Staging: wlan-ng: More checkpatch.pl error cleanups
[deliverable/linux.git] / drivers / staging / wlan-ng / hfa384x_usb.c
1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 * The contents of this file are subject to the Mozilla Public
11 * License Version 1.1 (the "License"); you may not use this file
12 * except in compliance with the License. You may obtain a copy of
13 * the License at http://www.mozilla.org/MPL/
14 *
15 * Software distributed under the License is distributed on an "AS
16 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 * implied. See the License for the specific language governing
18 * rights and limitations under the License.
19 *
20 * Alternatively, the contents of this file may be used under the
21 * terms of the GNU Public License version 2 (the "GPL"), in which
22 * case the provisions of the GPL are applicable instead of the
23 * above. If you wish to allow the use of your version of this file
24 * only under the terms of the GPL and not to allow others to use
25 * your version of this file under the MPL, indicate your decision
26 * by deleting the provisions above and replace them with the notice
27 * and other provisions required by the GPL. If you do not delete
28 * the provisions above, a recipient may use your version of this
29 * file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction. The lowest level functions are simply C-callable wrappers
52 * around the register accesses. The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable. The next higher layer implements common sequences
55 * of invokations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx Highest level abstractions provided by the
59 * hfa384x code. They are driver defined wrappers
60 * for common sequences. These functions generally
61 * use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
64 * functions are wrappers for the RID get/set
65 * sequence. They call copy_[to|from]_bap() and
66 * cmd_access(). These functions operate on the
67 * RIDs and buffers without validation. The caller
68 * is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx functions that provide access to the f/w commands.
72 * The function arguments correspond to each command
73 * argument, even command arguments that get packed
74 * into single registers. These functions _just_
75 * issue the command by setting the cmd/parm regs
76 * & reading the status/resp regs. Additional
77 * activities required to fully use a command
78 * (read/write from/to bap, get/set int status etc.)
79 * are implemented separately. Think of these as
80 * C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx These functions implement the sequence required
84 * to issue any prism2 command. Primarily used by the
85 * hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx BAP read/write access functions.
88 * Note: we usually use BAP0 for non-interrupt context
89 * and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo. The four
96 * functions are create(), destroy(), start(), and stop(). create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up. The start() function gets
99 * the actual hardware running and enables the interrupts. The stop()
100 * function shuts the hardware down. The sequence should be:
101 * create()
102 * start()
103 * .
104 * . Do interesting things w/ the hardware
105 * .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128
129 #define SUBMIT_URB(u, f) usb_submit_urb(u, f)
130
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142
143 enum cmd_mode {
144 DOWAIT = 0,
145 DOASYNC
146 };
147 typedef enum cmd_mode CMD_MODE;
148
149 #define THROTTLE_JIFFIES (HZ/8)
150 #define URB_ASYNC_UNLINK 0
151 #define USB_QUEUE_BULK 0
152
153 #define ROUNDUP64(a) (((a)+63)&~63)
154
155 #ifdef DEBUG_USB
156 static void dbprint_urb(struct urb *urb);
157 #endif
158
159 static void
160 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
161
162 static void hfa384x_usb_defer(struct work_struct *data);
163
164 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
165
166 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
167
168 /*---------------------------------------------------*/
169 /* Callbacks */
170 static void hfa384x_usbout_callback(struct urb *urb);
171 static void hfa384x_ctlxout_callback(struct urb *urb);
172 static void hfa384x_usbin_callback(struct urb *urb);
173
174 static void
175 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
176
177 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
178
179 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t * usbin);
180
181 static void
182 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
183
184 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
185 int urb_status);
186
187 /*---------------------------------------------------*/
188 /* Functions to support the prism2 usb command queue */
189
190 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
191
192 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
193
194 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
195
196 static void hfa384x_usb_throttlefn(unsigned long data);
197
198 static void hfa384x_usbctlx_completion_task(unsigned long data);
199
200 static void hfa384x_usbctlx_reaper_task(unsigned long data);
201
202 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
203
204 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
205
206 struct usbctlx_completor {
207 int (*complete) (struct usbctlx_completor *);
208 };
209 typedef struct usbctlx_completor usbctlx_completor_t;
210
211 static int
212 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
213 hfa384x_usbctlx_t *ctlx,
214 usbctlx_completor_t *completor);
215
216 static int
217 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
218
219 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220
221 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
222
223 static int
224 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
225 hfa384x_cmdresult_t *result);
226
227 static void
228 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
229 hfa384x_rridresult_t *result);
230
231 /*---------------------------------------------------*/
232 /* Low level req/resp CTLX formatters and submitters */
233 static int
234 hfa384x_docmd(hfa384x_t *hw,
235 CMD_MODE mode,
236 hfa384x_metacmd_t *cmd,
237 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
238
239 static int
240 hfa384x_dorrid(hfa384x_t *hw,
241 CMD_MODE mode,
242 u16 rid,
243 void *riddata,
244 unsigned int riddatalen,
245 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
246
247 static int
248 hfa384x_dowrid(hfa384x_t *hw,
249 CMD_MODE mode,
250 u16 rid,
251 void *riddata,
252 unsigned int riddatalen,
253 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
254
255 static int
256 hfa384x_dormem(hfa384x_t *hw,
257 CMD_MODE mode,
258 u16 page,
259 u16 offset,
260 void *data,
261 unsigned int len,
262 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
263
264 static int
265 hfa384x_dowmem(hfa384x_t *hw,
266 CMD_MODE mode,
267 u16 page,
268 u16 offset,
269 void *data,
270 unsigned int len,
271 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
272
273 static int hfa384x_isgood_pdrcode(u16 pdrcode);
274
275 static inline const char *ctlxstr(CTLX_STATE s)
276 {
277 static const char *ctlx_str[] = {
278 "Initial state",
279 "Complete",
280 "Request failed",
281 "Request pending",
282 "Request packet submitted",
283 "Request packet completed",
284 "Response packet completed"
285 };
286
287 return ctlx_str[s];
288 };
289
290 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t * hw)
291 {
292 return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
293 }
294
295 #ifdef DEBUG_USB
296 void dbprint_urb(struct urb *urb)
297 {
298 pr_debug("urb->pipe=0x%08x\n", urb->pipe);
299 pr_debug("urb->status=0x%08x\n", urb->status);
300 pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
301 pr_debug("urb->transfer_buffer=0x%08x\n",
302 (unsigned int)urb->transfer_buffer);
303 pr_debug("urb->transfer_buffer_length=0x%08x\n",
304 urb->transfer_buffer_length);
305 pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
306 pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
307 pr_debug("urb->setup_packet(ctl)=0x%08x\n",
308 (unsigned int)urb->setup_packet);
309 pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
310 pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
311 pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
312 pr_debug("urb->timeout=0x%08x\n", urb->timeout);
313 pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
314 pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
315 }
316 #endif
317
318 /*----------------------------------------------------------------
319 * submit_rx_urb
320 *
321 * Listen for input data on the BULK-IN pipe. If the pipe has
322 * stalled then schedule it to be reset.
323 *
324 * Arguments:
325 * hw device struct
326 * memflags memory allocation flags
327 *
328 * Returns:
329 * error code from submission
330 *
331 * Call context:
332 * Any
333 ----------------------------------------------------------------*/
334 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
335 {
336 struct sk_buff *skb;
337 int result;
338
339 skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
340 if (skb == NULL) {
341 result = -ENOMEM;
342 goto done;
343 }
344
345 /* Post the IN urb */
346 usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
347 hw->endp_in,
348 skb->data, sizeof(hfa384x_usbin_t),
349 hfa384x_usbin_callback, hw->wlandev);
350
351 hw->rx_urb_skb = skb;
352
353 result = -ENOLINK;
354 if (!hw->wlandev->hwremoved && !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
355 result = SUBMIT_URB(&hw->rx_urb, memflags);
356
357 /* Check whether we need to reset the RX pipe */
358 if (result == -EPIPE) {
359 printk(KERN_WARNING
360 "%s rx pipe stalled: requesting reset\n",
361 hw->wlandev->netdev->name);
362 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
363 schedule_work(&hw->usb_work);
364 }
365 }
366
367 /* Don't leak memory if anything should go wrong */
368 if (result != 0) {
369 dev_kfree_skb(skb);
370 hw->rx_urb_skb = NULL;
371 }
372
373 done:
374 return result;
375 }
376
377 /*----------------------------------------------------------------
378 * submit_tx_urb
379 *
380 * Prepares and submits the URB of transmitted data. If the
381 * submission fails then it will schedule the output pipe to
382 * be reset.
383 *
384 * Arguments:
385 * hw device struct
386 * tx_urb URB of data for tranmission
387 * memflags memory allocation flags
388 *
389 * Returns:
390 * error code from submission
391 *
392 * Call context:
393 * Any
394 ----------------------------------------------------------------*/
395 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
396 {
397 struct net_device *netdev = hw->wlandev->netdev;
398 int result;
399
400 result = -ENOLINK;
401 if (netif_running(netdev)) {
402
403 if (!hw->wlandev->hwremoved
404 && !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
405 result = SUBMIT_URB(tx_urb, memflags);
406
407 /* Test whether we need to reset the TX pipe */
408 if (result == -EPIPE) {
409 printk(KERN_WARNING
410 "%s tx pipe stalled: requesting reset\n",
411 netdev->name);
412 set_bit(WORK_TX_HALT, &hw->usb_flags);
413 schedule_work(&hw->usb_work);
414 } else if (result == 0) {
415 netif_stop_queue(netdev);
416 }
417 }
418 }
419
420 return result;
421 }
422
423 /*----------------------------------------------------------------
424 * hfa394x_usb_defer
425 *
426 * There are some things that the USB stack cannot do while
427 * in interrupt context, so we arrange this function to run
428 * in process context.
429 *
430 * Arguments:
431 * hw device structure
432 *
433 * Returns:
434 * nothing
435 *
436 * Call context:
437 * process (by design)
438 ----------------------------------------------------------------*/
439 static void hfa384x_usb_defer(struct work_struct *data)
440 {
441 hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
442 struct net_device *netdev = hw->wlandev->netdev;
443
444 /* Don't bother trying to reset anything if the plug
445 * has been pulled ...
446 */
447 if (hw->wlandev->hwremoved)
448 return;
449
450 /* Reception has stopped: try to reset the input pipe */
451 if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
452 int ret;
453
454 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
455
456 ret = usb_clear_halt(hw->usb, hw->endp_in);
457 if (ret != 0) {
458 printk(KERN_ERR
459 "Failed to clear rx pipe for %s: err=%d\n",
460 netdev->name, ret);
461 } else {
462 printk(KERN_INFO "%s rx pipe reset complete.\n",
463 netdev->name);
464 clear_bit(WORK_RX_HALT, &hw->usb_flags);
465 set_bit(WORK_RX_RESUME, &hw->usb_flags);
466 }
467 }
468
469 /* Resume receiving data back from the device. */
470 if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
471 int ret;
472
473 ret = submit_rx_urb(hw, GFP_KERNEL);
474 if (ret != 0) {
475 printk(KERN_ERR
476 "Failed to resume %s rx pipe.\n", netdev->name);
477 } else {
478 clear_bit(WORK_RX_RESUME, &hw->usb_flags);
479 }
480 }
481
482 /* Transmission has stopped: try to reset the output pipe */
483 if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
484 int ret;
485
486 usb_kill_urb(&hw->tx_urb);
487 ret = usb_clear_halt(hw->usb, hw->endp_out);
488 if (ret != 0) {
489 printk(KERN_ERR
490 "Failed to clear tx pipe for %s: err=%d\n",
491 netdev->name, ret);
492 } else {
493 printk(KERN_INFO "%s tx pipe reset complete.\n",
494 netdev->name);
495 clear_bit(WORK_TX_HALT, &hw->usb_flags);
496 set_bit(WORK_TX_RESUME, &hw->usb_flags);
497
498 /* Stopping the BULK-OUT pipe also blocked
499 * us from sending any more CTLX URBs, so
500 * we need to re-run our queue ...
501 */
502 hfa384x_usbctlxq_run(hw);
503 }
504 }
505
506 /* Resume transmitting. */
507 if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
508 netif_wake_queue(hw->wlandev->netdev);
509 }
510
511 /*----------------------------------------------------------------
512 * hfa384x_create
513 *
514 * Sets up the hfa384x_t data structure for use. Note this
515 * does _not_ intialize the actual hardware, just the data structures
516 * we use to keep track of its state.
517 *
518 * Arguments:
519 * hw device structure
520 * irq device irq number
521 * iobase i/o base address for register access
522 * membase memory base address for register access
523 *
524 * Returns:
525 * nothing
526 *
527 * Side effects:
528 *
529 * Call context:
530 * process
531 ----------------------------------------------------------------*/
532 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
533 {
534 memset(hw, 0, sizeof(hfa384x_t));
535 hw->usb = usb;
536
537 /* set up the endpoints */
538 hw->endp_in = usb_rcvbulkpipe(usb, 1);
539 hw->endp_out = usb_sndbulkpipe(usb, 2);
540
541 /* Set up the waitq */
542 init_waitqueue_head(&hw->cmdq);
543
544 /* Initialize the command queue */
545 spin_lock_init(&hw->ctlxq.lock);
546 INIT_LIST_HEAD(&hw->ctlxq.pending);
547 INIT_LIST_HEAD(&hw->ctlxq.active);
548 INIT_LIST_HEAD(&hw->ctlxq.completing);
549 INIT_LIST_HEAD(&hw->ctlxq.reapable);
550
551 /* Initialize the authentication queue */
552 skb_queue_head_init(&hw->authq);
553
554 tasklet_init(&hw->reaper_bh,
555 hfa384x_usbctlx_reaper_task, (unsigned long)hw);
556 tasklet_init(&hw->completion_bh,
557 hfa384x_usbctlx_completion_task, (unsigned long)hw);
558 INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
559 INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
560
561 init_timer(&hw->throttle);
562 hw->throttle.function = hfa384x_usb_throttlefn;
563 hw->throttle.data = (unsigned long)hw;
564
565 init_timer(&hw->resptimer);
566 hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
567 hw->resptimer.data = (unsigned long)hw;
568
569 init_timer(&hw->reqtimer);
570 hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
571 hw->reqtimer.data = (unsigned long)hw;
572
573 usb_init_urb(&hw->rx_urb);
574 usb_init_urb(&hw->tx_urb);
575 usb_init_urb(&hw->ctlx_urb);
576
577 hw->link_status = HFA384x_LINK_NOTCONNECTED;
578 hw->state = HFA384x_STATE_INIT;
579
580 INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
581 init_timer(&hw->commsqual_timer);
582 hw->commsqual_timer.data = (unsigned long)hw;
583 hw->commsqual_timer.function = prism2sta_commsqual_timer;
584 }
585
586 /*----------------------------------------------------------------
587 * hfa384x_destroy
588 *
589 * Partner to hfa384x_create(). This function cleans up the hw
590 * structure so that it can be freed by the caller using a simple
591 * kfree. Currently, this function is just a placeholder. If, at some
592 * point in the future, an hw in the 'shutdown' state requires a 'deep'
593 * kfree, this is where it should be done. Note that if this function
594 * is called on a _running_ hw structure, the drvr_stop() function is
595 * called.
596 *
597 * Arguments:
598 * hw device structure
599 *
600 * Returns:
601 * nothing, this function is not allowed to fail.
602 *
603 * Side effects:
604 *
605 * Call context:
606 * process
607 ----------------------------------------------------------------*/
608 void hfa384x_destroy(hfa384x_t *hw)
609 {
610 struct sk_buff *skb;
611
612 if (hw->state == HFA384x_STATE_RUNNING)
613 hfa384x_drvr_stop(hw);
614 hw->state = HFA384x_STATE_PREINIT;
615
616 if (hw->scanresults) {
617 kfree(hw->scanresults);
618 hw->scanresults = NULL;
619 }
620
621 /* Now to clean out the auth queue */
622 while ((skb = skb_dequeue(&hw->authq)))
623 dev_kfree_skb(skb);
624 }
625
626 static hfa384x_usbctlx_t *usbctlx_alloc(void)
627 {
628 hfa384x_usbctlx_t *ctlx;
629
630 ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
631 if (ctlx != NULL) {
632 memset(ctlx, 0, sizeof(*ctlx));
633 init_completion(&ctlx->done);
634 }
635
636 return ctlx;
637 }
638
639 static int
640 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
641 hfa384x_cmdresult_t *result)
642 {
643 result->status = le16_to_cpu(cmdresp->status);
644 result->resp0 = le16_to_cpu(cmdresp->resp0);
645 result->resp1 = le16_to_cpu(cmdresp->resp1);
646 result->resp2 = le16_to_cpu(cmdresp->resp2);
647
648 pr_debug("cmdresult:status=0x%04x "
649 "resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
650 result->status, result->resp0, result->resp1, result->resp2);
651
652 return result->status & HFA384x_STATUS_RESULT;
653 }
654
655 static void
656 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
657 hfa384x_rridresult_t *result)
658 {
659 result->rid = le16_to_cpu(rridresp->rid);
660 result->riddata = rridresp->data;
661 result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
662
663 }
664
665 /*----------------------------------------------------------------
666 * Completor object:
667 * This completor must be passed to hfa384x_usbctlx_complete_sync()
668 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
669 ----------------------------------------------------------------*/
670 struct usbctlx_cmd_completor {
671 usbctlx_completor_t head;
672
673 const hfa384x_usb_cmdresp_t *cmdresp;
674 hfa384x_cmdresult_t *result;
675 };
676 typedef struct usbctlx_cmd_completor usbctlx_cmd_completor_t;
677
678 static int usbctlx_cmd_completor_fn(usbctlx_completor_t *head)
679 {
680 usbctlx_cmd_completor_t *complete = (usbctlx_cmd_completor_t *) head;
681 return usbctlx_get_status(complete->cmdresp, complete->result);
682 }
683
684 static inline usbctlx_completor_t *init_cmd_completor(usbctlx_cmd_completor_t *
685 completor,
686 const
687 hfa384x_usb_cmdresp_t *
688 cmdresp,
689 hfa384x_cmdresult_t *
690 result)
691 {
692 completor->head.complete = usbctlx_cmd_completor_fn;
693 completor->cmdresp = cmdresp;
694 completor->result = result;
695 return &(completor->head);
696 }
697
698 /*----------------------------------------------------------------
699 * Completor object:
700 * This completor must be passed to hfa384x_usbctlx_complete_sync()
701 * when processing a CTLX that reads a RID.
702 ----------------------------------------------------------------*/
703 struct usbctlx_rrid_completor {
704 usbctlx_completor_t head;
705
706 const hfa384x_usb_rridresp_t *rridresp;
707 void *riddata;
708 unsigned int riddatalen;
709 };
710 typedef struct usbctlx_rrid_completor usbctlx_rrid_completor_t;
711
712 static int usbctlx_rrid_completor_fn(usbctlx_completor_t *head)
713 {
714 usbctlx_rrid_completor_t *complete = (usbctlx_rrid_completor_t *) head;
715 hfa384x_rridresult_t rridresult;
716
717 usbctlx_get_rridresult(complete->rridresp, &rridresult);
718
719 /* Validate the length, note body len calculation in bytes */
720 if (rridresult.riddata_len != complete->riddatalen) {
721 printk(KERN_WARNING
722 "RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
723 rridresult.rid,
724 complete->riddatalen, rridresult.riddata_len);
725 return -ENODATA;
726 }
727
728 memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
729 return 0;
730 }
731
732 static inline usbctlx_completor_t *init_rrid_completor(usbctlx_rrid_completor_t
733 *completor,
734 const
735 hfa384x_usb_rridresp_t *
736 rridresp, void *riddata,
737 unsigned int riddatalen)
738 {
739 completor->head.complete = usbctlx_rrid_completor_fn;
740 completor->rridresp = rridresp;
741 completor->riddata = riddata;
742 completor->riddatalen = riddatalen;
743 return &(completor->head);
744 }
745
746 /*----------------------------------------------------------------
747 * Completor object:
748 * Interprets the results of a synchronous RID-write
749 ----------------------------------------------------------------*/
750 typedef usbctlx_cmd_completor_t usbctlx_wrid_completor_t;
751 #define init_wrid_completor init_cmd_completor
752
753 /*----------------------------------------------------------------
754 * Completor object:
755 * Interprets the results of a synchronous memory-write
756 ----------------------------------------------------------------*/
757 typedef usbctlx_cmd_completor_t usbctlx_wmem_completor_t;
758 #define init_wmem_completor init_cmd_completor
759
760 /*----------------------------------------------------------------
761 * Completor object:
762 * Interprets the results of a synchronous memory-read
763 ----------------------------------------------------------------*/
764 struct usbctlx_rmem_completor {
765 usbctlx_completor_t head;
766
767 const hfa384x_usb_rmemresp_t *rmemresp;
768 void *data;
769 unsigned int len;
770 };
771 typedef struct usbctlx_rmem_completor usbctlx_rmem_completor_t;
772
773 static int usbctlx_rmem_completor_fn(usbctlx_completor_t *head)
774 {
775 usbctlx_rmem_completor_t *complete = (usbctlx_rmem_completor_t *) head;
776
777 pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
778 memcpy(complete->data, complete->rmemresp->data, complete->len);
779 return 0;
780 }
781
782 static inline usbctlx_completor_t *init_rmem_completor(usbctlx_rmem_completor_t
783 *completor,
784 hfa384x_usb_rmemresp_t
785 *rmemresp, void *data,
786 unsigned int len)
787 {
788 completor->head.complete = usbctlx_rmem_completor_fn;
789 completor->rmemresp = rmemresp;
790 completor->data = data;
791 completor->len = len;
792 return &(completor->head);
793 }
794
795 /*----------------------------------------------------------------
796 * hfa384x_cb_status
797 *
798 * Ctlx_complete handler for async CMD type control exchanges.
799 * mark the hw struct as such.
800 *
801 * Note: If the handling is changed here, it should probably be
802 * changed in docmd as well.
803 *
804 * Arguments:
805 * hw hw struct
806 * ctlx completed CTLX
807 *
808 * Returns:
809 * nothing
810 *
811 * Side effects:
812 *
813 * Call context:
814 * interrupt
815 ----------------------------------------------------------------*/
816 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
817 {
818 if (ctlx->usercb != NULL) {
819 hfa384x_cmdresult_t cmdresult;
820
821 if (ctlx->state != CTLX_COMPLETE) {
822 memset(&cmdresult, 0, sizeof(cmdresult));
823 cmdresult.status =
824 HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
825 } else {
826 usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
827 }
828
829 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
830 }
831 }
832
833 /*----------------------------------------------------------------
834 * hfa384x_cb_rrid
835 *
836 * CTLX completion handler for async RRID type control exchanges.
837 *
838 * Note: If the handling is changed here, it should probably be
839 * changed in dorrid as well.
840 *
841 * Arguments:
842 * hw hw struct
843 * ctlx completed CTLX
844 *
845 * Returns:
846 * nothing
847 *
848 * Side effects:
849 *
850 * Call context:
851 * interrupt
852 ----------------------------------------------------------------*/
853 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
854 {
855 if (ctlx->usercb != NULL) {
856 hfa384x_rridresult_t rridresult;
857
858 if (ctlx->state != CTLX_COMPLETE) {
859 memset(&rridresult, 0, sizeof(rridresult));
860 rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
861 } else {
862 usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
863 &rridresult);
864 }
865
866 ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
867 }
868 }
869
870 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
871 {
872 return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
873 }
874
875 static inline int
876 hfa384x_docmd_async(hfa384x_t *hw,
877 hfa384x_metacmd_t *cmd,
878 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
879 {
880 return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
881 }
882
883 static inline int
884 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
885 unsigned int riddatalen)
886 {
887 return hfa384x_dorrid(hw, DOWAIT,
888 rid, riddata, riddatalen, NULL, NULL, NULL);
889 }
890
891 static inline int
892 hfa384x_dorrid_async(hfa384x_t *hw,
893 u16 rid, void *riddata, unsigned int riddatalen,
894 ctlx_cmdcb_t cmdcb,
895 ctlx_usercb_t usercb, void *usercb_data)
896 {
897 return hfa384x_dorrid(hw, DOASYNC,
898 rid, riddata, riddatalen,
899 cmdcb, usercb, usercb_data);
900 }
901
902 static inline int
903 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
904 unsigned int riddatalen)
905 {
906 return hfa384x_dowrid(hw, DOWAIT,
907 rid, riddata, riddatalen, NULL, NULL, NULL);
908 }
909
910 static inline int
911 hfa384x_dowrid_async(hfa384x_t *hw,
912 u16 rid, void *riddata, unsigned int riddatalen,
913 ctlx_cmdcb_t cmdcb,
914 ctlx_usercb_t usercb, void *usercb_data)
915 {
916 return hfa384x_dowrid(hw, DOASYNC,
917 rid, riddata, riddatalen,
918 cmdcb, usercb, usercb_data);
919 }
920
921 static inline int
922 hfa384x_dormem_wait(hfa384x_t *hw,
923 u16 page, u16 offset, void *data, unsigned int len)
924 {
925 return hfa384x_dormem(hw, DOWAIT,
926 page, offset, data, len, NULL, NULL, NULL);
927 }
928
929 static inline int
930 hfa384x_dormem_async(hfa384x_t *hw,
931 u16 page, u16 offset, void *data, unsigned int len,
932 ctlx_cmdcb_t cmdcb,
933 ctlx_usercb_t usercb, void *usercb_data)
934 {
935 return hfa384x_dormem(hw, DOASYNC,
936 page, offset, data, len,
937 cmdcb, usercb, usercb_data);
938 }
939
940 static inline int
941 hfa384x_dowmem_wait(hfa384x_t *hw,
942 u16 page, u16 offset, void *data, unsigned int len)
943 {
944 return hfa384x_dowmem(hw, DOWAIT,
945 page, offset, data, len, NULL, NULL, NULL);
946 }
947
948 static inline int
949 hfa384x_dowmem_async(hfa384x_t *hw,
950 u16 page,
951 u16 offset,
952 void *data,
953 unsigned int len,
954 ctlx_cmdcb_t cmdcb,
955 ctlx_usercb_t usercb, void *usercb_data)
956 {
957 return hfa384x_dowmem(hw, DOASYNC,
958 page, offset, data, len,
959 cmdcb, usercb, usercb_data);
960 }
961
962 /*----------------------------------------------------------------
963 * hfa384x_cmd_initialize
964 *
965 * Issues the initialize command and sets the hw->state based
966 * on the result.
967 *
968 * Arguments:
969 * hw device structure
970 *
971 * Returns:
972 * 0 success
973 * >0 f/w reported error - f/w status code
974 * <0 driver reported error
975 *
976 * Side effects:
977 *
978 * Call context:
979 * process
980 ----------------------------------------------------------------*/
981 int hfa384x_cmd_initialize(hfa384x_t *hw)
982 {
983 int result = 0;
984 int i;
985 hfa384x_metacmd_t cmd;
986
987 cmd.cmd = HFA384x_CMDCODE_INIT;
988 cmd.parm0 = 0;
989 cmd.parm1 = 0;
990 cmd.parm2 = 0;
991
992 result = hfa384x_docmd_wait(hw, &cmd);
993
994 pr_debug("cmdresp.init: "
995 "status=0x%04x, resp0=0x%04x, "
996 "resp1=0x%04x, resp2=0x%04x\n",
997 cmd.result.status,
998 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
999 if (result == 0) {
1000 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
1001 hw->port_enabled[i] = 0;
1002 }
1003
1004 hw->link_status = HFA384x_LINK_NOTCONNECTED;
1005
1006 return result;
1007 }
1008
1009 /*----------------------------------------------------------------
1010 * hfa384x_cmd_disable
1011 *
1012 * Issues the disable command to stop communications on one of
1013 * the MACs 'ports'.
1014 *
1015 * Arguments:
1016 * hw device structure
1017 * macport MAC port number (host order)
1018 *
1019 * Returns:
1020 * 0 success
1021 * >0 f/w reported failure - f/w status code
1022 * <0 driver reported error (timeout|bad arg)
1023 *
1024 * Side effects:
1025 *
1026 * Call context:
1027 * process
1028 ----------------------------------------------------------------*/
1029 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1030 {
1031 int result = 0;
1032 hfa384x_metacmd_t cmd;
1033
1034 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1035 HFA384x_CMD_MACPORT_SET(macport);
1036 cmd.parm0 = 0;
1037 cmd.parm1 = 0;
1038 cmd.parm2 = 0;
1039
1040 result = hfa384x_docmd_wait(hw, &cmd);
1041
1042 return result;
1043 }
1044
1045 /*----------------------------------------------------------------
1046 * hfa384x_cmd_enable
1047 *
1048 * Issues the enable command to enable communications on one of
1049 * the MACs 'ports'.
1050 *
1051 * Arguments:
1052 * hw device structure
1053 * macport MAC port number
1054 *
1055 * Returns:
1056 * 0 success
1057 * >0 f/w reported failure - f/w status code
1058 * <0 driver reported error (timeout|bad arg)
1059 *
1060 * Side effects:
1061 *
1062 * Call context:
1063 * process
1064 ----------------------------------------------------------------*/
1065 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1066 {
1067 int result = 0;
1068 hfa384x_metacmd_t cmd;
1069
1070 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1071 HFA384x_CMD_MACPORT_SET(macport);
1072 cmd.parm0 = 0;
1073 cmd.parm1 = 0;
1074 cmd.parm2 = 0;
1075
1076 result = hfa384x_docmd_wait(hw, &cmd);
1077
1078 return result;
1079 }
1080
1081 /*----------------------------------------------------------------
1082 * hfa384x_cmd_monitor
1083 *
1084 * Enables the 'monitor mode' of the MAC. Here's the description of
1085 * monitor mode that I've received thus far:
1086 *
1087 * "The "monitor mode" of operation is that the MAC passes all
1088 * frames for which the PLCP checks are correct. All received
1089 * MPDUs are passed to the host with MAC Port = 7, with a
1090 * receive status of good, FCS error, or undecryptable. Passing
1091 * certain MPDUs is a violation of the 802.11 standard, but useful
1092 * for a debugging tool." Normal communication is not possible
1093 * while monitor mode is enabled.
1094 *
1095 * Arguments:
1096 * hw device structure
1097 * enable a code (0x0b|0x0f) that enables/disables
1098 * monitor mode. (host order)
1099 *
1100 * Returns:
1101 * 0 success
1102 * >0 f/w reported failure - f/w status code
1103 * <0 driver reported error (timeout|bad arg)
1104 *
1105 * Side effects:
1106 *
1107 * Call context:
1108 * process
1109 ----------------------------------------------------------------*/
1110 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1111 {
1112 int result = 0;
1113 hfa384x_metacmd_t cmd;
1114
1115 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1116 HFA384x_CMD_AINFO_SET(enable);
1117 cmd.parm0 = 0;
1118 cmd.parm1 = 0;
1119 cmd.parm2 = 0;
1120
1121 result = hfa384x_docmd_wait(hw, &cmd);
1122
1123 return result;
1124 }
1125
1126 /*----------------------------------------------------------------
1127 * hfa384x_cmd_download
1128 *
1129 * Sets the controls for the MAC controller code/data download
1130 * process. The arguments set the mode and address associated
1131 * with a download. Note that the aux registers should be enabled
1132 * prior to setting one of the download enable modes.
1133 *
1134 * Arguments:
1135 * hw device structure
1136 * mode 0 - Disable programming and begin code exec
1137 * 1 - Enable volatile mem programming
1138 * 2 - Enable non-volatile mem programming
1139 * 3 - Program non-volatile section from NV download
1140 * buffer.
1141 * (host order)
1142 * lowaddr
1143 * highaddr For mode 1, sets the high & low order bits of
1144 * the "destination address". This address will be
1145 * the execution start address when download is
1146 * subsequently disabled.
1147 * For mode 2, sets the high & low order bits of
1148 * the destination in NV ram.
1149 * For modes 0 & 3, should be zero. (host order)
1150 * NOTE: these are CMD format.
1151 * codelen Length of the data to write in mode 2,
1152 * zero otherwise. (host order)
1153 *
1154 * Returns:
1155 * 0 success
1156 * >0 f/w reported failure - f/w status code
1157 * <0 driver reported error (timeout|bad arg)
1158 *
1159 * Side effects:
1160 *
1161 * Call context:
1162 * process
1163 ----------------------------------------------------------------*/
1164 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1165 u16 highaddr, u16 codelen)
1166 {
1167 int result = 0;
1168 hfa384x_metacmd_t cmd;
1169
1170 pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1171 mode, lowaddr, highaddr, codelen);
1172
1173 cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1174 HFA384x_CMD_PROGMODE_SET(mode));
1175
1176 cmd.parm0 = lowaddr;
1177 cmd.parm1 = highaddr;
1178 cmd.parm2 = codelen;
1179
1180 result = hfa384x_docmd_wait(hw, &cmd);
1181
1182 return result;
1183 }
1184
1185 /*----------------------------------------------------------------
1186 * hfa384x_corereset
1187 *
1188 * Perform a reset of the hfa38xx MAC core. We assume that the hw
1189 * structure is in its "created" state. That is, it is initialized
1190 * with proper values. Note that if a reset is done after the
1191 * device has been active for awhile, the caller might have to clean
1192 * up some leftover cruft in the hw structure.
1193 *
1194 * Arguments:
1195 * hw device structure
1196 * holdtime how long (in ms) to hold the reset
1197 * settletime how long (in ms) to wait after releasing
1198 * the reset
1199 *
1200 * Returns:
1201 * nothing
1202 *
1203 * Side effects:
1204 *
1205 * Call context:
1206 * process
1207 ----------------------------------------------------------------*/
1208 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1209 {
1210 int result = 0;
1211
1212 result = usb_reset_device(hw->usb);
1213 if (result < 0) {
1214 printk(KERN_ERR "usb_reset_device() failed, result=%d.\n",
1215 result);
1216 }
1217
1218 return result;
1219 }
1220
1221 /*----------------------------------------------------------------
1222 * hfa384x_usbctlx_complete_sync
1223 *
1224 * Waits for a synchronous CTLX object to complete,
1225 * and then handles the response.
1226 *
1227 * Arguments:
1228 * hw device structure
1229 * ctlx CTLX ptr
1230 * completor functor object to decide what to
1231 * do with the CTLX's result.
1232 *
1233 * Returns:
1234 * 0 Success
1235 * -ERESTARTSYS Interrupted by a signal
1236 * -EIO CTLX failed
1237 * -ENODEV Adapter was unplugged
1238 * ??? Result from completor
1239 *
1240 * Side effects:
1241 *
1242 * Call context:
1243 * process
1244 ----------------------------------------------------------------*/
1245 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1246 hfa384x_usbctlx_t *ctlx,
1247 usbctlx_completor_t *completor)
1248 {
1249 unsigned long flags;
1250 int result;
1251
1252 result = wait_for_completion_interruptible(&ctlx->done);
1253
1254 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1255
1256 /*
1257 * We can only handle the CTLX if the USB disconnect
1258 * function has not run yet ...
1259 */
1260 cleanup:
1261 if (hw->wlandev->hwremoved) {
1262 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1263 result = -ENODEV;
1264 } else if (result != 0) {
1265 int runqueue = 0;
1266
1267 /*
1268 * We were probably interrupted, so delete
1269 * this CTLX asynchronously, kill the timers
1270 * and the URB, and then start the next
1271 * pending CTLX.
1272 *
1273 * NOTE: We can only delete the timers and
1274 * the URB if this CTLX is active.
1275 */
1276 if (ctlx == get_active_ctlx(hw)) {
1277 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1278
1279 del_singleshot_timer_sync(&hw->reqtimer);
1280 del_singleshot_timer_sync(&hw->resptimer);
1281 hw->req_timer_done = 1;
1282 hw->resp_timer_done = 1;
1283 usb_kill_urb(&hw->ctlx_urb);
1284
1285 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1286
1287 runqueue = 1;
1288
1289 /*
1290 * This scenario is so unlikely that I'm
1291 * happy with a grubby "goto" solution ...
1292 */
1293 if (hw->wlandev->hwremoved)
1294 goto cleanup;
1295 }
1296
1297 /*
1298 * The completion task will send this CTLX
1299 * to the reaper the next time it runs. We
1300 * are no longer in a hurry.
1301 */
1302 ctlx->reapable = 1;
1303 ctlx->state = CTLX_REQ_FAILED;
1304 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1305
1306 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1307
1308 if (runqueue)
1309 hfa384x_usbctlxq_run(hw);
1310 } else {
1311 if (ctlx->state == CTLX_COMPLETE) {
1312 result = completor->complete(completor);
1313 } else {
1314 printk(KERN_WARNING "CTLX[%d] error: state(%s)\n",
1315 le16_to_cpu(ctlx->outbuf.type),
1316 ctlxstr(ctlx->state));
1317 result = -EIO;
1318 }
1319
1320 list_del(&ctlx->list);
1321 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1322 kfree(ctlx);
1323 }
1324
1325 return result;
1326 }
1327
1328 /*----------------------------------------------------------------
1329 * hfa384x_docmd
1330 *
1331 * Constructs a command CTLX and submits it.
1332 *
1333 * NOTE: Any changes to the 'post-submit' code in this function
1334 * need to be carried over to hfa384x_cbcmd() since the handling
1335 * is virtually identical.
1336 *
1337 * Arguments:
1338 * hw device structure
1339 * mode DOWAIT or DOASYNC
1340 * cmd cmd structure. Includes all arguments and result
1341 * data points. All in host order. in host order
1342 * cmdcb command-specific callback
1343 * usercb user callback for async calls, NULL for DOWAIT calls
1344 * usercb_data user supplied data pointer for async calls, NULL
1345 * for DOASYNC calls
1346 *
1347 * Returns:
1348 * 0 success
1349 * -EIO CTLX failure
1350 * -ERESTARTSYS Awakened on signal
1351 * >0 command indicated error, Status and Resp0-2 are
1352 * in hw structure.
1353 *
1354 * Side effects:
1355 *
1356 *
1357 * Call context:
1358 * process
1359 ----------------------------------------------------------------*/
1360 static int
1361 hfa384x_docmd(hfa384x_t *hw,
1362 CMD_MODE mode,
1363 hfa384x_metacmd_t *cmd,
1364 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1365 {
1366 int result;
1367 hfa384x_usbctlx_t *ctlx;
1368
1369 ctlx = usbctlx_alloc();
1370 if (ctlx == NULL) {
1371 result = -ENOMEM;
1372 goto done;
1373 }
1374
1375 /* Initialize the command */
1376 ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1377 ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1378 ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1379 ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1380 ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1381
1382 ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1383
1384 pr_debug("cmdreq: cmd=0x%04x "
1385 "parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1386 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1387
1388 ctlx->reapable = mode;
1389 ctlx->cmdcb = cmdcb;
1390 ctlx->usercb = usercb;
1391 ctlx->usercb_data = usercb_data;
1392
1393 result = hfa384x_usbctlx_submit(hw, ctlx);
1394 if (result != 0) {
1395 kfree(ctlx);
1396 } else if (mode == DOWAIT) {
1397 usbctlx_cmd_completor_t completor;
1398
1399 result =
1400 hfa384x_usbctlx_complete_sync(hw, ctlx,
1401 init_cmd_completor(&completor,
1402 &ctlx->
1403 inbuf.
1404 cmdresp,
1405 &cmd->
1406 result));
1407 }
1408
1409 done:
1410 return result;
1411 }
1412
1413 /*----------------------------------------------------------------
1414 * hfa384x_dorrid
1415 *
1416 * Constructs a read rid CTLX and issues it.
1417 *
1418 * NOTE: Any changes to the 'post-submit' code in this function
1419 * need to be carried over to hfa384x_cbrrid() since the handling
1420 * is virtually identical.
1421 *
1422 * Arguments:
1423 * hw device structure
1424 * mode DOWAIT or DOASYNC
1425 * rid Read RID number (host order)
1426 * riddata Caller supplied buffer that MAC formatted RID.data
1427 * record will be written to for DOWAIT calls. Should
1428 * be NULL for DOASYNC calls.
1429 * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1430 * cmdcb command callback for async calls, NULL for DOWAIT calls
1431 * usercb user callback for async calls, NULL for DOWAIT calls
1432 * usercb_data user supplied data pointer for async calls, NULL
1433 * for DOWAIT calls
1434 *
1435 * Returns:
1436 * 0 success
1437 * -EIO CTLX failure
1438 * -ERESTARTSYS Awakened on signal
1439 * -ENODATA riddatalen != macdatalen
1440 * >0 command indicated error, Status and Resp0-2 are
1441 * in hw structure.
1442 *
1443 * Side effects:
1444 *
1445 * Call context:
1446 * interrupt (DOASYNC)
1447 * process (DOWAIT or DOASYNC)
1448 ----------------------------------------------------------------*/
1449 static int
1450 hfa384x_dorrid(hfa384x_t *hw,
1451 CMD_MODE mode,
1452 u16 rid,
1453 void *riddata,
1454 unsigned int riddatalen,
1455 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1456 {
1457 int result;
1458 hfa384x_usbctlx_t *ctlx;
1459
1460 ctlx = usbctlx_alloc();
1461 if (ctlx == NULL) {
1462 result = -ENOMEM;
1463 goto done;
1464 }
1465
1466 /* Initialize the command */
1467 ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1468 ctlx->outbuf.rridreq.frmlen =
1469 cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1470 ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1471
1472 ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1473
1474 ctlx->reapable = mode;
1475 ctlx->cmdcb = cmdcb;
1476 ctlx->usercb = usercb;
1477 ctlx->usercb_data = usercb_data;
1478
1479 /* Submit the CTLX */
1480 result = hfa384x_usbctlx_submit(hw, ctlx);
1481 if (result != 0) {
1482 kfree(ctlx);
1483 } else if (mode == DOWAIT) {
1484 usbctlx_rrid_completor_t completor;
1485
1486 result =
1487 hfa384x_usbctlx_complete_sync(hw, ctlx,
1488 init_rrid_completor
1489 (&completor,
1490 &ctlx->inbuf.rridresp,
1491 riddata, riddatalen));
1492 }
1493
1494 done:
1495 return result;
1496 }
1497
1498 /*----------------------------------------------------------------
1499 * hfa384x_dowrid
1500 *
1501 * Constructs a write rid CTLX and issues it.
1502 *
1503 * NOTE: Any changes to the 'post-submit' code in this function
1504 * need to be carried over to hfa384x_cbwrid() since the handling
1505 * is virtually identical.
1506 *
1507 * Arguments:
1508 * hw device structure
1509 * CMD_MODE DOWAIT or DOASYNC
1510 * rid RID code
1511 * riddata Data portion of RID formatted for MAC
1512 * riddatalen Length of the data portion in bytes
1513 * cmdcb command callback for async calls, NULL for DOWAIT calls
1514 * usercb user callback for async calls, NULL for DOWAIT calls
1515 * usercb_data user supplied data pointer for async calls
1516 *
1517 * Returns:
1518 * 0 success
1519 * -ETIMEDOUT timed out waiting for register ready or
1520 * command completion
1521 * >0 command indicated error, Status and Resp0-2 are
1522 * in hw structure.
1523 *
1524 * Side effects:
1525 *
1526 * Call context:
1527 * interrupt (DOASYNC)
1528 * process (DOWAIT or DOASYNC)
1529 ----------------------------------------------------------------*/
1530 static int
1531 hfa384x_dowrid(hfa384x_t *hw,
1532 CMD_MODE mode,
1533 u16 rid,
1534 void *riddata,
1535 unsigned int riddatalen,
1536 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1537 {
1538 int result;
1539 hfa384x_usbctlx_t *ctlx;
1540
1541 ctlx = usbctlx_alloc();
1542 if (ctlx == NULL) {
1543 result = -ENOMEM;
1544 goto done;
1545 }
1546
1547 /* Initialize the command */
1548 ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1549 ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1550 (ctlx->outbuf.wridreq.rid) +
1551 riddatalen + 1) / 2);
1552 ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1553 memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1554
1555 ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1556 sizeof(ctlx->outbuf.wridreq.frmlen) +
1557 sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1558
1559 ctlx->reapable = mode;
1560 ctlx->cmdcb = cmdcb;
1561 ctlx->usercb = usercb;
1562 ctlx->usercb_data = usercb_data;
1563
1564 /* Submit the CTLX */
1565 result = hfa384x_usbctlx_submit(hw, ctlx);
1566 if (result != 0) {
1567 kfree(ctlx);
1568 } else if (mode == DOWAIT) {
1569 usbctlx_wrid_completor_t completor;
1570 hfa384x_cmdresult_t wridresult;
1571
1572 result = hfa384x_usbctlx_complete_sync(hw,
1573 ctlx,
1574 init_wrid_completor
1575 (&completor,
1576 &ctlx->inbuf.wridresp,
1577 &wridresult));
1578 }
1579
1580 done:
1581 return result;
1582 }
1583
1584 /*----------------------------------------------------------------
1585 * hfa384x_dormem
1586 *
1587 * Constructs a readmem CTLX and issues it.
1588 *
1589 * NOTE: Any changes to the 'post-submit' code in this function
1590 * need to be carried over to hfa384x_cbrmem() since the handling
1591 * is virtually identical.
1592 *
1593 * Arguments:
1594 * hw device structure
1595 * mode DOWAIT or DOASYNC
1596 * page MAC address space page (CMD format)
1597 * offset MAC address space offset
1598 * data Ptr to data buffer to receive read
1599 * len Length of the data to read (max == 2048)
1600 * cmdcb command callback for async calls, NULL for DOWAIT calls
1601 * usercb user callback for async calls, NULL for DOWAIT calls
1602 * usercb_data user supplied data pointer for async calls
1603 *
1604 * Returns:
1605 * 0 success
1606 * -ETIMEDOUT timed out waiting for register ready or
1607 * command completion
1608 * >0 command indicated error, Status and Resp0-2 are
1609 * in hw structure.
1610 *
1611 * Side effects:
1612 *
1613 * Call context:
1614 * interrupt (DOASYNC)
1615 * process (DOWAIT or DOASYNC)
1616 ----------------------------------------------------------------*/
1617 static int
1618 hfa384x_dormem(hfa384x_t *hw,
1619 CMD_MODE mode,
1620 u16 page,
1621 u16 offset,
1622 void *data,
1623 unsigned int len,
1624 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1625 {
1626 int result;
1627 hfa384x_usbctlx_t *ctlx;
1628
1629 ctlx = usbctlx_alloc();
1630 if (ctlx == NULL) {
1631 result = -ENOMEM;
1632 goto done;
1633 }
1634
1635 /* Initialize the command */
1636 ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1637 ctlx->outbuf.rmemreq.frmlen =
1638 cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1639 sizeof(ctlx->outbuf.rmemreq.page) + len);
1640 ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1641 ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1642
1643 ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1644
1645 pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1646 ctlx->outbuf.rmemreq.type,
1647 ctlx->outbuf.rmemreq.frmlen,
1648 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1649
1650 pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1651
1652 ctlx->reapable = mode;
1653 ctlx->cmdcb = cmdcb;
1654 ctlx->usercb = usercb;
1655 ctlx->usercb_data = usercb_data;
1656
1657 result = hfa384x_usbctlx_submit(hw, ctlx);
1658 if (result != 0) {
1659 kfree(ctlx);
1660 } else if (mode == DOWAIT) {
1661 usbctlx_rmem_completor_t completor;
1662
1663 result =
1664 hfa384x_usbctlx_complete_sync(hw, ctlx,
1665 init_rmem_completor
1666 (&completor,
1667 &ctlx->inbuf.rmemresp, data,
1668 len));
1669 }
1670
1671 done:
1672 return result;
1673 }
1674
1675 /*----------------------------------------------------------------
1676 * hfa384x_dowmem
1677 *
1678 * Constructs a writemem CTLX and issues it.
1679 *
1680 * NOTE: Any changes to the 'post-submit' code in this function
1681 * need to be carried over to hfa384x_cbwmem() since the handling
1682 * is virtually identical.
1683 *
1684 * Arguments:
1685 * hw device structure
1686 * mode DOWAIT or DOASYNC
1687 * page MAC address space page (CMD format)
1688 * offset MAC address space offset
1689 * data Ptr to data buffer containing write data
1690 * len Length of the data to read (max == 2048)
1691 * cmdcb command callback for async calls, NULL for DOWAIT calls
1692 * usercb user callback for async calls, NULL for DOWAIT calls
1693 * usercb_data user supplied data pointer for async calls.
1694 *
1695 * Returns:
1696 * 0 success
1697 * -ETIMEDOUT timed out waiting for register ready or
1698 * command completion
1699 * >0 command indicated error, Status and Resp0-2 are
1700 * in hw structure.
1701 *
1702 * Side effects:
1703 *
1704 * Call context:
1705 * interrupt (DOWAIT)
1706 * process (DOWAIT or DOASYNC)
1707 ----------------------------------------------------------------*/
1708 static int
1709 hfa384x_dowmem(hfa384x_t *hw,
1710 CMD_MODE mode,
1711 u16 page,
1712 u16 offset,
1713 void *data,
1714 unsigned int len,
1715 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1716 {
1717 int result;
1718 hfa384x_usbctlx_t *ctlx;
1719
1720 pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1721
1722 ctlx = usbctlx_alloc();
1723 if (ctlx == NULL) {
1724 result = -ENOMEM;
1725 goto done;
1726 }
1727
1728 /* Initialize the command */
1729 ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1730 ctlx->outbuf.wmemreq.frmlen =
1731 cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1732 sizeof(ctlx->outbuf.wmemreq.page) + len);
1733 ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1734 ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1735 memcpy(ctlx->outbuf.wmemreq.data, data, len);
1736
1737 ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1738 sizeof(ctlx->outbuf.wmemreq.frmlen) +
1739 sizeof(ctlx->outbuf.wmemreq.offset) +
1740 sizeof(ctlx->outbuf.wmemreq.page) + len;
1741
1742 ctlx->reapable = mode;
1743 ctlx->cmdcb = cmdcb;
1744 ctlx->usercb = usercb;
1745 ctlx->usercb_data = usercb_data;
1746
1747 result = hfa384x_usbctlx_submit(hw, ctlx);
1748 if (result != 0) {
1749 kfree(ctlx);
1750 } else if (mode == DOWAIT) {
1751 usbctlx_wmem_completor_t completor;
1752 hfa384x_cmdresult_t wmemresult;
1753
1754 result = hfa384x_usbctlx_complete_sync(hw,
1755 ctlx,
1756 init_wmem_completor
1757 (&completor,
1758 &ctlx->inbuf.wmemresp,
1759 &wmemresult));
1760 }
1761
1762 done:
1763 return result;
1764 }
1765
1766 /*----------------------------------------------------------------
1767 * hfa384x_drvr_commtallies
1768 *
1769 * Send a commtallies inquiry to the MAC. Note that this is an async
1770 * call that will result in an info frame arriving sometime later.
1771 *
1772 * Arguments:
1773 * hw device structure
1774 *
1775 * Returns:
1776 * zero success.
1777 *
1778 * Side effects:
1779 *
1780 * Call context:
1781 * process
1782 ----------------------------------------------------------------*/
1783 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1784 {
1785 hfa384x_metacmd_t cmd;
1786
1787 cmd.cmd = HFA384x_CMDCODE_INQ;
1788 cmd.parm0 = HFA384x_IT_COMMTALLIES;
1789 cmd.parm1 = 0;
1790 cmd.parm2 = 0;
1791
1792 hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1793
1794 return 0;
1795 }
1796
1797 /*----------------------------------------------------------------
1798 * hfa384x_drvr_disable
1799 *
1800 * Issues the disable command to stop communications on one of
1801 * the MACs 'ports'. Only macport 0 is valid for stations.
1802 * APs may also disable macports 1-6. Only ports that have been
1803 * previously enabled may be disabled.
1804 *
1805 * Arguments:
1806 * hw device structure
1807 * macport MAC port number (host order)
1808 *
1809 * Returns:
1810 * 0 success
1811 * >0 f/w reported failure - f/w status code
1812 * <0 driver reported error (timeout|bad arg)
1813 *
1814 * Side effects:
1815 *
1816 * Call context:
1817 * process
1818 ----------------------------------------------------------------*/
1819 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1820 {
1821 int result = 0;
1822
1823 if ((!hw->isap && macport != 0) ||
1824 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1825 !(hw->port_enabled[macport])) {
1826 result = -EINVAL;
1827 } else {
1828 result = hfa384x_cmd_disable(hw, macport);
1829 if (result == 0)
1830 hw->port_enabled[macport] = 0;
1831 }
1832 return result;
1833 }
1834
1835 /*----------------------------------------------------------------
1836 * hfa384x_drvr_enable
1837 *
1838 * Issues the enable command to enable communications on one of
1839 * the MACs 'ports'. Only macport 0 is valid for stations.
1840 * APs may also enable macports 1-6. Only ports that are currently
1841 * disabled may be enabled.
1842 *
1843 * Arguments:
1844 * hw device structure
1845 * macport MAC port number
1846 *
1847 * Returns:
1848 * 0 success
1849 * >0 f/w reported failure - f/w status code
1850 * <0 driver reported error (timeout|bad arg)
1851 *
1852 * Side effects:
1853 *
1854 * Call context:
1855 * process
1856 ----------------------------------------------------------------*/
1857 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1858 {
1859 int result = 0;
1860
1861 if ((!hw->isap && macport != 0) ||
1862 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1863 (hw->port_enabled[macport])) {
1864 result = -EINVAL;
1865 } else {
1866 result = hfa384x_cmd_enable(hw, macport);
1867 if (result == 0)
1868 hw->port_enabled[macport] = 1;
1869 }
1870 return result;
1871 }
1872
1873 /*----------------------------------------------------------------
1874 * hfa384x_drvr_flashdl_enable
1875 *
1876 * Begins the flash download state. Checks to see that we're not
1877 * already in a download state and that a port isn't enabled.
1878 * Sets the download state and retrieves the flash download
1879 * buffer location, buffer size, and timeout length.
1880 *
1881 * Arguments:
1882 * hw device structure
1883 *
1884 * Returns:
1885 * 0 success
1886 * >0 f/w reported error - f/w status code
1887 * <0 driver reported error
1888 *
1889 * Side effects:
1890 *
1891 * Call context:
1892 * process
1893 ----------------------------------------------------------------*/
1894 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1895 {
1896 int result = 0;
1897 int i;
1898
1899 /* Check that a port isn't active */
1900 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1901 if (hw->port_enabled[i]) {
1902 pr_debug("called when port enabled.\n");
1903 return -EINVAL;
1904 }
1905 }
1906
1907 /* Check that we're not already in a download state */
1908 if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1909 return -EINVAL;
1910
1911 /* Retrieve the buffer loc&size and timeout */
1912 result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1913 &(hw->bufinfo), sizeof(hw->bufinfo));
1914 if (result)
1915 return result;
1916
1917 hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1918 hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1919 hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1920 result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1921 &(hw->dltimeout));
1922 if (result)
1923 return result;
1924
1925 hw->dltimeout = le16_to_cpu(hw->dltimeout);
1926
1927 pr_debug("flashdl_enable\n");
1928
1929 hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1930
1931 return result;
1932 }
1933
1934 /*----------------------------------------------------------------
1935 * hfa384x_drvr_flashdl_disable
1936 *
1937 * Ends the flash download state. Note that this will cause the MAC
1938 * firmware to restart.
1939 *
1940 * Arguments:
1941 * hw device structure
1942 *
1943 * Returns:
1944 * 0 success
1945 * >0 f/w reported error - f/w status code
1946 * <0 driver reported error
1947 *
1948 * Side effects:
1949 *
1950 * Call context:
1951 * process
1952 ----------------------------------------------------------------*/
1953 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1954 {
1955 /* Check that we're already in the download state */
1956 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1957 return -EINVAL;
1958
1959 pr_debug("flashdl_enable\n");
1960
1961 /* There isn't much we can do at this point, so I don't */
1962 /* bother w/ the return value */
1963 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1964 hw->dlstate = HFA384x_DLSTATE_DISABLED;
1965
1966 return 0;
1967 }
1968
1969 /*----------------------------------------------------------------
1970 * hfa384x_drvr_flashdl_write
1971 *
1972 * Performs a FLASH download of a chunk of data. First checks to see
1973 * that we're in the FLASH download state, then sets the download
1974 * mode, uses the aux functions to 1) copy the data to the flash
1975 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1976 * compare. Lather rinse, repeat as many times an necessary to get
1977 * all the given data into flash.
1978 * When all data has been written using this function (possibly
1979 * repeatedly), call drvr_flashdl_disable() to end the download state
1980 * and restart the MAC.
1981 *
1982 * Arguments:
1983 * hw device structure
1984 * daddr Card address to write to. (host order)
1985 * buf Ptr to data to write.
1986 * len Length of data (host order).
1987 *
1988 * Returns:
1989 * 0 success
1990 * >0 f/w reported error - f/w status code
1991 * <0 driver reported error
1992 *
1993 * Side effects:
1994 *
1995 * Call context:
1996 * process
1997 ----------------------------------------------------------------*/
1998 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1999 {
2000 int result = 0;
2001 u32 dlbufaddr;
2002 int nburns;
2003 u32 burnlen;
2004 u32 burndaddr;
2005 u16 burnlo;
2006 u16 burnhi;
2007 int nwrites;
2008 u8 *writebuf;
2009 u16 writepage;
2010 u16 writeoffset;
2011 u32 writelen;
2012 int i;
2013 int j;
2014
2015 pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2016
2017 /* Check that we're in the flash download state */
2018 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2019 return -EINVAL;
2020
2021 printk(KERN_INFO "Download %d bytes to flash @0x%06x\n", len, daddr);
2022
2023 /* Convert to flat address for arithmetic */
2024 /* NOTE: dlbuffer RID stores the address in AUX format */
2025 dlbufaddr =
2026 HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2027 pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2028 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2029
2030 #if 0
2031 printk(KERN_WARNING "dlbuf@0x%06lx len=%d to=%d\n", dlbufaddr,
2032 hw->bufinfo.len, hw->dltimeout);
2033 #endif
2034 /* Calculations to determine how many fills of the dlbuffer to do
2035 * and how many USB wmemreq's to do for each fill. At this point
2036 * in time, the dlbuffer size and the wmemreq size are the same.
2037 * Therefore, nwrites should always be 1. The extra complexity
2038 * here is a hedge against future changes.
2039 */
2040
2041 /* Figure out how many times to do the flash programming */
2042 nburns = len / hw->bufinfo.len;
2043 nburns += (len % hw->bufinfo.len) ? 1 : 0;
2044
2045 /* For each flash program cycle, how many USB wmemreq's are needed? */
2046 nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2047 nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2048
2049 /* For each burn */
2050 for (i = 0; i < nburns; i++) {
2051 /* Get the dest address and len */
2052 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2053 hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2054 burndaddr = daddr + (hw->bufinfo.len * i);
2055 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2056 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2057
2058 printk(KERN_INFO "Writing %d bytes to flash @0x%06x\n",
2059 burnlen, burndaddr);
2060
2061 /* Set the download mode */
2062 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2063 burnlo, burnhi, burnlen);
2064 if (result) {
2065 printk(KERN_ERR "download(NV,lo=%x,hi=%x,len=%x) "
2066 "cmd failed, result=%d. Aborting d/l\n",
2067 burnlo, burnhi, burnlen, result);
2068 goto exit_proc;
2069 }
2070
2071 /* copy the data to the flash download buffer */
2072 for (j = 0; j < nwrites; j++) {
2073 writebuf = buf +
2074 (i * hw->bufinfo.len) +
2075 (j * HFA384x_USB_RWMEM_MAXLEN);
2076
2077 writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2078 (j *
2079 HFA384x_USB_RWMEM_MAXLEN));
2080 writeoffset =
2081 HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2082 (j *
2083 HFA384x_USB_RWMEM_MAXLEN));
2084
2085 writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2086 writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2087 HFA384x_USB_RWMEM_MAXLEN : writelen;
2088
2089 result = hfa384x_dowmem_wait(hw,
2090 writepage,
2091 writeoffset,
2092 writebuf, writelen);
2093 }
2094
2095 /* set the download 'write flash' mode */
2096 result = hfa384x_cmd_download(hw,
2097 HFA384x_PROGMODE_NVWRITE,
2098 0, 0, 0);
2099 if (result) {
2100 printk(KERN_ERR
2101 "download(NVWRITE,lo=%x,hi=%x,len=%x) "
2102 "cmd failed, result=%d. Aborting d/l\n",
2103 burnlo, burnhi, burnlen, result);
2104 goto exit_proc;
2105 }
2106
2107 /* TODO: We really should do a readback and compare. */
2108 }
2109
2110 exit_proc:
2111
2112 /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
2113 /* actually disable programming mode. Remember, that will cause the */
2114 /* the firmware to effectively reset itself. */
2115
2116 return result;
2117 }
2118
2119 /*----------------------------------------------------------------
2120 * hfa384x_drvr_getconfig
2121 *
2122 * Performs the sequence necessary to read a config/info item.
2123 *
2124 * Arguments:
2125 * hw device structure
2126 * rid config/info record id (host order)
2127 * buf host side record buffer. Upon return it will
2128 * contain the body portion of the record (minus the
2129 * RID and len).
2130 * len buffer length (in bytes, should match record length)
2131 *
2132 * Returns:
2133 * 0 success
2134 * >0 f/w reported error - f/w status code
2135 * <0 driver reported error
2136 * -ENODATA length mismatch between argument and retrieved
2137 * record.
2138 *
2139 * Side effects:
2140 *
2141 * Call context:
2142 * process
2143 ----------------------------------------------------------------*/
2144 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2145 {
2146 int result;
2147
2148 result = hfa384x_dorrid_wait(hw, rid, buf, len);
2149
2150 return result;
2151 }
2152
2153 /*----------------------------------------------------------------
2154 * hfa384x_drvr_getconfig_async
2155 *
2156 * Performs the sequence necessary to perform an async read of
2157 * of a config/info item.
2158 *
2159 * Arguments:
2160 * hw device structure
2161 * rid config/info record id (host order)
2162 * buf host side record buffer. Upon return it will
2163 * contain the body portion of the record (minus the
2164 * RID and len).
2165 * len buffer length (in bytes, should match record length)
2166 * cbfn caller supplied callback, called when the command
2167 * is done (successful or not).
2168 * cbfndata pointer to some caller supplied data that will be
2169 * passed in as an argument to the cbfn.
2170 *
2171 * Returns:
2172 * nothing the cbfn gets a status argument identifying if
2173 * any errors occur.
2174 * Side effects:
2175 * Queues an hfa384x_usbcmd_t for subsequent execution.
2176 *
2177 * Call context:
2178 * Any
2179 ----------------------------------------------------------------*/
2180 int
2181 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2182 u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2183 {
2184 return hfa384x_dorrid_async(hw, rid, NULL, 0,
2185 hfa384x_cb_rrid, usercb, usercb_data);
2186 }
2187
2188 /*----------------------------------------------------------------
2189 * hfa384x_drvr_setconfig_async
2190 *
2191 * Performs the sequence necessary to write a config/info item.
2192 *
2193 * Arguments:
2194 * hw device structure
2195 * rid config/info record id (in host order)
2196 * buf host side record buffer
2197 * len buffer length (in bytes)
2198 * usercb completion callback
2199 * usercb_data completion callback argument
2200 *
2201 * Returns:
2202 * 0 success
2203 * >0 f/w reported error - f/w status code
2204 * <0 driver reported error
2205 *
2206 * Side effects:
2207 *
2208 * Call context:
2209 * process
2210 ----------------------------------------------------------------*/
2211 int
2212 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2213 u16 rid,
2214 void *buf,
2215 u16 len, ctlx_usercb_t usercb, void *usercb_data)
2216 {
2217 return hfa384x_dowrid_async(hw, rid, buf, len,
2218 hfa384x_cb_status, usercb, usercb_data);
2219 }
2220
2221 /*----------------------------------------------------------------
2222 * hfa384x_drvr_ramdl_disable
2223 *
2224 * Ends the ram download state.
2225 *
2226 * Arguments:
2227 * hw device structure
2228 *
2229 * Returns:
2230 * 0 success
2231 * >0 f/w reported error - f/w status code
2232 * <0 driver reported error
2233 *
2234 * Side effects:
2235 *
2236 * Call context:
2237 * process
2238 ----------------------------------------------------------------*/
2239 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2240 {
2241 /* Check that we're already in the download state */
2242 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2243 return -EINVAL;
2244
2245 pr_debug("ramdl_disable()\n");
2246
2247 /* There isn't much we can do at this point, so I don't */
2248 /* bother w/ the return value */
2249 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2250 hw->dlstate = HFA384x_DLSTATE_DISABLED;
2251
2252 return 0;
2253 }
2254
2255 /*----------------------------------------------------------------
2256 * hfa384x_drvr_ramdl_enable
2257 *
2258 * Begins the ram download state. Checks to see that we're not
2259 * already in a download state and that a port isn't enabled.
2260 * Sets the download state and calls cmd_download with the
2261 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2262 *
2263 * Arguments:
2264 * hw device structure
2265 * exeaddr the card execution address that will be
2266 * jumped to when ramdl_disable() is called
2267 * (host order).
2268 *
2269 * Returns:
2270 * 0 success
2271 * >0 f/w reported error - f/w status code
2272 * <0 driver reported error
2273 *
2274 * Side effects:
2275 *
2276 * Call context:
2277 * process
2278 ----------------------------------------------------------------*/
2279 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2280 {
2281 int result = 0;
2282 u16 lowaddr;
2283 u16 hiaddr;
2284 int i;
2285
2286 /* Check that a port isn't active */
2287 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2288 if (hw->port_enabled[i]) {
2289 printk(KERN_ERR
2290 "Can't download with a macport enabled.\n");
2291 return -EINVAL;
2292 }
2293 }
2294
2295 /* Check that we're not already in a download state */
2296 if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2297 printk(KERN_ERR "Download state not disabled.\n");
2298 return -EINVAL;
2299 }
2300
2301 pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2302
2303 /* Call the download(1,addr) function */
2304 lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2305 hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2306
2307 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2308 lowaddr, hiaddr, 0);
2309
2310 if (result == 0) {
2311 /* Set the download state */
2312 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2313 } else {
2314 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2315 lowaddr, hiaddr, result);
2316 }
2317
2318 return result;
2319 }
2320
2321 /*----------------------------------------------------------------
2322 * hfa384x_drvr_ramdl_write
2323 *
2324 * Performs a RAM download of a chunk of data. First checks to see
2325 * that we're in the RAM download state, then uses the [read|write]mem USB
2326 * commands to 1) copy the data, 2) readback and compare. The download
2327 * state is unaffected. When all data has been written using
2328 * this function, call drvr_ramdl_disable() to end the download state
2329 * and restart the MAC.
2330 *
2331 * Arguments:
2332 * hw device structure
2333 * daddr Card address to write to. (host order)
2334 * buf Ptr to data to write.
2335 * len Length of data (host order).
2336 *
2337 * Returns:
2338 * 0 success
2339 * >0 f/w reported error - f/w status code
2340 * <0 driver reported error
2341 *
2342 * Side effects:
2343 *
2344 * Call context:
2345 * process
2346 ----------------------------------------------------------------*/
2347 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2348 {
2349 int result = 0;
2350 int nwrites;
2351 u8 *data = buf;
2352 int i;
2353 u32 curraddr;
2354 u16 currpage;
2355 u16 curroffset;
2356 u16 currlen;
2357
2358 /* Check that we're in the ram download state */
2359 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2360 return -EINVAL;
2361
2362 printk(KERN_INFO "Writing %d bytes to ram @0x%06x\n", len, daddr);
2363
2364 /* How many dowmem calls? */
2365 nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2366 nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2367
2368 /* Do blocking wmem's */
2369 for (i = 0; i < nwrites; i++) {
2370 /* make address args */
2371 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2372 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2373 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2374 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2375 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2376 currlen = HFA384x_USB_RWMEM_MAXLEN;
2377
2378 /* Do blocking ctlx */
2379 result = hfa384x_dowmem_wait(hw,
2380 currpage,
2381 curroffset,
2382 data +
2383 (i * HFA384x_USB_RWMEM_MAXLEN),
2384 currlen);
2385
2386 if (result)
2387 break;
2388
2389 /* TODO: We really should have a readback. */
2390 }
2391
2392 return result;
2393 }
2394
2395 /*----------------------------------------------------------------
2396 * hfa384x_drvr_readpda
2397 *
2398 * Performs the sequence to read the PDA space. Note there is no
2399 * drvr_writepda() function. Writing a PDA is
2400 * generally implemented by a calling component via calls to
2401 * cmd_download and writing to the flash download buffer via the
2402 * aux regs.
2403 *
2404 * Arguments:
2405 * hw device structure
2406 * buf buffer to store PDA in
2407 * len buffer length
2408 *
2409 * Returns:
2410 * 0 success
2411 * >0 f/w reported error - f/w status code
2412 * <0 driver reported error
2413 * -ETIMEDOUT timout waiting for the cmd regs to become
2414 * available, or waiting for the control reg
2415 * to indicate the Aux port is enabled.
2416 * -ENODATA the buffer does NOT contain a valid PDA.
2417 * Either the card PDA is bad, or the auxdata
2418 * reads are giving us garbage.
2419
2420 *
2421 * Side effects:
2422 *
2423 * Call context:
2424 * process or non-card interrupt.
2425 ----------------------------------------------------------------*/
2426 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2427 {
2428 int result = 0;
2429 u16 *pda = buf;
2430 int pdaok = 0;
2431 int morepdrs = 1;
2432 int currpdr = 0; /* word offset of the current pdr */
2433 size_t i;
2434 u16 pdrlen; /* pdr length in bytes, host order */
2435 u16 pdrcode; /* pdr code, host order */
2436 u16 currpage;
2437 u16 curroffset;
2438 struct pdaloc {
2439 u32 cardaddr;
2440 u16 auxctl;
2441 } pdaloc[] = {
2442 {
2443 HFA3842_PDA_BASE, 0}, {
2444 HFA3841_PDA_BASE, 0}, {
2445 HFA3841_PDA_BOGUS_BASE, 0}
2446 };
2447
2448 /* Read the pda from each known address. */
2449 for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2450 /* Make address */
2451 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2452 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2453
2454 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf, len); /* units of bytes */
2455
2456 if (result) {
2457 printk(KERN_WARNING
2458 "Read from index %zd failed, continuing\n", i);
2459 continue;
2460 }
2461
2462 /* Test for garbage */
2463 pdaok = 1; /* initially assume good */
2464 morepdrs = 1;
2465 while (pdaok && morepdrs) {
2466 pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2467 pdrcode = le16_to_cpu(pda[currpdr + 1]);
2468 /* Test the record length */
2469 if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2470 printk(KERN_ERR "pdrlen invalid=%d\n", pdrlen);
2471 pdaok = 0;
2472 break;
2473 }
2474 /* Test the code */
2475 if (!hfa384x_isgood_pdrcode(pdrcode)) {
2476 printk(KERN_ERR "pdrcode invalid=%d\n",
2477 pdrcode);
2478 pdaok = 0;
2479 break;
2480 }
2481 /* Test for completion */
2482 if (pdrcode == HFA384x_PDR_END_OF_PDA)
2483 morepdrs = 0;
2484
2485 /* Move to the next pdr (if necessary) */
2486 if (morepdrs) {
2487 /* note the access to pda[], need words here */
2488 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2489 }
2490 }
2491 if (pdaok) {
2492 printk(KERN_INFO
2493 "PDA Read from 0x%08x in %s space.\n",
2494 pdaloc[i].cardaddr,
2495 pdaloc[i].auxctl == 0 ? "EXTDS" :
2496 pdaloc[i].auxctl == 1 ? "NV" :
2497 pdaloc[i].auxctl == 2 ? "PHY" :
2498 pdaloc[i].auxctl == 3 ? "ICSRAM" :
2499 "<bogus auxctl>");
2500 break;
2501 }
2502 }
2503 result = pdaok ? 0 : -ENODATA;
2504
2505 if (result)
2506 pr_debug("Failure: pda is not okay\n");
2507
2508 return result;
2509 }
2510
2511 /*----------------------------------------------------------------
2512 * hfa384x_drvr_setconfig
2513 *
2514 * Performs the sequence necessary to write a config/info item.
2515 *
2516 * Arguments:
2517 * hw device structure
2518 * rid config/info record id (in host order)
2519 * buf host side record buffer
2520 * len buffer length (in bytes)
2521 *
2522 * Returns:
2523 * 0 success
2524 * >0 f/w reported error - f/w status code
2525 * <0 driver reported error
2526 *
2527 * Side effects:
2528 *
2529 * Call context:
2530 * process
2531 ----------------------------------------------------------------*/
2532 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2533 {
2534 return hfa384x_dowrid_wait(hw, rid, buf, len);
2535 }
2536
2537 /*----------------------------------------------------------------
2538 * hfa384x_drvr_start
2539 *
2540 * Issues the MAC initialize command, sets up some data structures,
2541 * and enables the interrupts. After this function completes, the
2542 * low-level stuff should be ready for any/all commands.
2543 *
2544 * Arguments:
2545 * hw device structure
2546 * Returns:
2547 * 0 success
2548 * >0 f/w reported error - f/w status code
2549 * <0 driver reported error
2550 *
2551 * Side effects:
2552 *
2553 * Call context:
2554 * process
2555 ----------------------------------------------------------------*/
2556
2557 int hfa384x_drvr_start(hfa384x_t *hw)
2558 {
2559 int result, result1, result2;
2560 u16 status;
2561
2562 might_sleep();
2563
2564 /* Clear endpoint stalls - but only do this if the endpoint
2565 * is showing a stall status. Some prism2 cards seem to behave
2566 * badly if a clear_halt is called when the endpoint is already
2567 * ok
2568 */
2569 result =
2570 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2571 if (result < 0) {
2572 printk(KERN_ERR "Cannot get bulk in endpoint status.\n");
2573 goto done;
2574 }
2575 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2576 printk(KERN_ERR "Failed to reset bulk in endpoint.\n");
2577
2578 result =
2579 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2580 if (result < 0) {
2581 printk(KERN_ERR "Cannot get bulk out endpoint status.\n");
2582 goto done;
2583 }
2584 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2585 printk(KERN_ERR "Failed to reset bulk out endpoint.\n");
2586
2587 /* Synchronous unlink, in case we're trying to restart the driver */
2588 usb_kill_urb(&hw->rx_urb);
2589
2590 /* Post the IN urb */
2591 result = submit_rx_urb(hw, GFP_KERNEL);
2592 if (result != 0) {
2593 printk(KERN_ERR
2594 "Fatal, failed to submit RX URB, result=%d\n", result);
2595 goto done;
2596 }
2597
2598 /* Call initialize twice, with a 1 second sleep in between.
2599 * This is a nasty work-around since many prism2 cards seem to
2600 * need time to settle after an init from cold. The second
2601 * call to initialize in theory is not necessary - but we call
2602 * it anyway as a double insurance policy:
2603 * 1) If the first init should fail, the second may well succeed
2604 * and the card can still be used
2605 * 2) It helps ensures all is well with the card after the first
2606 * init and settle time.
2607 */
2608 result1 = hfa384x_cmd_initialize(hw);
2609 msleep(1000);
2610 result = result2 = hfa384x_cmd_initialize(hw);
2611 if (result1 != 0) {
2612 if (result2 != 0) {
2613 printk(KERN_ERR
2614 "cmd_initialize() failed on two attempts, results %d and %d\n",
2615 result1, result2);
2616 usb_kill_urb(&hw->rx_urb);
2617 goto done;
2618 } else {
2619 pr_debug("First cmd_initialize() failed (result %d),\n",
2620 result1);
2621 pr_debug
2622 ("but second attempt succeeded. All should be ok\n");
2623 }
2624 } else if (result2 != 0) {
2625 printk(KERN_WARNING
2626 "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2627 result2);
2628 printk(KERN_WARNING
2629 "Most likely the card will be functional\n");
2630 goto done;
2631 }
2632
2633 hw->state = HFA384x_STATE_RUNNING;
2634
2635 done:
2636 return result;
2637 }
2638
2639 /*----------------------------------------------------------------
2640 * hfa384x_drvr_stop
2641 *
2642 * Shuts down the MAC to the point where it is safe to unload the
2643 * driver. Any subsystem that may be holding a data or function
2644 * ptr into the driver must be cleared/deinitialized.
2645 *
2646 * Arguments:
2647 * hw device structure
2648 * Returns:
2649 * 0 success
2650 * >0 f/w reported error - f/w status code
2651 * <0 driver reported error
2652 *
2653 * Side effects:
2654 *
2655 * Call context:
2656 * process
2657 ----------------------------------------------------------------*/
2658 int hfa384x_drvr_stop(hfa384x_t *hw)
2659 {
2660 int result = 0;
2661 int i;
2662
2663 might_sleep();
2664
2665 /* There's no need for spinlocks here. The USB "disconnect"
2666 * function sets this "removed" flag and then calls us.
2667 */
2668 if (!hw->wlandev->hwremoved) {
2669 /* Call initialize to leave the MAC in its 'reset' state */
2670 hfa384x_cmd_initialize(hw);
2671
2672 /* Cancel the rxurb */
2673 usb_kill_urb(&hw->rx_urb);
2674 }
2675
2676 hw->link_status = HFA384x_LINK_NOTCONNECTED;
2677 hw->state = HFA384x_STATE_INIT;
2678
2679 del_timer_sync(&hw->commsqual_timer);
2680
2681 /* Clear all the port status */
2682 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2683 hw->port_enabled[i] = 0;
2684
2685 return result;
2686 }
2687
2688 /*----------------------------------------------------------------
2689 * hfa384x_drvr_txframe
2690 *
2691 * Takes a frame from prism2sta and queues it for transmission.
2692 *
2693 * Arguments:
2694 * hw device structure
2695 * skb packet buffer struct. Contains an 802.11
2696 * data frame.
2697 * p80211_hdr points to the 802.11 header for the packet.
2698 * Returns:
2699 * 0 Success and more buffs available
2700 * 1 Success but no more buffs
2701 * 2 Allocation failure
2702 * 4 Buffer full or queue busy
2703 *
2704 * Side effects:
2705 *
2706 * Call context:
2707 * interrupt
2708 ----------------------------------------------------------------*/
2709 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2710 p80211_hdr_t *p80211_hdr,
2711 p80211_metawep_t *p80211_wep)
2712 {
2713 int usbpktlen = sizeof(hfa384x_tx_frame_t);
2714 int result;
2715 int ret;
2716 char *ptr;
2717
2718 if (hw->tx_urb.status == -EINPROGRESS) {
2719 printk(KERN_WARNING "TX URB already in use\n");
2720 result = 3;
2721 goto exit;
2722 }
2723
2724 /* Build Tx frame structure */
2725 /* Set up the control field */
2726 memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2727
2728 /* Setup the usb type field */
2729 hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2730
2731 /* Set up the sw_support field to identify this frame */
2732 hw->txbuff.txfrm.desc.sw_support = 0x0123;
2733
2734 /* Tx complete and Tx exception disable per dleach. Might be causing
2735 * buf depletion
2736 */
2737 /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
2738 #if defined(DOBOTH)
2739 hw->txbuff.txfrm.desc.tx_control =
2740 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2741 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2742 #elif defined(DOEXC)
2743 hw->txbuff.txfrm.desc.tx_control =
2744 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2745 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2746 #else
2747 hw->txbuff.txfrm.desc.tx_control =
2748 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2749 HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2750 #endif
2751 hw->txbuff.txfrm.desc.tx_control =
2752 cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2753
2754 /* copy the header over to the txdesc */
2755 memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2756 sizeof(p80211_hdr_t));
2757
2758 /* if we're using host WEP, increase size by IV+ICV */
2759 if (p80211_wep->data) {
2760 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2761 usbpktlen += 8;
2762 } else {
2763 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2764 }
2765
2766 usbpktlen += skb->len;
2767
2768 /* copy over the WEP IV if we are using host WEP */
2769 ptr = hw->txbuff.txfrm.data;
2770 if (p80211_wep->data) {
2771 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2772 ptr += sizeof(p80211_wep->iv);
2773 memcpy(ptr, p80211_wep->data, skb->len);
2774 } else {
2775 memcpy(ptr, skb->data, skb->len);
2776 }
2777 /* copy over the packet data */
2778 ptr += skb->len;
2779
2780 /* copy over the WEP ICV if we are using host WEP */
2781 if (p80211_wep->data)
2782 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2783
2784 /* Send the USB packet */
2785 usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2786 hw->endp_out,
2787 &(hw->txbuff), ROUNDUP64(usbpktlen),
2788 hfa384x_usbout_callback, hw->wlandev);
2789 hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2790
2791 result = 1;
2792 ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2793 if (ret != 0) {
2794 printk(KERN_ERR "submit_tx_urb() failed, error=%d\n", ret);
2795 result = 3;
2796 }
2797
2798 exit:
2799 return result;
2800 }
2801
2802 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2803 {
2804 hfa384x_t *hw = wlandev->priv;
2805 unsigned long flags;
2806
2807 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2808
2809 if (!hw->wlandev->hwremoved &&
2810 /* Note the bitwise OR, not the logical OR. */
2811 (!test_and_set_bit(WORK_TX_HALT, &hw->usb_flags) |
2812 !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))) {
2813 schedule_work(&hw->usb_work);
2814 }
2815
2816 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2817 }
2818
2819 /*----------------------------------------------------------------
2820 * hfa384x_usbctlx_reaper_task
2821 *
2822 * Tasklet to delete dead CTLX objects
2823 *
2824 * Arguments:
2825 * data ptr to a hfa384x_t
2826 *
2827 * Returns:
2828 *
2829 * Call context:
2830 * Interrupt
2831 ----------------------------------------------------------------*/
2832 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2833 {
2834 hfa384x_t *hw = (hfa384x_t *) data;
2835 struct list_head *entry;
2836 struct list_head *temp;
2837 unsigned long flags;
2838
2839 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2840
2841 /* This list is guaranteed to be empty if someone
2842 * has unplugged the adapter.
2843 */
2844 list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2845 hfa384x_usbctlx_t *ctlx;
2846
2847 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2848 list_del(&ctlx->list);
2849 kfree(ctlx);
2850 }
2851
2852 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2853
2854 }
2855
2856 /*----------------------------------------------------------------
2857 * hfa384x_usbctlx_completion_task
2858 *
2859 * Tasklet to call completion handlers for returned CTLXs
2860 *
2861 * Arguments:
2862 * data ptr to hfa384x_t
2863 *
2864 * Returns:
2865 * Nothing
2866 *
2867 * Call context:
2868 * Interrupt
2869 ----------------------------------------------------------------*/
2870 static void hfa384x_usbctlx_completion_task(unsigned long data)
2871 {
2872 hfa384x_t *hw = (hfa384x_t *) data;
2873 struct list_head *entry;
2874 struct list_head *temp;
2875 unsigned long flags;
2876
2877 int reap = 0;
2878
2879 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2880
2881 /* This list is guaranteed to be empty if someone
2882 * has unplugged the adapter ...
2883 */
2884 list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2885 hfa384x_usbctlx_t *ctlx;
2886
2887 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2888
2889 /* Call the completion function that this
2890 * command was assigned, assuming it has one.
2891 */
2892 if (ctlx->cmdcb != NULL) {
2893 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2894 ctlx->cmdcb(hw, ctlx);
2895 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2896
2897 /* Make sure we don't try and complete
2898 * this CTLX more than once!
2899 */
2900 ctlx->cmdcb = NULL;
2901
2902 /* Did someone yank the adapter out
2903 * while our list was (briefly) unlocked?
2904 */
2905 if (hw->wlandev->hwremoved) {
2906 reap = 0;
2907 break;
2908 }
2909 }
2910
2911 /*
2912 * "Reapable" CTLXs are ones which don't have any
2913 * threads waiting for them to die. Hence they must
2914 * be delivered to The Reaper!
2915 */
2916 if (ctlx->reapable) {
2917 /* Move the CTLX off the "completing" list (hopefully)
2918 * on to the "reapable" list where the reaper task
2919 * can find it. And "reapable" means that this CTLX
2920 * isn't sitting on a wait-queue somewhere.
2921 */
2922 list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2923 reap = 1;
2924 }
2925
2926 complete(&ctlx->done);
2927 }
2928 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2929
2930 if (reap)
2931 tasklet_schedule(&hw->reaper_bh);
2932 }
2933
2934 /*----------------------------------------------------------------
2935 * unlocked_usbctlx_cancel_async
2936 *
2937 * Mark the CTLX dead asynchronously, and ensure that the
2938 * next command on the queue is run afterwards.
2939 *
2940 * Arguments:
2941 * hw ptr to the hfa384x_t structure
2942 * ctlx ptr to a CTLX structure
2943 *
2944 * Returns:
2945 * 0 the CTLX's URB is inactive
2946 * -EINPROGRESS the URB is currently being unlinked
2947 *
2948 * Call context:
2949 * Either process or interrupt, but presumably interrupt
2950 ----------------------------------------------------------------*/
2951 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2952 hfa384x_usbctlx_t *ctlx)
2953 {
2954 int ret;
2955
2956 /*
2957 * Try to delete the URB containing our request packet.
2958 * If we succeed, then its completion handler will be
2959 * called with a status of -ECONNRESET.
2960 */
2961 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2962 ret = usb_unlink_urb(&hw->ctlx_urb);
2963
2964 if (ret != -EINPROGRESS) {
2965 /*
2966 * The OUT URB had either already completed
2967 * or was still in the pending queue, so the
2968 * URB's completion function will not be called.
2969 * We will have to complete the CTLX ourselves.
2970 */
2971 ctlx->state = CTLX_REQ_FAILED;
2972 unlocked_usbctlx_complete(hw, ctlx);
2973 ret = 0;
2974 }
2975
2976 return ret;
2977 }
2978
2979 /*----------------------------------------------------------------
2980 * unlocked_usbctlx_complete
2981 *
2982 * A CTLX has completed. It may have been successful, it may not
2983 * have been. At this point, the CTLX should be quiescent. The URBs
2984 * aren't active and the timers should have been stopped.
2985 *
2986 * The CTLX is migrated to the "completing" queue, and the completing
2987 * tasklet is scheduled.
2988 *
2989 * Arguments:
2990 * hw ptr to a hfa384x_t structure
2991 * ctlx ptr to a ctlx structure
2992 *
2993 * Returns:
2994 * nothing
2995 *
2996 * Side effects:
2997 *
2998 * Call context:
2999 * Either, assume interrupt
3000 ----------------------------------------------------------------*/
3001 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
3002 {
3003 /* Timers have been stopped, and ctlx should be in
3004 * a terminal state. Retire it from the "active"
3005 * queue.
3006 */
3007 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
3008 tasklet_schedule(&hw->completion_bh);
3009
3010 switch (ctlx->state) {
3011 case CTLX_COMPLETE:
3012 case CTLX_REQ_FAILED:
3013 /* This are the correct terminating states. */
3014 break;
3015
3016 default:
3017 printk(KERN_ERR "CTLX[%d] not in a terminating state(%s)\n",
3018 le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state));
3019 break;
3020 } /* switch */
3021 }
3022
3023 /*----------------------------------------------------------------
3024 * hfa384x_usbctlxq_run
3025 *
3026 * Checks to see if the head item is running. If not, starts it.
3027 *
3028 * Arguments:
3029 * hw ptr to hfa384x_t
3030 *
3031 * Returns:
3032 * nothing
3033 *
3034 * Side effects:
3035 *
3036 * Call context:
3037 * any
3038 ----------------------------------------------------------------*/
3039 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3040 {
3041 unsigned long flags;
3042
3043 /* acquire lock */
3044 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3045
3046 /* Only one active CTLX at any one time, because there's no
3047 * other (reliable) way to match the response URB to the
3048 * correct CTLX.
3049 *
3050 * Don't touch any of these CTLXs if the hardware
3051 * has been removed or the USB subsystem is stalled.
3052 */
3053 if (!list_empty(&hw->ctlxq.active) ||
3054 test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3055 goto unlock;
3056
3057 while (!list_empty(&hw->ctlxq.pending)) {
3058 hfa384x_usbctlx_t *head;
3059 int result;
3060
3061 /* This is the first pending command */
3062 head = list_entry(hw->ctlxq.pending.next,
3063 hfa384x_usbctlx_t, list);
3064
3065 /* We need to split this off to avoid a race condition */
3066 list_move_tail(&head->list, &hw->ctlxq.active);
3067
3068 /* Fill the out packet */
3069 usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3070 hw->endp_out,
3071 &(head->outbuf), ROUNDUP64(head->outbufsize),
3072 hfa384x_ctlxout_callback, hw);
3073 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3074
3075 /* Now submit the URB and update the CTLX's state */
3076 result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3077 if (result == 0) {
3078 /* This CTLX is now running on the active queue */
3079 head->state = CTLX_REQ_SUBMITTED;
3080
3081 /* Start the OUT wait timer */
3082 hw->req_timer_done = 0;
3083 hw->reqtimer.expires = jiffies + HZ;
3084 add_timer(&hw->reqtimer);
3085
3086 /* Start the IN wait timer */
3087 hw->resp_timer_done = 0;
3088 hw->resptimer.expires = jiffies + 2 * HZ;
3089 add_timer(&hw->resptimer);
3090
3091 break;
3092 }
3093
3094 if (result == -EPIPE) {
3095 /* The OUT pipe needs resetting, so put
3096 * this CTLX back in the "pending" queue
3097 * and schedule a reset ...
3098 */
3099 printk(KERN_WARNING
3100 "%s tx pipe stalled: requesting reset\n",
3101 hw->wlandev->netdev->name);
3102 list_move(&head->list, &hw->ctlxq.pending);
3103 set_bit(WORK_TX_HALT, &hw->usb_flags);
3104 schedule_work(&hw->usb_work);
3105 break;
3106 }
3107
3108 if (result == -ESHUTDOWN) {
3109 printk(KERN_WARNING "%s urb shutdown!\n",
3110 hw->wlandev->netdev->name);
3111 break;
3112 }
3113
3114 printk(KERN_ERR "Failed to submit CTLX[%d]: error=%d\n",
3115 le16_to_cpu(head->outbuf.type), result);
3116 unlocked_usbctlx_complete(hw, head);
3117 } /* while */
3118
3119 unlock:
3120 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3121 }
3122
3123 /*----------------------------------------------------------------
3124 * hfa384x_usbin_callback
3125 *
3126 * Callback for URBs on the BULKIN endpoint.
3127 *
3128 * Arguments:
3129 * urb ptr to the completed urb
3130 *
3131 * Returns:
3132 * nothing
3133 *
3134 * Side effects:
3135 *
3136 * Call context:
3137 * interrupt
3138 ----------------------------------------------------------------*/
3139 static void hfa384x_usbin_callback(struct urb *urb)
3140 {
3141 wlandevice_t *wlandev = urb->context;
3142 hfa384x_t *hw;
3143 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer;
3144 struct sk_buff *skb = NULL;
3145 int result;
3146 int urb_status;
3147 u16 type;
3148
3149 enum USBIN_ACTION {
3150 HANDLE,
3151 RESUBMIT,
3152 ABORT
3153 } action;
3154
3155 if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3156 goto exit;
3157
3158 hw = wlandev->priv;
3159 if (!hw)
3160 goto exit;
3161
3162 skb = hw->rx_urb_skb;
3163 BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3164
3165 hw->rx_urb_skb = NULL;
3166
3167 /* Check for error conditions within the URB */
3168 switch (urb->status) {
3169 case 0:
3170 action = HANDLE;
3171
3172 /* Check for short packet */
3173 if (urb->actual_length == 0) {
3174 ++(wlandev->linux_stats.rx_errors);
3175 ++(wlandev->linux_stats.rx_length_errors);
3176 action = RESUBMIT;
3177 }
3178 break;
3179
3180 case -EPIPE:
3181 printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n",
3182 wlandev->netdev->name);
3183 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3184 schedule_work(&hw->usb_work);
3185 ++(wlandev->linux_stats.rx_errors);
3186 action = ABORT;
3187 break;
3188
3189 case -EILSEQ:
3190 case -ETIMEDOUT:
3191 case -EPROTO:
3192 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3193 !timer_pending(&hw->throttle)) {
3194 mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3195 }
3196 ++(wlandev->linux_stats.rx_errors);
3197 action = ABORT;
3198 break;
3199
3200 case -EOVERFLOW:
3201 ++(wlandev->linux_stats.rx_over_errors);
3202 action = RESUBMIT;
3203 break;
3204
3205 case -ENODEV:
3206 case -ESHUTDOWN:
3207 pr_debug("status=%d, device removed.\n", urb->status);
3208 action = ABORT;
3209 break;
3210
3211 case -ENOENT:
3212 case -ECONNRESET:
3213 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3214 action = ABORT;
3215 break;
3216
3217 default:
3218 pr_debug("urb status=%d, transfer flags=0x%x\n",
3219 urb->status, urb->transfer_flags);
3220 ++(wlandev->linux_stats.rx_errors);
3221 action = RESUBMIT;
3222 break;
3223 }
3224
3225 urb_status = urb->status;
3226
3227 if (action != ABORT) {
3228 /* Repost the RX URB */
3229 result = submit_rx_urb(hw, GFP_ATOMIC);
3230
3231 if (result != 0) {
3232 printk(KERN_ERR
3233 "Fatal, failed to resubmit rx_urb. error=%d\n",
3234 result);
3235 }
3236 }
3237
3238 /* Handle any USB-IN packet */
3239 /* Note: the check of the sw_support field, the type field doesn't
3240 * have bit 12 set like the docs suggest.
3241 */
3242 type = le16_to_cpu(usbin->type);
3243 if (HFA384x_USB_ISRXFRM(type)) {
3244 if (action == HANDLE) {
3245 if (usbin->txfrm.desc.sw_support == 0x0123) {
3246 hfa384x_usbin_txcompl(wlandev, usbin);
3247 } else {
3248 skb_put(skb, sizeof(*usbin));
3249 hfa384x_usbin_rx(wlandev, skb);
3250 skb = NULL;
3251 }
3252 }
3253 goto exit;
3254 }
3255 if (HFA384x_USB_ISTXFRM(type)) {
3256 if (action == HANDLE)
3257 hfa384x_usbin_txcompl(wlandev, usbin);
3258 goto exit;
3259 }
3260 switch (type) {
3261 case HFA384x_USB_INFOFRM:
3262 if (action == ABORT)
3263 goto exit;
3264 if (action == HANDLE)
3265 hfa384x_usbin_info(wlandev, usbin);
3266 break;
3267
3268 case HFA384x_USB_CMDRESP:
3269 case HFA384x_USB_WRIDRESP:
3270 case HFA384x_USB_RRIDRESP:
3271 case HFA384x_USB_WMEMRESP:
3272 case HFA384x_USB_RMEMRESP:
3273 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3274 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3275 break;
3276
3277 case HFA384x_USB_BUFAVAIL:
3278 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3279 usbin->bufavail.frmlen);
3280 break;
3281
3282 case HFA384x_USB_ERROR:
3283 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3284 usbin->usberror.errortype);
3285 break;
3286
3287 default:
3288 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3289 usbin->type, urb_status);
3290 break;
3291 } /* switch */
3292
3293 exit:
3294
3295 if (skb)
3296 dev_kfree_skb(skb);
3297 }
3298
3299 /*----------------------------------------------------------------
3300 * hfa384x_usbin_ctlx
3301 *
3302 * We've received a URB containing a Prism2 "response" message.
3303 * This message needs to be matched up with a CTLX on the active
3304 * queue and our state updated accordingly.
3305 *
3306 * Arguments:
3307 * hw ptr to hfa384x_t
3308 * usbin ptr to USB IN packet
3309 * urb_status status of this Bulk-In URB
3310 *
3311 * Returns:
3312 * nothing
3313 *
3314 * Side effects:
3315 *
3316 * Call context:
3317 * interrupt
3318 ----------------------------------------------------------------*/
3319 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3320 int urb_status)
3321 {
3322 hfa384x_usbctlx_t *ctlx;
3323 int run_queue = 0;
3324 unsigned long flags;
3325
3326 retry:
3327 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3328
3329 /* There can be only one CTLX on the active queue
3330 * at any one time, and this is the CTLX that the
3331 * timers are waiting for.
3332 */
3333 if (list_empty(&hw->ctlxq.active))
3334 goto unlock;
3335
3336 /* Remove the "response timeout". It's possible that
3337 * we are already too late, and that the timeout is
3338 * already running. And that's just too bad for us,
3339 * because we could lose our CTLX from the active
3340 * queue here ...
3341 */
3342 if (del_timer(&hw->resptimer) == 0) {
3343 if (hw->resp_timer_done == 0) {
3344 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3345 goto retry;
3346 }
3347 } else {
3348 hw->resp_timer_done = 1;
3349 }
3350
3351 ctlx = get_active_ctlx(hw);
3352
3353 if (urb_status != 0) {
3354 /*
3355 * Bad CTLX, so get rid of it. But we only
3356 * remove it from the active queue if we're no
3357 * longer expecting the OUT URB to complete.
3358 */
3359 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3360 run_queue = 1;
3361 } else {
3362 const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3363
3364 /*
3365 * Check that our message is what we're expecting ...
3366 */
3367 if (ctlx->outbuf.type != intype) {
3368 printk(KERN_WARNING
3369 "Expected IN[%d], received IN[%d] - ignored.\n",
3370 le16_to_cpu(ctlx->outbuf.type),
3371 le16_to_cpu(intype));
3372 goto unlock;
3373 }
3374
3375 /* This URB has succeeded, so grab the data ... */
3376 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3377
3378 switch (ctlx->state) {
3379 case CTLX_REQ_SUBMITTED:
3380 /*
3381 * We have received our response URB before
3382 * our request has been acknowledged. Odd,
3383 * but our OUT URB is still alive...
3384 */
3385 pr_debug
3386 ("Causality violation: please reboot Universe, or email linux-wlan-devel@lists.linux-wlan.com\n");
3387 ctlx->state = CTLX_RESP_COMPLETE;
3388 break;
3389
3390 case CTLX_REQ_COMPLETE:
3391 /*
3392 * This is the usual path: our request
3393 * has already been acknowledged, and
3394 * now we have received the reply too.
3395 */
3396 ctlx->state = CTLX_COMPLETE;
3397 unlocked_usbctlx_complete(hw, ctlx);
3398 run_queue = 1;
3399 break;
3400
3401 default:
3402 /*
3403 * Throw this CTLX away ...
3404 */
3405 printk(KERN_ERR
3406 "Matched IN URB, CTLX[%d] in invalid state(%s)."
3407 " Discarded.\n",
3408 le16_to_cpu(ctlx->outbuf.type),
3409 ctlxstr(ctlx->state));
3410 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3411 run_queue = 1;
3412 break;
3413 } /* switch */
3414 }
3415
3416 unlock:
3417 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3418
3419 if (run_queue)
3420 hfa384x_usbctlxq_run(hw);
3421 }
3422
3423 /*----------------------------------------------------------------
3424 * hfa384x_usbin_txcompl
3425 *
3426 * At this point we have the results of a previous transmit.
3427 *
3428 * Arguments:
3429 * wlandev wlan device
3430 * usbin ptr to the usb transfer buffer
3431 *
3432 * Returns:
3433 * nothing
3434 *
3435 * Side effects:
3436 *
3437 * Call context:
3438 * interrupt
3439 ----------------------------------------------------------------*/
3440 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3441 hfa384x_usbin_t *usbin)
3442 {
3443 u16 status;
3444
3445 status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3446
3447 /* Was there an error? */
3448 if (HFA384x_TXSTATUS_ISERROR(status))
3449 prism2sta_ev_txexc(wlandev, status);
3450 else
3451 prism2sta_ev_tx(wlandev, status);
3452 }
3453
3454 /*----------------------------------------------------------------
3455 * hfa384x_usbin_rx
3456 *
3457 * At this point we have a successful received a rx frame packet.
3458 *
3459 * Arguments:
3460 * wlandev wlan device
3461 * usbin ptr to the usb transfer buffer
3462 *
3463 * Returns:
3464 * nothing
3465 *
3466 * Side effects:
3467 *
3468 * Call context:
3469 * interrupt
3470 ----------------------------------------------------------------*/
3471 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3472 {
3473 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) skb->data;
3474 hfa384x_t *hw = wlandev->priv;
3475 int hdrlen;
3476 p80211_rxmeta_t *rxmeta;
3477 u16 data_len;
3478 u16 fc;
3479
3480 /* Byte order convert once up front. */
3481 usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3482 usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3483
3484 /* Now handle frame based on port# */
3485 switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3486 case 0:
3487 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3488
3489 /* If exclude and we receive an unencrypted, drop it */
3490 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3491 !WLAN_GET_FC_ISWEP(fc)) {
3492 goto done;
3493 }
3494
3495 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3496
3497 /* How much header data do we have? */
3498 hdrlen = p80211_headerlen(fc);
3499
3500 /* Pull off the descriptor */
3501 skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3502
3503 /* Now shunt the header block up against the data block
3504 * with an "overlapping" copy
3505 */
3506 memmove(skb_push(skb, hdrlen),
3507 &usbin->rxfrm.desc.frame_control, hdrlen);
3508
3509 skb->dev = wlandev->netdev;
3510 skb->dev->last_rx = jiffies;
3511
3512 /* And set the frame length properly */
3513 skb_trim(skb, data_len + hdrlen);
3514
3515 /* The prism2 series does not return the CRC */
3516 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3517
3518 skb_reset_mac_header(skb);
3519
3520 /* Attach the rxmeta, set some stuff */
3521 p80211skb_rxmeta_attach(wlandev, skb);
3522 rxmeta = P80211SKB_RXMETA(skb);
3523 rxmeta->mactime = usbin->rxfrm.desc.time;
3524 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3525 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3526 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3527
3528 prism2sta_ev_rx(wlandev, skb);
3529
3530 break;
3531
3532 case 7:
3533 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3534 /* Copy to wlansnif skb */
3535 hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3536 dev_kfree_skb(skb);
3537 } else {
3538 pr_debug("Received monitor frame: FCSerr set\n");
3539 }
3540 break;
3541
3542 default:
3543 printk(KERN_WARNING "Received frame on unsupported port=%d\n",
3544 HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3545 goto done;
3546 break;
3547 }
3548
3549 done:
3550 return;
3551 }
3552
3553 /*----------------------------------------------------------------
3554 * hfa384x_int_rxmonitor
3555 *
3556 * Helper function for int_rx. Handles monitor frames.
3557 * Note that this function allocates space for the FCS and sets it
3558 * to 0xffffffff. The hfa384x doesn't give us the FCS value but the
3559 * higher layers expect it. 0xffffffff is used as a flag to indicate
3560 * the FCS is bogus.
3561 *
3562 * Arguments:
3563 * wlandev wlan device structure
3564 * rxfrm rx descriptor read from card in int_rx
3565 *
3566 * Returns:
3567 * nothing
3568 *
3569 * Side effects:
3570 * Allocates an skb and passes it up via the PF_PACKET interface.
3571 * Call context:
3572 * interrupt
3573 ----------------------------------------------------------------*/
3574 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3575 hfa384x_usb_rxfrm_t *rxfrm)
3576 {
3577 hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3578 unsigned int hdrlen = 0;
3579 unsigned int datalen = 0;
3580 unsigned int skblen = 0;
3581 u8 *datap;
3582 u16 fc;
3583 struct sk_buff *skb;
3584 hfa384x_t *hw = wlandev->priv;
3585
3586 /* Don't forget the status, time, and data_len fields are in host order */
3587 /* Figure out how big the frame is */
3588 fc = le16_to_cpu(rxdesc->frame_control);
3589 hdrlen = p80211_headerlen(fc);
3590 datalen = le16_to_cpu(rxdesc->data_len);
3591
3592 /* Allocate an ind message+framesize skb */
3593 skblen = sizeof(p80211_caphdr_t) + hdrlen + datalen + WLAN_CRC_LEN;
3594
3595 /* sanity check the length */
3596 if (skblen >
3597 (sizeof(p80211_caphdr_t) +
3598 WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3599 pr_debug("overlen frm: len=%zd\n",
3600 skblen - sizeof(p80211_caphdr_t));
3601 }
3602
3603 skb = dev_alloc_skb(skblen);
3604 if (skb == NULL) {
3605 printk(KERN_ERR
3606 "alloc_skb failed trying to allocate %d bytes\n",
3607 skblen);
3608 return;
3609 }
3610
3611 /* only prepend the prism header if in the right mode */
3612 if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3613 (hw->sniffhdr != 0)) {
3614 p80211_caphdr_t *caphdr;
3615 /* The NEW header format! */
3616 datap = skb_put(skb, sizeof(p80211_caphdr_t));
3617 caphdr = (p80211_caphdr_t *) datap;
3618
3619 caphdr->version = htonl(P80211CAPTURE_VERSION);
3620 caphdr->length = htonl(sizeof(p80211_caphdr_t));
3621 caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3622 caphdr->hosttime = __cpu_to_be64(jiffies);
3623 caphdr->phytype = htonl(4); /* dss_dot11_b */
3624 caphdr->channel = htonl(hw->sniff_channel);
3625 caphdr->datarate = htonl(rxdesc->rate);
3626 caphdr->antenna = htonl(0); /* unknown */
3627 caphdr->priority = htonl(0); /* unknown */
3628 caphdr->ssi_type = htonl(3); /* rssi_raw */
3629 caphdr->ssi_signal = htonl(rxdesc->signal);
3630 caphdr->ssi_noise = htonl(rxdesc->silence);
3631 caphdr->preamble = htonl(0); /* unknown */
3632 caphdr->encoding = htonl(1); /* cck */
3633 }
3634
3635 /* Copy the 802.11 header to the skb (ctl frames may be less than a full header) */
3636 datap = skb_put(skb, hdrlen);
3637 memcpy(datap, &(rxdesc->frame_control), hdrlen);
3638
3639 /* If any, copy the data from the card to the skb */
3640 if (datalen > 0) {
3641 datap = skb_put(skb, datalen);
3642 memcpy(datap, rxfrm->data, datalen);
3643
3644 /* check for unencrypted stuff if WEP bit set. */
3645 if (*(datap - hdrlen + 1) & 0x40) /* wep set */
3646 if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3647 *(datap - hdrlen + 1) &= 0xbf; /* clear wep; it's the 802.2 header! */
3648 }
3649
3650 if (hw->sniff_fcs) {
3651 /* Set the FCS */
3652 datap = skb_put(skb, WLAN_CRC_LEN);
3653 memset(datap, 0xff, WLAN_CRC_LEN);
3654 }
3655
3656 /* pass it back up */
3657 prism2sta_ev_rx(wlandev, skb);
3658
3659 return;
3660 }
3661
3662 /*----------------------------------------------------------------
3663 * hfa384x_usbin_info
3664 *
3665 * At this point we have a successful received a Prism2 info frame.
3666 *
3667 * Arguments:
3668 * wlandev wlan device
3669 * usbin ptr to the usb transfer buffer
3670 *
3671 * Returns:
3672 * nothing
3673 *
3674 * Side effects:
3675 *
3676 * Call context:
3677 * interrupt
3678 ----------------------------------------------------------------*/
3679 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3680 {
3681 usbin->infofrm.info.framelen =
3682 le16_to_cpu(usbin->infofrm.info.framelen);
3683 prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3684 }
3685
3686 /*----------------------------------------------------------------
3687 * hfa384x_usbout_callback
3688 *
3689 * Callback for URBs on the BULKOUT endpoint.
3690 *
3691 * Arguments:
3692 * urb ptr to the completed urb
3693 *
3694 * Returns:
3695 * nothing
3696 *
3697 * Side effects:
3698 *
3699 * Call context:
3700 * interrupt
3701 ----------------------------------------------------------------*/
3702 static void hfa384x_usbout_callback(struct urb *urb)
3703 {
3704 wlandevice_t *wlandev = urb->context;
3705 hfa384x_usbout_t *usbout = urb->transfer_buffer;
3706
3707 #ifdef DEBUG_USB
3708 dbprint_urb(urb);
3709 #endif
3710
3711 if (wlandev && wlandev->netdev) {
3712
3713 switch (urb->status) {
3714 case 0:
3715 hfa384x_usbout_tx(wlandev, usbout);
3716 break;
3717
3718 case -EPIPE:
3719 {
3720 hfa384x_t *hw = wlandev->priv;
3721 printk(KERN_WARNING
3722 "%s tx pipe stalled: requesting reset\n",
3723 wlandev->netdev->name);
3724 if (!test_and_set_bit
3725 (WORK_TX_HALT, &hw->usb_flags))
3726 schedule_work(&hw->usb_work);
3727 ++(wlandev->linux_stats.tx_errors);
3728 break;
3729 }
3730
3731 case -EPROTO:
3732 case -ETIMEDOUT:
3733 case -EILSEQ:
3734 {
3735 hfa384x_t *hw = wlandev->priv;
3736
3737 if (!test_and_set_bit
3738 (THROTTLE_TX, &hw->usb_flags)
3739 && !timer_pending(&hw->throttle)) {
3740 mod_timer(&hw->throttle,
3741 jiffies + THROTTLE_JIFFIES);
3742 }
3743 ++(wlandev->linux_stats.tx_errors);
3744 netif_stop_queue(wlandev->netdev);
3745 break;
3746 }
3747
3748 case -ENOENT:
3749 case -ESHUTDOWN:
3750 /* Ignorable errors */
3751 break;
3752
3753 default:
3754 printk(KERN_INFO "unknown urb->status=%d\n",
3755 urb->status);
3756 ++(wlandev->linux_stats.tx_errors);
3757 break;
3758 } /* switch */
3759 }
3760 }
3761
3762 /*----------------------------------------------------------------
3763 * hfa384x_ctlxout_callback
3764 *
3765 * Callback for control data on the BULKOUT endpoint.
3766 *
3767 * Arguments:
3768 * urb ptr to the completed urb
3769 *
3770 * Returns:
3771 * nothing
3772 *
3773 * Side effects:
3774 *
3775 * Call context:
3776 * interrupt
3777 ----------------------------------------------------------------*/
3778 static void hfa384x_ctlxout_callback(struct urb *urb)
3779 {
3780 hfa384x_t *hw = urb->context;
3781 int delete_resptimer = 0;
3782 int timer_ok = 1;
3783 int run_queue = 0;
3784 hfa384x_usbctlx_t *ctlx;
3785 unsigned long flags;
3786
3787 pr_debug("urb->status=%d\n", urb->status);
3788 #ifdef DEBUG_USB
3789 dbprint_urb(urb);
3790 #endif
3791 if ((urb->status == -ESHUTDOWN) ||
3792 (urb->status == -ENODEV) || (hw == NULL))
3793 goto done;
3794
3795 retry:
3796 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3797
3798 /*
3799 * Only one CTLX at a time on the "active" list, and
3800 * none at all if we are unplugged. However, we can
3801 * rely on the disconnect function to clean everything
3802 * up if someone unplugged the adapter.
3803 */
3804 if (list_empty(&hw->ctlxq.active)) {
3805 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3806 goto done;
3807 }
3808
3809 /*
3810 * Having something on the "active" queue means
3811 * that we have timers to worry about ...
3812 */
3813 if (del_timer(&hw->reqtimer) == 0) {
3814 if (hw->req_timer_done == 0) {
3815 /*
3816 * This timer was actually running while we
3817 * were trying to delete it. Let it terminate
3818 * gracefully instead.
3819 */
3820 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3821 goto retry;
3822 }
3823 } else {
3824 hw->req_timer_done = 1;
3825 }
3826
3827 ctlx = get_active_ctlx(hw);
3828
3829 if (urb->status == 0) {
3830 /* Request portion of a CTLX is successful */
3831 switch (ctlx->state) {
3832 case CTLX_REQ_SUBMITTED:
3833 /* This OUT-ACK received before IN */
3834 ctlx->state = CTLX_REQ_COMPLETE;
3835 break;
3836
3837 case CTLX_RESP_COMPLETE:
3838 /* IN already received before this OUT-ACK,
3839 * so this command must now be complete.
3840 */
3841 ctlx->state = CTLX_COMPLETE;
3842 unlocked_usbctlx_complete(hw, ctlx);
3843 run_queue = 1;
3844 break;
3845
3846 default:
3847 /* This is NOT a valid CTLX "success" state! */
3848 printk(KERN_ERR
3849 "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3850 le16_to_cpu(ctlx->outbuf.type),
3851 ctlxstr(ctlx->state), urb->status);
3852 break;
3853 } /* switch */
3854 } else {
3855 /* If the pipe has stalled then we need to reset it */
3856 if ((urb->status == -EPIPE) &&
3857 !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3858 printk(KERN_WARNING
3859 "%s tx pipe stalled: requesting reset\n",
3860 hw->wlandev->netdev->name);
3861 schedule_work(&hw->usb_work);
3862 }
3863
3864 /* If someone cancels the OUT URB then its status
3865 * should be either -ECONNRESET or -ENOENT.
3866 */
3867 ctlx->state = CTLX_REQ_FAILED;
3868 unlocked_usbctlx_complete(hw, ctlx);
3869 delete_resptimer = 1;
3870 run_queue = 1;
3871 }
3872
3873 delresp:
3874 if (delete_resptimer) {
3875 timer_ok = del_timer(&hw->resptimer);
3876 if (timer_ok != 0)
3877 hw->resp_timer_done = 1;
3878 }
3879
3880 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3881
3882 if (!timer_ok && (hw->resp_timer_done == 0)) {
3883 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3884 goto delresp;
3885 }
3886
3887 if (run_queue)
3888 hfa384x_usbctlxq_run(hw);
3889
3890 done:
3891 ;
3892 }
3893
3894 /*----------------------------------------------------------------
3895 * hfa384x_usbctlx_reqtimerfn
3896 *
3897 * Timer response function for CTLX request timeouts. If this
3898 * function is called, it means that the callback for the OUT
3899 * URB containing a Prism2.x XXX_Request was never called.
3900 *
3901 * Arguments:
3902 * data a ptr to the hfa384x_t
3903 *
3904 * Returns:
3905 * nothing
3906 *
3907 * Side effects:
3908 *
3909 * Call context:
3910 * interrupt
3911 ----------------------------------------------------------------*/
3912 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3913 {
3914 hfa384x_t *hw = (hfa384x_t *) data;
3915 unsigned long flags;
3916
3917 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3918
3919 hw->req_timer_done = 1;
3920
3921 /* Removing the hardware automatically empties
3922 * the active list ...
3923 */
3924 if (!list_empty(&hw->ctlxq.active)) {
3925 /*
3926 * We must ensure that our URB is removed from
3927 * the system, if it hasn't already expired.
3928 */
3929 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3930 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3931 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3932
3933 ctlx->state = CTLX_REQ_FAILED;
3934
3935 /* This URB was active, but has now been
3936 * cancelled. It will now have a status of
3937 * -ECONNRESET in the callback function.
3938 *
3939 * We are cancelling this CTLX, so we're
3940 * not going to need to wait for a response.
3941 * The URB's callback function will check
3942 * that this timer is truly dead.
3943 */
3944 if (del_timer(&hw->resptimer) != 0)
3945 hw->resp_timer_done = 1;
3946 }
3947 }
3948
3949 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3950 }
3951
3952 /*----------------------------------------------------------------
3953 * hfa384x_usbctlx_resptimerfn
3954 *
3955 * Timer response function for CTLX response timeouts. If this
3956 * function is called, it means that the callback for the IN
3957 * URB containing a Prism2.x XXX_Response was never called.
3958 *
3959 * Arguments:
3960 * data a ptr to the hfa384x_t
3961 *
3962 * Returns:
3963 * nothing
3964 *
3965 * Side effects:
3966 *
3967 * Call context:
3968 * interrupt
3969 ----------------------------------------------------------------*/
3970 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3971 {
3972 hfa384x_t *hw = (hfa384x_t *) data;
3973 unsigned long flags;
3974
3975 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3976
3977 hw->resp_timer_done = 1;
3978
3979 /* The active list will be empty if the
3980 * adapter has been unplugged ...
3981 */
3982 if (!list_empty(&hw->ctlxq.active)) {
3983 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3984
3985 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3986 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3987 hfa384x_usbctlxq_run(hw);
3988 goto done;
3989 }
3990 }
3991
3992 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3993
3994 done:
3995 ;
3996
3997 }
3998
3999 /*----------------------------------------------------------------
4000 * hfa384x_usb_throttlefn
4001 *
4002 *
4003 * Arguments:
4004 * data ptr to hw
4005 *
4006 * Returns:
4007 * Nothing
4008 *
4009 * Side effects:
4010 *
4011 * Call context:
4012 * Interrupt
4013 ----------------------------------------------------------------*/
4014 static void hfa384x_usb_throttlefn(unsigned long data)
4015 {
4016 hfa384x_t *hw = (hfa384x_t *) data;
4017 unsigned long flags;
4018
4019 spin_lock_irqsave(&hw->ctlxq.lock, flags);
4020
4021 /*
4022 * We need to check BOTH the RX and the TX throttle controls,
4023 * so we use the bitwise OR instead of the logical OR.
4024 */
4025 pr_debug("flags=0x%lx\n", hw->usb_flags);
4026 if (!hw->wlandev->hwremoved &&
4027 ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
4028 !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
4029 |
4030 (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
4031 !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
4032 )) {
4033 schedule_work(&hw->usb_work);
4034 }
4035
4036 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4037 }
4038
4039 /*----------------------------------------------------------------
4040 * hfa384x_usbctlx_submit
4041 *
4042 * Called from the doxxx functions to submit a CTLX to the queue
4043 *
4044 * Arguments:
4045 * hw ptr to the hw struct
4046 * ctlx ctlx structure to enqueue
4047 *
4048 * Returns:
4049 * -ENODEV if the adapter is unplugged
4050 * 0
4051 *
4052 * Side effects:
4053 *
4054 * Call context:
4055 * process or interrupt
4056 ----------------------------------------------------------------*/
4057 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4058 {
4059 unsigned long flags;
4060 int ret;
4061
4062 spin_lock_irqsave(&hw->ctlxq.lock, flags);
4063
4064 if (hw->wlandev->hwremoved) {
4065 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4066 ret = -ENODEV;
4067 } else {
4068 ctlx->state = CTLX_PENDING;
4069 list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4070
4071 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4072 hfa384x_usbctlxq_run(hw);
4073 ret = 0;
4074 }
4075
4076 return ret;
4077 }
4078
4079 /*----------------------------------------------------------------
4080 * hfa384x_usbout_tx
4081 *
4082 * At this point we have finished a send of a frame. Mark the URB
4083 * as available and call ev_alloc to notify higher layers we're
4084 * ready for more.
4085 *
4086 * Arguments:
4087 * wlandev wlan device
4088 * usbout ptr to the usb transfer buffer
4089 *
4090 * Returns:
4091 * nothing
4092 *
4093 * Side effects:
4094 *
4095 * Call context:
4096 * interrupt
4097 ----------------------------------------------------------------*/
4098 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4099 {
4100 prism2sta_ev_alloc(wlandev);
4101 }
4102
4103 /*----------------------------------------------------------------
4104 * hfa384x_isgood_pdrcore
4105 *
4106 * Quick check of PDR codes.
4107 *
4108 * Arguments:
4109 * pdrcode PDR code number (host order)
4110 *
4111 * Returns:
4112 * zero not good.
4113 * one is good.
4114 *
4115 * Side effects:
4116 *
4117 * Call context:
4118 ----------------------------------------------------------------*/
4119 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4120 {
4121 switch (pdrcode) {
4122 case HFA384x_PDR_END_OF_PDA:
4123 case HFA384x_PDR_PCB_PARTNUM:
4124 case HFA384x_PDR_PDAVER:
4125 case HFA384x_PDR_NIC_SERIAL:
4126 case HFA384x_PDR_MKK_MEASUREMENTS:
4127 case HFA384x_PDR_NIC_RAMSIZE:
4128 case HFA384x_PDR_MFISUPRANGE:
4129 case HFA384x_PDR_CFISUPRANGE:
4130 case HFA384x_PDR_NICID:
4131 case HFA384x_PDR_MAC_ADDRESS:
4132 case HFA384x_PDR_REGDOMAIN:
4133 case HFA384x_PDR_ALLOWED_CHANNEL:
4134 case HFA384x_PDR_DEFAULT_CHANNEL:
4135 case HFA384x_PDR_TEMPTYPE:
4136 case HFA384x_PDR_IFR_SETTING:
4137 case HFA384x_PDR_RFR_SETTING:
4138 case HFA384x_PDR_HFA3861_BASELINE:
4139 case HFA384x_PDR_HFA3861_SHADOW:
4140 case HFA384x_PDR_HFA3861_IFRF:
4141 case HFA384x_PDR_HFA3861_CHCALSP:
4142 case HFA384x_PDR_HFA3861_CHCALI:
4143 case HFA384x_PDR_3842_NIC_CONFIG:
4144 case HFA384x_PDR_USB_ID:
4145 case HFA384x_PDR_PCI_ID:
4146 case HFA384x_PDR_PCI_IFCONF:
4147 case HFA384x_PDR_PCI_PMCONF:
4148 case HFA384x_PDR_RFENRGY:
4149 case HFA384x_PDR_HFA3861_MANF_TESTSP:
4150 case HFA384x_PDR_HFA3861_MANF_TESTI:
4151 /* code is OK */
4152 return 1;
4153 break;
4154 default:
4155 if (pdrcode < 0x1000) {
4156 /* code is OK, but we don't know exactly what it is */
4157 pr_debug("Encountered unknown PDR#=0x%04x, "
4158 "assuming it's ok.\n", pdrcode);
4159 return 1;
4160 } else {
4161 /* bad code */
4162 pr_debug("Encountered unknown PDR#=0x%04x, "
4163 "(>=0x1000), assuming it's bad.\n", pdrcode);
4164 return 0;
4165 }
4166 break;
4167 }
4168 return 0; /* avoid compiler warnings */
4169 }
This page took 0.217107 seconds and 5 git commands to generate.