Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / staging / wlan-ng / hfa384x_usb.c
1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 * The contents of this file are subject to the Mozilla Public
11 * License Version 1.1 (the "License"); you may not use this file
12 * except in compliance with the License. You may obtain a copy of
13 * the License at http://www.mozilla.org/MPL/
14 *
15 * Software distributed under the License is distributed on an "AS
16 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 * implied. See the License for the specific language governing
18 * rights and limitations under the License.
19 *
20 * Alternatively, the contents of this file may be used under the
21 * terms of the GNU Public License version 2 (the "GPL"), in which
22 * case the provisions of the GPL are applicable instead of the
23 * above. If you wish to allow the use of your version of this file
24 * only under the terms of the GPL and not to allow others to use
25 * your version of this file under the MPL, indicate your decision
26 * by deleting the provisions above and replace them with the notice
27 * and other provisions required by the GPL. If you do not delete
28 * the provisions above, a recipient may use your version of this
29 * file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction. The lowest level functions are simply C-callable wrappers
52 * around the register accesses. The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable. The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx Highest level abstractions provided by the
59 * hfa384x code. They are driver defined wrappers
60 * for common sequences. These functions generally
61 * use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
64 * functions are wrappers for the RID get/set
65 * sequence. They call copy_[to|from]_bap() and
66 * cmd_access(). These functions operate on the
67 * RIDs and buffers without validation. The caller
68 * is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx functions that provide access to the f/w commands.
72 * The function arguments correspond to each command
73 * argument, even command arguments that get packed
74 * into single registers. These functions _just_
75 * issue the command by setting the cmd/parm regs
76 * & reading the status/resp regs. Additional
77 * activities required to fully use a command
78 * (read/write from/to bap, get/set int status etc.)
79 * are implemented separately. Think of these as
80 * C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx These functions implement the sequence required
84 * to issue any prism2 command. Primarily used by the
85 * hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx BAP read/write access functions.
88 * Note: we usually use BAP0 for non-interrupt context
89 * and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo. The four
96 * functions are create(), destroy(), start(), and stop(). create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up. The start() function gets
99 * the actual hardware running and enables the interrupts. The stop()
100 * function shuts the hardware down. The sequence should be:
101 * create()
102 * start()
103 * .
104 * . Do interesting things w/ the hardware
105 * .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128
129 #define SUBMIT_URB(u, f) usb_submit_urb(u, f)
130
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142
143 enum cmd_mode {
144 DOWAIT = 0,
145 DOASYNC
146 };
147
148 #define THROTTLE_JIFFIES (HZ/8)
149 #define URB_ASYNC_UNLINK 0
150 #define USB_QUEUE_BULK 0
151
152 #define ROUNDUP64(a) (((a)+63)&~63)
153
154 #ifdef DEBUG_USB
155 static void dbprint_urb(struct urb *urb);
156 #endif
157
158 static void
159 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
160
161 static void hfa384x_usb_defer(struct work_struct *data);
162
163 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
164
165 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
166
167 /*---------------------------------------------------*/
168 /* Callbacks */
169 static void hfa384x_usbout_callback(struct urb *urb);
170 static void hfa384x_ctlxout_callback(struct urb *urb);
171 static void hfa384x_usbin_callback(struct urb *urb);
172
173 static void
174 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
175
176 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
177
178 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
179
180 static void
181 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
182
183 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
184 int urb_status);
185
186 /*---------------------------------------------------*/
187 /* Functions to support the prism2 usb command queue */
188
189 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
190
191 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
192
193 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
194
195 static void hfa384x_usb_throttlefn(unsigned long data);
196
197 static void hfa384x_usbctlx_completion_task(unsigned long data);
198
199 static void hfa384x_usbctlx_reaper_task(unsigned long data);
200
201 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
202
203 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
204
205 struct usbctlx_completor {
206 int (*complete)(struct usbctlx_completor *);
207 };
208
209 static int
210 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
211 hfa384x_usbctlx_t *ctlx,
212 struct usbctlx_completor *completor);
213
214 static int
215 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
216
217 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
218
219 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220
221 static int
222 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
223 hfa384x_cmdresult_t *result);
224
225 static void
226 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
227 hfa384x_rridresult_t *result);
228
229 /*---------------------------------------------------*/
230 /* Low level req/resp CTLX formatters and submitters */
231 static int
232 hfa384x_docmd(hfa384x_t *hw,
233 enum cmd_mode mode,
234 hfa384x_metacmd_t *cmd,
235 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
236
237 static int
238 hfa384x_dorrid(hfa384x_t *hw,
239 enum cmd_mode mode,
240 u16 rid,
241 void *riddata,
242 unsigned int riddatalen,
243 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
244
245 static int
246 hfa384x_dowrid(hfa384x_t *hw,
247 enum cmd_mode mode,
248 u16 rid,
249 void *riddata,
250 unsigned int riddatalen,
251 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
252
253 static int
254 hfa384x_dormem(hfa384x_t *hw,
255 enum cmd_mode mode,
256 u16 page,
257 u16 offset,
258 void *data,
259 unsigned int len,
260 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
261
262 static int
263 hfa384x_dowmem(hfa384x_t *hw,
264 enum cmd_mode mode,
265 u16 page,
266 u16 offset,
267 void *data,
268 unsigned int len,
269 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
270
271 static int hfa384x_isgood_pdrcode(u16 pdrcode);
272
273 static inline const char *ctlxstr(CTLX_STATE s)
274 {
275 static const char * const ctlx_str[] = {
276 "Initial state",
277 "Complete",
278 "Request failed",
279 "Request pending",
280 "Request packet submitted",
281 "Request packet completed",
282 "Response packet completed"
283 };
284
285 return ctlx_str[s];
286 };
287
288 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t *hw)
289 {
290 return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
291 }
292
293 #ifdef DEBUG_USB
294 void dbprint_urb(struct urb *urb)
295 {
296 pr_debug("urb->pipe=0x%08x\n", urb->pipe);
297 pr_debug("urb->status=0x%08x\n", urb->status);
298 pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
299 pr_debug("urb->transfer_buffer=0x%08x\n",
300 (unsigned int)urb->transfer_buffer);
301 pr_debug("urb->transfer_buffer_length=0x%08x\n",
302 urb->transfer_buffer_length);
303 pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
304 pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
305 pr_debug("urb->setup_packet(ctl)=0x%08x\n",
306 (unsigned int)urb->setup_packet);
307 pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
308 pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
309 pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
310 pr_debug("urb->timeout=0x%08x\n", urb->timeout);
311 pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
312 pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
313 }
314 #endif
315
316 /*----------------------------------------------------------------
317 * submit_rx_urb
318 *
319 * Listen for input data on the BULK-IN pipe. If the pipe has
320 * stalled then schedule it to be reset.
321 *
322 * Arguments:
323 * hw device struct
324 * memflags memory allocation flags
325 *
326 * Returns:
327 * error code from submission
328 *
329 * Call context:
330 * Any
331 ----------------------------------------------------------------*/
332 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
333 {
334 struct sk_buff *skb;
335 int result;
336
337 skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
338 if (skb == NULL) {
339 result = -ENOMEM;
340 goto done;
341 }
342
343 /* Post the IN urb */
344 usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
345 hw->endp_in,
346 skb->data, sizeof(hfa384x_usbin_t),
347 hfa384x_usbin_callback, hw->wlandev);
348
349 hw->rx_urb_skb = skb;
350
351 result = -ENOLINK;
352 if (!hw->wlandev->hwremoved &&
353 !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
354 result = SUBMIT_URB(&hw->rx_urb, memflags);
355
356 /* Check whether we need to reset the RX pipe */
357 if (result == -EPIPE) {
358 netdev_warn(hw->wlandev->netdev,
359 "%s rx pipe stalled: requesting reset\n",
360 hw->wlandev->netdev->name);
361 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
362 schedule_work(&hw->usb_work);
363 }
364 }
365
366 /* Don't leak memory if anything should go wrong */
367 if (result != 0) {
368 dev_kfree_skb(skb);
369 hw->rx_urb_skb = NULL;
370 }
371
372 done:
373 return result;
374 }
375
376 /*----------------------------------------------------------------
377 * submit_tx_urb
378 *
379 * Prepares and submits the URB of transmitted data. If the
380 * submission fails then it will schedule the output pipe to
381 * be reset.
382 *
383 * Arguments:
384 * hw device struct
385 * tx_urb URB of data for tranmission
386 * memflags memory allocation flags
387 *
388 * Returns:
389 * error code from submission
390 *
391 * Call context:
392 * Any
393 ----------------------------------------------------------------*/
394 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
395 {
396 struct net_device *netdev = hw->wlandev->netdev;
397 int result;
398
399 result = -ENOLINK;
400 if (netif_running(netdev)) {
401 if (!hw->wlandev->hwremoved &&
402 !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
403 result = SUBMIT_URB(tx_urb, memflags);
404
405 /* Test whether we need to reset the TX pipe */
406 if (result == -EPIPE) {
407 netdev_warn(hw->wlandev->netdev,
408 "%s tx pipe stalled: requesting reset\n",
409 netdev->name);
410 set_bit(WORK_TX_HALT, &hw->usb_flags);
411 schedule_work(&hw->usb_work);
412 } else if (result == 0) {
413 netif_stop_queue(netdev);
414 }
415 }
416 }
417
418 return result;
419 }
420
421 /*----------------------------------------------------------------
422 * hfa394x_usb_defer
423 *
424 * There are some things that the USB stack cannot do while
425 * in interrupt context, so we arrange this function to run
426 * in process context.
427 *
428 * Arguments:
429 * hw device structure
430 *
431 * Returns:
432 * nothing
433 *
434 * Call context:
435 * process (by design)
436 ----------------------------------------------------------------*/
437 static void hfa384x_usb_defer(struct work_struct *data)
438 {
439 hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
440 struct net_device *netdev = hw->wlandev->netdev;
441
442 /* Don't bother trying to reset anything if the plug
443 * has been pulled ...
444 */
445 if (hw->wlandev->hwremoved)
446 return;
447
448 /* Reception has stopped: try to reset the input pipe */
449 if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
450 int ret;
451
452 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
453
454 ret = usb_clear_halt(hw->usb, hw->endp_in);
455 if (ret != 0) {
456 netdev_err(hw->wlandev->netdev,
457 "Failed to clear rx pipe for %s: err=%d\n",
458 netdev->name, ret);
459 } else {
460 netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
461 netdev->name);
462 clear_bit(WORK_RX_HALT, &hw->usb_flags);
463 set_bit(WORK_RX_RESUME, &hw->usb_flags);
464 }
465 }
466
467 /* Resume receiving data back from the device. */
468 if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
469 int ret;
470
471 ret = submit_rx_urb(hw, GFP_KERNEL);
472 if (ret != 0) {
473 netdev_err(hw->wlandev->netdev,
474 "Failed to resume %s rx pipe.\n",
475 netdev->name);
476 } else {
477 clear_bit(WORK_RX_RESUME, &hw->usb_flags);
478 }
479 }
480
481 /* Transmission has stopped: try to reset the output pipe */
482 if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
483 int ret;
484
485 usb_kill_urb(&hw->tx_urb);
486 ret = usb_clear_halt(hw->usb, hw->endp_out);
487 if (ret != 0) {
488 netdev_err(hw->wlandev->netdev,
489 "Failed to clear tx pipe for %s: err=%d\n",
490 netdev->name, ret);
491 } else {
492 netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
493 netdev->name);
494 clear_bit(WORK_TX_HALT, &hw->usb_flags);
495 set_bit(WORK_TX_RESUME, &hw->usb_flags);
496
497 /* Stopping the BULK-OUT pipe also blocked
498 * us from sending any more CTLX URBs, so
499 * we need to re-run our queue ...
500 */
501 hfa384x_usbctlxq_run(hw);
502 }
503 }
504
505 /* Resume transmitting. */
506 if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
507 netif_wake_queue(hw->wlandev->netdev);
508 }
509
510 /*----------------------------------------------------------------
511 * hfa384x_create
512 *
513 * Sets up the hfa384x_t data structure for use. Note this
514 * does _not_ initialize the actual hardware, just the data structures
515 * we use to keep track of its state.
516 *
517 * Arguments:
518 * hw device structure
519 * irq device irq number
520 * iobase i/o base address for register access
521 * membase memory base address for register access
522 *
523 * Returns:
524 * nothing
525 *
526 * Side effects:
527 *
528 * Call context:
529 * process
530 ----------------------------------------------------------------*/
531 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
532 {
533 memset(hw, 0, sizeof(hfa384x_t));
534 hw->usb = usb;
535
536 /* set up the endpoints */
537 hw->endp_in = usb_rcvbulkpipe(usb, 1);
538 hw->endp_out = usb_sndbulkpipe(usb, 2);
539
540 /* Set up the waitq */
541 init_waitqueue_head(&hw->cmdq);
542
543 /* Initialize the command queue */
544 spin_lock_init(&hw->ctlxq.lock);
545 INIT_LIST_HEAD(&hw->ctlxq.pending);
546 INIT_LIST_HEAD(&hw->ctlxq.active);
547 INIT_LIST_HEAD(&hw->ctlxq.completing);
548 INIT_LIST_HEAD(&hw->ctlxq.reapable);
549
550 /* Initialize the authentication queue */
551 skb_queue_head_init(&hw->authq);
552
553 tasklet_init(&hw->reaper_bh,
554 hfa384x_usbctlx_reaper_task, (unsigned long)hw);
555 tasklet_init(&hw->completion_bh,
556 hfa384x_usbctlx_completion_task, (unsigned long)hw);
557 INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
558 INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
559
560 init_timer(&hw->throttle);
561 hw->throttle.function = hfa384x_usb_throttlefn;
562 hw->throttle.data = (unsigned long)hw;
563
564 init_timer(&hw->resptimer);
565 hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
566 hw->resptimer.data = (unsigned long)hw;
567
568 init_timer(&hw->reqtimer);
569 hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
570 hw->reqtimer.data = (unsigned long)hw;
571
572 usb_init_urb(&hw->rx_urb);
573 usb_init_urb(&hw->tx_urb);
574 usb_init_urb(&hw->ctlx_urb);
575
576 hw->link_status = HFA384x_LINK_NOTCONNECTED;
577 hw->state = HFA384x_STATE_INIT;
578
579 INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
580 init_timer(&hw->commsqual_timer);
581 hw->commsqual_timer.data = (unsigned long)hw;
582 hw->commsqual_timer.function = prism2sta_commsqual_timer;
583 }
584
585 /*----------------------------------------------------------------
586 * hfa384x_destroy
587 *
588 * Partner to hfa384x_create(). This function cleans up the hw
589 * structure so that it can be freed by the caller using a simple
590 * kfree. Currently, this function is just a placeholder. If, at some
591 * point in the future, an hw in the 'shutdown' state requires a 'deep'
592 * kfree, this is where it should be done. Note that if this function
593 * is called on a _running_ hw structure, the drvr_stop() function is
594 * called.
595 *
596 * Arguments:
597 * hw device structure
598 *
599 * Returns:
600 * nothing, this function is not allowed to fail.
601 *
602 * Side effects:
603 *
604 * Call context:
605 * process
606 ----------------------------------------------------------------*/
607 void hfa384x_destroy(hfa384x_t *hw)
608 {
609 struct sk_buff *skb;
610
611 if (hw->state == HFA384x_STATE_RUNNING)
612 hfa384x_drvr_stop(hw);
613 hw->state = HFA384x_STATE_PREINIT;
614
615 kfree(hw->scanresults);
616 hw->scanresults = NULL;
617
618 /* Now to clean out the auth queue */
619 while ((skb = skb_dequeue(&hw->authq)))
620 dev_kfree_skb(skb);
621 }
622
623 static hfa384x_usbctlx_t *usbctlx_alloc(void)
624 {
625 hfa384x_usbctlx_t *ctlx;
626
627 ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
628 if (ctlx != NULL) {
629 memset(ctlx, 0, sizeof(*ctlx));
630 init_completion(&ctlx->done);
631 }
632
633 return ctlx;
634 }
635
636 static int
637 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
638 hfa384x_cmdresult_t *result)
639 {
640 result->status = le16_to_cpu(cmdresp->status);
641 result->resp0 = le16_to_cpu(cmdresp->resp0);
642 result->resp1 = le16_to_cpu(cmdresp->resp1);
643 result->resp2 = le16_to_cpu(cmdresp->resp2);
644
645 pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
646 result->status, result->resp0, result->resp1, result->resp2);
647
648 return result->status & HFA384x_STATUS_RESULT;
649 }
650
651 static void
652 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
653 hfa384x_rridresult_t *result)
654 {
655 result->rid = le16_to_cpu(rridresp->rid);
656 result->riddata = rridresp->data;
657 result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
658 }
659
660 /*----------------------------------------------------------------
661 * Completor object:
662 * This completor must be passed to hfa384x_usbctlx_complete_sync()
663 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
664 ----------------------------------------------------------------*/
665 struct usbctlx_cmd_completor {
666 struct usbctlx_completor head;
667
668 const hfa384x_usb_cmdresp_t *cmdresp;
669 hfa384x_cmdresult_t *result;
670 };
671
672 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
673 {
674 struct usbctlx_cmd_completor *complete;
675
676 complete = (struct usbctlx_cmd_completor *)head;
677 return usbctlx_get_status(complete->cmdresp, complete->result);
678 }
679
680 static inline struct usbctlx_completor *init_cmd_completor(
681 struct usbctlx_cmd_completor
682 *completor,
683 const hfa384x_usb_cmdresp_t
684 *cmdresp,
685 hfa384x_cmdresult_t *result)
686 {
687 completor->head.complete = usbctlx_cmd_completor_fn;
688 completor->cmdresp = cmdresp;
689 completor->result = result;
690 return &(completor->head);
691 }
692
693 /*----------------------------------------------------------------
694 * Completor object:
695 * This completor must be passed to hfa384x_usbctlx_complete_sync()
696 * when processing a CTLX that reads a RID.
697 ----------------------------------------------------------------*/
698 struct usbctlx_rrid_completor {
699 struct usbctlx_completor head;
700
701 const hfa384x_usb_rridresp_t *rridresp;
702 void *riddata;
703 unsigned int riddatalen;
704 };
705
706 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
707 {
708 struct usbctlx_rrid_completor *complete;
709 hfa384x_rridresult_t rridresult;
710
711 complete = (struct usbctlx_rrid_completor *)head;
712 usbctlx_get_rridresult(complete->rridresp, &rridresult);
713
714 /* Validate the length, note body len calculation in bytes */
715 if (rridresult.riddata_len != complete->riddatalen) {
716 pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
717 rridresult.rid,
718 complete->riddatalen, rridresult.riddata_len);
719 return -ENODATA;
720 }
721
722 memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
723 return 0;
724 }
725
726 static inline struct usbctlx_completor *init_rrid_completor(
727 struct usbctlx_rrid_completor
728 *completor,
729 const hfa384x_usb_rridresp_t
730 *rridresp,
731 void *riddata,
732 unsigned int riddatalen)
733 {
734 completor->head.complete = usbctlx_rrid_completor_fn;
735 completor->rridresp = rridresp;
736 completor->riddata = riddata;
737 completor->riddatalen = riddatalen;
738 return &(completor->head);
739 }
740
741 /*----------------------------------------------------------------
742 * Completor object:
743 * Interprets the results of a synchronous RID-write
744 ----------------------------------------------------------------*/
745 #define init_wrid_completor init_cmd_completor
746
747 /*----------------------------------------------------------------
748 * Completor object:
749 * Interprets the results of a synchronous memory-write
750 ----------------------------------------------------------------*/
751 #define init_wmem_completor init_cmd_completor
752
753 /*----------------------------------------------------------------
754 * Completor object:
755 * Interprets the results of a synchronous memory-read
756 ----------------------------------------------------------------*/
757 struct usbctlx_rmem_completor {
758 struct usbctlx_completor head;
759
760 const hfa384x_usb_rmemresp_t *rmemresp;
761 void *data;
762 unsigned int len;
763 };
764
765 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
766 {
767 struct usbctlx_rmem_completor *complete =
768 (struct usbctlx_rmem_completor *)head;
769
770 pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
771 memcpy(complete->data, complete->rmemresp->data, complete->len);
772 return 0;
773 }
774
775 static inline struct usbctlx_completor *init_rmem_completor(
776 struct usbctlx_rmem_completor
777 *completor,
778 hfa384x_usb_rmemresp_t
779 *rmemresp,
780 void *data,
781 unsigned int len)
782 {
783 completor->head.complete = usbctlx_rmem_completor_fn;
784 completor->rmemresp = rmemresp;
785 completor->data = data;
786 completor->len = len;
787 return &(completor->head);
788 }
789
790 /*----------------------------------------------------------------
791 * hfa384x_cb_status
792 *
793 * Ctlx_complete handler for async CMD type control exchanges.
794 * mark the hw struct as such.
795 *
796 * Note: If the handling is changed here, it should probably be
797 * changed in docmd as well.
798 *
799 * Arguments:
800 * hw hw struct
801 * ctlx completed CTLX
802 *
803 * Returns:
804 * nothing
805 *
806 * Side effects:
807 *
808 * Call context:
809 * interrupt
810 ----------------------------------------------------------------*/
811 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
812 {
813 if (ctlx->usercb != NULL) {
814 hfa384x_cmdresult_t cmdresult;
815
816 if (ctlx->state != CTLX_COMPLETE) {
817 memset(&cmdresult, 0, sizeof(cmdresult));
818 cmdresult.status =
819 HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
820 } else {
821 usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
822 }
823
824 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
825 }
826 }
827
828 /*----------------------------------------------------------------
829 * hfa384x_cb_rrid
830 *
831 * CTLX completion handler for async RRID type control exchanges.
832 *
833 * Note: If the handling is changed here, it should probably be
834 * changed in dorrid as well.
835 *
836 * Arguments:
837 * hw hw struct
838 * ctlx completed CTLX
839 *
840 * Returns:
841 * nothing
842 *
843 * Side effects:
844 *
845 * Call context:
846 * interrupt
847 ----------------------------------------------------------------*/
848 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
849 {
850 if (ctlx->usercb != NULL) {
851 hfa384x_rridresult_t rridresult;
852
853 if (ctlx->state != CTLX_COMPLETE) {
854 memset(&rridresult, 0, sizeof(rridresult));
855 rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
856 } else {
857 usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
858 &rridresult);
859 }
860
861 ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
862 }
863 }
864
865 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
866 {
867 return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
868 }
869
870 static inline int
871 hfa384x_docmd_async(hfa384x_t *hw,
872 hfa384x_metacmd_t *cmd,
873 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
874 {
875 return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
876 }
877
878 static inline int
879 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
880 unsigned int riddatalen)
881 {
882 return hfa384x_dorrid(hw, DOWAIT,
883 rid, riddata, riddatalen, NULL, NULL, NULL);
884 }
885
886 static inline int
887 hfa384x_dorrid_async(hfa384x_t *hw,
888 u16 rid, void *riddata, unsigned int riddatalen,
889 ctlx_cmdcb_t cmdcb,
890 ctlx_usercb_t usercb, void *usercb_data)
891 {
892 return hfa384x_dorrid(hw, DOASYNC,
893 rid, riddata, riddatalen,
894 cmdcb, usercb, usercb_data);
895 }
896
897 static inline int
898 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
899 unsigned int riddatalen)
900 {
901 return hfa384x_dowrid(hw, DOWAIT,
902 rid, riddata, riddatalen, NULL, NULL, NULL);
903 }
904
905 static inline int
906 hfa384x_dowrid_async(hfa384x_t *hw,
907 u16 rid, void *riddata, unsigned int riddatalen,
908 ctlx_cmdcb_t cmdcb,
909 ctlx_usercb_t usercb, void *usercb_data)
910 {
911 return hfa384x_dowrid(hw, DOASYNC,
912 rid, riddata, riddatalen,
913 cmdcb, usercb, usercb_data);
914 }
915
916 static inline int
917 hfa384x_dormem_wait(hfa384x_t *hw,
918 u16 page, u16 offset, void *data, unsigned int len)
919 {
920 return hfa384x_dormem(hw, DOWAIT,
921 page, offset, data, len, NULL, NULL, NULL);
922 }
923
924 static inline int
925 hfa384x_dormem_async(hfa384x_t *hw,
926 u16 page, u16 offset, void *data, unsigned int len,
927 ctlx_cmdcb_t cmdcb,
928 ctlx_usercb_t usercb, void *usercb_data)
929 {
930 return hfa384x_dormem(hw, DOASYNC,
931 page, offset, data, len,
932 cmdcb, usercb, usercb_data);
933 }
934
935 static inline int
936 hfa384x_dowmem_wait(hfa384x_t *hw,
937 u16 page, u16 offset, void *data, unsigned int len)
938 {
939 return hfa384x_dowmem(hw, DOWAIT,
940 page, offset, data, len, NULL, NULL, NULL);
941 }
942
943 static inline int
944 hfa384x_dowmem_async(hfa384x_t *hw,
945 u16 page,
946 u16 offset,
947 void *data,
948 unsigned int len,
949 ctlx_cmdcb_t cmdcb,
950 ctlx_usercb_t usercb, void *usercb_data)
951 {
952 return hfa384x_dowmem(hw, DOASYNC,
953 page, offset, data, len,
954 cmdcb, usercb, usercb_data);
955 }
956
957 /*----------------------------------------------------------------
958 * hfa384x_cmd_initialize
959 *
960 * Issues the initialize command and sets the hw->state based
961 * on the result.
962 *
963 * Arguments:
964 * hw device structure
965 *
966 * Returns:
967 * 0 success
968 * >0 f/w reported error - f/w status code
969 * <0 driver reported error
970 *
971 * Side effects:
972 *
973 * Call context:
974 * process
975 ----------------------------------------------------------------*/
976 int hfa384x_cmd_initialize(hfa384x_t *hw)
977 {
978 int result = 0;
979 int i;
980 hfa384x_metacmd_t cmd;
981
982 cmd.cmd = HFA384x_CMDCODE_INIT;
983 cmd.parm0 = 0;
984 cmd.parm1 = 0;
985 cmd.parm2 = 0;
986
987 result = hfa384x_docmd_wait(hw, &cmd);
988
989 pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
990 cmd.result.status,
991 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
992 if (result == 0) {
993 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
994 hw->port_enabled[i] = 0;
995 }
996
997 hw->link_status = HFA384x_LINK_NOTCONNECTED;
998
999 return result;
1000 }
1001
1002 /*----------------------------------------------------------------
1003 * hfa384x_cmd_disable
1004 *
1005 * Issues the disable command to stop communications on one of
1006 * the MACs 'ports'.
1007 *
1008 * Arguments:
1009 * hw device structure
1010 * macport MAC port number (host order)
1011 *
1012 * Returns:
1013 * 0 success
1014 * >0 f/w reported failure - f/w status code
1015 * <0 driver reported error (timeout|bad arg)
1016 *
1017 * Side effects:
1018 *
1019 * Call context:
1020 * process
1021 ----------------------------------------------------------------*/
1022 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1023 {
1024 int result = 0;
1025 hfa384x_metacmd_t cmd;
1026
1027 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1028 HFA384x_CMD_MACPORT_SET(macport);
1029 cmd.parm0 = 0;
1030 cmd.parm1 = 0;
1031 cmd.parm2 = 0;
1032
1033 result = hfa384x_docmd_wait(hw, &cmd);
1034
1035 return result;
1036 }
1037
1038 /*----------------------------------------------------------------
1039 * hfa384x_cmd_enable
1040 *
1041 * Issues the enable command to enable communications on one of
1042 * the MACs 'ports'.
1043 *
1044 * Arguments:
1045 * hw device structure
1046 * macport MAC port number
1047 *
1048 * Returns:
1049 * 0 success
1050 * >0 f/w reported failure - f/w status code
1051 * <0 driver reported error (timeout|bad arg)
1052 *
1053 * Side effects:
1054 *
1055 * Call context:
1056 * process
1057 ----------------------------------------------------------------*/
1058 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1059 {
1060 int result = 0;
1061 hfa384x_metacmd_t cmd;
1062
1063 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1064 HFA384x_CMD_MACPORT_SET(macport);
1065 cmd.parm0 = 0;
1066 cmd.parm1 = 0;
1067 cmd.parm2 = 0;
1068
1069 result = hfa384x_docmd_wait(hw, &cmd);
1070
1071 return result;
1072 }
1073
1074 /*----------------------------------------------------------------
1075 * hfa384x_cmd_monitor
1076 *
1077 * Enables the 'monitor mode' of the MAC. Here's the description of
1078 * monitor mode that I've received thus far:
1079 *
1080 * "The "monitor mode" of operation is that the MAC passes all
1081 * frames for which the PLCP checks are correct. All received
1082 * MPDUs are passed to the host with MAC Port = 7, with a
1083 * receive status of good, FCS error, or undecryptable. Passing
1084 * certain MPDUs is a violation of the 802.11 standard, but useful
1085 * for a debugging tool." Normal communication is not possible
1086 * while monitor mode is enabled.
1087 *
1088 * Arguments:
1089 * hw device structure
1090 * enable a code (0x0b|0x0f) that enables/disables
1091 * monitor mode. (host order)
1092 *
1093 * Returns:
1094 * 0 success
1095 * >0 f/w reported failure - f/w status code
1096 * <0 driver reported error (timeout|bad arg)
1097 *
1098 * Side effects:
1099 *
1100 * Call context:
1101 * process
1102 ----------------------------------------------------------------*/
1103 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1104 {
1105 int result = 0;
1106 hfa384x_metacmd_t cmd;
1107
1108 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1109 HFA384x_CMD_AINFO_SET(enable);
1110 cmd.parm0 = 0;
1111 cmd.parm1 = 0;
1112 cmd.parm2 = 0;
1113
1114 result = hfa384x_docmd_wait(hw, &cmd);
1115
1116 return result;
1117 }
1118
1119 /*----------------------------------------------------------------
1120 * hfa384x_cmd_download
1121 *
1122 * Sets the controls for the MAC controller code/data download
1123 * process. The arguments set the mode and address associated
1124 * with a download. Note that the aux registers should be enabled
1125 * prior to setting one of the download enable modes.
1126 *
1127 * Arguments:
1128 * hw device structure
1129 * mode 0 - Disable programming and begin code exec
1130 * 1 - Enable volatile mem programming
1131 * 2 - Enable non-volatile mem programming
1132 * 3 - Program non-volatile section from NV download
1133 * buffer.
1134 * (host order)
1135 * lowaddr
1136 * highaddr For mode 1, sets the high & low order bits of
1137 * the "destination address". This address will be
1138 * the execution start address when download is
1139 * subsequently disabled.
1140 * For mode 2, sets the high & low order bits of
1141 * the destination in NV ram.
1142 * For modes 0 & 3, should be zero. (host order)
1143 * NOTE: these are CMD format.
1144 * codelen Length of the data to write in mode 2,
1145 * zero otherwise. (host order)
1146 *
1147 * Returns:
1148 * 0 success
1149 * >0 f/w reported failure - f/w status code
1150 * <0 driver reported error (timeout|bad arg)
1151 *
1152 * Side effects:
1153 *
1154 * Call context:
1155 * process
1156 ----------------------------------------------------------------*/
1157 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1158 u16 highaddr, u16 codelen)
1159 {
1160 int result = 0;
1161 hfa384x_metacmd_t cmd;
1162
1163 pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1164 mode, lowaddr, highaddr, codelen);
1165
1166 cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1167 HFA384x_CMD_PROGMODE_SET(mode));
1168
1169 cmd.parm0 = lowaddr;
1170 cmd.parm1 = highaddr;
1171 cmd.parm2 = codelen;
1172
1173 result = hfa384x_docmd_wait(hw, &cmd);
1174
1175 return result;
1176 }
1177
1178 /*----------------------------------------------------------------
1179 * hfa384x_corereset
1180 *
1181 * Perform a reset of the hfa38xx MAC core. We assume that the hw
1182 * structure is in its "created" state. That is, it is initialized
1183 * with proper values. Note that if a reset is done after the
1184 * device has been active for awhile, the caller might have to clean
1185 * up some leftover cruft in the hw structure.
1186 *
1187 * Arguments:
1188 * hw device structure
1189 * holdtime how long (in ms) to hold the reset
1190 * settletime how long (in ms) to wait after releasing
1191 * the reset
1192 *
1193 * Returns:
1194 * nothing
1195 *
1196 * Side effects:
1197 *
1198 * Call context:
1199 * process
1200 ----------------------------------------------------------------*/
1201 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1202 {
1203 int result = 0;
1204
1205 result = usb_reset_device(hw->usb);
1206 if (result < 0) {
1207 netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1208 result);
1209 }
1210
1211 return result;
1212 }
1213
1214 /*----------------------------------------------------------------
1215 * hfa384x_usbctlx_complete_sync
1216 *
1217 * Waits for a synchronous CTLX object to complete,
1218 * and then handles the response.
1219 *
1220 * Arguments:
1221 * hw device structure
1222 * ctlx CTLX ptr
1223 * completor functor object to decide what to
1224 * do with the CTLX's result.
1225 *
1226 * Returns:
1227 * 0 Success
1228 * -ERESTARTSYS Interrupted by a signal
1229 * -EIO CTLX failed
1230 * -ENODEV Adapter was unplugged
1231 * ??? Result from completor
1232 *
1233 * Side effects:
1234 *
1235 * Call context:
1236 * process
1237 ----------------------------------------------------------------*/
1238 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1239 hfa384x_usbctlx_t *ctlx,
1240 struct usbctlx_completor *completor)
1241 {
1242 unsigned long flags;
1243 int result;
1244
1245 result = wait_for_completion_interruptible(&ctlx->done);
1246
1247 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1248
1249 /*
1250 * We can only handle the CTLX if the USB disconnect
1251 * function has not run yet ...
1252 */
1253 cleanup:
1254 if (hw->wlandev->hwremoved) {
1255 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1256 result = -ENODEV;
1257 } else if (result != 0) {
1258 int runqueue = 0;
1259
1260 /*
1261 * We were probably interrupted, so delete
1262 * this CTLX asynchronously, kill the timers
1263 * and the URB, and then start the next
1264 * pending CTLX.
1265 *
1266 * NOTE: We can only delete the timers and
1267 * the URB if this CTLX is active.
1268 */
1269 if (ctlx == get_active_ctlx(hw)) {
1270 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1271
1272 del_singleshot_timer_sync(&hw->reqtimer);
1273 del_singleshot_timer_sync(&hw->resptimer);
1274 hw->req_timer_done = 1;
1275 hw->resp_timer_done = 1;
1276 usb_kill_urb(&hw->ctlx_urb);
1277
1278 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1279
1280 runqueue = 1;
1281
1282 /*
1283 * This scenario is so unlikely that I'm
1284 * happy with a grubby "goto" solution ...
1285 */
1286 if (hw->wlandev->hwremoved)
1287 goto cleanup;
1288 }
1289
1290 /*
1291 * The completion task will send this CTLX
1292 * to the reaper the next time it runs. We
1293 * are no longer in a hurry.
1294 */
1295 ctlx->reapable = 1;
1296 ctlx->state = CTLX_REQ_FAILED;
1297 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1298
1299 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1300
1301 if (runqueue)
1302 hfa384x_usbctlxq_run(hw);
1303 } else {
1304 if (ctlx->state == CTLX_COMPLETE) {
1305 result = completor->complete(completor);
1306 } else {
1307 netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1308 le16_to_cpu(ctlx->outbuf.type),
1309 ctlxstr(ctlx->state));
1310 result = -EIO;
1311 }
1312
1313 list_del(&ctlx->list);
1314 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1315 kfree(ctlx);
1316 }
1317
1318 return result;
1319 }
1320
1321 /*----------------------------------------------------------------
1322 * hfa384x_docmd
1323 *
1324 * Constructs a command CTLX and submits it.
1325 *
1326 * NOTE: Any changes to the 'post-submit' code in this function
1327 * need to be carried over to hfa384x_cbcmd() since the handling
1328 * is virtually identical.
1329 *
1330 * Arguments:
1331 * hw device structure
1332 * mode DOWAIT or DOASYNC
1333 * cmd cmd structure. Includes all arguments and result
1334 * data points. All in host order. in host order
1335 * cmdcb command-specific callback
1336 * usercb user callback for async calls, NULL for DOWAIT calls
1337 * usercb_data user supplied data pointer for async calls, NULL
1338 * for DOASYNC calls
1339 *
1340 * Returns:
1341 * 0 success
1342 * -EIO CTLX failure
1343 * -ERESTARTSYS Awakened on signal
1344 * >0 command indicated error, Status and Resp0-2 are
1345 * in hw structure.
1346 *
1347 * Side effects:
1348 *
1349 *
1350 * Call context:
1351 * process
1352 ----------------------------------------------------------------*/
1353 static int
1354 hfa384x_docmd(hfa384x_t *hw,
1355 enum cmd_mode mode,
1356 hfa384x_metacmd_t *cmd,
1357 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1358 {
1359 int result;
1360 hfa384x_usbctlx_t *ctlx;
1361
1362 ctlx = usbctlx_alloc();
1363 if (ctlx == NULL) {
1364 result = -ENOMEM;
1365 goto done;
1366 }
1367
1368 /* Initialize the command */
1369 ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1370 ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1371 ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1372 ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1373 ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1374
1375 ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1376
1377 pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1378 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1379
1380 ctlx->reapable = mode;
1381 ctlx->cmdcb = cmdcb;
1382 ctlx->usercb = usercb;
1383 ctlx->usercb_data = usercb_data;
1384
1385 result = hfa384x_usbctlx_submit(hw, ctlx);
1386 if (result != 0) {
1387 kfree(ctlx);
1388 } else if (mode == DOWAIT) {
1389 struct usbctlx_cmd_completor completor;
1390
1391 result =
1392 hfa384x_usbctlx_complete_sync(hw, ctlx,
1393 init_cmd_completor(&completor,
1394 &ctlx->
1395 inbuf.
1396 cmdresp,
1397 &cmd->
1398 result));
1399 }
1400
1401 done:
1402 return result;
1403 }
1404
1405 /*----------------------------------------------------------------
1406 * hfa384x_dorrid
1407 *
1408 * Constructs a read rid CTLX and issues it.
1409 *
1410 * NOTE: Any changes to the 'post-submit' code in this function
1411 * need to be carried over to hfa384x_cbrrid() since the handling
1412 * is virtually identical.
1413 *
1414 * Arguments:
1415 * hw device structure
1416 * mode DOWAIT or DOASYNC
1417 * rid Read RID number (host order)
1418 * riddata Caller supplied buffer that MAC formatted RID.data
1419 * record will be written to for DOWAIT calls. Should
1420 * be NULL for DOASYNC calls.
1421 * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1422 * cmdcb command callback for async calls, NULL for DOWAIT calls
1423 * usercb user callback for async calls, NULL for DOWAIT calls
1424 * usercb_data user supplied data pointer for async calls, NULL
1425 * for DOWAIT calls
1426 *
1427 * Returns:
1428 * 0 success
1429 * -EIO CTLX failure
1430 * -ERESTARTSYS Awakened on signal
1431 * -ENODATA riddatalen != macdatalen
1432 * >0 command indicated error, Status and Resp0-2 are
1433 * in hw structure.
1434 *
1435 * Side effects:
1436 *
1437 * Call context:
1438 * interrupt (DOASYNC)
1439 * process (DOWAIT or DOASYNC)
1440 ----------------------------------------------------------------*/
1441 static int
1442 hfa384x_dorrid(hfa384x_t *hw,
1443 enum cmd_mode mode,
1444 u16 rid,
1445 void *riddata,
1446 unsigned int riddatalen,
1447 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1448 {
1449 int result;
1450 hfa384x_usbctlx_t *ctlx;
1451
1452 ctlx = usbctlx_alloc();
1453 if (ctlx == NULL) {
1454 result = -ENOMEM;
1455 goto done;
1456 }
1457
1458 /* Initialize the command */
1459 ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1460 ctlx->outbuf.rridreq.frmlen =
1461 cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1462 ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1463
1464 ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1465
1466 ctlx->reapable = mode;
1467 ctlx->cmdcb = cmdcb;
1468 ctlx->usercb = usercb;
1469 ctlx->usercb_data = usercb_data;
1470
1471 /* Submit the CTLX */
1472 result = hfa384x_usbctlx_submit(hw, ctlx);
1473 if (result != 0) {
1474 kfree(ctlx);
1475 } else if (mode == DOWAIT) {
1476 struct usbctlx_rrid_completor completor;
1477
1478 result =
1479 hfa384x_usbctlx_complete_sync(hw, ctlx,
1480 init_rrid_completor
1481 (&completor,
1482 &ctlx->inbuf.rridresp,
1483 riddata, riddatalen));
1484 }
1485
1486 done:
1487 return result;
1488 }
1489
1490 /*----------------------------------------------------------------
1491 * hfa384x_dowrid
1492 *
1493 * Constructs a write rid CTLX and issues it.
1494 *
1495 * NOTE: Any changes to the 'post-submit' code in this function
1496 * need to be carried over to hfa384x_cbwrid() since the handling
1497 * is virtually identical.
1498 *
1499 * Arguments:
1500 * hw device structure
1501 * enum cmd_mode DOWAIT or DOASYNC
1502 * rid RID code
1503 * riddata Data portion of RID formatted for MAC
1504 * riddatalen Length of the data portion in bytes
1505 * cmdcb command callback for async calls, NULL for DOWAIT calls
1506 * usercb user callback for async calls, NULL for DOWAIT calls
1507 * usercb_data user supplied data pointer for async calls
1508 *
1509 * Returns:
1510 * 0 success
1511 * -ETIMEDOUT timed out waiting for register ready or
1512 * command completion
1513 * >0 command indicated error, Status and Resp0-2 are
1514 * in hw structure.
1515 *
1516 * Side effects:
1517 *
1518 * Call context:
1519 * interrupt (DOASYNC)
1520 * process (DOWAIT or DOASYNC)
1521 ----------------------------------------------------------------*/
1522 static int
1523 hfa384x_dowrid(hfa384x_t *hw,
1524 enum cmd_mode mode,
1525 u16 rid,
1526 void *riddata,
1527 unsigned int riddatalen,
1528 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1529 {
1530 int result;
1531 hfa384x_usbctlx_t *ctlx;
1532
1533 ctlx = usbctlx_alloc();
1534 if (ctlx == NULL) {
1535 result = -ENOMEM;
1536 goto done;
1537 }
1538
1539 /* Initialize the command */
1540 ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1541 ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1542 (ctlx->outbuf.wridreq.rid) +
1543 riddatalen + 1) / 2);
1544 ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1545 memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1546
1547 ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1548 sizeof(ctlx->outbuf.wridreq.frmlen) +
1549 sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1550
1551 ctlx->reapable = mode;
1552 ctlx->cmdcb = cmdcb;
1553 ctlx->usercb = usercb;
1554 ctlx->usercb_data = usercb_data;
1555
1556 /* Submit the CTLX */
1557 result = hfa384x_usbctlx_submit(hw, ctlx);
1558 if (result != 0) {
1559 kfree(ctlx);
1560 } else if (mode == DOWAIT) {
1561 struct usbctlx_cmd_completor completor;
1562 hfa384x_cmdresult_t wridresult;
1563
1564 result = hfa384x_usbctlx_complete_sync(hw,
1565 ctlx,
1566 init_wrid_completor
1567 (&completor,
1568 &ctlx->inbuf.wridresp,
1569 &wridresult));
1570 }
1571
1572 done:
1573 return result;
1574 }
1575
1576 /*----------------------------------------------------------------
1577 * hfa384x_dormem
1578 *
1579 * Constructs a readmem CTLX and issues it.
1580 *
1581 * NOTE: Any changes to the 'post-submit' code in this function
1582 * need to be carried over to hfa384x_cbrmem() since the handling
1583 * is virtually identical.
1584 *
1585 * Arguments:
1586 * hw device structure
1587 * mode DOWAIT or DOASYNC
1588 * page MAC address space page (CMD format)
1589 * offset MAC address space offset
1590 * data Ptr to data buffer to receive read
1591 * len Length of the data to read (max == 2048)
1592 * cmdcb command callback for async calls, NULL for DOWAIT calls
1593 * usercb user callback for async calls, NULL for DOWAIT calls
1594 * usercb_data user supplied data pointer for async calls
1595 *
1596 * Returns:
1597 * 0 success
1598 * -ETIMEDOUT timed out waiting for register ready or
1599 * command completion
1600 * >0 command indicated error, Status and Resp0-2 are
1601 * in hw structure.
1602 *
1603 * Side effects:
1604 *
1605 * Call context:
1606 * interrupt (DOASYNC)
1607 * process (DOWAIT or DOASYNC)
1608 ----------------------------------------------------------------*/
1609 static int
1610 hfa384x_dormem(hfa384x_t *hw,
1611 enum cmd_mode mode,
1612 u16 page,
1613 u16 offset,
1614 void *data,
1615 unsigned int len,
1616 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1617 {
1618 int result;
1619 hfa384x_usbctlx_t *ctlx;
1620
1621 ctlx = usbctlx_alloc();
1622 if (ctlx == NULL) {
1623 result = -ENOMEM;
1624 goto done;
1625 }
1626
1627 /* Initialize the command */
1628 ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1629 ctlx->outbuf.rmemreq.frmlen =
1630 cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1631 sizeof(ctlx->outbuf.rmemreq.page) + len);
1632 ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1633 ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1634
1635 ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1636
1637 pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1638 ctlx->outbuf.rmemreq.type,
1639 ctlx->outbuf.rmemreq.frmlen,
1640 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1641
1642 pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1643
1644 ctlx->reapable = mode;
1645 ctlx->cmdcb = cmdcb;
1646 ctlx->usercb = usercb;
1647 ctlx->usercb_data = usercb_data;
1648
1649 result = hfa384x_usbctlx_submit(hw, ctlx);
1650 if (result != 0) {
1651 kfree(ctlx);
1652 } else if (mode == DOWAIT) {
1653 struct usbctlx_rmem_completor completor;
1654
1655 result =
1656 hfa384x_usbctlx_complete_sync(hw, ctlx,
1657 init_rmem_completor
1658 (&completor,
1659 &ctlx->inbuf.rmemresp, data,
1660 len));
1661 }
1662
1663 done:
1664 return result;
1665 }
1666
1667 /*----------------------------------------------------------------
1668 * hfa384x_dowmem
1669 *
1670 * Constructs a writemem CTLX and issues it.
1671 *
1672 * NOTE: Any changes to the 'post-submit' code in this function
1673 * need to be carried over to hfa384x_cbwmem() since the handling
1674 * is virtually identical.
1675 *
1676 * Arguments:
1677 * hw device structure
1678 * mode DOWAIT or DOASYNC
1679 * page MAC address space page (CMD format)
1680 * offset MAC address space offset
1681 * data Ptr to data buffer containing write data
1682 * len Length of the data to read (max == 2048)
1683 * cmdcb command callback for async calls, NULL for DOWAIT calls
1684 * usercb user callback for async calls, NULL for DOWAIT calls
1685 * usercb_data user supplied data pointer for async calls.
1686 *
1687 * Returns:
1688 * 0 success
1689 * -ETIMEDOUT timed out waiting for register ready or
1690 * command completion
1691 * >0 command indicated error, Status and Resp0-2 are
1692 * in hw structure.
1693 *
1694 * Side effects:
1695 *
1696 * Call context:
1697 * interrupt (DOWAIT)
1698 * process (DOWAIT or DOASYNC)
1699 ----------------------------------------------------------------*/
1700 static int
1701 hfa384x_dowmem(hfa384x_t *hw,
1702 enum cmd_mode mode,
1703 u16 page,
1704 u16 offset,
1705 void *data,
1706 unsigned int len,
1707 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1708 {
1709 int result;
1710 hfa384x_usbctlx_t *ctlx;
1711
1712 pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1713
1714 ctlx = usbctlx_alloc();
1715 if (ctlx == NULL) {
1716 result = -ENOMEM;
1717 goto done;
1718 }
1719
1720 /* Initialize the command */
1721 ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1722 ctlx->outbuf.wmemreq.frmlen =
1723 cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1724 sizeof(ctlx->outbuf.wmemreq.page) + len);
1725 ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1726 ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1727 memcpy(ctlx->outbuf.wmemreq.data, data, len);
1728
1729 ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1730 sizeof(ctlx->outbuf.wmemreq.frmlen) +
1731 sizeof(ctlx->outbuf.wmemreq.offset) +
1732 sizeof(ctlx->outbuf.wmemreq.page) + len;
1733
1734 ctlx->reapable = mode;
1735 ctlx->cmdcb = cmdcb;
1736 ctlx->usercb = usercb;
1737 ctlx->usercb_data = usercb_data;
1738
1739 result = hfa384x_usbctlx_submit(hw, ctlx);
1740 if (result != 0) {
1741 kfree(ctlx);
1742 } else if (mode == DOWAIT) {
1743 struct usbctlx_cmd_completor completor;
1744 hfa384x_cmdresult_t wmemresult;
1745
1746 result = hfa384x_usbctlx_complete_sync(hw,
1747 ctlx,
1748 init_wmem_completor
1749 (&completor,
1750 &ctlx->inbuf.wmemresp,
1751 &wmemresult));
1752 }
1753
1754 done:
1755 return result;
1756 }
1757
1758 /*----------------------------------------------------------------
1759 * hfa384x_drvr_commtallies
1760 *
1761 * Send a commtallies inquiry to the MAC. Note that this is an async
1762 * call that will result in an info frame arriving sometime later.
1763 *
1764 * Arguments:
1765 * hw device structure
1766 *
1767 * Returns:
1768 * zero success.
1769 *
1770 * Side effects:
1771 *
1772 * Call context:
1773 * process
1774 ----------------------------------------------------------------*/
1775 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1776 {
1777 hfa384x_metacmd_t cmd;
1778
1779 cmd.cmd = HFA384x_CMDCODE_INQ;
1780 cmd.parm0 = HFA384x_IT_COMMTALLIES;
1781 cmd.parm1 = 0;
1782 cmd.parm2 = 0;
1783
1784 hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1785
1786 return 0;
1787 }
1788
1789 /*----------------------------------------------------------------
1790 * hfa384x_drvr_disable
1791 *
1792 * Issues the disable command to stop communications on one of
1793 * the MACs 'ports'. Only macport 0 is valid for stations.
1794 * APs may also disable macports 1-6. Only ports that have been
1795 * previously enabled may be disabled.
1796 *
1797 * Arguments:
1798 * hw device structure
1799 * macport MAC port number (host order)
1800 *
1801 * Returns:
1802 * 0 success
1803 * >0 f/w reported failure - f/w status code
1804 * <0 driver reported error (timeout|bad arg)
1805 *
1806 * Side effects:
1807 *
1808 * Call context:
1809 * process
1810 ----------------------------------------------------------------*/
1811 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1812 {
1813 int result = 0;
1814
1815 if ((!hw->isap && macport != 0) ||
1816 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1817 !(hw->port_enabled[macport])) {
1818 result = -EINVAL;
1819 } else {
1820 result = hfa384x_cmd_disable(hw, macport);
1821 if (result == 0)
1822 hw->port_enabled[macport] = 0;
1823 }
1824 return result;
1825 }
1826
1827 /*----------------------------------------------------------------
1828 * hfa384x_drvr_enable
1829 *
1830 * Issues the enable command to enable communications on one of
1831 * the MACs 'ports'. Only macport 0 is valid for stations.
1832 * APs may also enable macports 1-6. Only ports that are currently
1833 * disabled may be enabled.
1834 *
1835 * Arguments:
1836 * hw device structure
1837 * macport MAC port number
1838 *
1839 * Returns:
1840 * 0 success
1841 * >0 f/w reported failure - f/w status code
1842 * <0 driver reported error (timeout|bad arg)
1843 *
1844 * Side effects:
1845 *
1846 * Call context:
1847 * process
1848 ----------------------------------------------------------------*/
1849 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1850 {
1851 int result = 0;
1852
1853 if ((!hw->isap && macport != 0) ||
1854 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1855 (hw->port_enabled[macport])) {
1856 result = -EINVAL;
1857 } else {
1858 result = hfa384x_cmd_enable(hw, macport);
1859 if (result == 0)
1860 hw->port_enabled[macport] = 1;
1861 }
1862 return result;
1863 }
1864
1865 /*----------------------------------------------------------------
1866 * hfa384x_drvr_flashdl_enable
1867 *
1868 * Begins the flash download state. Checks to see that we're not
1869 * already in a download state and that a port isn't enabled.
1870 * Sets the download state and retrieves the flash download
1871 * buffer location, buffer size, and timeout length.
1872 *
1873 * Arguments:
1874 * hw device structure
1875 *
1876 * Returns:
1877 * 0 success
1878 * >0 f/w reported error - f/w status code
1879 * <0 driver reported error
1880 *
1881 * Side effects:
1882 *
1883 * Call context:
1884 * process
1885 ----------------------------------------------------------------*/
1886 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1887 {
1888 int result = 0;
1889 int i;
1890
1891 /* Check that a port isn't active */
1892 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1893 if (hw->port_enabled[i]) {
1894 pr_debug("called when port enabled.\n");
1895 return -EINVAL;
1896 }
1897 }
1898
1899 /* Check that we're not already in a download state */
1900 if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1901 return -EINVAL;
1902
1903 /* Retrieve the buffer loc&size and timeout */
1904 result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1905 &(hw->bufinfo), sizeof(hw->bufinfo));
1906 if (result)
1907 return result;
1908
1909 hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1910 hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1911 hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1912 result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1913 &(hw->dltimeout));
1914 if (result)
1915 return result;
1916
1917 hw->dltimeout = le16_to_cpu(hw->dltimeout);
1918
1919 pr_debug("flashdl_enable\n");
1920
1921 hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1922
1923 return result;
1924 }
1925
1926 /*----------------------------------------------------------------
1927 * hfa384x_drvr_flashdl_disable
1928 *
1929 * Ends the flash download state. Note that this will cause the MAC
1930 * firmware to restart.
1931 *
1932 * Arguments:
1933 * hw device structure
1934 *
1935 * Returns:
1936 * 0 success
1937 * >0 f/w reported error - f/w status code
1938 * <0 driver reported error
1939 *
1940 * Side effects:
1941 *
1942 * Call context:
1943 * process
1944 ----------------------------------------------------------------*/
1945 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1946 {
1947 /* Check that we're already in the download state */
1948 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1949 return -EINVAL;
1950
1951 pr_debug("flashdl_enable\n");
1952
1953 /* There isn't much we can do at this point, so I don't */
1954 /* bother w/ the return value */
1955 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1956 hw->dlstate = HFA384x_DLSTATE_DISABLED;
1957
1958 return 0;
1959 }
1960
1961 /*----------------------------------------------------------------
1962 * hfa384x_drvr_flashdl_write
1963 *
1964 * Performs a FLASH download of a chunk of data. First checks to see
1965 * that we're in the FLASH download state, then sets the download
1966 * mode, uses the aux functions to 1) copy the data to the flash
1967 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1968 * compare. Lather rinse, repeat as many times an necessary to get
1969 * all the given data into flash.
1970 * When all data has been written using this function (possibly
1971 * repeatedly), call drvr_flashdl_disable() to end the download state
1972 * and restart the MAC.
1973 *
1974 * Arguments:
1975 * hw device structure
1976 * daddr Card address to write to. (host order)
1977 * buf Ptr to data to write.
1978 * len Length of data (host order).
1979 *
1980 * Returns:
1981 * 0 success
1982 * >0 f/w reported error - f/w status code
1983 * <0 driver reported error
1984 *
1985 * Side effects:
1986 *
1987 * Call context:
1988 * process
1989 ----------------------------------------------------------------*/
1990 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1991 {
1992 int result = 0;
1993 u32 dlbufaddr;
1994 int nburns;
1995 u32 burnlen;
1996 u32 burndaddr;
1997 u16 burnlo;
1998 u16 burnhi;
1999 int nwrites;
2000 u8 *writebuf;
2001 u16 writepage;
2002 u16 writeoffset;
2003 u32 writelen;
2004 int i;
2005 int j;
2006
2007 pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2008
2009 /* Check that we're in the flash download state */
2010 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2011 return -EINVAL;
2012
2013 netdev_info(hw->wlandev->netdev,
2014 "Download %d bytes to flash @0x%06x\n", len, daddr);
2015
2016 /* Convert to flat address for arithmetic */
2017 /* NOTE: dlbuffer RID stores the address in AUX format */
2018 dlbufaddr =
2019 HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2020 pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2021 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2022 /* Calculations to determine how many fills of the dlbuffer to do
2023 * and how many USB wmemreq's to do for each fill. At this point
2024 * in time, the dlbuffer size and the wmemreq size are the same.
2025 * Therefore, nwrites should always be 1. The extra complexity
2026 * here is a hedge against future changes.
2027 */
2028
2029 /* Figure out how many times to do the flash programming */
2030 nburns = len / hw->bufinfo.len;
2031 nburns += (len % hw->bufinfo.len) ? 1 : 0;
2032
2033 /* For each flash program cycle, how many USB wmemreq's are needed? */
2034 nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2035 nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2036
2037 /* For each burn */
2038 for (i = 0; i < nburns; i++) {
2039 /* Get the dest address and len */
2040 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2041 hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2042 burndaddr = daddr + (hw->bufinfo.len * i);
2043 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2044 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2045
2046 netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
2047 burnlen, burndaddr);
2048
2049 /* Set the download mode */
2050 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2051 burnlo, burnhi, burnlen);
2052 if (result) {
2053 netdev_err(hw->wlandev->netdev,
2054 "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2055 burnlo, burnhi, burnlen, result);
2056 goto exit_proc;
2057 }
2058
2059 /* copy the data to the flash download buffer */
2060 for (j = 0; j < nwrites; j++) {
2061 writebuf = buf +
2062 (i * hw->bufinfo.len) +
2063 (j * HFA384x_USB_RWMEM_MAXLEN);
2064
2065 writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2066 (j * HFA384x_USB_RWMEM_MAXLEN));
2067 writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2068 (j * HFA384x_USB_RWMEM_MAXLEN));
2069
2070 writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2071 writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2072 HFA384x_USB_RWMEM_MAXLEN : writelen;
2073
2074 result = hfa384x_dowmem_wait(hw,
2075 writepage,
2076 writeoffset,
2077 writebuf, writelen);
2078 }
2079
2080 /* set the download 'write flash' mode */
2081 result = hfa384x_cmd_download(hw,
2082 HFA384x_PROGMODE_NVWRITE,
2083 0, 0, 0);
2084 if (result) {
2085 netdev_err(hw->wlandev->netdev,
2086 "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2087 burnlo, burnhi, burnlen, result);
2088 goto exit_proc;
2089 }
2090
2091 /* TODO: We really should do a readback and compare. */
2092 }
2093
2094 exit_proc:
2095
2096 /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
2097 /* actually disable programming mode. Remember, that will cause the */
2098 /* the firmware to effectively reset itself. */
2099
2100 return result;
2101 }
2102
2103 /*----------------------------------------------------------------
2104 * hfa384x_drvr_getconfig
2105 *
2106 * Performs the sequence necessary to read a config/info item.
2107 *
2108 * Arguments:
2109 * hw device structure
2110 * rid config/info record id (host order)
2111 * buf host side record buffer. Upon return it will
2112 * contain the body portion of the record (minus the
2113 * RID and len).
2114 * len buffer length (in bytes, should match record length)
2115 *
2116 * Returns:
2117 * 0 success
2118 * >0 f/w reported error - f/w status code
2119 * <0 driver reported error
2120 * -ENODATA length mismatch between argument and retrieved
2121 * record.
2122 *
2123 * Side effects:
2124 *
2125 * Call context:
2126 * process
2127 ----------------------------------------------------------------*/
2128 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2129 {
2130 return hfa384x_dorrid_wait(hw, rid, buf, len);
2131 }
2132
2133 /*----------------------------------------------------------------
2134 * hfa384x_drvr_getconfig_async
2135 *
2136 * Performs the sequence necessary to perform an async read of
2137 * of a config/info item.
2138 *
2139 * Arguments:
2140 * hw device structure
2141 * rid config/info record id (host order)
2142 * buf host side record buffer. Upon return it will
2143 * contain the body portion of the record (minus the
2144 * RID and len).
2145 * len buffer length (in bytes, should match record length)
2146 * cbfn caller supplied callback, called when the command
2147 * is done (successful or not).
2148 * cbfndata pointer to some caller supplied data that will be
2149 * passed in as an argument to the cbfn.
2150 *
2151 * Returns:
2152 * nothing the cbfn gets a status argument identifying if
2153 * any errors occur.
2154 * Side effects:
2155 * Queues an hfa384x_usbcmd_t for subsequent execution.
2156 *
2157 * Call context:
2158 * Any
2159 ----------------------------------------------------------------*/
2160 int
2161 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2162 u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2163 {
2164 return hfa384x_dorrid_async(hw, rid, NULL, 0,
2165 hfa384x_cb_rrid, usercb, usercb_data);
2166 }
2167
2168 /*----------------------------------------------------------------
2169 * hfa384x_drvr_setconfig_async
2170 *
2171 * Performs the sequence necessary to write a config/info item.
2172 *
2173 * Arguments:
2174 * hw device structure
2175 * rid config/info record id (in host order)
2176 * buf host side record buffer
2177 * len buffer length (in bytes)
2178 * usercb completion callback
2179 * usercb_data completion callback argument
2180 *
2181 * Returns:
2182 * 0 success
2183 * >0 f/w reported error - f/w status code
2184 * <0 driver reported error
2185 *
2186 * Side effects:
2187 *
2188 * Call context:
2189 * process
2190 ----------------------------------------------------------------*/
2191 int
2192 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2193 u16 rid,
2194 void *buf,
2195 u16 len, ctlx_usercb_t usercb, void *usercb_data)
2196 {
2197 return hfa384x_dowrid_async(hw, rid, buf, len,
2198 hfa384x_cb_status, usercb, usercb_data);
2199 }
2200
2201 /*----------------------------------------------------------------
2202 * hfa384x_drvr_ramdl_disable
2203 *
2204 * Ends the ram download state.
2205 *
2206 * Arguments:
2207 * hw device structure
2208 *
2209 * Returns:
2210 * 0 success
2211 * >0 f/w reported error - f/w status code
2212 * <0 driver reported error
2213 *
2214 * Side effects:
2215 *
2216 * Call context:
2217 * process
2218 ----------------------------------------------------------------*/
2219 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2220 {
2221 /* Check that we're already in the download state */
2222 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2223 return -EINVAL;
2224
2225 pr_debug("ramdl_disable()\n");
2226
2227 /* There isn't much we can do at this point, so I don't */
2228 /* bother w/ the return value */
2229 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2230 hw->dlstate = HFA384x_DLSTATE_DISABLED;
2231
2232 return 0;
2233 }
2234
2235 /*----------------------------------------------------------------
2236 * hfa384x_drvr_ramdl_enable
2237 *
2238 * Begins the ram download state. Checks to see that we're not
2239 * already in a download state and that a port isn't enabled.
2240 * Sets the download state and calls cmd_download with the
2241 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2242 *
2243 * Arguments:
2244 * hw device structure
2245 * exeaddr the card execution address that will be
2246 * jumped to when ramdl_disable() is called
2247 * (host order).
2248 *
2249 * Returns:
2250 * 0 success
2251 * >0 f/w reported error - f/w status code
2252 * <0 driver reported error
2253 *
2254 * Side effects:
2255 *
2256 * Call context:
2257 * process
2258 ----------------------------------------------------------------*/
2259 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2260 {
2261 int result = 0;
2262 u16 lowaddr;
2263 u16 hiaddr;
2264 int i;
2265
2266 /* Check that a port isn't active */
2267 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2268 if (hw->port_enabled[i]) {
2269 netdev_err(hw->wlandev->netdev,
2270 "Can't download with a macport enabled.\n");
2271 return -EINVAL;
2272 }
2273 }
2274
2275 /* Check that we're not already in a download state */
2276 if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2277 netdev_err(hw->wlandev->netdev, "Download state not disabled.\n");
2278 return -EINVAL;
2279 }
2280
2281 pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2282
2283 /* Call the download(1,addr) function */
2284 lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2285 hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2286
2287 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2288 lowaddr, hiaddr, 0);
2289
2290 if (result == 0) {
2291 /* Set the download state */
2292 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2293 } else {
2294 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2295 lowaddr, hiaddr, result);
2296 }
2297
2298 return result;
2299 }
2300
2301 /*----------------------------------------------------------------
2302 * hfa384x_drvr_ramdl_write
2303 *
2304 * Performs a RAM download of a chunk of data. First checks to see
2305 * that we're in the RAM download state, then uses the [read|write]mem USB
2306 * commands to 1) copy the data, 2) readback and compare. The download
2307 * state is unaffected. When all data has been written using
2308 * this function, call drvr_ramdl_disable() to end the download state
2309 * and restart the MAC.
2310 *
2311 * Arguments:
2312 * hw device structure
2313 * daddr Card address to write to. (host order)
2314 * buf Ptr to data to write.
2315 * len Length of data (host order).
2316 *
2317 * Returns:
2318 * 0 success
2319 * >0 f/w reported error - f/w status code
2320 * <0 driver reported error
2321 *
2322 * Side effects:
2323 *
2324 * Call context:
2325 * process
2326 ----------------------------------------------------------------*/
2327 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2328 {
2329 int result = 0;
2330 int nwrites;
2331 u8 *data = buf;
2332 int i;
2333 u32 curraddr;
2334 u16 currpage;
2335 u16 curroffset;
2336 u16 currlen;
2337
2338 /* Check that we're in the ram download state */
2339 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2340 return -EINVAL;
2341
2342 netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2343 len, daddr);
2344
2345 /* How many dowmem calls? */
2346 nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2347 nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2348
2349 /* Do blocking wmem's */
2350 for (i = 0; i < nwrites; i++) {
2351 /* make address args */
2352 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2353 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2354 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2355 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2356 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2357 currlen = HFA384x_USB_RWMEM_MAXLEN;
2358
2359 /* Do blocking ctlx */
2360 result = hfa384x_dowmem_wait(hw,
2361 currpage,
2362 curroffset,
2363 data +
2364 (i * HFA384x_USB_RWMEM_MAXLEN),
2365 currlen);
2366
2367 if (result)
2368 break;
2369
2370 /* TODO: We really should have a readback. */
2371 }
2372
2373 return result;
2374 }
2375
2376 /*----------------------------------------------------------------
2377 * hfa384x_drvr_readpda
2378 *
2379 * Performs the sequence to read the PDA space. Note there is no
2380 * drvr_writepda() function. Writing a PDA is
2381 * generally implemented by a calling component via calls to
2382 * cmd_download and writing to the flash download buffer via the
2383 * aux regs.
2384 *
2385 * Arguments:
2386 * hw device structure
2387 * buf buffer to store PDA in
2388 * len buffer length
2389 *
2390 * Returns:
2391 * 0 success
2392 * >0 f/w reported error - f/w status code
2393 * <0 driver reported error
2394 * -ETIMEDOUT timout waiting for the cmd regs to become
2395 * available, or waiting for the control reg
2396 * to indicate the Aux port is enabled.
2397 * -ENODATA the buffer does NOT contain a valid PDA.
2398 * Either the card PDA is bad, or the auxdata
2399 * reads are giving us garbage.
2400
2401 *
2402 * Side effects:
2403 *
2404 * Call context:
2405 * process or non-card interrupt.
2406 ----------------------------------------------------------------*/
2407 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2408 {
2409 int result = 0;
2410 u16 *pda = buf;
2411 int pdaok = 0;
2412 int morepdrs = 1;
2413 int currpdr = 0; /* word offset of the current pdr */
2414 size_t i;
2415 u16 pdrlen; /* pdr length in bytes, host order */
2416 u16 pdrcode; /* pdr code, host order */
2417 u16 currpage;
2418 u16 curroffset;
2419 struct pdaloc {
2420 u32 cardaddr;
2421 u16 auxctl;
2422 } pdaloc[] = {
2423 {
2424 HFA3842_PDA_BASE, 0}, {
2425 HFA3841_PDA_BASE, 0}, {
2426 HFA3841_PDA_BOGUS_BASE, 0}
2427 };
2428
2429 /* Read the pda from each known address. */
2430 for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2431 /* Make address */
2432 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2433 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2434
2435 /* units of bytes */
2436 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2437 len);
2438
2439 if (result) {
2440 netdev_warn(hw->wlandev->netdev,
2441 "Read from index %zd failed, continuing\n",
2442 i);
2443 continue;
2444 }
2445
2446 /* Test for garbage */
2447 pdaok = 1; /* initially assume good */
2448 morepdrs = 1;
2449 while (pdaok && morepdrs) {
2450 pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2451 pdrcode = le16_to_cpu(pda[currpdr + 1]);
2452 /* Test the record length */
2453 if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2454 netdev_err(hw->wlandev->netdev,
2455 "pdrlen invalid=%d\n", pdrlen);
2456 pdaok = 0;
2457 break;
2458 }
2459 /* Test the code */
2460 if (!hfa384x_isgood_pdrcode(pdrcode)) {
2461 netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2462 pdrcode);
2463 pdaok = 0;
2464 break;
2465 }
2466 /* Test for completion */
2467 if (pdrcode == HFA384x_PDR_END_OF_PDA)
2468 morepdrs = 0;
2469
2470 /* Move to the next pdr (if necessary) */
2471 if (morepdrs) {
2472 /* note the access to pda[], need words here */
2473 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2474 }
2475 }
2476 if (pdaok) {
2477 netdev_info(hw->wlandev->netdev,
2478 "PDA Read from 0x%08x in %s space.\n",
2479 pdaloc[i].cardaddr,
2480 pdaloc[i].auxctl == 0 ? "EXTDS" :
2481 pdaloc[i].auxctl == 1 ? "NV" :
2482 pdaloc[i].auxctl == 2 ? "PHY" :
2483 pdaloc[i].auxctl == 3 ? "ICSRAM" :
2484 "<bogus auxctl>");
2485 break;
2486 }
2487 }
2488 result = pdaok ? 0 : -ENODATA;
2489
2490 if (result)
2491 pr_debug("Failure: pda is not okay\n");
2492
2493 return result;
2494 }
2495
2496 /*----------------------------------------------------------------
2497 * hfa384x_drvr_setconfig
2498 *
2499 * Performs the sequence necessary to write a config/info item.
2500 *
2501 * Arguments:
2502 * hw device structure
2503 * rid config/info record id (in host order)
2504 * buf host side record buffer
2505 * len buffer length (in bytes)
2506 *
2507 * Returns:
2508 * 0 success
2509 * >0 f/w reported error - f/w status code
2510 * <0 driver reported error
2511 *
2512 * Side effects:
2513 *
2514 * Call context:
2515 * process
2516 ----------------------------------------------------------------*/
2517 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2518 {
2519 return hfa384x_dowrid_wait(hw, rid, buf, len);
2520 }
2521
2522 /*----------------------------------------------------------------
2523 * hfa384x_drvr_start
2524 *
2525 * Issues the MAC initialize command, sets up some data structures,
2526 * and enables the interrupts. After this function completes, the
2527 * low-level stuff should be ready for any/all commands.
2528 *
2529 * Arguments:
2530 * hw device structure
2531 * Returns:
2532 * 0 success
2533 * >0 f/w reported error - f/w status code
2534 * <0 driver reported error
2535 *
2536 * Side effects:
2537 *
2538 * Call context:
2539 * process
2540 ----------------------------------------------------------------*/
2541
2542 int hfa384x_drvr_start(hfa384x_t *hw)
2543 {
2544 int result, result1, result2;
2545 u16 status;
2546
2547 might_sleep();
2548
2549 /* Clear endpoint stalls - but only do this if the endpoint
2550 * is showing a stall status. Some prism2 cards seem to behave
2551 * badly if a clear_halt is called when the endpoint is already
2552 * ok
2553 */
2554 result =
2555 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2556 if (result < 0) {
2557 netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2558 goto done;
2559 }
2560 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2561 netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2562
2563 result =
2564 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2565 if (result < 0) {
2566 netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2567 goto done;
2568 }
2569 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2570 netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2571
2572 /* Synchronous unlink, in case we're trying to restart the driver */
2573 usb_kill_urb(&hw->rx_urb);
2574
2575 /* Post the IN urb */
2576 result = submit_rx_urb(hw, GFP_KERNEL);
2577 if (result != 0) {
2578 netdev_err(hw->wlandev->netdev,
2579 "Fatal, failed to submit RX URB, result=%d\n",
2580 result);
2581 goto done;
2582 }
2583
2584 /* Call initialize twice, with a 1 second sleep in between.
2585 * This is a nasty work-around since many prism2 cards seem to
2586 * need time to settle after an init from cold. The second
2587 * call to initialize in theory is not necessary - but we call
2588 * it anyway as a double insurance policy:
2589 * 1) If the first init should fail, the second may well succeed
2590 * and the card can still be used
2591 * 2) It helps ensures all is well with the card after the first
2592 * init and settle time.
2593 */
2594 result1 = hfa384x_cmd_initialize(hw);
2595 msleep(1000);
2596 result = hfa384x_cmd_initialize(hw);
2597 result2 = result;
2598 if (result1 != 0) {
2599 if (result2 != 0) {
2600 netdev_err(hw->wlandev->netdev,
2601 "cmd_initialize() failed on two attempts, results %d and %d\n",
2602 result1, result2);
2603 usb_kill_urb(&hw->rx_urb);
2604 goto done;
2605 } else {
2606 pr_debug("First cmd_initialize() failed (result %d),\n",
2607 result1);
2608 pr_debug("but second attempt succeeded. All should be ok\n");
2609 }
2610 } else if (result2 != 0) {
2611 netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2612 result2);
2613 netdev_warn(hw->wlandev->netdev,
2614 "Most likely the card will be functional\n");
2615 goto done;
2616 }
2617
2618 hw->state = HFA384x_STATE_RUNNING;
2619
2620 done:
2621 return result;
2622 }
2623
2624 /*----------------------------------------------------------------
2625 * hfa384x_drvr_stop
2626 *
2627 * Shuts down the MAC to the point where it is safe to unload the
2628 * driver. Any subsystem that may be holding a data or function
2629 * ptr into the driver must be cleared/deinitialized.
2630 *
2631 * Arguments:
2632 * hw device structure
2633 * Returns:
2634 * 0 success
2635 * >0 f/w reported error - f/w status code
2636 * <0 driver reported error
2637 *
2638 * Side effects:
2639 *
2640 * Call context:
2641 * process
2642 ----------------------------------------------------------------*/
2643 int hfa384x_drvr_stop(hfa384x_t *hw)
2644 {
2645 int i;
2646
2647 might_sleep();
2648
2649 /* There's no need for spinlocks here. The USB "disconnect"
2650 * function sets this "removed" flag and then calls us.
2651 */
2652 if (!hw->wlandev->hwremoved) {
2653 /* Call initialize to leave the MAC in its 'reset' state */
2654 hfa384x_cmd_initialize(hw);
2655
2656 /* Cancel the rxurb */
2657 usb_kill_urb(&hw->rx_urb);
2658 }
2659
2660 hw->link_status = HFA384x_LINK_NOTCONNECTED;
2661 hw->state = HFA384x_STATE_INIT;
2662
2663 del_timer_sync(&hw->commsqual_timer);
2664
2665 /* Clear all the port status */
2666 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2667 hw->port_enabled[i] = 0;
2668
2669 return 0;
2670 }
2671
2672 /*----------------------------------------------------------------
2673 * hfa384x_drvr_txframe
2674 *
2675 * Takes a frame from prism2sta and queues it for transmission.
2676 *
2677 * Arguments:
2678 * hw device structure
2679 * skb packet buffer struct. Contains an 802.11
2680 * data frame.
2681 * p80211_hdr points to the 802.11 header for the packet.
2682 * Returns:
2683 * 0 Success and more buffs available
2684 * 1 Success but no more buffs
2685 * 2 Allocation failure
2686 * 4 Buffer full or queue busy
2687 *
2688 * Side effects:
2689 *
2690 * Call context:
2691 * interrupt
2692 ----------------------------------------------------------------*/
2693 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2694 union p80211_hdr *p80211_hdr,
2695 struct p80211_metawep *p80211_wep)
2696 {
2697 int usbpktlen = sizeof(hfa384x_tx_frame_t);
2698 int result;
2699 int ret;
2700 char *ptr;
2701
2702 if (hw->tx_urb.status == -EINPROGRESS) {
2703 netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2704 result = 3;
2705 goto exit;
2706 }
2707
2708 /* Build Tx frame structure */
2709 /* Set up the control field */
2710 memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2711
2712 /* Setup the usb type field */
2713 hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2714
2715 /* Set up the sw_support field to identify this frame */
2716 hw->txbuff.txfrm.desc.sw_support = 0x0123;
2717
2718 /* Tx complete and Tx exception disable per dleach. Might be causing
2719 * buf depletion
2720 */
2721 /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
2722 #if defined(DOBOTH)
2723 hw->txbuff.txfrm.desc.tx_control =
2724 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2725 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2726 #elif defined(DOEXC)
2727 hw->txbuff.txfrm.desc.tx_control =
2728 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2729 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2730 #else
2731 hw->txbuff.txfrm.desc.tx_control =
2732 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2733 HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2734 #endif
2735 hw->txbuff.txfrm.desc.tx_control =
2736 cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2737
2738 /* copy the header over to the txdesc */
2739 memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2740 sizeof(union p80211_hdr));
2741
2742 /* if we're using host WEP, increase size by IV+ICV */
2743 if (p80211_wep->data) {
2744 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2745 usbpktlen += 8;
2746 } else {
2747 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2748 }
2749
2750 usbpktlen += skb->len;
2751
2752 /* copy over the WEP IV if we are using host WEP */
2753 ptr = hw->txbuff.txfrm.data;
2754 if (p80211_wep->data) {
2755 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2756 ptr += sizeof(p80211_wep->iv);
2757 memcpy(ptr, p80211_wep->data, skb->len);
2758 } else {
2759 memcpy(ptr, skb->data, skb->len);
2760 }
2761 /* copy over the packet data */
2762 ptr += skb->len;
2763
2764 /* copy over the WEP ICV if we are using host WEP */
2765 if (p80211_wep->data)
2766 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2767
2768 /* Send the USB packet */
2769 usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2770 hw->endp_out,
2771 &(hw->txbuff), ROUNDUP64(usbpktlen),
2772 hfa384x_usbout_callback, hw->wlandev);
2773 hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2774
2775 result = 1;
2776 ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2777 if (ret != 0) {
2778 netdev_err(hw->wlandev->netdev,
2779 "submit_tx_urb() failed, error=%d\n", ret);
2780 result = 3;
2781 }
2782
2783 exit:
2784 return result;
2785 }
2786
2787 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2788 {
2789 hfa384x_t *hw = wlandev->priv;
2790 unsigned long flags;
2791
2792 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2793
2794 if (!hw->wlandev->hwremoved) {
2795 int sched;
2796
2797 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2798 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2799 if (sched)
2800 schedule_work(&hw->usb_work);
2801 }
2802
2803 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2804 }
2805
2806 /*----------------------------------------------------------------
2807 * hfa384x_usbctlx_reaper_task
2808 *
2809 * Tasklet to delete dead CTLX objects
2810 *
2811 * Arguments:
2812 * data ptr to a hfa384x_t
2813 *
2814 * Returns:
2815 *
2816 * Call context:
2817 * Interrupt
2818 ----------------------------------------------------------------*/
2819 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2820 {
2821 hfa384x_t *hw = (hfa384x_t *)data;
2822 struct list_head *entry;
2823 struct list_head *temp;
2824 unsigned long flags;
2825
2826 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2827
2828 /* This list is guaranteed to be empty if someone
2829 * has unplugged the adapter.
2830 */
2831 list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2832 hfa384x_usbctlx_t *ctlx;
2833
2834 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2835 list_del(&ctlx->list);
2836 kfree(ctlx);
2837 }
2838
2839 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2840 }
2841
2842 /*----------------------------------------------------------------
2843 * hfa384x_usbctlx_completion_task
2844 *
2845 * Tasklet to call completion handlers for returned CTLXs
2846 *
2847 * Arguments:
2848 * data ptr to hfa384x_t
2849 *
2850 * Returns:
2851 * Nothing
2852 *
2853 * Call context:
2854 * Interrupt
2855 ----------------------------------------------------------------*/
2856 static void hfa384x_usbctlx_completion_task(unsigned long data)
2857 {
2858 hfa384x_t *hw = (hfa384x_t *)data;
2859 struct list_head *entry;
2860 struct list_head *temp;
2861 unsigned long flags;
2862
2863 int reap = 0;
2864
2865 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2866
2867 /* This list is guaranteed to be empty if someone
2868 * has unplugged the adapter ...
2869 */
2870 list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2871 hfa384x_usbctlx_t *ctlx;
2872
2873 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2874
2875 /* Call the completion function that this
2876 * command was assigned, assuming it has one.
2877 */
2878 if (ctlx->cmdcb != NULL) {
2879 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2880 ctlx->cmdcb(hw, ctlx);
2881 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2882
2883 /* Make sure we don't try and complete
2884 * this CTLX more than once!
2885 */
2886 ctlx->cmdcb = NULL;
2887
2888 /* Did someone yank the adapter out
2889 * while our list was (briefly) unlocked?
2890 */
2891 if (hw->wlandev->hwremoved) {
2892 reap = 0;
2893 break;
2894 }
2895 }
2896
2897 /*
2898 * "Reapable" CTLXs are ones which don't have any
2899 * threads waiting for them to die. Hence they must
2900 * be delivered to The Reaper!
2901 */
2902 if (ctlx->reapable) {
2903 /* Move the CTLX off the "completing" list (hopefully)
2904 * on to the "reapable" list where the reaper task
2905 * can find it. And "reapable" means that this CTLX
2906 * isn't sitting on a wait-queue somewhere.
2907 */
2908 list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2909 reap = 1;
2910 }
2911
2912 complete(&ctlx->done);
2913 }
2914 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2915
2916 if (reap)
2917 tasklet_schedule(&hw->reaper_bh);
2918 }
2919
2920 /*----------------------------------------------------------------
2921 * unlocked_usbctlx_cancel_async
2922 *
2923 * Mark the CTLX dead asynchronously, and ensure that the
2924 * next command on the queue is run afterwards.
2925 *
2926 * Arguments:
2927 * hw ptr to the hfa384x_t structure
2928 * ctlx ptr to a CTLX structure
2929 *
2930 * Returns:
2931 * 0 the CTLX's URB is inactive
2932 * -EINPROGRESS the URB is currently being unlinked
2933 *
2934 * Call context:
2935 * Either process or interrupt, but presumably interrupt
2936 ----------------------------------------------------------------*/
2937 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2938 hfa384x_usbctlx_t *ctlx)
2939 {
2940 int ret;
2941
2942 /*
2943 * Try to delete the URB containing our request packet.
2944 * If we succeed, then its completion handler will be
2945 * called with a status of -ECONNRESET.
2946 */
2947 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2948 ret = usb_unlink_urb(&hw->ctlx_urb);
2949
2950 if (ret != -EINPROGRESS) {
2951 /*
2952 * The OUT URB had either already completed
2953 * or was still in the pending queue, so the
2954 * URB's completion function will not be called.
2955 * We will have to complete the CTLX ourselves.
2956 */
2957 ctlx->state = CTLX_REQ_FAILED;
2958 unlocked_usbctlx_complete(hw, ctlx);
2959 ret = 0;
2960 }
2961
2962 return ret;
2963 }
2964
2965 /*----------------------------------------------------------------
2966 * unlocked_usbctlx_complete
2967 *
2968 * A CTLX has completed. It may have been successful, it may not
2969 * have been. At this point, the CTLX should be quiescent. The URBs
2970 * aren't active and the timers should have been stopped.
2971 *
2972 * The CTLX is migrated to the "completing" queue, and the completing
2973 * tasklet is scheduled.
2974 *
2975 * Arguments:
2976 * hw ptr to a hfa384x_t structure
2977 * ctlx ptr to a ctlx structure
2978 *
2979 * Returns:
2980 * nothing
2981 *
2982 * Side effects:
2983 *
2984 * Call context:
2985 * Either, assume interrupt
2986 ----------------------------------------------------------------*/
2987 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2988 {
2989 /* Timers have been stopped, and ctlx should be in
2990 * a terminal state. Retire it from the "active"
2991 * queue.
2992 */
2993 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2994 tasklet_schedule(&hw->completion_bh);
2995
2996 switch (ctlx->state) {
2997 case CTLX_COMPLETE:
2998 case CTLX_REQ_FAILED:
2999 /* This are the correct terminating states. */
3000 break;
3001
3002 default:
3003 netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
3004 le16_to_cpu(ctlx->outbuf.type),
3005 ctlxstr(ctlx->state));
3006 break;
3007 } /* switch */
3008 }
3009
3010 /*----------------------------------------------------------------
3011 * hfa384x_usbctlxq_run
3012 *
3013 * Checks to see if the head item is running. If not, starts it.
3014 *
3015 * Arguments:
3016 * hw ptr to hfa384x_t
3017 *
3018 * Returns:
3019 * nothing
3020 *
3021 * Side effects:
3022 *
3023 * Call context:
3024 * any
3025 ----------------------------------------------------------------*/
3026 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3027 {
3028 unsigned long flags;
3029
3030 /* acquire lock */
3031 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3032
3033 /* Only one active CTLX at any one time, because there's no
3034 * other (reliable) way to match the response URB to the
3035 * correct CTLX.
3036 *
3037 * Don't touch any of these CTLXs if the hardware
3038 * has been removed or the USB subsystem is stalled.
3039 */
3040 if (!list_empty(&hw->ctlxq.active) ||
3041 test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3042 goto unlock;
3043
3044 while (!list_empty(&hw->ctlxq.pending)) {
3045 hfa384x_usbctlx_t *head;
3046 int result;
3047
3048 /* This is the first pending command */
3049 head = list_entry(hw->ctlxq.pending.next,
3050 hfa384x_usbctlx_t, list);
3051
3052 /* We need to split this off to avoid a race condition */
3053 list_move_tail(&head->list, &hw->ctlxq.active);
3054
3055 /* Fill the out packet */
3056 usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3057 hw->endp_out,
3058 &(head->outbuf), ROUNDUP64(head->outbufsize),
3059 hfa384x_ctlxout_callback, hw);
3060 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3061
3062 /* Now submit the URB and update the CTLX's state */
3063 result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3064 if (result == 0) {
3065 /* This CTLX is now running on the active queue */
3066 head->state = CTLX_REQ_SUBMITTED;
3067
3068 /* Start the OUT wait timer */
3069 hw->req_timer_done = 0;
3070 hw->reqtimer.expires = jiffies + HZ;
3071 add_timer(&hw->reqtimer);
3072
3073 /* Start the IN wait timer */
3074 hw->resp_timer_done = 0;
3075 hw->resptimer.expires = jiffies + 2 * HZ;
3076 add_timer(&hw->resptimer);
3077
3078 break;
3079 }
3080
3081 if (result == -EPIPE) {
3082 /* The OUT pipe needs resetting, so put
3083 * this CTLX back in the "pending" queue
3084 * and schedule a reset ...
3085 */
3086 netdev_warn(hw->wlandev->netdev,
3087 "%s tx pipe stalled: requesting reset\n",
3088 hw->wlandev->netdev->name);
3089 list_move(&head->list, &hw->ctlxq.pending);
3090 set_bit(WORK_TX_HALT, &hw->usb_flags);
3091 schedule_work(&hw->usb_work);
3092 break;
3093 }
3094
3095 if (result == -ESHUTDOWN) {
3096 netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
3097 hw->wlandev->netdev->name);
3098 break;
3099 }
3100
3101 netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
3102 le16_to_cpu(head->outbuf.type), result);
3103 unlocked_usbctlx_complete(hw, head);
3104 } /* while */
3105
3106 unlock:
3107 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3108 }
3109
3110 /*----------------------------------------------------------------
3111 * hfa384x_usbin_callback
3112 *
3113 * Callback for URBs on the BULKIN endpoint.
3114 *
3115 * Arguments:
3116 * urb ptr to the completed urb
3117 *
3118 * Returns:
3119 * nothing
3120 *
3121 * Side effects:
3122 *
3123 * Call context:
3124 * interrupt
3125 ----------------------------------------------------------------*/
3126 static void hfa384x_usbin_callback(struct urb *urb)
3127 {
3128 wlandevice_t *wlandev = urb->context;
3129 hfa384x_t *hw;
3130 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)urb->transfer_buffer;
3131 struct sk_buff *skb = NULL;
3132 int result;
3133 int urb_status;
3134 u16 type;
3135
3136 enum USBIN_ACTION {
3137 HANDLE,
3138 RESUBMIT,
3139 ABORT
3140 } action;
3141
3142 if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3143 goto exit;
3144
3145 hw = wlandev->priv;
3146 if (!hw)
3147 goto exit;
3148
3149 skb = hw->rx_urb_skb;
3150 BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3151
3152 hw->rx_urb_skb = NULL;
3153
3154 /* Check for error conditions within the URB */
3155 switch (urb->status) {
3156 case 0:
3157 action = HANDLE;
3158
3159 /* Check for short packet */
3160 if (urb->actual_length == 0) {
3161 ++(wlandev->linux_stats.rx_errors);
3162 ++(wlandev->linux_stats.rx_length_errors);
3163 action = RESUBMIT;
3164 }
3165 break;
3166
3167 case -EPIPE:
3168 netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
3169 wlandev->netdev->name);
3170 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3171 schedule_work(&hw->usb_work);
3172 ++(wlandev->linux_stats.rx_errors);
3173 action = ABORT;
3174 break;
3175
3176 case -EILSEQ:
3177 case -ETIMEDOUT:
3178 case -EPROTO:
3179 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3180 !timer_pending(&hw->throttle)) {
3181 mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3182 }
3183 ++(wlandev->linux_stats.rx_errors);
3184 action = ABORT;
3185 break;
3186
3187 case -EOVERFLOW:
3188 ++(wlandev->linux_stats.rx_over_errors);
3189 action = RESUBMIT;
3190 break;
3191
3192 case -ENODEV:
3193 case -ESHUTDOWN:
3194 pr_debug("status=%d, device removed.\n", urb->status);
3195 action = ABORT;
3196 break;
3197
3198 case -ENOENT:
3199 case -ECONNRESET:
3200 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3201 action = ABORT;
3202 break;
3203
3204 default:
3205 pr_debug("urb status=%d, transfer flags=0x%x\n",
3206 urb->status, urb->transfer_flags);
3207 ++(wlandev->linux_stats.rx_errors);
3208 action = RESUBMIT;
3209 break;
3210 }
3211
3212 urb_status = urb->status;
3213
3214 if (action != ABORT) {
3215 /* Repost the RX URB */
3216 result = submit_rx_urb(hw, GFP_ATOMIC);
3217
3218 if (result != 0) {
3219 netdev_err(hw->wlandev->netdev,
3220 "Fatal, failed to resubmit rx_urb. error=%d\n",
3221 result);
3222 }
3223 }
3224
3225 /* Handle any USB-IN packet */
3226 /* Note: the check of the sw_support field, the type field doesn't
3227 * have bit 12 set like the docs suggest.
3228 */
3229 type = le16_to_cpu(usbin->type);
3230 if (HFA384x_USB_ISRXFRM(type)) {
3231 if (action == HANDLE) {
3232 if (usbin->txfrm.desc.sw_support == 0x0123) {
3233 hfa384x_usbin_txcompl(wlandev, usbin);
3234 } else {
3235 skb_put(skb, sizeof(*usbin));
3236 hfa384x_usbin_rx(wlandev, skb);
3237 skb = NULL;
3238 }
3239 }
3240 goto exit;
3241 }
3242 if (HFA384x_USB_ISTXFRM(type)) {
3243 if (action == HANDLE)
3244 hfa384x_usbin_txcompl(wlandev, usbin);
3245 goto exit;
3246 }
3247 switch (type) {
3248 case HFA384x_USB_INFOFRM:
3249 if (action == ABORT)
3250 goto exit;
3251 if (action == HANDLE)
3252 hfa384x_usbin_info(wlandev, usbin);
3253 break;
3254
3255 case HFA384x_USB_CMDRESP:
3256 case HFA384x_USB_WRIDRESP:
3257 case HFA384x_USB_RRIDRESP:
3258 case HFA384x_USB_WMEMRESP:
3259 case HFA384x_USB_RMEMRESP:
3260 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3261 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3262 break;
3263
3264 case HFA384x_USB_BUFAVAIL:
3265 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3266 usbin->bufavail.frmlen);
3267 break;
3268
3269 case HFA384x_USB_ERROR:
3270 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3271 usbin->usberror.errortype);
3272 break;
3273
3274 default:
3275 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3276 usbin->type, urb_status);
3277 break;
3278 } /* switch */
3279
3280 exit:
3281
3282 if (skb)
3283 dev_kfree_skb(skb);
3284 }
3285
3286 /*----------------------------------------------------------------
3287 * hfa384x_usbin_ctlx
3288 *
3289 * We've received a URB containing a Prism2 "response" message.
3290 * This message needs to be matched up with a CTLX on the active
3291 * queue and our state updated accordingly.
3292 *
3293 * Arguments:
3294 * hw ptr to hfa384x_t
3295 * usbin ptr to USB IN packet
3296 * urb_status status of this Bulk-In URB
3297 *
3298 * Returns:
3299 * nothing
3300 *
3301 * Side effects:
3302 *
3303 * Call context:
3304 * interrupt
3305 ----------------------------------------------------------------*/
3306 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3307 int urb_status)
3308 {
3309 hfa384x_usbctlx_t *ctlx;
3310 int run_queue = 0;
3311 unsigned long flags;
3312
3313 retry:
3314 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3315
3316 /* There can be only one CTLX on the active queue
3317 * at any one time, and this is the CTLX that the
3318 * timers are waiting for.
3319 */
3320 if (list_empty(&hw->ctlxq.active))
3321 goto unlock;
3322
3323 /* Remove the "response timeout". It's possible that
3324 * we are already too late, and that the timeout is
3325 * already running. And that's just too bad for us,
3326 * because we could lose our CTLX from the active
3327 * queue here ...
3328 */
3329 if (del_timer(&hw->resptimer) == 0) {
3330 if (hw->resp_timer_done == 0) {
3331 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3332 goto retry;
3333 }
3334 } else {
3335 hw->resp_timer_done = 1;
3336 }
3337
3338 ctlx = get_active_ctlx(hw);
3339
3340 if (urb_status != 0) {
3341 /*
3342 * Bad CTLX, so get rid of it. But we only
3343 * remove it from the active queue if we're no
3344 * longer expecting the OUT URB to complete.
3345 */
3346 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3347 run_queue = 1;
3348 } else {
3349 const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3350
3351 /*
3352 * Check that our message is what we're expecting ...
3353 */
3354 if (ctlx->outbuf.type != intype) {
3355 netdev_warn(hw->wlandev->netdev,
3356 "Expected IN[%d], received IN[%d] - ignored.\n",
3357 le16_to_cpu(ctlx->outbuf.type),
3358 le16_to_cpu(intype));
3359 goto unlock;
3360 }
3361
3362 /* This URB has succeeded, so grab the data ... */
3363 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3364
3365 switch (ctlx->state) {
3366 case CTLX_REQ_SUBMITTED:
3367 /*
3368 * We have received our response URB before
3369 * our request has been acknowledged. Odd,
3370 * but our OUT URB is still alive...
3371 */
3372 pr_debug("Causality violation: please reboot Universe\n");
3373 ctlx->state = CTLX_RESP_COMPLETE;
3374 break;
3375
3376 case CTLX_REQ_COMPLETE:
3377 /*
3378 * This is the usual path: our request
3379 * has already been acknowledged, and
3380 * now we have received the reply too.
3381 */
3382 ctlx->state = CTLX_COMPLETE;
3383 unlocked_usbctlx_complete(hw, ctlx);
3384 run_queue = 1;
3385 break;
3386
3387 default:
3388 /*
3389 * Throw this CTLX away ...
3390 */
3391 netdev_err(hw->wlandev->netdev,
3392 "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3393 le16_to_cpu(ctlx->outbuf.type),
3394 ctlxstr(ctlx->state));
3395 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3396 run_queue = 1;
3397 break;
3398 } /* switch */
3399 }
3400
3401 unlock:
3402 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3403
3404 if (run_queue)
3405 hfa384x_usbctlxq_run(hw);
3406 }
3407
3408 /*----------------------------------------------------------------
3409 * hfa384x_usbin_txcompl
3410 *
3411 * At this point we have the results of a previous transmit.
3412 *
3413 * Arguments:
3414 * wlandev wlan device
3415 * usbin ptr to the usb transfer buffer
3416 *
3417 * Returns:
3418 * nothing
3419 *
3420 * Side effects:
3421 *
3422 * Call context:
3423 * interrupt
3424 ----------------------------------------------------------------*/
3425 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3426 hfa384x_usbin_t *usbin)
3427 {
3428 u16 status;
3429
3430 status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3431
3432 /* Was there an error? */
3433 if (HFA384x_TXSTATUS_ISERROR(status))
3434 prism2sta_ev_txexc(wlandev, status);
3435 else
3436 prism2sta_ev_tx(wlandev, status);
3437 }
3438
3439 /*----------------------------------------------------------------
3440 * hfa384x_usbin_rx
3441 *
3442 * At this point we have a successful received a rx frame packet.
3443 *
3444 * Arguments:
3445 * wlandev wlan device
3446 * usbin ptr to the usb transfer buffer
3447 *
3448 * Returns:
3449 * nothing
3450 *
3451 * Side effects:
3452 *
3453 * Call context:
3454 * interrupt
3455 ----------------------------------------------------------------*/
3456 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3457 {
3458 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)skb->data;
3459 hfa384x_t *hw = wlandev->priv;
3460 int hdrlen;
3461 struct p80211_rxmeta *rxmeta;
3462 u16 data_len;
3463 u16 fc;
3464
3465 /* Byte order convert once up front. */
3466 usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3467 usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3468
3469 /* Now handle frame based on port# */
3470 switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3471 case 0:
3472 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3473
3474 /* If exclude and we receive an unencrypted, drop it */
3475 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3476 !WLAN_GET_FC_ISWEP(fc)) {
3477 goto done;
3478 }
3479
3480 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3481
3482 /* How much header data do we have? */
3483 hdrlen = p80211_headerlen(fc);
3484
3485 /* Pull off the descriptor */
3486 skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3487
3488 /* Now shunt the header block up against the data block
3489 * with an "overlapping" copy
3490 */
3491 memmove(skb_push(skb, hdrlen),
3492 &usbin->rxfrm.desc.frame_control, hdrlen);
3493
3494 skb->dev = wlandev->netdev;
3495 skb->dev->last_rx = jiffies;
3496
3497 /* And set the frame length properly */
3498 skb_trim(skb, data_len + hdrlen);
3499
3500 /* The prism2 series does not return the CRC */
3501 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3502
3503 skb_reset_mac_header(skb);
3504
3505 /* Attach the rxmeta, set some stuff */
3506 p80211skb_rxmeta_attach(wlandev, skb);
3507 rxmeta = P80211SKB_RXMETA(skb);
3508 rxmeta->mactime = usbin->rxfrm.desc.time;
3509 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3510 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3511 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3512
3513 prism2sta_ev_rx(wlandev, skb);
3514
3515 break;
3516
3517 case 7:
3518 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3519 /* Copy to wlansnif skb */
3520 hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3521 dev_kfree_skb(skb);
3522 } else {
3523 pr_debug("Received monitor frame: FCSerr set\n");
3524 }
3525 break;
3526
3527 default:
3528 netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3529 HFA384x_RXSTATUS_MACPORT_GET(
3530 usbin->rxfrm.desc.status));
3531 goto done;
3532 break;
3533 }
3534
3535 done:
3536 return;
3537 }
3538
3539 /*----------------------------------------------------------------
3540 * hfa384x_int_rxmonitor
3541 *
3542 * Helper function for int_rx. Handles monitor frames.
3543 * Note that this function allocates space for the FCS and sets it
3544 * to 0xffffffff. The hfa384x doesn't give us the FCS value but the
3545 * higher layers expect it. 0xffffffff is used as a flag to indicate
3546 * the FCS is bogus.
3547 *
3548 * Arguments:
3549 * wlandev wlan device structure
3550 * rxfrm rx descriptor read from card in int_rx
3551 *
3552 * Returns:
3553 * nothing
3554 *
3555 * Side effects:
3556 * Allocates an skb and passes it up via the PF_PACKET interface.
3557 * Call context:
3558 * interrupt
3559 ----------------------------------------------------------------*/
3560 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3561 hfa384x_usb_rxfrm_t *rxfrm)
3562 {
3563 hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3564 unsigned int hdrlen = 0;
3565 unsigned int datalen = 0;
3566 unsigned int skblen = 0;
3567 u8 *datap;
3568 u16 fc;
3569 struct sk_buff *skb;
3570 hfa384x_t *hw = wlandev->priv;
3571
3572 /* Remember the status, time, and data_len fields are in host order */
3573 /* Figure out how big the frame is */
3574 fc = le16_to_cpu(rxdesc->frame_control);
3575 hdrlen = p80211_headerlen(fc);
3576 datalen = le16_to_cpu(rxdesc->data_len);
3577
3578 /* Allocate an ind message+framesize skb */
3579 skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3580
3581 /* sanity check the length */
3582 if (skblen >
3583 (sizeof(struct p80211_caphdr) +
3584 WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3585 pr_debug("overlen frm: len=%zd\n",
3586 skblen - sizeof(struct p80211_caphdr));
3587 }
3588
3589 skb = dev_alloc_skb(skblen);
3590 if (skb == NULL) {
3591 netdev_err(hw->wlandev->netdev,
3592 "alloc_skb failed trying to allocate %d bytes\n",
3593 skblen);
3594 return;
3595 }
3596
3597 /* only prepend the prism header if in the right mode */
3598 if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3599 (hw->sniffhdr != 0)) {
3600 struct p80211_caphdr *caphdr;
3601 /* The NEW header format! */
3602 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3603 caphdr = (struct p80211_caphdr *)datap;
3604
3605 caphdr->version = htonl(P80211CAPTURE_VERSION);
3606 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3607 caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3608 caphdr->hosttime = __cpu_to_be64(jiffies);
3609 caphdr->phytype = htonl(4); /* dss_dot11_b */
3610 caphdr->channel = htonl(hw->sniff_channel);
3611 caphdr->datarate = htonl(rxdesc->rate);
3612 caphdr->antenna = htonl(0); /* unknown */
3613 caphdr->priority = htonl(0); /* unknown */
3614 caphdr->ssi_type = htonl(3); /* rssi_raw */
3615 caphdr->ssi_signal = htonl(rxdesc->signal);
3616 caphdr->ssi_noise = htonl(rxdesc->silence);
3617 caphdr->preamble = htonl(0); /* unknown */
3618 caphdr->encoding = htonl(1); /* cck */
3619 }
3620
3621 /* Copy the 802.11 header to the skb
3622 (ctl frames may be less than a full header) */
3623 datap = skb_put(skb, hdrlen);
3624 memcpy(datap, &(rxdesc->frame_control), hdrlen);
3625
3626 /* If any, copy the data from the card to the skb */
3627 if (datalen > 0) {
3628 datap = skb_put(skb, datalen);
3629 memcpy(datap, rxfrm->data, datalen);
3630
3631 /* check for unencrypted stuff if WEP bit set. */
3632 if (*(datap - hdrlen + 1) & 0x40) /* wep set */
3633 if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3634 /* clear wep; it's the 802.2 header! */
3635 *(datap - hdrlen + 1) &= 0xbf;
3636 }
3637
3638 if (hw->sniff_fcs) {
3639 /* Set the FCS */
3640 datap = skb_put(skb, WLAN_CRC_LEN);
3641 memset(datap, 0xff, WLAN_CRC_LEN);
3642 }
3643
3644 /* pass it back up */
3645 prism2sta_ev_rx(wlandev, skb);
3646
3647 return;
3648 }
3649
3650 /*----------------------------------------------------------------
3651 * hfa384x_usbin_info
3652 *
3653 * At this point we have a successful received a Prism2 info frame.
3654 *
3655 * Arguments:
3656 * wlandev wlan device
3657 * usbin ptr to the usb transfer buffer
3658 *
3659 * Returns:
3660 * nothing
3661 *
3662 * Side effects:
3663 *
3664 * Call context:
3665 * interrupt
3666 ----------------------------------------------------------------*/
3667 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3668 {
3669 usbin->infofrm.info.framelen =
3670 le16_to_cpu(usbin->infofrm.info.framelen);
3671 prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3672 }
3673
3674 /*----------------------------------------------------------------
3675 * hfa384x_usbout_callback
3676 *
3677 * Callback for URBs on the BULKOUT endpoint.
3678 *
3679 * Arguments:
3680 * urb ptr to the completed urb
3681 *
3682 * Returns:
3683 * nothing
3684 *
3685 * Side effects:
3686 *
3687 * Call context:
3688 * interrupt
3689 ----------------------------------------------------------------*/
3690 static void hfa384x_usbout_callback(struct urb *urb)
3691 {
3692 wlandevice_t *wlandev = urb->context;
3693 hfa384x_usbout_t *usbout = urb->transfer_buffer;
3694
3695 #ifdef DEBUG_USB
3696 dbprint_urb(urb);
3697 #endif
3698
3699 if (wlandev && wlandev->netdev) {
3700 switch (urb->status) {
3701 case 0:
3702 hfa384x_usbout_tx(wlandev, usbout);
3703 break;
3704
3705 case -EPIPE:
3706 {
3707 hfa384x_t *hw = wlandev->priv;
3708 netdev_warn(hw->wlandev->netdev,
3709 "%s tx pipe stalled: requesting reset\n",
3710 wlandev->netdev->name);
3711 if (!test_and_set_bit
3712 (WORK_TX_HALT, &hw->usb_flags))
3713 schedule_work(&hw->usb_work);
3714 ++(wlandev->linux_stats.tx_errors);
3715 break;
3716 }
3717
3718 case -EPROTO:
3719 case -ETIMEDOUT:
3720 case -EILSEQ:
3721 {
3722 hfa384x_t *hw = wlandev->priv;
3723
3724 if (!test_and_set_bit
3725 (THROTTLE_TX, &hw->usb_flags) &&
3726 !timer_pending(&hw->throttle)) {
3727 mod_timer(&hw->throttle,
3728 jiffies + THROTTLE_JIFFIES);
3729 }
3730 ++(wlandev->linux_stats.tx_errors);
3731 netif_stop_queue(wlandev->netdev);
3732 break;
3733 }
3734
3735 case -ENOENT:
3736 case -ESHUTDOWN:
3737 /* Ignorable errors */
3738 break;
3739
3740 default:
3741 netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3742 urb->status);
3743 ++(wlandev->linux_stats.tx_errors);
3744 break;
3745 } /* switch */
3746 }
3747 }
3748
3749 /*----------------------------------------------------------------
3750 * hfa384x_ctlxout_callback
3751 *
3752 * Callback for control data on the BULKOUT endpoint.
3753 *
3754 * Arguments:
3755 * urb ptr to the completed urb
3756 *
3757 * Returns:
3758 * nothing
3759 *
3760 * Side effects:
3761 *
3762 * Call context:
3763 * interrupt
3764 ----------------------------------------------------------------*/
3765 static void hfa384x_ctlxout_callback(struct urb *urb)
3766 {
3767 hfa384x_t *hw = urb->context;
3768 int delete_resptimer = 0;
3769 int timer_ok = 1;
3770 int run_queue = 0;
3771 hfa384x_usbctlx_t *ctlx;
3772 unsigned long flags;
3773
3774 pr_debug("urb->status=%d\n", urb->status);
3775 #ifdef DEBUG_USB
3776 dbprint_urb(urb);
3777 #endif
3778 if ((urb->status == -ESHUTDOWN) ||
3779 (urb->status == -ENODEV) || (hw == NULL))
3780 return;
3781
3782 retry:
3783 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3784
3785 /*
3786 * Only one CTLX at a time on the "active" list, and
3787 * none at all if we are unplugged. However, we can
3788 * rely on the disconnect function to clean everything
3789 * up if someone unplugged the adapter.
3790 */
3791 if (list_empty(&hw->ctlxq.active)) {
3792 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3793 return;
3794 }
3795
3796 /*
3797 * Having something on the "active" queue means
3798 * that we have timers to worry about ...
3799 */
3800 if (del_timer(&hw->reqtimer) == 0) {
3801 if (hw->req_timer_done == 0) {
3802 /*
3803 * This timer was actually running while we
3804 * were trying to delete it. Let it terminate
3805 * gracefully instead.
3806 */
3807 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3808 goto retry;
3809 }
3810 } else {
3811 hw->req_timer_done = 1;
3812 }
3813
3814 ctlx = get_active_ctlx(hw);
3815
3816 if (urb->status == 0) {
3817 /* Request portion of a CTLX is successful */
3818 switch (ctlx->state) {
3819 case CTLX_REQ_SUBMITTED:
3820 /* This OUT-ACK received before IN */
3821 ctlx->state = CTLX_REQ_COMPLETE;
3822 break;
3823
3824 case CTLX_RESP_COMPLETE:
3825 /* IN already received before this OUT-ACK,
3826 * so this command must now be complete.
3827 */
3828 ctlx->state = CTLX_COMPLETE;
3829 unlocked_usbctlx_complete(hw, ctlx);
3830 run_queue = 1;
3831 break;
3832
3833 default:
3834 /* This is NOT a valid CTLX "success" state! */
3835 netdev_err(hw->wlandev->netdev,
3836 "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3837 le16_to_cpu(ctlx->outbuf.type),
3838 ctlxstr(ctlx->state), urb->status);
3839 break;
3840 } /* switch */
3841 } else {
3842 /* If the pipe has stalled then we need to reset it */
3843 if ((urb->status == -EPIPE) &&
3844 !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3845 netdev_warn(hw->wlandev->netdev,
3846 "%s tx pipe stalled: requesting reset\n",
3847 hw->wlandev->netdev->name);
3848 schedule_work(&hw->usb_work);
3849 }
3850
3851 /* If someone cancels the OUT URB then its status
3852 * should be either -ECONNRESET or -ENOENT.
3853 */
3854 ctlx->state = CTLX_REQ_FAILED;
3855 unlocked_usbctlx_complete(hw, ctlx);
3856 delete_resptimer = 1;
3857 run_queue = 1;
3858 }
3859
3860 delresp:
3861 if (delete_resptimer) {
3862 timer_ok = del_timer(&hw->resptimer);
3863 if (timer_ok != 0)
3864 hw->resp_timer_done = 1;
3865 }
3866
3867 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3868
3869 if (!timer_ok && (hw->resp_timer_done == 0)) {
3870 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3871 goto delresp;
3872 }
3873
3874 if (run_queue)
3875 hfa384x_usbctlxq_run(hw);
3876 }
3877
3878 /*----------------------------------------------------------------
3879 * hfa384x_usbctlx_reqtimerfn
3880 *
3881 * Timer response function for CTLX request timeouts. If this
3882 * function is called, it means that the callback for the OUT
3883 * URB containing a Prism2.x XXX_Request was never called.
3884 *
3885 * Arguments:
3886 * data a ptr to the hfa384x_t
3887 *
3888 * Returns:
3889 * nothing
3890 *
3891 * Side effects:
3892 *
3893 * Call context:
3894 * interrupt
3895 ----------------------------------------------------------------*/
3896 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3897 {
3898 hfa384x_t *hw = (hfa384x_t *)data;
3899 unsigned long flags;
3900
3901 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3902
3903 hw->req_timer_done = 1;
3904
3905 /* Removing the hardware automatically empties
3906 * the active list ...
3907 */
3908 if (!list_empty(&hw->ctlxq.active)) {
3909 /*
3910 * We must ensure that our URB is removed from
3911 * the system, if it hasn't already expired.
3912 */
3913 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3914 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3915 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3916
3917 ctlx->state = CTLX_REQ_FAILED;
3918
3919 /* This URB was active, but has now been
3920 * cancelled. It will now have a status of
3921 * -ECONNRESET in the callback function.
3922 *
3923 * We are cancelling this CTLX, so we're
3924 * not going to need to wait for a response.
3925 * The URB's callback function will check
3926 * that this timer is truly dead.
3927 */
3928 if (del_timer(&hw->resptimer) != 0)
3929 hw->resp_timer_done = 1;
3930 }
3931 }
3932
3933 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3934 }
3935
3936 /*----------------------------------------------------------------
3937 * hfa384x_usbctlx_resptimerfn
3938 *
3939 * Timer response function for CTLX response timeouts. If this
3940 * function is called, it means that the callback for the IN
3941 * URB containing a Prism2.x XXX_Response was never called.
3942 *
3943 * Arguments:
3944 * data a ptr to the hfa384x_t
3945 *
3946 * Returns:
3947 * nothing
3948 *
3949 * Side effects:
3950 *
3951 * Call context:
3952 * interrupt
3953 ----------------------------------------------------------------*/
3954 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3955 {
3956 hfa384x_t *hw = (hfa384x_t *)data;
3957 unsigned long flags;
3958
3959 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3960
3961 hw->resp_timer_done = 1;
3962
3963 /* The active list will be empty if the
3964 * adapter has been unplugged ...
3965 */
3966 if (!list_empty(&hw->ctlxq.active)) {
3967 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3968
3969 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3970 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3971 hfa384x_usbctlxq_run(hw);
3972 return;
3973 }
3974 }
3975 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3976 }
3977
3978 /*----------------------------------------------------------------
3979 * hfa384x_usb_throttlefn
3980 *
3981 *
3982 * Arguments:
3983 * data ptr to hw
3984 *
3985 * Returns:
3986 * Nothing
3987 *
3988 * Side effects:
3989 *
3990 * Call context:
3991 * Interrupt
3992 ----------------------------------------------------------------*/
3993 static void hfa384x_usb_throttlefn(unsigned long data)
3994 {
3995 hfa384x_t *hw = (hfa384x_t *)data;
3996 unsigned long flags;
3997
3998 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3999
4000 /*
4001 * We need to check BOTH the RX and the TX throttle controls,
4002 * so we use the bitwise OR instead of the logical OR.
4003 */
4004 pr_debug("flags=0x%lx\n", hw->usb_flags);
4005 if (!hw->wlandev->hwremoved &&
4006 ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
4007 !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
4008 |
4009 (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
4010 !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
4011 )) {
4012 schedule_work(&hw->usb_work);
4013 }
4014
4015 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4016 }
4017
4018 /*----------------------------------------------------------------
4019 * hfa384x_usbctlx_submit
4020 *
4021 * Called from the doxxx functions to submit a CTLX to the queue
4022 *
4023 * Arguments:
4024 * hw ptr to the hw struct
4025 * ctlx ctlx structure to enqueue
4026 *
4027 * Returns:
4028 * -ENODEV if the adapter is unplugged
4029 * 0
4030 *
4031 * Side effects:
4032 *
4033 * Call context:
4034 * process or interrupt
4035 ----------------------------------------------------------------*/
4036 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4037 {
4038 unsigned long flags;
4039
4040 spin_lock_irqsave(&hw->ctlxq.lock, flags);
4041
4042 if (hw->wlandev->hwremoved) {
4043 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4044 return -ENODEV;
4045 }
4046
4047 ctlx->state = CTLX_PENDING;
4048 list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4049 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4050 hfa384x_usbctlxq_run(hw);
4051
4052 return 0;
4053 }
4054
4055 /*----------------------------------------------------------------
4056 * hfa384x_usbout_tx
4057 *
4058 * At this point we have finished a send of a frame. Mark the URB
4059 * as available and call ev_alloc to notify higher layers we're
4060 * ready for more.
4061 *
4062 * Arguments:
4063 * wlandev wlan device
4064 * usbout ptr to the usb transfer buffer
4065 *
4066 * Returns:
4067 * nothing
4068 *
4069 * Side effects:
4070 *
4071 * Call context:
4072 * interrupt
4073 ----------------------------------------------------------------*/
4074 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4075 {
4076 prism2sta_ev_alloc(wlandev);
4077 }
4078
4079 /*----------------------------------------------------------------
4080 * hfa384x_isgood_pdrcore
4081 *
4082 * Quick check of PDR codes.
4083 *
4084 * Arguments:
4085 * pdrcode PDR code number (host order)
4086 *
4087 * Returns:
4088 * zero not good.
4089 * one is good.
4090 *
4091 * Side effects:
4092 *
4093 * Call context:
4094 ----------------------------------------------------------------*/
4095 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4096 {
4097 switch (pdrcode) {
4098 case HFA384x_PDR_END_OF_PDA:
4099 case HFA384x_PDR_PCB_PARTNUM:
4100 case HFA384x_PDR_PDAVER:
4101 case HFA384x_PDR_NIC_SERIAL:
4102 case HFA384x_PDR_MKK_MEASUREMENTS:
4103 case HFA384x_PDR_NIC_RAMSIZE:
4104 case HFA384x_PDR_MFISUPRANGE:
4105 case HFA384x_PDR_CFISUPRANGE:
4106 case HFA384x_PDR_NICID:
4107 case HFA384x_PDR_MAC_ADDRESS:
4108 case HFA384x_PDR_REGDOMAIN:
4109 case HFA384x_PDR_ALLOWED_CHANNEL:
4110 case HFA384x_PDR_DEFAULT_CHANNEL:
4111 case HFA384x_PDR_TEMPTYPE:
4112 case HFA384x_PDR_IFR_SETTING:
4113 case HFA384x_PDR_RFR_SETTING:
4114 case HFA384x_PDR_HFA3861_BASELINE:
4115 case HFA384x_PDR_HFA3861_SHADOW:
4116 case HFA384x_PDR_HFA3861_IFRF:
4117 case HFA384x_PDR_HFA3861_CHCALSP:
4118 case HFA384x_PDR_HFA3861_CHCALI:
4119 case HFA384x_PDR_3842_NIC_CONFIG:
4120 case HFA384x_PDR_USB_ID:
4121 case HFA384x_PDR_PCI_ID:
4122 case HFA384x_PDR_PCI_IFCONF:
4123 case HFA384x_PDR_PCI_PMCONF:
4124 case HFA384x_PDR_RFENRGY:
4125 case HFA384x_PDR_HFA3861_MANF_TESTSP:
4126 case HFA384x_PDR_HFA3861_MANF_TESTI:
4127 /* code is OK */
4128 return 1;
4129 break;
4130 default:
4131 if (pdrcode < 0x1000) {
4132 /* code is OK, but we don't know exactly what it is */
4133 pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
4134 pdrcode);
4135 return 1;
4136 } else {
4137 /* bad code */
4138 pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
4139 pdrcode);
4140 return 0;
4141 }
4142 break;
4143 }
4144 return 0; /* avoid compiler warnings */
4145 }
This page took 0.121417 seconds and 5 git commands to generate.