for speed */
362 u64 w[WCNT]; /* local copy of input block */
363 #ifdef SKEIN_DEBUG
364 const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */
365
366 X_ptr[0] = &X0;
367 X_ptr[1] = &X1;
368 X_ptr[2] = &X2;
369 X_ptr[3] = &X3;
370 #endif
371 skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
372 ts[0] = ctx->h.tweak[0];
373 ts[1] = ctx->h.tweak[1];
374 do {
375 /*
376 * this implementation only supports 2**64 input bytes
377 * (no carry out here)
378 */
379 ts[0] += byte_cnt_add; /* update processed length */
380
381 /* precompute the key schedule for this block */
382 ks[0] = ctx->x[0];
383 ks[1] = ctx->x[1];
384 ks[2] = ctx->x[2];
385 ks[3] = ctx->x[3];
386 ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
387
388 ts[2] = ts[0] ^ ts[1];
389
390 /* get input block in little-endian format */
391 skein_get64_lsb_first(w, blk_ptr, WCNT);
392 debug_save_tweak(ctx);
393
394 /* do the first full key injection */
395 X0 = w[0] + ks[0];
396 X1 = w[1] + ks[1] + ts[0];
397 X2 = w[2] + ks[2] + ts[1];
398 X3 = w[3] + ks[3];
399
400 blk_ptr += SKEIN_256_BLOCK_BYTES;
401
402 /* run the rounds */
403 for (r = 1;
404 r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2);
405 r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) {
406 R256_8_ROUNDS(0);
407 #if R256_UNROLL_R(1)
408 R256_8_ROUNDS(1);
409 #endif
410 #if R256_UNROLL_R(2)
411 R256_8_ROUNDS(2);
412 #endif
413 #if R256_UNROLL_R(3)
414 R256_8_ROUNDS(3);
415 #endif
416 #if R256_UNROLL_R(4)
417 R256_8_ROUNDS(4);
418 #endif
419 #if R256_UNROLL_R(5)
420 R256_8_ROUNDS(5);
421 #endif
422 #if R256_UNROLL_R(6)
423 R256_8_ROUNDS(6);
424 #endif
425 #if R256_UNROLL_R(7)
426 R256_8_ROUNDS(7);
427 #endif
428 #if R256_UNROLL_R(8)
429 R256_8_ROUNDS(8);
430 #endif
431 #if R256_UNROLL_R(9)
432 R256_8_ROUNDS(9);
433 #endif
434 #if R256_UNROLL_R(10)
435 R256_8_ROUNDS(10);
436 #endif
437 #if R256_UNROLL_R(11)
438 R256_8_ROUNDS(11);
439 #endif
440 #if R256_UNROLL_R(12)
441 R256_8_ROUNDS(12);
442 #endif
443 #if R256_UNROLL_R(13)
444 R256_8_ROUNDS(13);
445 #endif
446 #if R256_UNROLL_R(14)
447 R256_8_ROUNDS(14);
448 #endif
449 }
450 /* do the final "feedforward" xor, update context chaining */
451 ctx->x[0] = X0 ^ w[0];
452 ctx->x[1] = X1 ^ w[1];
453 ctx->x[2] = X2 ^ w[2];
454 ctx->x[3] = X3 ^ w[3];
455
456 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
457 } while (--blk_cnt);
458 ctx->h.tweak[0] = ts[0];
459 ctx->h.tweak[1] = ts[1];
460 }
461
462 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
463 size_t skein_256_process_block_code_size(void)
464 {
465 return ((u8 *)skein_256_process_block_code_size) -
466 ((u8 *)skein_256_process_block);
467 }
468
469 unsigned int skein_256_unroll_cnt(void)
470 {
471 return SKEIN_UNROLL_256;
472 }
473 #endif
474 #endif
475
476 /***************************** SKEIN_512 ******************************/
477 #if !(SKEIN_USE_ASM & 512)
478 void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
479 size_t blk_cnt, size_t byte_cnt_add)
480 { /* do it in C */
481 enum {
482 WCNT = SKEIN_512_STATE_WORDS
483 };
484 size_t r;
485 #if SKEIN_UNROLL_512
486 /* key sched: chaining vars + tweak + "rot"*/
487 u64 kw[WCNT + 4 + RCNT * 2];
488 #else
489 /* key schedule words : chaining vars + tweak */
490 u64 kw[WCNT + 4];
491 #endif
492 u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
493 u64 w[WCNT]; /* local copy of input block */
494 #ifdef SKEIN_DEBUG
495 const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */
496
497 X_ptr[0] = &X0;
498 X_ptr[1] = &X1;
499 X_ptr[2] = &X2;
500 X_ptr[3] = &X3;
501 X_ptr[4] = &X4;
502 X_ptr[5] = &X5;
503 X_ptr[6] = &X6;
504 X_ptr[7] = &X7;
505 #endif
506
507 skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
508 ts[0] = ctx->h.tweak[0];
509 ts[1] = ctx->h.tweak[1];
510 do {
511 /*
512 * this implementation only supports 2**64 input bytes
513 * (no carry out here)
514 */
515 ts[0] += byte_cnt_add; /* update processed length */
516
517 /* precompute the key schedule for this block */
518 ks[0] = ctx->x[0];
519 ks[1] = ctx->x[1];
520 ks[2] = ctx->x[2];
521 ks[3] = ctx->x[3];
522 ks[4] = ctx->x[4];
523 ks[5] = ctx->x[5];
524 ks[6] = ctx->x[6];
525 ks[7] = ctx->x[7];
526 ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
527 ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
528
529 ts[2] = ts[0] ^ ts[1];
530
531 /* get input block in little-endian format */
532 skein_get64_lsb_first(w, blk_ptr, WCNT);
533 debug_save_tweak(ctx);
534
535 /* do the first full key injection */
536 X0 = w[0] + ks[0];
537 X1 = w[1] + ks[1];
538 X2 = w[2] + ks[2];
539 X3 = w[3] + ks[3];
540 X4 = w[4] + ks[4];
541 X5 = w[5] + ks[5] + ts[0];
542 X6 = w[6] + ks[6] + ts[1];
543 X7 = w[7] + ks[7];
544
545 blk_ptr += SKEIN_512_BLOCK_BYTES;
546
547 /* run the rounds */
548 for (r = 1;
549 r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2);
550 r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) {
551 R512_8_ROUNDS(0);
552
553 #if R512_UNROLL_R(1)
554 R512_8_ROUNDS(1);
555 #endif
556 #if R512_UNROLL_R(2)
557 R512_8_ROUNDS(2);
558 #endif
559 #if R512_UNROLL_R(3)
560 R512_8_ROUNDS(3);
561 #endif
562 #if R512_UNROLL_R(4)
563 R512_8_ROUNDS(4);
564 #endif
565 #if R512_UNROLL_R(5)
566 R512_8_ROUNDS(5);
567 #endif
568 #if R512_UNROLL_R(6)
569 R512_8_ROUNDS(6);
570 #endif
571 #if R512_UNROLL_R(7)
572 R512_8_ROUNDS(7);
573 #endif
574 #if R512_UNROLL_R(8)
575 R512_8_ROUNDS(8);
576 #endif
577 #if R512_UNROLL_R(9)
578 R512_8_ROUNDS(9);
579 #endif
580 #if R512_UNROLL_R(10)
581 R512_8_ROUNDS(10);
582 #endif
583 #if R512_UNROLL_R(11)
584 R512_8_ROUNDS(11);
585 #endif
586 #if R512_UNROLL_R(12)
587 R512_8_ROUNDS(12);
588 #endif
589 #if R512_UNROLL_R(13)
590 R512_8_ROUNDS(13);
591 #endif
592 #if R512_UNROLL_R(14)
593 R512_8_ROUNDS(14);
594 #endif
595 }
596
597 /* do the final "feedforward" xor, update context chaining */
598 ctx->x[0] = X0 ^ w[0];
599 ctx->x[1] = X1 ^ w[1];
600 ctx->x[2] = X2 ^ w[2];
601 ctx->x[3] = X3 ^ w[3];
602 ctx->x[4] = X4 ^ w[4];
603 ctx->x[5] = X5 ^ w[5];
604 ctx->x[6] = X6 ^ w[6];
605 ctx->x[7] = X7 ^ w[7];
606
607 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
608 } while (--blk_cnt);
609 ctx->h.tweak[0] = ts[0];
610 ctx->h.tweak[1] = ts[1];
611 }
612
613 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
614 size_t skein_512_process_block_code_size(void)
615 {
616 return ((u8 *)skein_512_process_block_code_size) -
617 ((u8 *)skein_512_process_block);
618 }
619
620 unsigned int skein_512_unroll_cnt(void)
621 {
622 return SKEIN_UNROLL_512;
623 }
624 #endif
625 #endif
626
627 /***************************** SKEIN_1024 ******************************/
628 #if !(SKEIN_USE_ASM & 1024)
629 void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr,
630 size_t blk_cnt, size_t byte_cnt_add)
631 { /* do it in C, always looping (unrolled is bigger AND slower!) */
632 enum {
633 WCNT = SKEIN_1024_STATE_WORDS
634 };
635 size_t r;
636 #if (SKEIN_UNROLL_1024 != 0)
637 /* key sched: chaining vars + tweak + "rot" */
638 u64 kw[WCNT + 4 + (RCNT * 2)];
639 #else
640 /* key schedule words : chaining vars + tweak */
641 u64 kw[WCNT + 4];
642 #endif
643
644 /* local copy of vars, for speed */
645 u64 X00, X01, X02, X03, X04, X05, X06, X07,
646 X08, X09, X10, X11, X12, X13, X14, X15;
647 u64 w[WCNT]; /* local copy of input block */
648
649 skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
650 ts[0] = ctx->h.tweak[0];
651 ts[1] = ctx->h.tweak[1];
652 do {
653 /*
654 * this implementation only supports 2**64 input bytes
655 * (no carry out here)
656 */
657 ts[0] += byte_cnt_add; /* update processed length */
658
659 /* precompute the key schedule for this block */
660 ks[0] = ctx->x[0];
661 ks[1] = ctx->x[1];
662 ks[2] = ctx->x[2];
663 ks[3] = ctx->x[3];
664 ks[4] = ctx->x[4];
665 ks[5] = ctx->x[5];
666 ks[6] = ctx->x[6];
667 ks[7] = ctx->x[7];
668 ks[8] = ctx->x[8];
669 ks[9] = ctx->x[9];
670 ks[10] = ctx->x[10];
671 ks[11] = ctx->x[11];
672 ks[12] = ctx->x[12];
673 ks[13] = ctx->x[13];
674 ks[14] = ctx->x[14];
675 ks[15] = ctx->x[15];
676 ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
677 ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
678 ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
679 ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
680
681 ts[2] = ts[0] ^ ts[1];
682
683 /* get input block in little-endian format */
684 skein_get64_lsb_first(w, blk_ptr, WCNT);
685 debug_save_tweak(ctx);
686
687 /* do the first full key injection */
688 X00 = w[0] + ks[0];
689 X01 = w[1] + ks[1];
690 X02 = w[2] + ks[2];
691 X03 = w[3] + ks[3];
692 X04 = w[4] + ks[4];
693 X05 = w[5] + ks[5];
694 X06 = w[6] + ks[6];
695 X07 = w[7] + ks[7];
696 X08 = w[8] + ks[8];
697 X09 = w[9] + ks[9];
698 X10 = w[10] + ks[10];
699 X11 = w[11] + ks[11];
700 X12 = w[12] + ks[12];
701 X13 = w[13] + ks[13] + ts[0];
702 X14 = w[14] + ks[14] + ts[1];
703 X15 = w[15] + ks[15];
704
705 for (r = 1;
706 r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2);
707 r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) {
708 R1024_8_ROUNDS(0);
709 #if R1024_UNROLL_R(1)
710 R1024_8_ROUNDS(1);
711 #endif
712 #if R1024_UNROLL_R(2)
713 R1024_8_ROUNDS(2);
714 #endif
715 #if R1024_UNROLL_R(3)
716 R1024_8_ROUNDS(3);
717 #endif
718 #if R1024_UNROLL_R(4)
719 R1024_8_ROUNDS(4);
720 #endif
721 #if R1024_UNROLL_R(5)
722 R1024_8_ROUNDS(5);
723 #endif
724 #if R1024_UNROLL_R(6)
725 R1024_8_ROUNDS(6);
726 #endif
727 #if R1024_UNROLL_R(7)
728 R1024_8_ROUNDS(7);
729 #endif
730 #if R1024_UNROLL_R(8)
731 R1024_8_ROUNDS(8);
732 #endif
733 #if R1024_UNROLL_R(9)
734 R1024_8_ROUNDS(9);
735 #endif
736 #if R1024_UNROLL_R(10)
737 R1024_8_ROUNDS(10);
738 #endif
739 #if R1024_UNROLL_R(11)
740 R1024_8_ROUNDS(11);
741 #endif
742 #if R1024_UNROLL_R(12)
743 R1024_8_ROUNDS(12);
744 #endif
745 #if R1024_UNROLL_R(13)
746 R1024_8_ROUNDS(13);
747 #endif
748 #if R1024_UNROLL_R(14)
749 R1024_8_ROUNDS(14);
750 #endif
751 }
752 /* do the final "feedforward" xor, update context chaining */
753
754 ctx->x[0] = X00 ^ w[0];
755 ctx->x[1] = X01 ^ w[1];
756 ctx->x[2] = X02 ^ w[2];
757 ctx->x[3] = X03 ^ w[3];
758 ctx->x[4] = X04 ^ w[4];
759 ctx->x[5] = X05 ^ w[5];
760 ctx->x[6] = X06 ^ w[6];
761 ctx->x[7] = X07 ^ w[7];
762 ctx->x[8] = X08 ^ w[8];
763 ctx->x[9] = X09 ^ w[9];
764 ctx->x[10] = X10 ^ w[10];
765 ctx->x[11] = X11 ^ w[11];
766 ctx->x[12] = X12 ^ w[12];
767 ctx->x[13] = X13 ^ w[13];
768 ctx->x[14] = X14 ^ w[14];
769 ctx->x[15] = X15 ^ w[15];
770
771 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
772 blk_ptr += SKEIN_1024_BLOCK_BYTES;
773 } while (--blk_cnt);
774 ctx->h.tweak[0] = ts[0];
775 ctx->h.tweak[1] = ts[1];
776 }
777
778 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
779 size_t skein_1024_process_block_code_size(void)
780 {
781 return ((u8 *)skein_1024_process_block_code_size) -
782 ((u8 *)skein_1024_process_block);
783 }
784
785 unsigned int skein_1024_unroll_cnt(void)
786 {
787 return SKEIN_UNROLL_1024;
788 }
789 #endif
790 #endif
This page took 0.06435 seconds and 5 git commands to generate.