Merge branch 'for-linus' of git://git.open-osd.org/linux-open-osd into next
[deliverable/linux.git] / drivers / staging / vt6656 / bssdb.c
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: bssdb.c
20 *
21 * Purpose: Handles the Basic Service Set & Node Database functions
22 *
23 * Functions:
24 * BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
25 * BSSvClearBSSList - Clear BSS List
26 * BSSbInsertToBSSList - Insert a BSS set into known BSS list
27 * BSSbUpdateToBSSList - Update BSS set in known BSS list
28 * BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
29 * BSSvCreateOneNode - Allocate an Node for Node DB
30 * BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
31 * BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
32 * BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fallback rate control
33 *
34 * Revision History:
35 *
36 * Author: Lyndon Chen
37 *
38 * Date: July 17, 2002
39 */
40
41 #include "tmacro.h"
42 #include "tether.h"
43 #include "device.h"
44 #include "80211hdr.h"
45 #include "bssdb.h"
46 #include "wmgr.h"
47 #include "datarate.h"
48 #include "desc.h"
49 #include "wcmd.h"
50 #include "wpa.h"
51 #include "baseband.h"
52 #include "rf.h"
53 #include "card.h"
54 #include "mac.h"
55 #include "wpa2.h"
56 #include "usbpipe.h"
57 #include "iowpa.h"
58 #include "power.h"
59
60 static int msglevel = MSG_LEVEL_INFO;
61 /* static int msglevel = MSG_LEVEL_DEBUG; */
62
63 static const u16 awHWRetry0[5][5] = {
64 {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
65 {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
66 {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
67 {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
68 {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
69 };
70 static const u16 awHWRetry1[5][5] = {
71 {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
72 {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
73 {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
74 {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
75 {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
76 };
77
78 static void s_vCheckSensitivity(struct vnt_private *pDevice);
79 static void s_vCheckPreEDThreshold(struct vnt_private *pDevice);
80 static void s_uCalculateLinkQual(struct vnt_private *pDevice);
81
82 /*
83 * Routine Description:
84 * Search known BSS list for Desire SSID or BSSID.
85 *
86 * Return Value:
87 * PTR to KnownBSS or NULL
88 */
89 PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice,
90 u8 *pbyDesireBSSID, u8 *pbyDesireSSID,
91 CARD_PHY_TYPE ePhyType)
92 {
93 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
94 u8 *pbyBSSID = NULL;
95 PWLAN_IE_SSID pSSID = NULL;
96 PKnownBSS pCurrBSS = NULL;
97 PKnownBSS pSelect = NULL;
98 u8 ZeroBSSID[WLAN_BSSID_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
99 int ii = 0;
100 int jj = 0;
101
102 if (pbyDesireBSSID) {
103 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
104 "BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID);
105 if (!is_broadcast_ether_addr(pbyDesireBSSID) &&
106 memcmp(pbyDesireBSSID, ZeroBSSID, 6) != 0)
107 pbyBSSID = pbyDesireBSSID;
108 }
109 if (pbyDesireSSID &&
110 ((PWLAN_IE_SSID) pbyDesireSSID)->len != 0)
111 pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
112
113 if (pbyBSSID && pDevice->bRoaming == false) {
114 /* match BSSID first */
115 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
116 pCurrBSS = &(pMgmt->sBSSList[ii]);
117
118 pCurrBSS->bSelected = false;
119
120 if (pCurrBSS->bActive &&
121 pCurrBSS->bSelected == false &&
122 ether_addr_equal(pCurrBSS->abyBSSID, pbyBSSID)) {
123 if (pSSID) {
124 /* compare ssid */
125 if (!memcmp(pSSID->abySSID,
126 ((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID,
127 pSSID->len) &&
128 (pMgmt->eConfigMode == WMAC_CONFIG_AUTO ||
129 (pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
130 WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
131 (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
132 WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)))) {
133
134 pCurrBSS->bSelected = true;
135 return pCurrBSS;
136 }
137 } else if (pMgmt->eConfigMode == WMAC_CONFIG_AUTO ||
138 (pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
139 WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
140 (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
141 WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))) {
142 pCurrBSS->bSelected = true;
143 return pCurrBSS;
144 }
145 }
146 }
147 } else {
148 /* ignore BSSID */
149 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
150 pCurrBSS = &(pMgmt->sBSSList[ii]);
151
152 /* 2007-0721-01<Mark>by MikeLiu
153 * if ((pCurrBSS->bActive) &&
154 * (pCurrBSS->bSelected == false)) { */
155
156 pCurrBSS->bSelected = false;
157 if (pCurrBSS->bActive) {
158
159 if (pSSID &&
160 /* matched SSID */
161 (memcmp(pSSID->abySSID,
162 ((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID,
163 pSSID->len) ||
164 pSSID->len !=
165 ((PWLAN_IE_SSID) pCurrBSS->abySSID)->len)) {
166 /* SSID not match skip this BSS */
167 continue;
168 }
169
170 if ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
171 WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
172 (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
173 WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))) {
174 /* Type not match skip this BSS */
175 DBG_PRT(MSG_LEVEL_DEBUG,
176 KERN_INFO "BSS type mismatch.... Config[%d] BSS[0x%04x]\n",
177 pMgmt->eConfigMode,
178 pCurrBSS->wCapInfo);
179 continue;
180 }
181
182 if (ePhyType != PHY_TYPE_AUTO &&
183 ((ePhyType == PHY_TYPE_11A &&
184 PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse) ||
185 (ePhyType != PHY_TYPE_11A &&
186 PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
187 /* PhyType not match skip this BSS */
188 DBG_PRT(MSG_LEVEL_DEBUG,
189 KERN_INFO "Physical type mismatch.... ePhyType[%d] BSS[%d]\n",
190 ePhyType,
191 pCurrBSS->eNetworkTypeInUse);
192 continue;
193 }
194
195 pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
196 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
197 "BSSpSearchBSSList pSelect1[%pM]\n",
198 pCurrBSS->abyBSSID);
199 jj++;
200
201 if (!pSelect)
202 pSelect = pCurrBSS;
203 /* compare RSSI, select the strongest signal */
204 else if (pCurrBSS->uRSSI < pSelect->uRSSI)
205 pSelect = pCurrBSS;
206 }
207 }
208
209 pDevice->bSameBSSMaxNum = jj;
210
211 if (pSelect) {
212 pSelect->bSelected = true;
213 if (pDevice->bRoaming == false) {
214 /* Einsn Add @20070907 */
215 memcpy(pbyDesireSSID,
216 pCurrBSS->abySSID,
217 WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
218 }
219
220 return pSelect;
221 }
222 }
223 return NULL;
224
225 }
226
227 /*
228 * Routine Description:
229 * Clear BSS List
230 *
231 * Return Value:
232 * None.
233 */
234 void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID)
235 {
236 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
237 int ii;
238
239 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
240 if (bKeepCurrBSSID &&
241 pMgmt->sBSSList[ii].bActive &&
242 ether_addr_equal(pMgmt->sBSSList[ii].abyBSSID,
243 pMgmt->abyCurrBSSID)) {
244
245 /* mike mark:
246 * there are two BSSID's in list. If that AP is
247 * in hidden ssid mode, one SSID is null, but
248 * other's might not be obvious, so if it
249 * associate's with your STA, you must keep the
250 * two of them!! bKeepCurrBSSID = false;
251 */
252
253 continue;
254 }
255
256 pMgmt->sBSSList[ii].bActive = false;
257 memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
258 }
259 BSSvClearAnyBSSJoinRecord(pDevice);
260 }
261
262 /*
263 * Routine Description:
264 * search BSS list by BSSID & SSID if matched
265 *
266 * Return Value:
267 * true if found.
268 */
269 PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice,
270 u8 *abyBSSID,
271 PWLAN_IE_SSID pSSID)
272 {
273 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
274 PKnownBSS pBSSList = NULL;
275 int ii;
276
277 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
278 pBSSList = &(pMgmt->sBSSList[ii]);
279 if (pBSSList->bActive &&
280 ether_addr_equal(pBSSList->abyBSSID, abyBSSID) &&
281 pSSID->len == ((PWLAN_IE_SSID) pBSSList->abySSID)->len &&
282 memcmp(pSSID->abySSID,
283 ((PWLAN_IE_SSID) pBSSList->abySSID)->abySSID,
284 pSSID->len) == 0)
285 return pBSSList;
286 }
287
288 return NULL;
289 }
290
291 /*
292 * Routine Description:
293 * Insert a BSS set into known BSS list
294 *
295 * Return Value:
296 * true if success.
297 */
298 int BSSbInsertToBSSList(struct vnt_private *pDevice,
299 u8 *abyBSSIDAddr,
300 u64 qwTimestamp,
301 u16 wBeaconInterval,
302 u16 wCapInfo,
303 u8 byCurrChannel,
304 PWLAN_IE_SSID pSSID,
305 PWLAN_IE_SUPP_RATES pSuppRates,
306 PWLAN_IE_SUPP_RATES pExtSuppRates,
307 PERPObject psERP,
308 PWLAN_IE_RSN pRSN,
309 PWLAN_IE_RSN_EXT pRSNWPA,
310 PWLAN_IE_COUNTRY pIE_Country,
311 PWLAN_IE_QUIET pIE_Quiet,
312 u32 uIELength,
313 u8 *pbyIEs,
314 void *pRxPacketContext)
315 {
316 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
317 struct vnt_rx_mgmt *pRxPacket =
318 (struct vnt_rx_mgmt *) pRxPacketContext;
319 PKnownBSS pBSSList = NULL;
320 unsigned int ii;
321 bool bParsingQuiet = false;
322
323 pBSSList = (PKnownBSS) &(pMgmt->sBSSList[0]);
324
325 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
326 pBSSList = (PKnownBSS) &(pMgmt->sBSSList[ii]);
327 if (!pBSSList->bActive)
328 break;
329 }
330
331 if (ii == MAX_BSS_NUM) {
332 DBG_PRT(MSG_LEVEL_DEBUG,
333 KERN_INFO "Get free KnowBSS node failed.\n");
334 return false;
335 }
336 /* save the BSS info */
337 pBSSList->bActive = true;
338 memcpy(pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
339 pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
340 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
341 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
342 pBSSList->uClearCount = 0;
343
344 if (pSSID->len > WLAN_SSID_MAXLEN)
345 pSSID->len = WLAN_SSID_MAXLEN;
346 memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
347
348 pBSSList->uChannel = byCurrChannel;
349
350 if (pSuppRates->len > WLAN_RATES_MAXLEN)
351 pSuppRates->len = WLAN_RATES_MAXLEN;
352 memcpy(pBSSList->abySuppRates, pSuppRates,
353 pSuppRates->len + WLAN_IEHDR_LEN);
354
355 if (pExtSuppRates) {
356 if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
357 pExtSuppRates->len = WLAN_RATES_MAXLEN;
358 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,
359 pExtSuppRates->len + WLAN_IEHDR_LEN);
360 DBG_PRT(MSG_LEVEL_DEBUG,
361 KERN_INFO "BSSbInsertToBSSList: pExtSuppRates->len = %d\n",
362 pExtSuppRates->len);
363
364 } else {
365 memset(pBSSList->abyExtSuppRates, 0,
366 WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
367 }
368 pBSSList->sERP.byERP = psERP->byERP;
369 pBSSList->sERP.bERPExist = psERP->bERPExist;
370
371 /* Check if BSS is 802.11a/b/g */
372 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G)
373 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
374 else if (pBSSList->sERP.bERPExist == true)
375 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
376 else
377 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
378
379 pBSSList->byRxRate = pRxPacket->byRxRate;
380 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
381 pBSSList->uRSSI = pRxPacket->uRSSI;
382 pBSSList->bySQ = pRxPacket->bySQ;
383
384 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA &&
385 pMgmt->eCurrState == WMAC_STATE_ASSOC &&
386 /* assoc with BSS */
387 pBSSList == pMgmt->pCurrBSS)
388 bParsingQuiet = true;
389
390 WPA_ClearRSN(pBSSList);
391
392 if (pRSNWPA) {
393 unsigned int uLen = pRSNWPA->len + 2;
394
395 if (uLen <= (uIELength -
396 (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
397 pBSSList->wWPALen = uLen;
398 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
399 WPA_ParseRSN(pBSSList, pRSNWPA);
400 }
401 }
402
403 WPA2_ClearRSN(pBSSList);
404
405 if (pRSN) {
406 unsigned int uLen = pRSN->len + 2;
407
408 if (uLen <= (uIELength -
409 (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
410 pBSSList->wRSNLen = uLen;
411 memcpy(pBSSList->byRSNIE, pRSN, uLen);
412 WPA2vParseRSN(pBSSList, pRSN);
413 }
414 }
415
416 if (pMgmt->eAuthenMode == WMAC_AUTH_WPA2 ||
417 pBSSList->bWPA2Valid == true) {
418
419 PSKeyItem pTransmitKey = NULL;
420 bool bIs802_1x = false;
421
422 for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii++) {
423 if (pBSSList->abyAKMSSAuthType[ii] ==
424 WLAN_11i_AKMSS_802_1X) {
425 bIs802_1x = true;
426 break;
427 }
428 }
429 if (bIs802_1x == true &&
430 pSSID->len == ((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->len &&
431 !memcmp(pSSID->abySSID,
432 ((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->abySSID,
433 pSSID->len)) {
434
435 bAdd_PMKID_Candidate((void *) pDevice,
436 pBSSList->abyBSSID,
437 &pBSSList->sRSNCapObj);
438
439 if (pDevice->bLinkPass == true &&
440 pMgmt->eCurrState == WMAC_STATE_ASSOC &&
441 (KeybGetTransmitKey(&(pDevice->sKey),
442 pDevice->abyBSSID,
443 PAIRWISE_KEY,
444 &pTransmitKey) == true ||
445 KeybGetTransmitKey(&(pDevice->sKey),
446 pDevice->abyBSSID,
447 GROUP_KEY,
448 &pTransmitKey) == true)) {
449 pDevice->gsPMKIDCandidate.StatusType =
450 Ndis802_11StatusType_PMKID_CandidateList;
451 pDevice->gsPMKIDCandidate.Version = 1;
452
453
454 }
455 }
456 }
457
458 /* Monitor if RSSI is too strong. */
459 pBSSList->byRSSIStatCnt = 0;
460
461 vnt_rf_rssi_to_dbm(pDevice, (u8)pRxPacket->uRSSI, &pBSSList->ldBmMAX);
462
463 pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
464 pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
465 for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
466 pBSSList->ldBmAverage[ii] = 0;
467
468 pBSSList->uIELength = uIELength;
469 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
470 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
471 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
472
473 return true;
474 }
475
476 /*
477 * Routine Description:
478 * Update BSS set in known BSS list
479 *
480 * Return Value:
481 * true if success.
482 */
483 /* TODO: input structure modify */
484 int BSSbUpdateToBSSList(struct vnt_private *pDevice,
485 u64 qwTimestamp,
486 u16 wBeaconInterval,
487 u16 wCapInfo,
488 u8 byCurrChannel,
489 int bChannelHit,
490 PWLAN_IE_SSID pSSID,
491 PWLAN_IE_SUPP_RATES pSuppRates,
492 PWLAN_IE_SUPP_RATES pExtSuppRates,
493 PERPObject psERP,
494 PWLAN_IE_RSN pRSN,
495 PWLAN_IE_RSN_EXT pRSNWPA,
496 PWLAN_IE_COUNTRY pIE_Country,
497 PWLAN_IE_QUIET pIE_Quiet,
498 PKnownBSS pBSSList,
499 u32 uIELength,
500 u8 *pbyIEs,
501 void *pRxPacketContext)
502 {
503 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
504 struct vnt_rx_mgmt *pRxPacket =
505 (struct vnt_rx_mgmt *) pRxPacketContext;
506 int ii, jj;
507 signed long ldBm, ldBmSum;
508 bool bParsingQuiet = false;
509
510 if (!pBSSList)
511 return false;
512
513 pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
514
515 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
516 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
517 pBSSList->uClearCount = 0;
518 pBSSList->uChannel = byCurrChannel;
519
520 if (pSSID->len > WLAN_SSID_MAXLEN)
521 pSSID->len = WLAN_SSID_MAXLEN;
522
523 if (pSSID->len != 0 && pSSID->abySSID[0] != 0)
524 memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
525 memcpy(pBSSList->abySuppRates, pSuppRates,
526 pSuppRates->len + WLAN_IEHDR_LEN);
527
528 if (pExtSuppRates)
529 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,
530 pExtSuppRates->len + WLAN_IEHDR_LEN);
531 else
532 memset(pBSSList->abyExtSuppRates, 0,
533 WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
534 pBSSList->sERP.byERP = psERP->byERP;
535 pBSSList->sERP.bERPExist = psERP->bERPExist;
536
537 /* Check if BSS is 802.11a/b/g */
538 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G)
539 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
540 else if (pBSSList->sERP.bERPExist == true)
541 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
542 else
543 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
544
545 pBSSList->byRxRate = pRxPacket->byRxRate;
546 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
547 if (bChannelHit)
548 pBSSList->uRSSI = pRxPacket->uRSSI;
549 pBSSList->bySQ = pRxPacket->bySQ;
550
551 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA &&
552 pMgmt->eCurrState == WMAC_STATE_ASSOC &&
553 /* assoc with BSS */
554 pBSSList == pMgmt->pCurrBSS)
555 bParsingQuiet = true;
556
557 WPA_ClearRSN(pBSSList); /* mike update */
558
559 if (pRSNWPA) {
560 unsigned int uLen = pRSNWPA->len + 2;
561 if (uLen <= (uIELength -
562 (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
563 pBSSList->wWPALen = uLen;
564 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
565 WPA_ParseRSN(pBSSList, pRSNWPA);
566 }
567 }
568
569 WPA2_ClearRSN(pBSSList); /* mike update */
570
571 if (pRSN) {
572 unsigned int uLen = pRSN->len + 2;
573 if (uLen <= (uIELength -
574 (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
575 pBSSList->wRSNLen = uLen;
576 memcpy(pBSSList->byRSNIE, pRSN, uLen);
577 WPA2vParseRSN(pBSSList, pRSN);
578 }
579 }
580
581 if (pRxPacket->uRSSI != 0) {
582 vnt_rf_rssi_to_dbm(pDevice, (u8)pRxPacket->uRSSI, &ldBm);
583 /* Monitor if RSSI is too strong. */
584 pBSSList->byRSSIStatCnt++;
585 pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
586 pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
587 ldBmSum = 0;
588 for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) {
589 if (pBSSList->ldBmAverage[ii] != 0) {
590 pBSSList->ldBmMAX =
591 max(pBSSList->ldBmAverage[ii], ldBm);
592 ldBmSum +=
593 pBSSList->ldBmAverage[ii];
594 jj++;
595 }
596 }
597 pBSSList->ldBmAverRange = ldBmSum / jj;
598 }
599
600 pBSSList->uIELength = uIELength;
601 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
602 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
603 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
604
605 return true;
606 }
607
608 /*
609 * Routine Description:
610 * Search Node DB table to find the index of matched DstAddr
611 *
612 * Return Value:
613 * None
614 */
615 int BSSbIsSTAInNodeDB(struct vnt_private *pDevice,
616 u8 *abyDstAddr,
617 u32 *puNodeIndex)
618 {
619 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
620 unsigned int ii;
621
622 /* Index = 0 reserved for AP Node */
623 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
624 if (pMgmt->sNodeDBTable[ii].bActive &&
625 ether_addr_equal(abyDstAddr,
626 pMgmt->sNodeDBTable[ii].abyMACAddr)) {
627 *puNodeIndex = ii;
628 return true;
629 }
630 }
631
632 return false;
633 };
634
635 /*
636 * Routine Description:
637 * Find an empty node and allocate it; if no empty node
638 * is found, then use the most inactive one.
639 *
640 * Return Value:
641 * None
642 */
643 void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex)
644 {
645 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
646 int ii;
647 u32 BigestCount = 0;
648 u32 SelectIndex;
649 struct sk_buff *skb;
650
651 /* Index = 0 reserved for AP Node (In STA mode)
652 Index = 0 reserved for Broadcast/MultiCast (In AP mode) */
653 SelectIndex = 1;
654 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
655 if (pMgmt->sNodeDBTable[ii].bActive) {
656 if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
657 BigestCount =
658 pMgmt->sNodeDBTable[ii].uInActiveCount;
659 SelectIndex = ii;
660 }
661 } else {
662 break;
663 }
664 }
665
666 /* if not found replace uInActiveCount with the largest one. */
667 if (ii == (MAX_NODE_NUM + 1)) {
668 *puNodeIndex = SelectIndex;
669 DBG_PRT(MSG_LEVEL_DEBUG,
670 KERN_INFO "Replace inactive node = %d\n", SelectIndex);
671 /* clear ps buffer */
672 if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next) {
673 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)))
674 dev_kfree_skb(skb);
675 }
676 } else {
677 *puNodeIndex = ii;
678 }
679
680 memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
681 pMgmt->sNodeDBTable[*puNodeIndex].bActive = true;
682 pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
683 /* for AP mode PS queue */
684 skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
685 pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
686 pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
687 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
688 }
689
690 /*
691 * Routine Description:
692 * Remove Node by NodeIndex
693 *
694 *
695 * Return Value:
696 * None
697 */
698 void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex)
699 {
700 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
701 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
702 struct sk_buff *skb;
703
704 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)))
705 dev_kfree_skb(skb);
706 /* clear context */
707 memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
708 /* clear tx bit map */
709 pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &=
710 ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
711 }
712
713 /*
714 * Routine Description:
715 * Update AP Node content in Index 0 of KnownNodeDB
716 *
717 *
718 * Return Value:
719 * None
720 */
721 void BSSvUpdateAPNode(struct vnt_private *pDevice,
722 u16 *pwCapInfo,
723 PWLAN_IE_SUPP_RATES pSuppRates,
724 PWLAN_IE_SUPP_RATES pExtSuppRates)
725 {
726 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
727 u32 uRateLen = WLAN_RATES_MAXLEN;
728
729 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
730
731 pMgmt->sNodeDBTable[0].bActive = true;
732 if (pDevice->byBBType == BB_TYPE_11B)
733 uRateLen = WLAN_RATES_MAXLEN_11B;
734 pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pSuppRates,
735 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
736 uRateLen);
737 pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pExtSuppRates,
738 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
739 uRateLen);
740 RATEvParseMaxRate((void *) pDevice,
741 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
742 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
743 true,
744 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
745 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
746 &(pMgmt->sNodeDBTable[0].wSuppRate),
747 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
748 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
749 memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID,
750 WLAN_ADDR_LEN);
751 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
752 pMgmt->sNodeDBTable[0].bShortPreamble =
753 WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
754 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
755 /* Auto rate fallback function initiation.
756 * RATEbInit(pDevice); */
757 DBG_PRT(MSG_LEVEL_DEBUG,
758 KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d\n",
759 pMgmt->sNodeDBTable[0].wTxDataRate);
760
761 }
762
763 /*
764 * Routine Description:
765 * Add Multicast Node content in Index 0 of KnownNodeDB
766 *
767 *
768 * Return Value:
769 * None
770 */
771 void BSSvAddMulticastNode(struct vnt_private *pDevice)
772 {
773 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
774
775 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
776
777 memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
778 pMgmt->sNodeDBTable[0].bActive = true;
779 pMgmt->sNodeDBTable[0].bPSEnable = false;
780 skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
781 RATEvParseMaxRate((void *) pDevice,
782 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
783 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
784 true,
785 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
786 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
787 &(pMgmt->sNodeDBTable[0].wSuppRate),
788 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
789 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
790 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
791 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
792
793 }
794
795 /*
796 * Routine Description:
797 *
798 *
799 * Second call back function to update Node DB info & AP link status
800 *
801 *
802 * Return Value:
803 * none.
804 */
805 void BSSvSecondCallBack(struct work_struct *work)
806 {
807 struct vnt_private *pDevice = container_of(work,
808 struct vnt_private, second_callback_work.work);
809 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
810 int ii;
811 PWLAN_IE_SSID pItemSSID, pCurrSSID;
812 u32 uSleepySTACnt = 0;
813 u32 uNonShortSlotSTACnt = 0;
814 u32 uLongPreambleSTACnt = 0;
815
816 if (pDevice->Flags & fMP_DISCONNECTED)
817 return;
818
819 pDevice->uAssocCount = 0;
820
821 /* Power Saving Mode Tx Burst */
822 if (pDevice->bEnablePSMode == true) {
823 pDevice->ulPSModeWaitTx++;
824 if (pDevice->ulPSModeWaitTx >= 2) {
825 pDevice->ulPSModeWaitTx = 0;
826 pDevice->bPSModeTxBurst = false;
827 }
828 }
829
830 pDevice->byERPFlag &=
831 ~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));
832
833 if (pDevice->wUseProtectCntDown > 0) {
834 pDevice->wUseProtectCntDown--;
835 } else {
836 /* disable protect mode */
837 pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
838 }
839
840 if (pDevice->byReAssocCount > 0) {
841 pDevice->byReAssocCount++;
842 if (pDevice->byReAssocCount > 10 &&
843 pDevice->bLinkPass != true) { /* 10 sec timeout */
844 printk("Re-association timeout!!!\n");
845 pDevice->byReAssocCount = 0;
846 /* if (pDevice->bWPASuppWextEnabled == true) */
847 {
848 union iwreq_data wrqu;
849 memset(&wrqu, 0, sizeof(wrqu));
850 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
851 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
852 wireless_send_event(pDevice->dev, SIOCGIWAP,
853 &wrqu, NULL);
854 }
855 } else if (pDevice->bLinkPass == true) {
856 pDevice->byReAssocCount = 0;
857 }
858 }
859
860 pMgmt->eLastState = pMgmt->eCurrState;
861
862 s_uCalculateLinkQual(pDevice);
863
864 for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
865
866 if (pMgmt->sNodeDBTable[ii].bActive) {
867 /* Increase in-activity counter */
868 pMgmt->sNodeDBTable[ii].uInActiveCount++;
869
870 if (ii > 0) {
871 if (pMgmt->sNodeDBTable[ii].uInActiveCount >
872 MAX_INACTIVE_COUNT) {
873 BSSvRemoveOneNode(pDevice, ii);
874 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
875 "Inactive timeout [%d] sec, STA index = [%d] remove\n",
876 MAX_INACTIVE_COUNT, ii);
877 continue;
878 }
879
880 if (pMgmt->sNodeDBTable[ii].eNodeState >=
881 NODE_ASSOC) {
882
883 pDevice->uAssocCount++;
884
885 /* check if Non ERP exist */
886 if (pMgmt->sNodeDBTable[ii].uInActiveCount <
887 ERP_RECOVER_COUNT) {
888 if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
889 pDevice->byERPFlag |=
890 WLAN_SET_ERP_BARKER_MODE(1);
891 uLongPreambleSTACnt++;
892 }
893 if (!pMgmt->sNodeDBTable[ii].bERPExist) {
894 pDevice->byERPFlag |=
895 WLAN_SET_ERP_NONERP_PRESENT(1);
896 pDevice->byERPFlag |=
897 WLAN_SET_ERP_USE_PROTECTION(1);
898 }
899 if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
900 uNonShortSlotSTACnt++;
901 }
902 }
903
904 /* check if any STA in PS mode */
905 if (pMgmt->sNodeDBTable[ii].bPSEnable)
906 uSleepySTACnt++;
907
908 }
909
910 /* Rate fallback check */
911 if (!pDevice->bFixRate) {
912 if (ii > 0) {
913 /* ii = 0 for multicast node (AP & Adhoc) */
914 RATEvTxRateFallBack((void *) pDevice,
915 &(pMgmt->sNodeDBTable[ii]));
916 } else if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
917 /* ii = 0 reserved for unicast AP node (Infra STA) */
918 RATEvTxRateFallBack((void *) pDevice,
919 &(pMgmt->sNodeDBTable[ii]));
920 }
921
922 }
923
924 /* check if pending PS queue */
925 if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
926 DBG_PRT(MSG_LEVEL_DEBUG,
927 KERN_INFO "Index= %d, Queue = %d pending\n",
928 ii,
929 pMgmt->sNodeDBTable[ii].wEnQueueCnt);
930 if (ii > 0 &&
931 pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15) {
932 BSSvRemoveOneNode(pDevice, ii);
933 DBG_PRT(MSG_LEVEL_NOTICE,
934 KERN_INFO "Pending many queues PS STA Index = %d remove\n",
935 ii);
936 continue;
937 }
938 }
939 }
940
941 }
942
943 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP &&
944 pDevice->byBBType == BB_TYPE_11G) {
945
946 /* on/off protect mode */
947 if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
948 if (!pDevice->bProtectMode) {
949 MACvEnableProtectMD(pDevice);
950 pDevice->bProtectMode = true;
951 }
952 } else if (pDevice->bProtectMode) {
953 MACvDisableProtectMD(pDevice);
954 pDevice->bProtectMode = false;
955 }
956 /* on/off short slot time */
957
958 if (uNonShortSlotSTACnt > 0) {
959 if (pDevice->bShortSlotTime) {
960 pDevice->bShortSlotTime = false;
961 BBvSetShortSlotTime(pDevice);
962 vUpdateIFS((void *) pDevice);
963 }
964 } else if (!pDevice->bShortSlotTime) {
965 pDevice->bShortSlotTime = true;
966 BBvSetShortSlotTime(pDevice);
967 vUpdateIFS((void *) pDevice);
968 }
969
970 /* on/off barker long preamble mode */
971
972 if (uLongPreambleSTACnt > 0) {
973 if (!pDevice->bBarkerPreambleMd) {
974 MACvEnableBarkerPreambleMd(pDevice);
975 pDevice->bBarkerPreambleMd = true;
976 }
977 } else if (pDevice->bBarkerPreambleMd) {
978 MACvDisableBarkerPreambleMd(pDevice);
979 pDevice->bBarkerPreambleMd = false;
980 }
981
982 }
983
984 /* Check if any STA in PS mode, enable DTIM multicast deliver */
985 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
986 if (uSleepySTACnt > 0)
987 pMgmt->sNodeDBTable[0].bPSEnable = true;
988 else
989 pMgmt->sNodeDBTable[0].bPSEnable = false;
990 }
991
992 pItemSSID = (PWLAN_IE_SSID) pMgmt->abyDesireSSID;
993 pCurrSSID = (PWLAN_IE_SSID) pMgmt->abyCurrSSID;
994
995 if (pMgmt->eCurrMode == WMAC_MODE_STANDBY ||
996 pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
997
998 if (pMgmt->sNodeDBTable[0].bActive) { /* Assoc with BSS */
999
1000 s_vCheckSensitivity(pDevice);
1001 s_vCheckPreEDThreshold(pDevice);
1002
1003 if (pMgmt->sNodeDBTable[0].uInActiveCount >=
1004 (LOST_BEACON_COUNT/2) &&
1005 pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) {
1006 pDevice->byBBVGANew = pDevice->abyBBVGA[0];
1007 bScheduleCommand((void *) pDevice,
1008 WLAN_CMD_CHANGE_BBSENSITIVITY,
1009 NULL);
1010 }
1011
1012 if (pMgmt->sNodeDBTable[0].uInActiveCount >=
1013 LOST_BEACON_COUNT) {
1014 pMgmt->sNodeDBTable[0].bActive = false;
1015 pMgmt->eCurrMode = WMAC_MODE_STANDBY;
1016 pMgmt->eCurrState = WMAC_STATE_IDLE;
1017 netif_stop_queue(pDevice->dev);
1018 pDevice->bLinkPass = false;
1019
1020 vnt_mac_set_led(pDevice, LEDSTS_STS,
1021 LEDSTS_SLOW);
1022
1023 pDevice->bRoaming = true;
1024 pDevice->bIsRoaming = false;
1025
1026 DBG_PRT(MSG_LEVEL_NOTICE,
1027 KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n",
1028 pMgmt->sNodeDBTable[0].uInActiveCount);
1029 /* let wpa supplicant know AP may disconnect */
1030 {
1031 union iwreq_data wrqu;
1032 memset(&wrqu, 0, sizeof(wrqu));
1033 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1034 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
1035 wireless_send_event(pDevice->dev,
1036 SIOCGIWAP,
1037 &wrqu,
1038 NULL);
1039 }
1040 }
1041 } else if (pItemSSID->len != 0) {
1042 /* Davidwang */
1043 if ((pDevice->bEnableRoaming == true) &&
1044 (!(pMgmt->Cisco_cckm))) {
1045 DBG_PRT(MSG_LEVEL_DEBUG,
1046 KERN_INFO "bRoaming %d, !\n",
1047 pDevice->bRoaming);
1048 DBG_PRT(MSG_LEVEL_DEBUG,
1049 KERN_INFO "bIsRoaming %d, !\n",
1050 pDevice->bIsRoaming);
1051 if ((pDevice->bRoaming == true) &&
1052 (pDevice->bIsRoaming == true)) {
1053 DBG_PRT(MSG_LEVEL_DEBUG,
1054 KERN_INFO "Fast Roaming ...\n");
1055 BSSvClearBSSList((void *) pDevice,
1056 pDevice->bLinkPass);
1057 bScheduleCommand((void *) pDevice,
1058 WLAN_CMD_BSSID_SCAN,
1059 pMgmt->abyDesireSSID);
1060 bScheduleCommand((void *) pDevice,
1061 WLAN_CMD_SSID,
1062 pMgmt->abyDesireSSID);
1063 pDevice->uAutoReConnectTime = 0;
1064 pDevice->uIsroamingTime = 0;
1065 pDevice->bRoaming = false;
1066 } else if (pDevice->bRoaming == false &&
1067 pDevice->bIsRoaming == true) {
1068 pDevice->uIsroamingTime++;
1069 if (pDevice->uIsroamingTime >= 20)
1070 pDevice->bIsRoaming = false;
1071 }
1072 } else if (pDevice->uAutoReConnectTime < 10) {
1073 pDevice->uAutoReConnectTime++;
1074 /* network manager support need not do Roaming scan??? */
1075 if (pDevice->bWPASuppWextEnabled == true)
1076 pDevice->uAutoReConnectTime = 0;
1077 } else {
1078 /* mike use old encryption status for wpa reauthen */
1079 if (pDevice->bWPADEVUp)
1080 pDevice->eEncryptionStatus =
1081 pDevice->eOldEncryptionStatus;
1082
1083 DBG_PRT(MSG_LEVEL_DEBUG,
1084 KERN_INFO "Roaming ...\n");
1085 BSSvClearBSSList((void *) pDevice,
1086 pDevice->bLinkPass);
1087 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1088 bScheduleCommand((void *) pDevice,
1089 WLAN_CMD_BSSID_SCAN,
1090 pMgmt->abyDesireSSID);
1091 bScheduleCommand((void *) pDevice,
1092 WLAN_CMD_SSID,
1093 pMgmt->abyDesireSSID);
1094 pDevice->uAutoReConnectTime = 0;
1095 }
1096 }
1097 }
1098
1099 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
1100 /* if adhoc started which essid is NULL string, rescanning. */
1101 if (pMgmt->eCurrState == WMAC_STATE_STARTED &&
1102 pCurrSSID->len == 0) {
1103 if (pDevice->uAutoReConnectTime < 10) {
1104 pDevice->uAutoReConnectTime++;
1105 } else {
1106 DBG_PRT(MSG_LEVEL_NOTICE,
1107 KERN_INFO "Adhoc re-scanning ...\n");
1108 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1109 bScheduleCommand((void *) pDevice,
1110 WLAN_CMD_BSSID_SCAN, NULL);
1111 bScheduleCommand((void *) pDevice,
1112 WLAN_CMD_SSID, NULL);
1113 pDevice->uAutoReConnectTime = 0;
1114 }
1115 }
1116 if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
1117
1118 s_vCheckSensitivity(pDevice);
1119 s_vCheckPreEDThreshold(pDevice);
1120
1121 if (pMgmt->sNodeDBTable[0].uInActiveCount >=
1122 ADHOC_LOST_BEACON_COUNT) {
1123 DBG_PRT(MSG_LEVEL_NOTICE,
1124 KERN_INFO "Lost other STA beacon [%d] sec, started !\n",
1125 pMgmt->sNodeDBTable[0].uInActiveCount);
1126 pMgmt->sNodeDBTable[0].uInActiveCount = 0;
1127 pMgmt->eCurrState = WMAC_STATE_STARTED;
1128 netif_stop_queue(pDevice->dev);
1129 pDevice->bLinkPass = false;
1130 vnt_mac_set_led(pDevice, LEDSTS_STS,
1131 LEDSTS_SLOW);
1132 }
1133 }
1134 }
1135
1136 if (pDevice->bLinkPass == true) {
1137 if ((pMgmt->eAuthenMode < WMAC_AUTH_WPA ||
1138 pDevice->fWPA_Authened == true) &&
1139 (++pDevice->tx_data_time_out > 40)) {
1140 pDevice->tx_trigger = true;
1141
1142 PSbSendNullPacket(pDevice);
1143
1144 pDevice->tx_trigger = false;
1145 pDevice->tx_data_time_out = 0;
1146 }
1147
1148 if (netif_queue_stopped(pDevice->dev))
1149 netif_wake_queue(pDevice->dev);
1150 }
1151
1152 schedule_delayed_work(&pDevice->second_callback_work, HZ);
1153 }
1154
1155 /*
1156 * Routine Description:
1157 *
1158 *
1159 * Update Tx attemps, Tx failure counter in Node DB
1160 *
1161 *
1162 * Return Value:
1163 * none.
1164 */
1165 void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice, u8 byTSR, u8 byPktNO)
1166 {
1167 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1168 struct vnt_tx_pkt_info *pkt_info = pDevice->pkt_info;
1169 u32 uNodeIndex = 0;
1170 u8 byTxRetry;
1171 u16 wRate;
1172 u16 wFallBackRate = RATE_1M;
1173 u8 byFallBack;
1174 int ii;
1175 u8 *pbyDestAddr;
1176 u8 byPktNum;
1177 u16 wFIFOCtl;
1178
1179 byPktNum = (byPktNO & 0x0F) >> 4;
1180 byTxRetry = (byTSR & 0xF0) >> 4;
1181 wRate = (u16) (byPktNO & 0xF0) >> 4;
1182 wFIFOCtl = pkt_info[byPktNum].fifo_ctl;
1183 pbyDestAddr = pkt_info[byPktNum].dest_addr;
1184
1185 if (wFIFOCtl & FIFOCTL_AUTO_FB_0)
1186 byFallBack = AUTO_FB_0;
1187 else if (wFIFOCtl & FIFOCTL_AUTO_FB_1)
1188 byFallBack = AUTO_FB_1;
1189 else
1190 byFallBack = AUTO_FB_NONE;
1191
1192 /* Only Unicast using support rates */
1193 if (wFIFOCtl & FIFOCTL_NEEDACK) {
1194 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
1195 pMgmt->sNodeDBTable[0].uTxAttempts += 1;
1196 if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1197 /* transmit success, TxAttempts at least plus one */
1198 pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
1199 if ((byFallBack == AUTO_FB_NONE) ||
1200 (wRate < RATE_18M)) {
1201 wFallBackRate = wRate;
1202 } else if (byFallBack == AUTO_FB_0) {
1203 if (byTxRetry < 5)
1204 wFallBackRate =
1205 awHWRetry0[wRate-RATE_18M][byTxRetry];
1206 else
1207 wFallBackRate =
1208 awHWRetry0[wRate-RATE_18M][4];
1209 } else if (byFallBack == AUTO_FB_1) {
1210 if (byTxRetry < 5)
1211 wFallBackRate =
1212 awHWRetry1[wRate-RATE_18M][byTxRetry];
1213 else
1214 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1215 }
1216 pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
1217 } else {
1218 pMgmt->sNodeDBTable[0].uTxFailures++;
1219 }
1220 pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
1221 if (byTxRetry != 0) {
1222 pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE] += byTxRetry;
1223 if (byFallBack == AUTO_FB_NONE ||
1224 wRate < RATE_18M) {
1225 pMgmt->sNodeDBTable[0].uTxFail[wRate] += byTxRetry;
1226 } else if (byFallBack == AUTO_FB_0) {
1227 for (ii = 0; ii < byTxRetry; ii++) {
1228 if (ii < 5)
1229 wFallBackRate =
1230 awHWRetry0[wRate-RATE_18M][ii];
1231 else
1232 wFallBackRate =
1233 awHWRetry0[wRate-RATE_18M][4];
1234 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1235 }
1236 } else if (byFallBack == AUTO_FB_1) {
1237 for (ii = 0; ii < byTxRetry; ii++) {
1238 if (ii < 5)
1239 wFallBackRate =
1240 awHWRetry1[wRate-RATE_18M][ii];
1241 else
1242 wFallBackRate =
1243 awHWRetry1[wRate-RATE_18M][4];
1244 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1245 }
1246 }
1247 }
1248 }
1249
1250 if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA ||
1251 pMgmt->eCurrMode == WMAC_MODE_ESS_AP) &&
1252 BSSbIsSTAInNodeDB((void *) pDevice,
1253 pbyDestAddr,
1254 &uNodeIndex)) {
1255 pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
1256 if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1257 /* transmit success, TxAttempts at least plus one */
1258 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
1259 if ((byFallBack == AUTO_FB_NONE) ||
1260 (wRate < RATE_18M)) {
1261 wFallBackRate = wRate;
1262 } else if (byFallBack == AUTO_FB_0) {
1263 if (byTxRetry < 5)
1264 wFallBackRate =
1265 awHWRetry0[wRate-RATE_18M][byTxRetry];
1266 else
1267 wFallBackRate =
1268 awHWRetry0[wRate-RATE_18M][4];
1269 } else if (byFallBack == AUTO_FB_1) {
1270 if (byTxRetry < 5)
1271 wFallBackRate =
1272 awHWRetry1[wRate-RATE_18M][byTxRetry];
1273 else
1274 wFallBackRate =
1275 awHWRetry1[wRate-RATE_18M][4];
1276 }
1277 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
1278 } else {
1279 pMgmt->sNodeDBTable[uNodeIndex].uTxFailures++;
1280 }
1281 pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
1282 if (byTxRetry != 0) {
1283 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE] += byTxRetry;
1284 if ((byFallBack == AUTO_FB_NONE) ||
1285 (wRate < RATE_18M)) {
1286 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate] += byTxRetry;
1287 } else if (byFallBack == AUTO_FB_0) {
1288 for (ii = 0; ii < byTxRetry; ii++) {
1289 if (ii < 5)
1290 wFallBackRate =
1291 awHWRetry0[wRate-RATE_18M][ii];
1292 else
1293 wFallBackRate =
1294 awHWRetry0[wRate-RATE_18M][4];
1295 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1296 }
1297 } else if (byFallBack == AUTO_FB_1) {
1298 for (ii = 0; ii < byTxRetry; ii++) {
1299 if (ii < 5)
1300 wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
1301 else
1302 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1303 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1304 }
1305 }
1306 }
1307 }
1308 }
1309 }
1310
1311 /*
1312 * Routine Description:
1313 * Clear Nodes & skb in DB Table
1314 *
1315 *
1316 * Parameters:
1317 * In:
1318 * hDeviceContext - The adapter context.
1319 * uStartIndex - starting index
1320 * Out:
1321 * none
1322 *
1323 * Return Value:
1324 * None.
1325 */
1326 void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex)
1327 {
1328 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1329 struct sk_buff *skb;
1330 int ii;
1331
1332 for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
1333 if (pMgmt->sNodeDBTable[ii].bActive) {
1334 /* check if sTxPSQueue has been initial */
1335 if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next) {
1336 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue))) {
1337 DBG_PRT(MSG_LEVEL_DEBUG,
1338 KERN_INFO "PS skb != NULL %d\n",
1339 ii);
1340 dev_kfree_skb(skb);
1341 }
1342 }
1343 memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
1344 }
1345 }
1346 }
1347
1348 static void s_vCheckSensitivity(struct vnt_private *pDevice)
1349 {
1350 PKnownBSS pBSSList = NULL;
1351 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1352 int ii;
1353
1354 if (pMgmt->eCurrState == WMAC_STATE_ASSOC ||
1355 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA &&
1356 pMgmt->eCurrState == WMAC_STATE_JOINTED)) {
1357 pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID,
1358 (PWLAN_IE_SSID) pMgmt->abyCurrSSID);
1359 if (pBSSList) {
1360 /* Update BB register if RSSI is too strong */
1361 signed long LocalldBmAverage = 0;
1362 signed long uNumofdBm = 0;
1363 for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
1364 if (pBSSList->ldBmAverage[ii] != 0) {
1365 uNumofdBm++;
1366 LocalldBmAverage += pBSSList->ldBmAverage[ii];
1367 }
1368 }
1369 if (uNumofdBm > 0) {
1370 LocalldBmAverage = LocalldBmAverage/uNumofdBm;
1371 for (ii = 0; ii < BB_VGA_LEVEL; ii++) {
1372 DBG_PRT(MSG_LEVEL_DEBUG,
1373 KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n",
1374 LocalldBmAverage,
1375 pDevice->ldBmThreshold[ii],
1376 pDevice->abyBBVGA[ii]);
1377 if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
1378 pDevice->byBBVGANew =
1379 pDevice->abyBBVGA[ii];
1380 break;
1381 }
1382 }
1383 if (pDevice->byBBVGANew !=
1384 pDevice->byBBVGACurrent) {
1385 pDevice->uBBVGADiffCount++;
1386 if (pDevice->uBBVGADiffCount >=
1387 BB_VGA_CHANGE_THRESHOLD)
1388 bScheduleCommand(pDevice,
1389 WLAN_CMD_CHANGE_BBSENSITIVITY,
1390 NULL);
1391 } else {
1392 pDevice->uBBVGADiffCount = 0;
1393 }
1394 }
1395 }
1396 }
1397 }
1398
1399 static void s_uCalculateLinkQual(struct vnt_private *pDevice)
1400 {
1401 struct net_device_stats *stats = &pDevice->stats;
1402 unsigned long TxOkRatio, TxCnt;
1403 unsigned long RxOkRatio, RxCnt;
1404 unsigned long RssiRatio;
1405 unsigned long qual;
1406 long ldBm;
1407
1408 TxCnt = stats->tx_packets + pDevice->wstats.discard.retries;
1409
1410 RxCnt = stats->rx_packets + stats->rx_frame_errors;
1411
1412 TxOkRatio = (TxCnt < 6) ? 4000:((stats->tx_packets * 4000) / TxCnt);
1413
1414 RxOkRatio = (RxCnt < 6) ? 2000 :
1415 ((stats->rx_packets * 2000) / RxCnt);
1416
1417 /* decide link quality */
1418 if (pDevice->bLinkPass != true) {
1419 pDevice->wstats.qual.qual = 0;
1420 } else {
1421 vnt_rf_rssi_to_dbm(pDevice, (u8) (pDevice->uCurrRSSI), &ldBm);
1422 if (-ldBm < 50)
1423 RssiRatio = 4000;
1424 else if (-ldBm > 90)
1425 RssiRatio = 0;
1426 else
1427 RssiRatio = (40-(-ldBm-50)) * 4000 / 40;
1428
1429 qual = (RssiRatio + TxOkRatio + RxOkRatio) / 100;
1430 if (qual < 100)
1431 pDevice->wstats.qual.qual = (u8) qual;
1432 else
1433 pDevice->wstats.qual.qual = 100;
1434 }
1435 }
1436
1437 void BSSvClearAnyBSSJoinRecord(struct vnt_private *pDevice)
1438 {
1439 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1440 int ii;
1441
1442 for (ii = 0; ii < MAX_BSS_NUM; ii++)
1443 pMgmt->sBSSList[ii].bSelected = false;
1444
1445 return;
1446 }
1447
1448 static void s_vCheckPreEDThreshold(struct vnt_private *pDevice)
1449 {
1450 PKnownBSS pBSSList = NULL;
1451 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1452
1453 if (pMgmt->eCurrState == WMAC_STATE_ASSOC ||
1454 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA &&
1455 pMgmt->eCurrState == WMAC_STATE_JOINTED)) {
1456 pBSSList = BSSpAddrIsInBSSList(pDevice,
1457 pMgmt->abyCurrBSSID,
1458 (PWLAN_IE_SSID) pMgmt->abyCurrSSID);
1459 if (pBSSList) {
1460 pDevice->byBBPreEDRSSI =
1461 (u8) (~(pBSSList->ldBmAverRange) + 1);
1462 BBvUpdatePreEDThreshold(pDevice, false);
1463 }
1464 }
1465 }
1466
This page took 0.060695 seconds and 6 git commands to generate.