target: Remove the unused flag SCF_ACK_KREF
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76 se_sess_cache = kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session), __alignof__(struct se_session),
78 0, NULL);
79 if (!se_sess_cache) {
80 pr_err("kmem_cache_create() for struct se_session"
81 " failed\n");
82 goto out;
83 }
84 se_ua_cache = kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua), __alignof__(struct se_ua),
86 0, NULL);
87 if (!se_ua_cache) {
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache;
90 }
91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration),
93 __alignof__(struct t10_pr_registration), 0, NULL);
94 if (!t10_pr_reg_cache) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 " failed\n");
97 goto out_free_ua_cache;
98 }
99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101 0, NULL);
102 if (!t10_alua_lu_gp_cache) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 " failed\n");
105 goto out_free_pr_reg_cache;
106 }
107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member),
109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 if (!t10_alua_lu_gp_mem_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 "cache failed\n");
113 goto out_free_lu_gp_cache;
114 }
115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp),
117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 if (!t10_alua_tg_pt_gp_cache) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 "cache failed\n");
121 goto out_free_lu_gp_mem_cache;
122 }
123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member),
126 __alignof__(struct t10_alua_tg_pt_gp_member),
127 0, NULL);
128 if (!t10_alua_tg_pt_gp_mem_cache) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 "mem_t failed\n");
131 goto out_free_tg_pt_gp_cache;
132 }
133 t10_alua_lba_map_cache = kmem_cache_create(
134 "t10_alua_lba_map_cache",
135 sizeof(struct t10_alua_lba_map),
136 __alignof__(struct t10_alua_lba_map), 0, NULL);
137 if (!t10_alua_lba_map_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139 "cache failed\n");
140 goto out_free_tg_pt_gp_mem_cache;
141 }
142 t10_alua_lba_map_mem_cache = kmem_cache_create(
143 "t10_alua_lba_map_mem_cache",
144 sizeof(struct t10_alua_lba_map_member),
145 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146 if (!t10_alua_lba_map_mem_cache) {
147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148 "cache failed\n");
149 goto out_free_lba_map_cache;
150 }
151
152 target_completion_wq = alloc_workqueue("target_completion",
153 WQ_MEM_RECLAIM, 0);
154 if (!target_completion_wq)
155 goto out_free_lba_map_mem_cache;
156
157 return 0;
158
159 out_free_lba_map_mem_cache:
160 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162 kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170 kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172 kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174 kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176 kmem_cache_destroy(se_sess_cache);
177 out:
178 return -ENOMEM;
179 }
180
181 void release_se_kmem_caches(void)
182 {
183 destroy_workqueue(target_completion_wq);
184 kmem_cache_destroy(se_sess_cache);
185 kmem_cache_destroy(se_ua_cache);
186 kmem_cache_destroy(t10_pr_reg_cache);
187 kmem_cache_destroy(t10_alua_lu_gp_cache);
188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 kmem_cache_destroy(t10_alua_lba_map_cache);
192 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200 * Allocate a new row index for the entry type specified
201 */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204 u32 new_index;
205
206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208 spin_lock(&scsi_mib_index_lock);
209 new_index = ++scsi_mib_index[type];
210 spin_unlock(&scsi_mib_index_lock);
211
212 return new_index;
213 }
214
215 void transport_subsystem_check_init(void)
216 {
217 int ret;
218 static int sub_api_initialized;
219
220 if (sub_api_initialized)
221 return;
222
223 ret = request_module("target_core_iblock");
224 if (ret != 0)
225 pr_err("Unable to load target_core_iblock\n");
226
227 ret = request_module("target_core_file");
228 if (ret != 0)
229 pr_err("Unable to load target_core_file\n");
230
231 ret = request_module("target_core_pscsi");
232 if (ret != 0)
233 pr_err("Unable to load target_core_pscsi\n");
234
235 ret = request_module("target_core_user");
236 if (ret != 0)
237 pr_err("Unable to load target_core_user\n");
238
239 sub_api_initialized = 1;
240 }
241
242 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
243 {
244 struct se_session *se_sess;
245
246 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
247 if (!se_sess) {
248 pr_err("Unable to allocate struct se_session from"
249 " se_sess_cache\n");
250 return ERR_PTR(-ENOMEM);
251 }
252 INIT_LIST_HEAD(&se_sess->sess_list);
253 INIT_LIST_HEAD(&se_sess->sess_acl_list);
254 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
255 INIT_LIST_HEAD(&se_sess->sess_wait_list);
256 spin_lock_init(&se_sess->sess_cmd_lock);
257 kref_init(&se_sess->sess_kref);
258 se_sess->sup_prot_ops = sup_prot_ops;
259
260 return se_sess;
261 }
262 EXPORT_SYMBOL(transport_init_session);
263
264 int transport_alloc_session_tags(struct se_session *se_sess,
265 unsigned int tag_num, unsigned int tag_size)
266 {
267 int rc;
268
269 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
270 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
271 if (!se_sess->sess_cmd_map) {
272 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
273 if (!se_sess->sess_cmd_map) {
274 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
275 return -ENOMEM;
276 }
277 }
278
279 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
280 if (rc < 0) {
281 pr_err("Unable to init se_sess->sess_tag_pool,"
282 " tag_num: %u\n", tag_num);
283 if (is_vmalloc_addr(se_sess->sess_cmd_map))
284 vfree(se_sess->sess_cmd_map);
285 else
286 kfree(se_sess->sess_cmd_map);
287 se_sess->sess_cmd_map = NULL;
288 return -ENOMEM;
289 }
290
291 return 0;
292 }
293 EXPORT_SYMBOL(transport_alloc_session_tags);
294
295 struct se_session *transport_init_session_tags(unsigned int tag_num,
296 unsigned int tag_size,
297 enum target_prot_op sup_prot_ops)
298 {
299 struct se_session *se_sess;
300 int rc;
301
302 se_sess = transport_init_session(sup_prot_ops);
303 if (IS_ERR(se_sess))
304 return se_sess;
305
306 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
307 if (rc < 0) {
308 transport_free_session(se_sess);
309 return ERR_PTR(-ENOMEM);
310 }
311
312 return se_sess;
313 }
314 EXPORT_SYMBOL(transport_init_session_tags);
315
316 /*
317 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
318 */
319 void __transport_register_session(
320 struct se_portal_group *se_tpg,
321 struct se_node_acl *se_nacl,
322 struct se_session *se_sess,
323 void *fabric_sess_ptr)
324 {
325 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
326 unsigned char buf[PR_REG_ISID_LEN];
327
328 se_sess->se_tpg = se_tpg;
329 se_sess->fabric_sess_ptr = fabric_sess_ptr;
330 /*
331 * Determine if fabric allows for T10-PI feature bits to be exposed
332 * to initiators for device backends with !dev->dev_attrib.pi_prot_type
333 */
334 if (tfo->tpg_check_prot_fabric_only)
335 se_sess->sess_prot_type = tfo->tpg_check_prot_fabric_only(se_tpg);
336
337 /*
338 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
339 *
340 * Only set for struct se_session's that will actually be moving I/O.
341 * eg: *NOT* discovery sessions.
342 */
343 if (se_nacl) {
344 /*
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
347 */
348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 memset(&buf[0], 0, PR_REG_ISID_LEN);
350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 &buf[0], PR_REG_ISID_LEN);
352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
353 }
354 kref_get(&se_nacl->acl_kref);
355
356 spin_lock_irq(&se_nacl->nacl_sess_lock);
357 /*
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
360 */
361 se_nacl->nacl_sess = se_sess;
362
363 list_add_tail(&se_sess->sess_acl_list,
364 &se_nacl->acl_sess_list);
365 spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 }
367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 }
372 EXPORT_SYMBOL(__transport_register_session);
373
374 void transport_register_session(
375 struct se_portal_group *se_tpg,
376 struct se_node_acl *se_nacl,
377 struct se_session *se_sess,
378 void *fabric_sess_ptr)
379 {
380 unsigned long flags;
381
382 spin_lock_irqsave(&se_tpg->session_lock, flags);
383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 }
386 EXPORT_SYMBOL(transport_register_session);
387
388 static void target_release_session(struct kref *kref)
389 {
390 struct se_session *se_sess = container_of(kref,
391 struct se_session, sess_kref);
392 struct se_portal_group *se_tpg = se_sess->se_tpg;
393
394 se_tpg->se_tpg_tfo->close_session(se_sess);
395 }
396
397 void target_get_session(struct se_session *se_sess)
398 {
399 kref_get(&se_sess->sess_kref);
400 }
401 EXPORT_SYMBOL(target_get_session);
402
403 void target_put_session(struct se_session *se_sess)
404 {
405 struct se_portal_group *tpg = se_sess->se_tpg;
406
407 if (tpg->se_tpg_tfo->put_session != NULL) {
408 tpg->se_tpg_tfo->put_session(se_sess);
409 return;
410 }
411 kref_put(&se_sess->sess_kref, target_release_session);
412 }
413 EXPORT_SYMBOL(target_put_session);
414
415 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
416 {
417 struct se_session *se_sess;
418 ssize_t len = 0;
419
420 spin_lock_bh(&se_tpg->session_lock);
421 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
422 if (!se_sess->se_node_acl)
423 continue;
424 if (!se_sess->se_node_acl->dynamic_node_acl)
425 continue;
426 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
427 break;
428
429 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
430 se_sess->se_node_acl->initiatorname);
431 len += 1; /* Include NULL terminator */
432 }
433 spin_unlock_bh(&se_tpg->session_lock);
434
435 return len;
436 }
437 EXPORT_SYMBOL(target_show_dynamic_sessions);
438
439 static void target_complete_nacl(struct kref *kref)
440 {
441 struct se_node_acl *nacl = container_of(kref,
442 struct se_node_acl, acl_kref);
443
444 complete(&nacl->acl_free_comp);
445 }
446
447 void target_put_nacl(struct se_node_acl *nacl)
448 {
449 kref_put(&nacl->acl_kref, target_complete_nacl);
450 }
451
452 void transport_deregister_session_configfs(struct se_session *se_sess)
453 {
454 struct se_node_acl *se_nacl;
455 unsigned long flags;
456 /*
457 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
458 */
459 se_nacl = se_sess->se_node_acl;
460 if (se_nacl) {
461 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
462 if (se_nacl->acl_stop == 0)
463 list_del(&se_sess->sess_acl_list);
464 /*
465 * If the session list is empty, then clear the pointer.
466 * Otherwise, set the struct se_session pointer from the tail
467 * element of the per struct se_node_acl active session list.
468 */
469 if (list_empty(&se_nacl->acl_sess_list))
470 se_nacl->nacl_sess = NULL;
471 else {
472 se_nacl->nacl_sess = container_of(
473 se_nacl->acl_sess_list.prev,
474 struct se_session, sess_acl_list);
475 }
476 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
477 }
478 }
479 EXPORT_SYMBOL(transport_deregister_session_configfs);
480
481 void transport_free_session(struct se_session *se_sess)
482 {
483 if (se_sess->sess_cmd_map) {
484 percpu_ida_destroy(&se_sess->sess_tag_pool);
485 if (is_vmalloc_addr(se_sess->sess_cmd_map))
486 vfree(se_sess->sess_cmd_map);
487 else
488 kfree(se_sess->sess_cmd_map);
489 }
490 kmem_cache_free(se_sess_cache, se_sess);
491 }
492 EXPORT_SYMBOL(transport_free_session);
493
494 void transport_deregister_session(struct se_session *se_sess)
495 {
496 struct se_portal_group *se_tpg = se_sess->se_tpg;
497 const struct target_core_fabric_ops *se_tfo;
498 struct se_node_acl *se_nacl;
499 unsigned long flags;
500 bool comp_nacl = true;
501
502 if (!se_tpg) {
503 transport_free_session(se_sess);
504 return;
505 }
506 se_tfo = se_tpg->se_tpg_tfo;
507
508 spin_lock_irqsave(&se_tpg->session_lock, flags);
509 list_del(&se_sess->sess_list);
510 se_sess->se_tpg = NULL;
511 se_sess->fabric_sess_ptr = NULL;
512 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
513
514 /*
515 * Determine if we need to do extra work for this initiator node's
516 * struct se_node_acl if it had been previously dynamically generated.
517 */
518 se_nacl = se_sess->se_node_acl;
519
520 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
521 if (se_nacl && se_nacl->dynamic_node_acl) {
522 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
523 list_del(&se_nacl->acl_list);
524 se_tpg->num_node_acls--;
525 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
526 core_tpg_wait_for_nacl_pr_ref(se_nacl);
527 core_free_device_list_for_node(se_nacl, se_tpg);
528 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
529
530 comp_nacl = false;
531 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
532 }
533 }
534 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
535
536 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
537 se_tpg->se_tpg_tfo->get_fabric_name());
538 /*
539 * If last kref is dropping now for an explicit NodeACL, awake sleeping
540 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
541 * removal context.
542 */
543 if (se_nacl && comp_nacl)
544 target_put_nacl(se_nacl);
545
546 transport_free_session(se_sess);
547 }
548 EXPORT_SYMBOL(transport_deregister_session);
549
550 /*
551 * Called with cmd->t_state_lock held.
552 */
553 static void target_remove_from_state_list(struct se_cmd *cmd)
554 {
555 struct se_device *dev = cmd->se_dev;
556 unsigned long flags;
557
558 if (!dev)
559 return;
560
561 if (cmd->transport_state & CMD_T_BUSY)
562 return;
563
564 spin_lock_irqsave(&dev->execute_task_lock, flags);
565 if (cmd->state_active) {
566 list_del(&cmd->state_list);
567 cmd->state_active = false;
568 }
569 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
570 }
571
572 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
573 bool write_pending)
574 {
575 unsigned long flags;
576
577 spin_lock_irqsave(&cmd->t_state_lock, flags);
578 if (write_pending)
579 cmd->t_state = TRANSPORT_WRITE_PENDING;
580
581 if (remove_from_lists) {
582 target_remove_from_state_list(cmd);
583
584 /*
585 * Clear struct se_cmd->se_lun before the handoff to FE.
586 */
587 cmd->se_lun = NULL;
588 }
589
590 /*
591 * Determine if frontend context caller is requesting the stopping of
592 * this command for frontend exceptions.
593 */
594 if (cmd->transport_state & CMD_T_STOP) {
595 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
596 __func__, __LINE__,
597 cmd->se_tfo->get_task_tag(cmd));
598
599 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
600
601 complete_all(&cmd->t_transport_stop_comp);
602 return 1;
603 }
604
605 cmd->transport_state &= ~CMD_T_ACTIVE;
606 if (remove_from_lists) {
607 /*
608 * Some fabric modules like tcm_loop can release
609 * their internally allocated I/O reference now and
610 * struct se_cmd now.
611 *
612 * Fabric modules are expected to return '1' here if the
613 * se_cmd being passed is released at this point,
614 * or zero if not being released.
615 */
616 if (cmd->se_tfo->check_stop_free != NULL) {
617 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
618 return cmd->se_tfo->check_stop_free(cmd);
619 }
620 }
621
622 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
623 return 0;
624 }
625
626 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
627 {
628 return transport_cmd_check_stop(cmd, true, false);
629 }
630
631 static void transport_lun_remove_cmd(struct se_cmd *cmd)
632 {
633 struct se_lun *lun = cmd->se_lun;
634
635 if (!lun)
636 return;
637
638 if (cmpxchg(&cmd->lun_ref_active, true, false))
639 percpu_ref_put(&lun->lun_ref);
640 }
641
642 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
643 {
644 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
645 transport_lun_remove_cmd(cmd);
646 /*
647 * Allow the fabric driver to unmap any resources before
648 * releasing the descriptor via TFO->release_cmd()
649 */
650 if (remove)
651 cmd->se_tfo->aborted_task(cmd);
652
653 if (transport_cmd_check_stop_to_fabric(cmd))
654 return;
655 if (remove)
656 transport_put_cmd(cmd);
657 }
658
659 static void target_complete_failure_work(struct work_struct *work)
660 {
661 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
662
663 transport_generic_request_failure(cmd,
664 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
665 }
666
667 /*
668 * Used when asking transport to copy Sense Data from the underlying
669 * Linux/SCSI struct scsi_cmnd
670 */
671 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
672 {
673 struct se_device *dev = cmd->se_dev;
674
675 WARN_ON(!cmd->se_lun);
676
677 if (!dev)
678 return NULL;
679
680 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
681 return NULL;
682
683 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
684
685 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
686 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
687 return cmd->sense_buffer;
688 }
689
690 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
691 {
692 struct se_device *dev = cmd->se_dev;
693 int success = scsi_status == GOOD;
694 unsigned long flags;
695
696 cmd->scsi_status = scsi_status;
697
698
699 spin_lock_irqsave(&cmd->t_state_lock, flags);
700 cmd->transport_state &= ~CMD_T_BUSY;
701
702 if (dev && dev->transport->transport_complete) {
703 dev->transport->transport_complete(cmd,
704 cmd->t_data_sg,
705 transport_get_sense_buffer(cmd));
706 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
707 success = 1;
708 }
709
710 /*
711 * See if we are waiting to complete for an exception condition.
712 */
713 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
714 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
715 complete(&cmd->task_stop_comp);
716 return;
717 }
718
719 /*
720 * Check for case where an explicit ABORT_TASK has been received
721 * and transport_wait_for_tasks() will be waiting for completion..
722 */
723 if (cmd->transport_state & CMD_T_ABORTED &&
724 cmd->transport_state & CMD_T_STOP) {
725 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
726 complete_all(&cmd->t_transport_stop_comp);
727 return;
728 } else if (!success) {
729 INIT_WORK(&cmd->work, target_complete_failure_work);
730 } else {
731 INIT_WORK(&cmd->work, target_complete_ok_work);
732 }
733
734 cmd->t_state = TRANSPORT_COMPLETE;
735 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
736 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
737
738 queue_work(target_completion_wq, &cmd->work);
739 }
740 EXPORT_SYMBOL(target_complete_cmd);
741
742 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
743 {
744 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
745 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
746 cmd->residual_count += cmd->data_length - length;
747 } else {
748 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
749 cmd->residual_count = cmd->data_length - length;
750 }
751
752 cmd->data_length = length;
753 }
754
755 target_complete_cmd(cmd, scsi_status);
756 }
757 EXPORT_SYMBOL(target_complete_cmd_with_length);
758
759 static void target_add_to_state_list(struct se_cmd *cmd)
760 {
761 struct se_device *dev = cmd->se_dev;
762 unsigned long flags;
763
764 spin_lock_irqsave(&dev->execute_task_lock, flags);
765 if (!cmd->state_active) {
766 list_add_tail(&cmd->state_list, &dev->state_list);
767 cmd->state_active = true;
768 }
769 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
770 }
771
772 /*
773 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
774 */
775 static void transport_write_pending_qf(struct se_cmd *cmd);
776 static void transport_complete_qf(struct se_cmd *cmd);
777
778 void target_qf_do_work(struct work_struct *work)
779 {
780 struct se_device *dev = container_of(work, struct se_device,
781 qf_work_queue);
782 LIST_HEAD(qf_cmd_list);
783 struct se_cmd *cmd, *cmd_tmp;
784
785 spin_lock_irq(&dev->qf_cmd_lock);
786 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
787 spin_unlock_irq(&dev->qf_cmd_lock);
788
789 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
790 list_del(&cmd->se_qf_node);
791 atomic_dec_mb(&dev->dev_qf_count);
792
793 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
794 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
795 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
796 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
797 : "UNKNOWN");
798
799 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
800 transport_write_pending_qf(cmd);
801 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
802 transport_complete_qf(cmd);
803 }
804 }
805
806 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
807 {
808 switch (cmd->data_direction) {
809 case DMA_NONE:
810 return "NONE";
811 case DMA_FROM_DEVICE:
812 return "READ";
813 case DMA_TO_DEVICE:
814 return "WRITE";
815 case DMA_BIDIRECTIONAL:
816 return "BIDI";
817 default:
818 break;
819 }
820
821 return "UNKNOWN";
822 }
823
824 void transport_dump_dev_state(
825 struct se_device *dev,
826 char *b,
827 int *bl)
828 {
829 *bl += sprintf(b + *bl, "Status: ");
830 if (dev->export_count)
831 *bl += sprintf(b + *bl, "ACTIVATED");
832 else
833 *bl += sprintf(b + *bl, "DEACTIVATED");
834
835 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
836 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
837 dev->dev_attrib.block_size,
838 dev->dev_attrib.hw_max_sectors);
839 *bl += sprintf(b + *bl, " ");
840 }
841
842 void transport_dump_vpd_proto_id(
843 struct t10_vpd *vpd,
844 unsigned char *p_buf,
845 int p_buf_len)
846 {
847 unsigned char buf[VPD_TMP_BUF_SIZE];
848 int len;
849
850 memset(buf, 0, VPD_TMP_BUF_SIZE);
851 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
852
853 switch (vpd->protocol_identifier) {
854 case 0x00:
855 sprintf(buf+len, "Fibre Channel\n");
856 break;
857 case 0x10:
858 sprintf(buf+len, "Parallel SCSI\n");
859 break;
860 case 0x20:
861 sprintf(buf+len, "SSA\n");
862 break;
863 case 0x30:
864 sprintf(buf+len, "IEEE 1394\n");
865 break;
866 case 0x40:
867 sprintf(buf+len, "SCSI Remote Direct Memory Access"
868 " Protocol\n");
869 break;
870 case 0x50:
871 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
872 break;
873 case 0x60:
874 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
875 break;
876 case 0x70:
877 sprintf(buf+len, "Automation/Drive Interface Transport"
878 " Protocol\n");
879 break;
880 case 0x80:
881 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
882 break;
883 default:
884 sprintf(buf+len, "Unknown 0x%02x\n",
885 vpd->protocol_identifier);
886 break;
887 }
888
889 if (p_buf)
890 strncpy(p_buf, buf, p_buf_len);
891 else
892 pr_debug("%s", buf);
893 }
894
895 void
896 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
897 {
898 /*
899 * Check if the Protocol Identifier Valid (PIV) bit is set..
900 *
901 * from spc3r23.pdf section 7.5.1
902 */
903 if (page_83[1] & 0x80) {
904 vpd->protocol_identifier = (page_83[0] & 0xf0);
905 vpd->protocol_identifier_set = 1;
906 transport_dump_vpd_proto_id(vpd, NULL, 0);
907 }
908 }
909 EXPORT_SYMBOL(transport_set_vpd_proto_id);
910
911 int transport_dump_vpd_assoc(
912 struct t10_vpd *vpd,
913 unsigned char *p_buf,
914 int p_buf_len)
915 {
916 unsigned char buf[VPD_TMP_BUF_SIZE];
917 int ret = 0;
918 int len;
919
920 memset(buf, 0, VPD_TMP_BUF_SIZE);
921 len = sprintf(buf, "T10 VPD Identifier Association: ");
922
923 switch (vpd->association) {
924 case 0x00:
925 sprintf(buf+len, "addressed logical unit\n");
926 break;
927 case 0x10:
928 sprintf(buf+len, "target port\n");
929 break;
930 case 0x20:
931 sprintf(buf+len, "SCSI target device\n");
932 break;
933 default:
934 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
935 ret = -EINVAL;
936 break;
937 }
938
939 if (p_buf)
940 strncpy(p_buf, buf, p_buf_len);
941 else
942 pr_debug("%s", buf);
943
944 return ret;
945 }
946
947 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
948 {
949 /*
950 * The VPD identification association..
951 *
952 * from spc3r23.pdf Section 7.6.3.1 Table 297
953 */
954 vpd->association = (page_83[1] & 0x30);
955 return transport_dump_vpd_assoc(vpd, NULL, 0);
956 }
957 EXPORT_SYMBOL(transport_set_vpd_assoc);
958
959 int transport_dump_vpd_ident_type(
960 struct t10_vpd *vpd,
961 unsigned char *p_buf,
962 int p_buf_len)
963 {
964 unsigned char buf[VPD_TMP_BUF_SIZE];
965 int ret = 0;
966 int len;
967
968 memset(buf, 0, VPD_TMP_BUF_SIZE);
969 len = sprintf(buf, "T10 VPD Identifier Type: ");
970
971 switch (vpd->device_identifier_type) {
972 case 0x00:
973 sprintf(buf+len, "Vendor specific\n");
974 break;
975 case 0x01:
976 sprintf(buf+len, "T10 Vendor ID based\n");
977 break;
978 case 0x02:
979 sprintf(buf+len, "EUI-64 based\n");
980 break;
981 case 0x03:
982 sprintf(buf+len, "NAA\n");
983 break;
984 case 0x04:
985 sprintf(buf+len, "Relative target port identifier\n");
986 break;
987 case 0x08:
988 sprintf(buf+len, "SCSI name string\n");
989 break;
990 default:
991 sprintf(buf+len, "Unsupported: 0x%02x\n",
992 vpd->device_identifier_type);
993 ret = -EINVAL;
994 break;
995 }
996
997 if (p_buf) {
998 if (p_buf_len < strlen(buf)+1)
999 return -EINVAL;
1000 strncpy(p_buf, buf, p_buf_len);
1001 } else {
1002 pr_debug("%s", buf);
1003 }
1004
1005 return ret;
1006 }
1007
1008 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1009 {
1010 /*
1011 * The VPD identifier type..
1012 *
1013 * from spc3r23.pdf Section 7.6.3.1 Table 298
1014 */
1015 vpd->device_identifier_type = (page_83[1] & 0x0f);
1016 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1017 }
1018 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1019
1020 int transport_dump_vpd_ident(
1021 struct t10_vpd *vpd,
1022 unsigned char *p_buf,
1023 int p_buf_len)
1024 {
1025 unsigned char buf[VPD_TMP_BUF_SIZE];
1026 int ret = 0;
1027
1028 memset(buf, 0, VPD_TMP_BUF_SIZE);
1029
1030 switch (vpd->device_identifier_code_set) {
1031 case 0x01: /* Binary */
1032 snprintf(buf, sizeof(buf),
1033 "T10 VPD Binary Device Identifier: %s\n",
1034 &vpd->device_identifier[0]);
1035 break;
1036 case 0x02: /* ASCII */
1037 snprintf(buf, sizeof(buf),
1038 "T10 VPD ASCII Device Identifier: %s\n",
1039 &vpd->device_identifier[0]);
1040 break;
1041 case 0x03: /* UTF-8 */
1042 snprintf(buf, sizeof(buf),
1043 "T10 VPD UTF-8 Device Identifier: %s\n",
1044 &vpd->device_identifier[0]);
1045 break;
1046 default:
1047 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1048 " 0x%02x", vpd->device_identifier_code_set);
1049 ret = -EINVAL;
1050 break;
1051 }
1052
1053 if (p_buf)
1054 strncpy(p_buf, buf, p_buf_len);
1055 else
1056 pr_debug("%s", buf);
1057
1058 return ret;
1059 }
1060
1061 int
1062 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1063 {
1064 static const char hex_str[] = "0123456789abcdef";
1065 int j = 0, i = 4; /* offset to start of the identifier */
1066
1067 /*
1068 * The VPD Code Set (encoding)
1069 *
1070 * from spc3r23.pdf Section 7.6.3.1 Table 296
1071 */
1072 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1073 switch (vpd->device_identifier_code_set) {
1074 case 0x01: /* Binary */
1075 vpd->device_identifier[j++] =
1076 hex_str[vpd->device_identifier_type];
1077 while (i < (4 + page_83[3])) {
1078 vpd->device_identifier[j++] =
1079 hex_str[(page_83[i] & 0xf0) >> 4];
1080 vpd->device_identifier[j++] =
1081 hex_str[page_83[i] & 0x0f];
1082 i++;
1083 }
1084 break;
1085 case 0x02: /* ASCII */
1086 case 0x03: /* UTF-8 */
1087 while (i < (4 + page_83[3]))
1088 vpd->device_identifier[j++] = page_83[i++];
1089 break;
1090 default:
1091 break;
1092 }
1093
1094 return transport_dump_vpd_ident(vpd, NULL, 0);
1095 }
1096 EXPORT_SYMBOL(transport_set_vpd_ident);
1097
1098 sense_reason_t
1099 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1100 {
1101 struct se_device *dev = cmd->se_dev;
1102
1103 if (cmd->unknown_data_length) {
1104 cmd->data_length = size;
1105 } else if (size != cmd->data_length) {
1106 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1107 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1108 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1109 cmd->data_length, size, cmd->t_task_cdb[0]);
1110
1111 if (cmd->data_direction == DMA_TO_DEVICE) {
1112 pr_err("Rejecting underflow/overflow"
1113 " WRITE data\n");
1114 return TCM_INVALID_CDB_FIELD;
1115 }
1116 /*
1117 * Reject READ_* or WRITE_* with overflow/underflow for
1118 * type SCF_SCSI_DATA_CDB.
1119 */
1120 if (dev->dev_attrib.block_size != 512) {
1121 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1122 " CDB on non 512-byte sector setup subsystem"
1123 " plugin: %s\n", dev->transport->name);
1124 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1125 return TCM_INVALID_CDB_FIELD;
1126 }
1127 /*
1128 * For the overflow case keep the existing fabric provided
1129 * ->data_length. Otherwise for the underflow case, reset
1130 * ->data_length to the smaller SCSI expected data transfer
1131 * length.
1132 */
1133 if (size > cmd->data_length) {
1134 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1135 cmd->residual_count = (size - cmd->data_length);
1136 } else {
1137 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1138 cmd->residual_count = (cmd->data_length - size);
1139 cmd->data_length = size;
1140 }
1141 }
1142
1143 return 0;
1144
1145 }
1146
1147 /*
1148 * Used by fabric modules containing a local struct se_cmd within their
1149 * fabric dependent per I/O descriptor.
1150 */
1151 void transport_init_se_cmd(
1152 struct se_cmd *cmd,
1153 const struct target_core_fabric_ops *tfo,
1154 struct se_session *se_sess,
1155 u32 data_length,
1156 int data_direction,
1157 int task_attr,
1158 unsigned char *sense_buffer)
1159 {
1160 INIT_LIST_HEAD(&cmd->se_delayed_node);
1161 INIT_LIST_HEAD(&cmd->se_qf_node);
1162 INIT_LIST_HEAD(&cmd->se_cmd_list);
1163 INIT_LIST_HEAD(&cmd->state_list);
1164 init_completion(&cmd->t_transport_stop_comp);
1165 init_completion(&cmd->cmd_wait_comp);
1166 init_completion(&cmd->task_stop_comp);
1167 spin_lock_init(&cmd->t_state_lock);
1168 kref_init(&cmd->cmd_kref);
1169 cmd->transport_state = CMD_T_DEV_ACTIVE;
1170
1171 cmd->se_tfo = tfo;
1172 cmd->se_sess = se_sess;
1173 cmd->data_length = data_length;
1174 cmd->data_direction = data_direction;
1175 cmd->sam_task_attr = task_attr;
1176 cmd->sense_buffer = sense_buffer;
1177
1178 cmd->state_active = false;
1179 }
1180 EXPORT_SYMBOL(transport_init_se_cmd);
1181
1182 static sense_reason_t
1183 transport_check_alloc_task_attr(struct se_cmd *cmd)
1184 {
1185 struct se_device *dev = cmd->se_dev;
1186
1187 /*
1188 * Check if SAM Task Attribute emulation is enabled for this
1189 * struct se_device storage object
1190 */
1191 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1192 return 0;
1193
1194 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1195 pr_debug("SAM Task Attribute ACA"
1196 " emulation is not supported\n");
1197 return TCM_INVALID_CDB_FIELD;
1198 }
1199 /*
1200 * Used to determine when ORDERED commands should go from
1201 * Dormant to Active status.
1202 */
1203 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1204 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1205 cmd->se_ordered_id, cmd->sam_task_attr,
1206 dev->transport->name);
1207 return 0;
1208 }
1209
1210 sense_reason_t
1211 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1212 {
1213 struct se_device *dev = cmd->se_dev;
1214 sense_reason_t ret;
1215
1216 /*
1217 * Ensure that the received CDB is less than the max (252 + 8) bytes
1218 * for VARIABLE_LENGTH_CMD
1219 */
1220 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1221 pr_err("Received SCSI CDB with command_size: %d that"
1222 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1223 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1224 return TCM_INVALID_CDB_FIELD;
1225 }
1226 /*
1227 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1228 * allocate the additional extended CDB buffer now.. Otherwise
1229 * setup the pointer from __t_task_cdb to t_task_cdb.
1230 */
1231 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1232 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1233 GFP_KERNEL);
1234 if (!cmd->t_task_cdb) {
1235 pr_err("Unable to allocate cmd->t_task_cdb"
1236 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1237 scsi_command_size(cdb),
1238 (unsigned long)sizeof(cmd->__t_task_cdb));
1239 return TCM_OUT_OF_RESOURCES;
1240 }
1241 } else
1242 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1243 /*
1244 * Copy the original CDB into cmd->
1245 */
1246 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1247
1248 trace_target_sequencer_start(cmd);
1249
1250 /*
1251 * Check for an existing UNIT ATTENTION condition
1252 */
1253 ret = target_scsi3_ua_check(cmd);
1254 if (ret)
1255 return ret;
1256
1257 ret = target_alua_state_check(cmd);
1258 if (ret)
1259 return ret;
1260
1261 ret = target_check_reservation(cmd);
1262 if (ret) {
1263 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1264 return ret;
1265 }
1266
1267 ret = dev->transport->parse_cdb(cmd);
1268 if (ret)
1269 return ret;
1270
1271 ret = transport_check_alloc_task_attr(cmd);
1272 if (ret)
1273 return ret;
1274
1275 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1276
1277 spin_lock(&cmd->se_lun->lun_sep_lock);
1278 if (cmd->se_lun->lun_sep)
1279 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1280 spin_unlock(&cmd->se_lun->lun_sep_lock);
1281 return 0;
1282 }
1283 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1284
1285 /*
1286 * Used by fabric module frontends to queue tasks directly.
1287 * Many only be used from process context only
1288 */
1289 int transport_handle_cdb_direct(
1290 struct se_cmd *cmd)
1291 {
1292 sense_reason_t ret;
1293
1294 if (!cmd->se_lun) {
1295 dump_stack();
1296 pr_err("cmd->se_lun is NULL\n");
1297 return -EINVAL;
1298 }
1299 if (in_interrupt()) {
1300 dump_stack();
1301 pr_err("transport_generic_handle_cdb cannot be called"
1302 " from interrupt context\n");
1303 return -EINVAL;
1304 }
1305 /*
1306 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1307 * outstanding descriptors are handled correctly during shutdown via
1308 * transport_wait_for_tasks()
1309 *
1310 * Also, we don't take cmd->t_state_lock here as we only expect
1311 * this to be called for initial descriptor submission.
1312 */
1313 cmd->t_state = TRANSPORT_NEW_CMD;
1314 cmd->transport_state |= CMD_T_ACTIVE;
1315
1316 /*
1317 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1318 * so follow TRANSPORT_NEW_CMD processing thread context usage
1319 * and call transport_generic_request_failure() if necessary..
1320 */
1321 ret = transport_generic_new_cmd(cmd);
1322 if (ret)
1323 transport_generic_request_failure(cmd, ret);
1324 return 0;
1325 }
1326 EXPORT_SYMBOL(transport_handle_cdb_direct);
1327
1328 sense_reason_t
1329 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1330 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1331 {
1332 if (!sgl || !sgl_count)
1333 return 0;
1334
1335 /*
1336 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1337 * scatterlists already have been set to follow what the fabric
1338 * passes for the original expected data transfer length.
1339 */
1340 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1341 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1342 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1343 return TCM_INVALID_CDB_FIELD;
1344 }
1345
1346 cmd->t_data_sg = sgl;
1347 cmd->t_data_nents = sgl_count;
1348
1349 if (sgl_bidi && sgl_bidi_count) {
1350 cmd->t_bidi_data_sg = sgl_bidi;
1351 cmd->t_bidi_data_nents = sgl_bidi_count;
1352 }
1353 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1354 return 0;
1355 }
1356
1357 /*
1358 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1359 * se_cmd + use pre-allocated SGL memory.
1360 *
1361 * @se_cmd: command descriptor to submit
1362 * @se_sess: associated se_sess for endpoint
1363 * @cdb: pointer to SCSI CDB
1364 * @sense: pointer to SCSI sense buffer
1365 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1366 * @data_length: fabric expected data transfer length
1367 * @task_addr: SAM task attribute
1368 * @data_dir: DMA data direction
1369 * @flags: flags for command submission from target_sc_flags_tables
1370 * @sgl: struct scatterlist memory for unidirectional mapping
1371 * @sgl_count: scatterlist count for unidirectional mapping
1372 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1373 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1374 * @sgl_prot: struct scatterlist memory protection information
1375 * @sgl_prot_count: scatterlist count for protection information
1376 *
1377 * Returns non zero to signal active I/O shutdown failure. All other
1378 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1379 * but still return zero here.
1380 *
1381 * This may only be called from process context, and also currently
1382 * assumes internal allocation of fabric payload buffer by target-core.
1383 */
1384 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1385 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1386 u32 data_length, int task_attr, int data_dir, int flags,
1387 struct scatterlist *sgl, u32 sgl_count,
1388 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1389 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1390 {
1391 struct se_portal_group *se_tpg;
1392 sense_reason_t rc;
1393 int ret;
1394
1395 se_tpg = se_sess->se_tpg;
1396 BUG_ON(!se_tpg);
1397 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1398 BUG_ON(in_interrupt());
1399 /*
1400 * Initialize se_cmd for target operation. From this point
1401 * exceptions are handled by sending exception status via
1402 * target_core_fabric_ops->queue_status() callback
1403 */
1404 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1405 data_length, data_dir, task_attr, sense);
1406 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1407 se_cmd->unknown_data_length = 1;
1408 /*
1409 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1410 * se_sess->sess_cmd_list. A second kref_get here is necessary
1411 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1412 * kref_put() to happen during fabric packet acknowledgement.
1413 */
1414 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1415 if (ret)
1416 return ret;
1417 /*
1418 * Signal bidirectional data payloads to target-core
1419 */
1420 if (flags & TARGET_SCF_BIDI_OP)
1421 se_cmd->se_cmd_flags |= SCF_BIDI;
1422 /*
1423 * Locate se_lun pointer and attach it to struct se_cmd
1424 */
1425 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1426 if (rc) {
1427 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1428 target_put_sess_cmd(se_sess, se_cmd);
1429 return 0;
1430 }
1431
1432 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1433 if (rc != 0) {
1434 transport_generic_request_failure(se_cmd, rc);
1435 return 0;
1436 }
1437
1438 /*
1439 * Save pointers for SGLs containing protection information,
1440 * if present.
1441 */
1442 if (sgl_prot_count) {
1443 se_cmd->t_prot_sg = sgl_prot;
1444 se_cmd->t_prot_nents = sgl_prot_count;
1445 }
1446
1447 /*
1448 * When a non zero sgl_count has been passed perform SGL passthrough
1449 * mapping for pre-allocated fabric memory instead of having target
1450 * core perform an internal SGL allocation..
1451 */
1452 if (sgl_count != 0) {
1453 BUG_ON(!sgl);
1454
1455 /*
1456 * A work-around for tcm_loop as some userspace code via
1457 * scsi-generic do not memset their associated read buffers,
1458 * so go ahead and do that here for type non-data CDBs. Also
1459 * note that this is currently guaranteed to be a single SGL
1460 * for this case by target core in target_setup_cmd_from_cdb()
1461 * -> transport_generic_cmd_sequencer().
1462 */
1463 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1464 se_cmd->data_direction == DMA_FROM_DEVICE) {
1465 unsigned char *buf = NULL;
1466
1467 if (sgl)
1468 buf = kmap(sg_page(sgl)) + sgl->offset;
1469
1470 if (buf) {
1471 memset(buf, 0, sgl->length);
1472 kunmap(sg_page(sgl));
1473 }
1474 }
1475
1476 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1477 sgl_bidi, sgl_bidi_count);
1478 if (rc != 0) {
1479 transport_generic_request_failure(se_cmd, rc);
1480 return 0;
1481 }
1482 }
1483
1484 /*
1485 * Check if we need to delay processing because of ALUA
1486 * Active/NonOptimized primary access state..
1487 */
1488 core_alua_check_nonop_delay(se_cmd);
1489
1490 transport_handle_cdb_direct(se_cmd);
1491 return 0;
1492 }
1493 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1494
1495 /*
1496 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1497 *
1498 * @se_cmd: command descriptor to submit
1499 * @se_sess: associated se_sess for endpoint
1500 * @cdb: pointer to SCSI CDB
1501 * @sense: pointer to SCSI sense buffer
1502 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1503 * @data_length: fabric expected data transfer length
1504 * @task_addr: SAM task attribute
1505 * @data_dir: DMA data direction
1506 * @flags: flags for command submission from target_sc_flags_tables
1507 *
1508 * Returns non zero to signal active I/O shutdown failure. All other
1509 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1510 * but still return zero here.
1511 *
1512 * This may only be called from process context, and also currently
1513 * assumes internal allocation of fabric payload buffer by target-core.
1514 *
1515 * It also assumes interal target core SGL memory allocation.
1516 */
1517 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1518 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1519 u32 data_length, int task_attr, int data_dir, int flags)
1520 {
1521 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1522 unpacked_lun, data_length, task_attr, data_dir,
1523 flags, NULL, 0, NULL, 0, NULL, 0);
1524 }
1525 EXPORT_SYMBOL(target_submit_cmd);
1526
1527 static void target_complete_tmr_failure(struct work_struct *work)
1528 {
1529 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1530
1531 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1532 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1533
1534 transport_cmd_check_stop_to_fabric(se_cmd);
1535 }
1536
1537 /**
1538 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1539 * for TMR CDBs
1540 *
1541 * @se_cmd: command descriptor to submit
1542 * @se_sess: associated se_sess for endpoint
1543 * @sense: pointer to SCSI sense buffer
1544 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1545 * @fabric_context: fabric context for TMR req
1546 * @tm_type: Type of TM request
1547 * @gfp: gfp type for caller
1548 * @tag: referenced task tag for TMR_ABORT_TASK
1549 * @flags: submit cmd flags
1550 *
1551 * Callable from all contexts.
1552 **/
1553
1554 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1555 unsigned char *sense, u32 unpacked_lun,
1556 void *fabric_tmr_ptr, unsigned char tm_type,
1557 gfp_t gfp, unsigned int tag, int flags)
1558 {
1559 struct se_portal_group *se_tpg;
1560 int ret;
1561
1562 se_tpg = se_sess->se_tpg;
1563 BUG_ON(!se_tpg);
1564
1565 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1566 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1567 /*
1568 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1569 * allocation failure.
1570 */
1571 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1572 if (ret < 0)
1573 return -ENOMEM;
1574
1575 if (tm_type == TMR_ABORT_TASK)
1576 se_cmd->se_tmr_req->ref_task_tag = tag;
1577
1578 /* See target_submit_cmd for commentary */
1579 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1580 if (ret) {
1581 core_tmr_release_req(se_cmd->se_tmr_req);
1582 return ret;
1583 }
1584
1585 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1586 if (ret) {
1587 /*
1588 * For callback during failure handling, push this work off
1589 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1590 */
1591 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1592 schedule_work(&se_cmd->work);
1593 return 0;
1594 }
1595 transport_generic_handle_tmr(se_cmd);
1596 return 0;
1597 }
1598 EXPORT_SYMBOL(target_submit_tmr);
1599
1600 /*
1601 * If the cmd is active, request it to be stopped and sleep until it
1602 * has completed.
1603 */
1604 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1605 __releases(&cmd->t_state_lock)
1606 __acquires(&cmd->t_state_lock)
1607 {
1608 bool was_active = false;
1609
1610 if (cmd->transport_state & CMD_T_BUSY) {
1611 cmd->transport_state |= CMD_T_REQUEST_STOP;
1612 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1613
1614 pr_debug("cmd %p waiting to complete\n", cmd);
1615 wait_for_completion(&cmd->task_stop_comp);
1616 pr_debug("cmd %p stopped successfully\n", cmd);
1617
1618 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1619 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1620 cmd->transport_state &= ~CMD_T_BUSY;
1621 was_active = true;
1622 }
1623
1624 return was_active;
1625 }
1626
1627 /*
1628 * Handle SAM-esque emulation for generic transport request failures.
1629 */
1630 void transport_generic_request_failure(struct se_cmd *cmd,
1631 sense_reason_t sense_reason)
1632 {
1633 int ret = 0;
1634
1635 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1636 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1637 cmd->t_task_cdb[0]);
1638 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1639 cmd->se_tfo->get_cmd_state(cmd),
1640 cmd->t_state, sense_reason);
1641 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1642 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1643 (cmd->transport_state & CMD_T_STOP) != 0,
1644 (cmd->transport_state & CMD_T_SENT) != 0);
1645
1646 /*
1647 * For SAM Task Attribute emulation for failed struct se_cmd
1648 */
1649 transport_complete_task_attr(cmd);
1650 /*
1651 * Handle special case for COMPARE_AND_WRITE failure, where the
1652 * callback is expected to drop the per device ->caw_sem.
1653 */
1654 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1655 cmd->transport_complete_callback)
1656 cmd->transport_complete_callback(cmd, false);
1657
1658 switch (sense_reason) {
1659 case TCM_NON_EXISTENT_LUN:
1660 case TCM_UNSUPPORTED_SCSI_OPCODE:
1661 case TCM_INVALID_CDB_FIELD:
1662 case TCM_INVALID_PARAMETER_LIST:
1663 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1664 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1665 case TCM_UNKNOWN_MODE_PAGE:
1666 case TCM_WRITE_PROTECTED:
1667 case TCM_ADDRESS_OUT_OF_RANGE:
1668 case TCM_CHECK_CONDITION_ABORT_CMD:
1669 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1670 case TCM_CHECK_CONDITION_NOT_READY:
1671 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1672 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1673 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1674 break;
1675 case TCM_OUT_OF_RESOURCES:
1676 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1677 break;
1678 case TCM_RESERVATION_CONFLICT:
1679 /*
1680 * No SENSE Data payload for this case, set SCSI Status
1681 * and queue the response to $FABRIC_MOD.
1682 *
1683 * Uses linux/include/scsi/scsi.h SAM status codes defs
1684 */
1685 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1686 /*
1687 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1688 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1689 * CONFLICT STATUS.
1690 *
1691 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1692 */
1693 if (cmd->se_sess &&
1694 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1695 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1696 cmd->orig_fe_lun, 0x2C,
1697 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1698
1699 trace_target_cmd_complete(cmd);
1700 ret = cmd->se_tfo-> queue_status(cmd);
1701 if (ret == -EAGAIN || ret == -ENOMEM)
1702 goto queue_full;
1703 goto check_stop;
1704 default:
1705 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1706 cmd->t_task_cdb[0], sense_reason);
1707 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1708 break;
1709 }
1710
1711 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1712 if (ret == -EAGAIN || ret == -ENOMEM)
1713 goto queue_full;
1714
1715 check_stop:
1716 transport_lun_remove_cmd(cmd);
1717 if (!transport_cmd_check_stop_to_fabric(cmd))
1718 ;
1719 return;
1720
1721 queue_full:
1722 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1723 transport_handle_queue_full(cmd, cmd->se_dev);
1724 }
1725 EXPORT_SYMBOL(transport_generic_request_failure);
1726
1727 void __target_execute_cmd(struct se_cmd *cmd)
1728 {
1729 sense_reason_t ret;
1730
1731 if (cmd->execute_cmd) {
1732 ret = cmd->execute_cmd(cmd);
1733 if (ret) {
1734 spin_lock_irq(&cmd->t_state_lock);
1735 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1736 spin_unlock_irq(&cmd->t_state_lock);
1737
1738 transport_generic_request_failure(cmd, ret);
1739 }
1740 }
1741 }
1742
1743 static int target_write_prot_action(struct se_cmd *cmd)
1744 {
1745 u32 sectors;
1746 /*
1747 * Perform WRITE_INSERT of PI using software emulation when backend
1748 * device has PI enabled, if the transport has not already generated
1749 * PI using hardware WRITE_INSERT offload.
1750 */
1751 switch (cmd->prot_op) {
1752 case TARGET_PROT_DOUT_INSERT:
1753 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1754 sbc_dif_generate(cmd);
1755 break;
1756 case TARGET_PROT_DOUT_STRIP:
1757 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1758 break;
1759
1760 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1761 cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba,
1762 sectors, 0, NULL, 0);
1763 if (unlikely(cmd->pi_err)) {
1764 spin_lock_irq(&cmd->t_state_lock);
1765 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1766 spin_unlock_irq(&cmd->t_state_lock);
1767 transport_generic_request_failure(cmd, cmd->pi_err);
1768 return -1;
1769 }
1770 break;
1771 default:
1772 break;
1773 }
1774
1775 return 0;
1776 }
1777
1778 static bool target_handle_task_attr(struct se_cmd *cmd)
1779 {
1780 struct se_device *dev = cmd->se_dev;
1781
1782 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1783 return false;
1784
1785 /*
1786 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1787 * to allow the passed struct se_cmd list of tasks to the front of the list.
1788 */
1789 switch (cmd->sam_task_attr) {
1790 case TCM_HEAD_TAG:
1791 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1792 "se_ordered_id: %u\n",
1793 cmd->t_task_cdb[0], cmd->se_ordered_id);
1794 return false;
1795 case TCM_ORDERED_TAG:
1796 atomic_inc_mb(&dev->dev_ordered_sync);
1797
1798 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1799 " se_ordered_id: %u\n",
1800 cmd->t_task_cdb[0], cmd->se_ordered_id);
1801
1802 /*
1803 * Execute an ORDERED command if no other older commands
1804 * exist that need to be completed first.
1805 */
1806 if (!atomic_read(&dev->simple_cmds))
1807 return false;
1808 break;
1809 default:
1810 /*
1811 * For SIMPLE and UNTAGGED Task Attribute commands
1812 */
1813 atomic_inc_mb(&dev->simple_cmds);
1814 break;
1815 }
1816
1817 if (atomic_read(&dev->dev_ordered_sync) == 0)
1818 return false;
1819
1820 spin_lock(&dev->delayed_cmd_lock);
1821 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1822 spin_unlock(&dev->delayed_cmd_lock);
1823
1824 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1825 " delayed CMD list, se_ordered_id: %u\n",
1826 cmd->t_task_cdb[0], cmd->sam_task_attr,
1827 cmd->se_ordered_id);
1828 return true;
1829 }
1830
1831 void target_execute_cmd(struct se_cmd *cmd)
1832 {
1833 /*
1834 * If the received CDB has aleady been aborted stop processing it here.
1835 */
1836 if (transport_check_aborted_status(cmd, 1))
1837 return;
1838
1839 /*
1840 * Determine if frontend context caller is requesting the stopping of
1841 * this command for frontend exceptions.
1842 */
1843 spin_lock_irq(&cmd->t_state_lock);
1844 if (cmd->transport_state & CMD_T_STOP) {
1845 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1846 __func__, __LINE__,
1847 cmd->se_tfo->get_task_tag(cmd));
1848
1849 spin_unlock_irq(&cmd->t_state_lock);
1850 complete_all(&cmd->t_transport_stop_comp);
1851 return;
1852 }
1853
1854 cmd->t_state = TRANSPORT_PROCESSING;
1855 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1856 spin_unlock_irq(&cmd->t_state_lock);
1857
1858 if (target_write_prot_action(cmd))
1859 return;
1860
1861 if (target_handle_task_attr(cmd)) {
1862 spin_lock_irq(&cmd->t_state_lock);
1863 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1864 spin_unlock_irq(&cmd->t_state_lock);
1865 return;
1866 }
1867
1868 __target_execute_cmd(cmd);
1869 }
1870 EXPORT_SYMBOL(target_execute_cmd);
1871
1872 /*
1873 * Process all commands up to the last received ORDERED task attribute which
1874 * requires another blocking boundary
1875 */
1876 static void target_restart_delayed_cmds(struct se_device *dev)
1877 {
1878 for (;;) {
1879 struct se_cmd *cmd;
1880
1881 spin_lock(&dev->delayed_cmd_lock);
1882 if (list_empty(&dev->delayed_cmd_list)) {
1883 spin_unlock(&dev->delayed_cmd_lock);
1884 break;
1885 }
1886
1887 cmd = list_entry(dev->delayed_cmd_list.next,
1888 struct se_cmd, se_delayed_node);
1889 list_del(&cmd->se_delayed_node);
1890 spin_unlock(&dev->delayed_cmd_lock);
1891
1892 __target_execute_cmd(cmd);
1893
1894 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1895 break;
1896 }
1897 }
1898
1899 /*
1900 * Called from I/O completion to determine which dormant/delayed
1901 * and ordered cmds need to have their tasks added to the execution queue.
1902 */
1903 static void transport_complete_task_attr(struct se_cmd *cmd)
1904 {
1905 struct se_device *dev = cmd->se_dev;
1906
1907 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1908 return;
1909
1910 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1911 atomic_dec_mb(&dev->simple_cmds);
1912 dev->dev_cur_ordered_id++;
1913 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1914 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1915 cmd->se_ordered_id);
1916 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1917 dev->dev_cur_ordered_id++;
1918 pr_debug("Incremented dev_cur_ordered_id: %u for"
1919 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1920 cmd->se_ordered_id);
1921 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1922 atomic_dec_mb(&dev->dev_ordered_sync);
1923
1924 dev->dev_cur_ordered_id++;
1925 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1926 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1927 }
1928
1929 target_restart_delayed_cmds(dev);
1930 }
1931
1932 static void transport_complete_qf(struct se_cmd *cmd)
1933 {
1934 int ret = 0;
1935
1936 transport_complete_task_attr(cmd);
1937
1938 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1939 trace_target_cmd_complete(cmd);
1940 ret = cmd->se_tfo->queue_status(cmd);
1941 goto out;
1942 }
1943
1944 switch (cmd->data_direction) {
1945 case DMA_FROM_DEVICE:
1946 trace_target_cmd_complete(cmd);
1947 ret = cmd->se_tfo->queue_data_in(cmd);
1948 break;
1949 case DMA_TO_DEVICE:
1950 if (cmd->se_cmd_flags & SCF_BIDI) {
1951 ret = cmd->se_tfo->queue_data_in(cmd);
1952 if (ret < 0)
1953 break;
1954 }
1955 /* Fall through for DMA_TO_DEVICE */
1956 case DMA_NONE:
1957 trace_target_cmd_complete(cmd);
1958 ret = cmd->se_tfo->queue_status(cmd);
1959 break;
1960 default:
1961 break;
1962 }
1963
1964 out:
1965 if (ret < 0) {
1966 transport_handle_queue_full(cmd, cmd->se_dev);
1967 return;
1968 }
1969 transport_lun_remove_cmd(cmd);
1970 transport_cmd_check_stop_to_fabric(cmd);
1971 }
1972
1973 static void transport_handle_queue_full(
1974 struct se_cmd *cmd,
1975 struct se_device *dev)
1976 {
1977 spin_lock_irq(&dev->qf_cmd_lock);
1978 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1979 atomic_inc_mb(&dev->dev_qf_count);
1980 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1981
1982 schedule_work(&cmd->se_dev->qf_work_queue);
1983 }
1984
1985 static bool target_read_prot_action(struct se_cmd *cmd)
1986 {
1987 sense_reason_t rc;
1988
1989 switch (cmd->prot_op) {
1990 case TARGET_PROT_DIN_STRIP:
1991 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1992 rc = sbc_dif_read_strip(cmd);
1993 if (rc) {
1994 cmd->pi_err = rc;
1995 return true;
1996 }
1997 }
1998 break;
1999 case TARGET_PROT_DIN_INSERT:
2000 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2001 break;
2002
2003 sbc_dif_generate(cmd);
2004 break;
2005 default:
2006 break;
2007 }
2008
2009 return false;
2010 }
2011
2012 static void target_complete_ok_work(struct work_struct *work)
2013 {
2014 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2015 int ret;
2016
2017 /*
2018 * Check if we need to move delayed/dormant tasks from cmds on the
2019 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2020 * Attribute.
2021 */
2022 transport_complete_task_attr(cmd);
2023
2024 /*
2025 * Check to schedule QUEUE_FULL work, or execute an existing
2026 * cmd->transport_qf_callback()
2027 */
2028 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2029 schedule_work(&cmd->se_dev->qf_work_queue);
2030
2031 /*
2032 * Check if we need to send a sense buffer from
2033 * the struct se_cmd in question.
2034 */
2035 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2036 WARN_ON(!cmd->scsi_status);
2037 ret = transport_send_check_condition_and_sense(
2038 cmd, 0, 1);
2039 if (ret == -EAGAIN || ret == -ENOMEM)
2040 goto queue_full;
2041
2042 transport_lun_remove_cmd(cmd);
2043 transport_cmd_check_stop_to_fabric(cmd);
2044 return;
2045 }
2046 /*
2047 * Check for a callback, used by amongst other things
2048 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2049 */
2050 if (cmd->transport_complete_callback) {
2051 sense_reason_t rc;
2052
2053 rc = cmd->transport_complete_callback(cmd, true);
2054 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
2055 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2056 !cmd->data_length)
2057 goto queue_rsp;
2058
2059 return;
2060 } else if (rc) {
2061 ret = transport_send_check_condition_and_sense(cmd,
2062 rc, 0);
2063 if (ret == -EAGAIN || ret == -ENOMEM)
2064 goto queue_full;
2065
2066 transport_lun_remove_cmd(cmd);
2067 transport_cmd_check_stop_to_fabric(cmd);
2068 return;
2069 }
2070 }
2071
2072 queue_rsp:
2073 switch (cmd->data_direction) {
2074 case DMA_FROM_DEVICE:
2075 spin_lock(&cmd->se_lun->lun_sep_lock);
2076 if (cmd->se_lun->lun_sep) {
2077 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2078 cmd->data_length;
2079 }
2080 spin_unlock(&cmd->se_lun->lun_sep_lock);
2081 /*
2082 * Perform READ_STRIP of PI using software emulation when
2083 * backend had PI enabled, if the transport will not be
2084 * performing hardware READ_STRIP offload.
2085 */
2086 if (target_read_prot_action(cmd)) {
2087 ret = transport_send_check_condition_and_sense(cmd,
2088 cmd->pi_err, 0);
2089 if (ret == -EAGAIN || ret == -ENOMEM)
2090 goto queue_full;
2091
2092 transport_lun_remove_cmd(cmd);
2093 transport_cmd_check_stop_to_fabric(cmd);
2094 return;
2095 }
2096
2097 trace_target_cmd_complete(cmd);
2098 ret = cmd->se_tfo->queue_data_in(cmd);
2099 if (ret == -EAGAIN || ret == -ENOMEM)
2100 goto queue_full;
2101 break;
2102 case DMA_TO_DEVICE:
2103 spin_lock(&cmd->se_lun->lun_sep_lock);
2104 if (cmd->se_lun->lun_sep) {
2105 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2106 cmd->data_length;
2107 }
2108 spin_unlock(&cmd->se_lun->lun_sep_lock);
2109 /*
2110 * Check if we need to send READ payload for BIDI-COMMAND
2111 */
2112 if (cmd->se_cmd_flags & SCF_BIDI) {
2113 spin_lock(&cmd->se_lun->lun_sep_lock);
2114 if (cmd->se_lun->lun_sep) {
2115 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2116 cmd->data_length;
2117 }
2118 spin_unlock(&cmd->se_lun->lun_sep_lock);
2119 ret = cmd->se_tfo->queue_data_in(cmd);
2120 if (ret == -EAGAIN || ret == -ENOMEM)
2121 goto queue_full;
2122 break;
2123 }
2124 /* Fall through for DMA_TO_DEVICE */
2125 case DMA_NONE:
2126 trace_target_cmd_complete(cmd);
2127 ret = cmd->se_tfo->queue_status(cmd);
2128 if (ret == -EAGAIN || ret == -ENOMEM)
2129 goto queue_full;
2130 break;
2131 default:
2132 break;
2133 }
2134
2135 transport_lun_remove_cmd(cmd);
2136 transport_cmd_check_stop_to_fabric(cmd);
2137 return;
2138
2139 queue_full:
2140 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2141 " data_direction: %d\n", cmd, cmd->data_direction);
2142 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2143 transport_handle_queue_full(cmd, cmd->se_dev);
2144 }
2145
2146 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2147 {
2148 struct scatterlist *sg;
2149 int count;
2150
2151 for_each_sg(sgl, sg, nents, count)
2152 __free_page(sg_page(sg));
2153
2154 kfree(sgl);
2155 }
2156
2157 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2158 {
2159 /*
2160 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2161 * emulation, and free + reset pointers if necessary..
2162 */
2163 if (!cmd->t_data_sg_orig)
2164 return;
2165
2166 kfree(cmd->t_data_sg);
2167 cmd->t_data_sg = cmd->t_data_sg_orig;
2168 cmd->t_data_sg_orig = NULL;
2169 cmd->t_data_nents = cmd->t_data_nents_orig;
2170 cmd->t_data_nents_orig = 0;
2171 }
2172
2173 static inline void transport_free_pages(struct se_cmd *cmd)
2174 {
2175 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2176 /*
2177 * Release special case READ buffer payload required for
2178 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2179 */
2180 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2181 transport_free_sgl(cmd->t_bidi_data_sg,
2182 cmd->t_bidi_data_nents);
2183 cmd->t_bidi_data_sg = NULL;
2184 cmd->t_bidi_data_nents = 0;
2185 }
2186 transport_reset_sgl_orig(cmd);
2187 return;
2188 }
2189 transport_reset_sgl_orig(cmd);
2190
2191 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2192 cmd->t_data_sg = NULL;
2193 cmd->t_data_nents = 0;
2194
2195 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2196 cmd->t_bidi_data_sg = NULL;
2197 cmd->t_bidi_data_nents = 0;
2198
2199 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2200 cmd->t_prot_sg = NULL;
2201 cmd->t_prot_nents = 0;
2202 }
2203
2204 /**
2205 * transport_release_cmd - free a command
2206 * @cmd: command to free
2207 *
2208 * This routine unconditionally frees a command, and reference counting
2209 * or list removal must be done in the caller.
2210 */
2211 static int transport_release_cmd(struct se_cmd *cmd)
2212 {
2213 BUG_ON(!cmd->se_tfo);
2214
2215 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2216 core_tmr_release_req(cmd->se_tmr_req);
2217 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2218 kfree(cmd->t_task_cdb);
2219 /*
2220 * If this cmd has been setup with target_get_sess_cmd(), drop
2221 * the kref and call ->release_cmd() in kref callback.
2222 */
2223 return target_put_sess_cmd(cmd->se_sess, cmd);
2224 }
2225
2226 /**
2227 * transport_put_cmd - release a reference to a command
2228 * @cmd: command to release
2229 *
2230 * This routine releases our reference to the command and frees it if possible.
2231 */
2232 static int transport_put_cmd(struct se_cmd *cmd)
2233 {
2234 transport_free_pages(cmd);
2235 return transport_release_cmd(cmd);
2236 }
2237
2238 void *transport_kmap_data_sg(struct se_cmd *cmd)
2239 {
2240 struct scatterlist *sg = cmd->t_data_sg;
2241 struct page **pages;
2242 int i;
2243
2244 /*
2245 * We need to take into account a possible offset here for fabrics like
2246 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2247 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2248 */
2249 if (!cmd->t_data_nents)
2250 return NULL;
2251
2252 BUG_ON(!sg);
2253 if (cmd->t_data_nents == 1)
2254 return kmap(sg_page(sg)) + sg->offset;
2255
2256 /* >1 page. use vmap */
2257 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2258 if (!pages)
2259 return NULL;
2260
2261 /* convert sg[] to pages[] */
2262 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2263 pages[i] = sg_page(sg);
2264 }
2265
2266 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2267 kfree(pages);
2268 if (!cmd->t_data_vmap)
2269 return NULL;
2270
2271 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2272 }
2273 EXPORT_SYMBOL(transport_kmap_data_sg);
2274
2275 void transport_kunmap_data_sg(struct se_cmd *cmd)
2276 {
2277 if (!cmd->t_data_nents) {
2278 return;
2279 } else if (cmd->t_data_nents == 1) {
2280 kunmap(sg_page(cmd->t_data_sg));
2281 return;
2282 }
2283
2284 vunmap(cmd->t_data_vmap);
2285 cmd->t_data_vmap = NULL;
2286 }
2287 EXPORT_SYMBOL(transport_kunmap_data_sg);
2288
2289 int
2290 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2291 bool zero_page)
2292 {
2293 struct scatterlist *sg;
2294 struct page *page;
2295 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2296 unsigned int nent;
2297 int i = 0;
2298
2299 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2300 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2301 if (!sg)
2302 return -ENOMEM;
2303
2304 sg_init_table(sg, nent);
2305
2306 while (length) {
2307 u32 page_len = min_t(u32, length, PAGE_SIZE);
2308 page = alloc_page(GFP_KERNEL | zero_flag);
2309 if (!page)
2310 goto out;
2311
2312 sg_set_page(&sg[i], page, page_len, 0);
2313 length -= page_len;
2314 i++;
2315 }
2316 *sgl = sg;
2317 *nents = nent;
2318 return 0;
2319
2320 out:
2321 while (i > 0) {
2322 i--;
2323 __free_page(sg_page(&sg[i]));
2324 }
2325 kfree(sg);
2326 return -ENOMEM;
2327 }
2328
2329 /*
2330 * Allocate any required resources to execute the command. For writes we
2331 * might not have the payload yet, so notify the fabric via a call to
2332 * ->write_pending instead. Otherwise place it on the execution queue.
2333 */
2334 sense_reason_t
2335 transport_generic_new_cmd(struct se_cmd *cmd)
2336 {
2337 int ret = 0;
2338 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2339
2340 /*
2341 * Determine is the TCM fabric module has already allocated physical
2342 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2343 * beforehand.
2344 */
2345 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2346 cmd->data_length) {
2347
2348 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2349 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2350 u32 bidi_length;
2351
2352 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2353 bidi_length = cmd->t_task_nolb *
2354 cmd->se_dev->dev_attrib.block_size;
2355 else
2356 bidi_length = cmd->data_length;
2357
2358 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2359 &cmd->t_bidi_data_nents,
2360 bidi_length, zero_flag);
2361 if (ret < 0)
2362 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2363 }
2364
2365 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2366 ret = target_alloc_sgl(&cmd->t_prot_sg,
2367 &cmd->t_prot_nents,
2368 cmd->prot_length, true);
2369 if (ret < 0)
2370 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2371 }
2372
2373 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2374 cmd->data_length, zero_flag);
2375 if (ret < 0)
2376 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2377 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2378 cmd->data_length) {
2379 /*
2380 * Special case for COMPARE_AND_WRITE with fabrics
2381 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2382 */
2383 u32 caw_length = cmd->t_task_nolb *
2384 cmd->se_dev->dev_attrib.block_size;
2385
2386 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2387 &cmd->t_bidi_data_nents,
2388 caw_length, zero_flag);
2389 if (ret < 0)
2390 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2391 }
2392 /*
2393 * If this command is not a write we can execute it right here,
2394 * for write buffers we need to notify the fabric driver first
2395 * and let it call back once the write buffers are ready.
2396 */
2397 target_add_to_state_list(cmd);
2398 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2399 target_execute_cmd(cmd);
2400 return 0;
2401 }
2402 transport_cmd_check_stop(cmd, false, true);
2403
2404 ret = cmd->se_tfo->write_pending(cmd);
2405 if (ret == -EAGAIN || ret == -ENOMEM)
2406 goto queue_full;
2407
2408 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2409 WARN_ON(ret);
2410
2411 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2412
2413 queue_full:
2414 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2415 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2416 transport_handle_queue_full(cmd, cmd->se_dev);
2417 return 0;
2418 }
2419 EXPORT_SYMBOL(transport_generic_new_cmd);
2420
2421 static void transport_write_pending_qf(struct se_cmd *cmd)
2422 {
2423 int ret;
2424
2425 ret = cmd->se_tfo->write_pending(cmd);
2426 if (ret == -EAGAIN || ret == -ENOMEM) {
2427 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2428 cmd);
2429 transport_handle_queue_full(cmd, cmd->se_dev);
2430 }
2431 }
2432
2433 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2434 {
2435 unsigned long flags;
2436 int ret = 0;
2437
2438 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2439 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2440 transport_wait_for_tasks(cmd);
2441
2442 ret = transport_release_cmd(cmd);
2443 } else {
2444 if (wait_for_tasks)
2445 transport_wait_for_tasks(cmd);
2446 /*
2447 * Handle WRITE failure case where transport_generic_new_cmd()
2448 * has already added se_cmd to state_list, but fabric has
2449 * failed command before I/O submission.
2450 */
2451 if (cmd->state_active) {
2452 spin_lock_irqsave(&cmd->t_state_lock, flags);
2453 target_remove_from_state_list(cmd);
2454 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2455 }
2456
2457 if (cmd->se_lun)
2458 transport_lun_remove_cmd(cmd);
2459
2460 ret = transport_put_cmd(cmd);
2461 }
2462 return ret;
2463 }
2464 EXPORT_SYMBOL(transport_generic_free_cmd);
2465
2466 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2467 * @se_sess: session to reference
2468 * @se_cmd: command descriptor to add
2469 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2470 */
2471 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2472 bool ack_kref)
2473 {
2474 unsigned long flags;
2475 int ret = 0;
2476
2477 /*
2478 * Add a second kref if the fabric caller is expecting to handle
2479 * fabric acknowledgement that requires two target_put_sess_cmd()
2480 * invocations before se_cmd descriptor release.
2481 */
2482 if (ack_kref)
2483 kref_get(&se_cmd->cmd_kref);
2484
2485 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2486 if (se_sess->sess_tearing_down) {
2487 ret = -ESHUTDOWN;
2488 goto out;
2489 }
2490 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2491 out:
2492 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2493 return ret;
2494 }
2495 EXPORT_SYMBOL(target_get_sess_cmd);
2496
2497 static void target_release_cmd_kref(struct kref *kref)
2498 __releases(&se_cmd->se_sess->sess_cmd_lock)
2499 {
2500 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2501 struct se_session *se_sess = se_cmd->se_sess;
2502
2503 if (list_empty(&se_cmd->se_cmd_list)) {
2504 spin_unlock(&se_sess->sess_cmd_lock);
2505 se_cmd->se_tfo->release_cmd(se_cmd);
2506 return;
2507 }
2508 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2509 spin_unlock(&se_sess->sess_cmd_lock);
2510 complete(&se_cmd->cmd_wait_comp);
2511 return;
2512 }
2513 list_del(&se_cmd->se_cmd_list);
2514 spin_unlock(&se_sess->sess_cmd_lock);
2515
2516 se_cmd->se_tfo->release_cmd(se_cmd);
2517 }
2518
2519 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2520 * @se_sess: session to reference
2521 * @se_cmd: command descriptor to drop
2522 */
2523 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2524 {
2525 if (!se_sess) {
2526 se_cmd->se_tfo->release_cmd(se_cmd);
2527 return 1;
2528 }
2529 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2530 &se_sess->sess_cmd_lock);
2531 }
2532 EXPORT_SYMBOL(target_put_sess_cmd);
2533
2534 /* target_sess_cmd_list_set_waiting - Flag all commands in
2535 * sess_cmd_list to complete cmd_wait_comp. Set
2536 * sess_tearing_down so no more commands are queued.
2537 * @se_sess: session to flag
2538 */
2539 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2540 {
2541 struct se_cmd *se_cmd;
2542 unsigned long flags;
2543
2544 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2545 if (se_sess->sess_tearing_down) {
2546 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2547 return;
2548 }
2549 se_sess->sess_tearing_down = 1;
2550 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2551
2552 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2553 se_cmd->cmd_wait_set = 1;
2554
2555 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2556 }
2557 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2558
2559 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2560 * @se_sess: session to wait for active I/O
2561 */
2562 void target_wait_for_sess_cmds(struct se_session *se_sess)
2563 {
2564 struct se_cmd *se_cmd, *tmp_cmd;
2565 unsigned long flags;
2566
2567 list_for_each_entry_safe(se_cmd, tmp_cmd,
2568 &se_sess->sess_wait_list, se_cmd_list) {
2569 list_del(&se_cmd->se_cmd_list);
2570
2571 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2572 " %d\n", se_cmd, se_cmd->t_state,
2573 se_cmd->se_tfo->get_cmd_state(se_cmd));
2574
2575 wait_for_completion(&se_cmd->cmd_wait_comp);
2576 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2577 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2578 se_cmd->se_tfo->get_cmd_state(se_cmd));
2579
2580 se_cmd->se_tfo->release_cmd(se_cmd);
2581 }
2582
2583 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2584 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2585 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2586
2587 }
2588 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2589
2590 static int transport_clear_lun_ref_thread(void *p)
2591 {
2592 struct se_lun *lun = p;
2593
2594 percpu_ref_kill(&lun->lun_ref);
2595
2596 wait_for_completion(&lun->lun_ref_comp);
2597 complete(&lun->lun_shutdown_comp);
2598
2599 return 0;
2600 }
2601
2602 int transport_clear_lun_ref(struct se_lun *lun)
2603 {
2604 struct task_struct *kt;
2605
2606 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2607 "tcm_cl_%u", lun->unpacked_lun);
2608 if (IS_ERR(kt)) {
2609 pr_err("Unable to start clear_lun thread\n");
2610 return PTR_ERR(kt);
2611 }
2612 wait_for_completion(&lun->lun_shutdown_comp);
2613
2614 return 0;
2615 }
2616
2617 /**
2618 * transport_wait_for_tasks - wait for completion to occur
2619 * @cmd: command to wait
2620 *
2621 * Called from frontend fabric context to wait for storage engine
2622 * to pause and/or release frontend generated struct se_cmd.
2623 */
2624 bool transport_wait_for_tasks(struct se_cmd *cmd)
2625 {
2626 unsigned long flags;
2627
2628 spin_lock_irqsave(&cmd->t_state_lock, flags);
2629 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2630 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2631 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2632 return false;
2633 }
2634
2635 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2636 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2637 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2638 return false;
2639 }
2640
2641 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2642 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2643 return false;
2644 }
2645
2646 cmd->transport_state |= CMD_T_STOP;
2647
2648 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2649 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2650 cmd, cmd->se_tfo->get_task_tag(cmd),
2651 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2652
2653 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2654
2655 wait_for_completion(&cmd->t_transport_stop_comp);
2656
2657 spin_lock_irqsave(&cmd->t_state_lock, flags);
2658 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2659
2660 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2661 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2662 cmd->se_tfo->get_task_tag(cmd));
2663
2664 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2665
2666 return true;
2667 }
2668 EXPORT_SYMBOL(transport_wait_for_tasks);
2669
2670 static int transport_get_sense_codes(
2671 struct se_cmd *cmd,
2672 u8 *asc,
2673 u8 *ascq)
2674 {
2675 *asc = cmd->scsi_asc;
2676 *ascq = cmd->scsi_ascq;
2677
2678 return 0;
2679 }
2680
2681 static
2682 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2683 {
2684 /* Place failed LBA in sense data information descriptor 0. */
2685 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2686 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2687 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2688 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2689
2690 /* Descriptor Information: failing sector */
2691 put_unaligned_be64(bad_sector, &buffer[12]);
2692 }
2693
2694 int
2695 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2696 sense_reason_t reason, int from_transport)
2697 {
2698 unsigned char *buffer = cmd->sense_buffer;
2699 unsigned long flags;
2700 u8 asc = 0, ascq = 0;
2701
2702 spin_lock_irqsave(&cmd->t_state_lock, flags);
2703 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2704 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2705 return 0;
2706 }
2707 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2708 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2709
2710 if (!reason && from_transport)
2711 goto after_reason;
2712
2713 if (!from_transport)
2714 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2715
2716 /*
2717 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2718 * SENSE KEY values from include/scsi/scsi.h
2719 */
2720 switch (reason) {
2721 case TCM_NO_SENSE:
2722 /* CURRENT ERROR */
2723 buffer[0] = 0x70;
2724 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2725 /* Not Ready */
2726 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2727 /* NO ADDITIONAL SENSE INFORMATION */
2728 buffer[SPC_ASC_KEY_OFFSET] = 0;
2729 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2730 break;
2731 case TCM_NON_EXISTENT_LUN:
2732 /* CURRENT ERROR */
2733 buffer[0] = 0x70;
2734 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2735 /* ILLEGAL REQUEST */
2736 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2737 /* LOGICAL UNIT NOT SUPPORTED */
2738 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2739 break;
2740 case TCM_UNSUPPORTED_SCSI_OPCODE:
2741 case TCM_SECTOR_COUNT_TOO_MANY:
2742 /* CURRENT ERROR */
2743 buffer[0] = 0x70;
2744 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2745 /* ILLEGAL REQUEST */
2746 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2747 /* INVALID COMMAND OPERATION CODE */
2748 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2749 break;
2750 case TCM_UNKNOWN_MODE_PAGE:
2751 /* CURRENT ERROR */
2752 buffer[0] = 0x70;
2753 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2754 /* ILLEGAL REQUEST */
2755 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2756 /* INVALID FIELD IN CDB */
2757 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2758 break;
2759 case TCM_CHECK_CONDITION_ABORT_CMD:
2760 /* CURRENT ERROR */
2761 buffer[0] = 0x70;
2762 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2763 /* ABORTED COMMAND */
2764 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2765 /* BUS DEVICE RESET FUNCTION OCCURRED */
2766 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2767 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2768 break;
2769 case TCM_INCORRECT_AMOUNT_OF_DATA:
2770 /* CURRENT ERROR */
2771 buffer[0] = 0x70;
2772 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2773 /* ABORTED COMMAND */
2774 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2775 /* WRITE ERROR */
2776 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2777 /* NOT ENOUGH UNSOLICITED DATA */
2778 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2779 break;
2780 case TCM_INVALID_CDB_FIELD:
2781 /* CURRENT ERROR */
2782 buffer[0] = 0x70;
2783 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2784 /* ILLEGAL REQUEST */
2785 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2786 /* INVALID FIELD IN CDB */
2787 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2788 break;
2789 case TCM_INVALID_PARAMETER_LIST:
2790 /* CURRENT ERROR */
2791 buffer[0] = 0x70;
2792 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2793 /* ILLEGAL REQUEST */
2794 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2795 /* INVALID FIELD IN PARAMETER LIST */
2796 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2797 break;
2798 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2799 /* CURRENT ERROR */
2800 buffer[0] = 0x70;
2801 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2802 /* ILLEGAL REQUEST */
2803 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2804 /* PARAMETER LIST LENGTH ERROR */
2805 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2806 break;
2807 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2808 /* CURRENT ERROR */
2809 buffer[0] = 0x70;
2810 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2811 /* ABORTED COMMAND */
2812 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2813 /* WRITE ERROR */
2814 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2815 /* UNEXPECTED_UNSOLICITED_DATA */
2816 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2817 break;
2818 case TCM_SERVICE_CRC_ERROR:
2819 /* CURRENT ERROR */
2820 buffer[0] = 0x70;
2821 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2822 /* ABORTED COMMAND */
2823 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2824 /* PROTOCOL SERVICE CRC ERROR */
2825 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2826 /* N/A */
2827 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2828 break;
2829 case TCM_SNACK_REJECTED:
2830 /* CURRENT ERROR */
2831 buffer[0] = 0x70;
2832 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2833 /* ABORTED COMMAND */
2834 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2835 /* READ ERROR */
2836 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2837 /* FAILED RETRANSMISSION REQUEST */
2838 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2839 break;
2840 case TCM_WRITE_PROTECTED:
2841 /* CURRENT ERROR */
2842 buffer[0] = 0x70;
2843 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2844 /* DATA PROTECT */
2845 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2846 /* WRITE PROTECTED */
2847 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2848 break;
2849 case TCM_ADDRESS_OUT_OF_RANGE:
2850 /* CURRENT ERROR */
2851 buffer[0] = 0x70;
2852 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2853 /* ILLEGAL REQUEST */
2854 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2855 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2856 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2857 break;
2858 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2859 /* CURRENT ERROR */
2860 buffer[0] = 0x70;
2861 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2862 /* UNIT ATTENTION */
2863 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2864 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2865 buffer[SPC_ASC_KEY_OFFSET] = asc;
2866 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2867 break;
2868 case TCM_CHECK_CONDITION_NOT_READY:
2869 /* CURRENT ERROR */
2870 buffer[0] = 0x70;
2871 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2872 /* Not Ready */
2873 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2874 transport_get_sense_codes(cmd, &asc, &ascq);
2875 buffer[SPC_ASC_KEY_OFFSET] = asc;
2876 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2877 break;
2878 case TCM_MISCOMPARE_VERIFY:
2879 /* CURRENT ERROR */
2880 buffer[0] = 0x70;
2881 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2882 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2883 /* MISCOMPARE DURING VERIFY OPERATION */
2884 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2885 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2886 break;
2887 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2888 /* CURRENT ERROR */
2889 buffer[0] = 0x70;
2890 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2891 /* ILLEGAL REQUEST */
2892 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2893 /* LOGICAL BLOCK GUARD CHECK FAILED */
2894 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2895 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2896 transport_err_sector_info(buffer, cmd->bad_sector);
2897 break;
2898 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2899 /* CURRENT ERROR */
2900 buffer[0] = 0x70;
2901 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2902 /* ILLEGAL REQUEST */
2903 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2904 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2905 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2906 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2907 transport_err_sector_info(buffer, cmd->bad_sector);
2908 break;
2909 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2910 /* CURRENT ERROR */
2911 buffer[0] = 0x70;
2912 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2913 /* ILLEGAL REQUEST */
2914 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2915 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2916 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2917 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2918 transport_err_sector_info(buffer, cmd->bad_sector);
2919 break;
2920 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2921 default:
2922 /* CURRENT ERROR */
2923 buffer[0] = 0x70;
2924 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2925 /*
2926 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2927 * Solaris initiators. Returning NOT READY instead means the
2928 * operations will be retried a finite number of times and we
2929 * can survive intermittent errors.
2930 */
2931 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2932 /* LOGICAL UNIT COMMUNICATION FAILURE */
2933 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2934 break;
2935 }
2936 /*
2937 * This code uses linux/include/scsi/scsi.h SAM status codes!
2938 */
2939 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2940 /*
2941 * Automatically padded, this value is encoded in the fabric's
2942 * data_length response PDU containing the SCSI defined sense data.
2943 */
2944 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2945
2946 after_reason:
2947 trace_target_cmd_complete(cmd);
2948 return cmd->se_tfo->queue_status(cmd);
2949 }
2950 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2951
2952 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2953 {
2954 if (!(cmd->transport_state & CMD_T_ABORTED))
2955 return 0;
2956
2957 /*
2958 * If cmd has been aborted but either no status is to be sent or it has
2959 * already been sent, just return
2960 */
2961 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2962 return 1;
2963
2964 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2965 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2966
2967 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2968 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2969 trace_target_cmd_complete(cmd);
2970 cmd->se_tfo->queue_status(cmd);
2971
2972 return 1;
2973 }
2974 EXPORT_SYMBOL(transport_check_aborted_status);
2975
2976 void transport_send_task_abort(struct se_cmd *cmd)
2977 {
2978 unsigned long flags;
2979
2980 spin_lock_irqsave(&cmd->t_state_lock, flags);
2981 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2982 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2983 return;
2984 }
2985 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2986
2987 /*
2988 * If there are still expected incoming fabric WRITEs, we wait
2989 * until until they have completed before sending a TASK_ABORTED
2990 * response. This response with TASK_ABORTED status will be
2991 * queued back to fabric module by transport_check_aborted_status().
2992 */
2993 if (cmd->data_direction == DMA_TO_DEVICE) {
2994 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2995 cmd->transport_state |= CMD_T_ABORTED;
2996 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2997 return;
2998 }
2999 }
3000 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3001
3002 transport_lun_remove_cmd(cmd);
3003
3004 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3005 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3006 cmd->se_tfo->get_task_tag(cmd));
3007
3008 trace_target_cmd_complete(cmd);
3009 cmd->se_tfo->queue_status(cmd);
3010 }
3011
3012 static void target_tmr_work(struct work_struct *work)
3013 {
3014 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3015 struct se_device *dev = cmd->se_dev;
3016 struct se_tmr_req *tmr = cmd->se_tmr_req;
3017 int ret;
3018
3019 switch (tmr->function) {
3020 case TMR_ABORT_TASK:
3021 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3022 break;
3023 case TMR_ABORT_TASK_SET:
3024 case TMR_CLEAR_ACA:
3025 case TMR_CLEAR_TASK_SET:
3026 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3027 break;
3028 case TMR_LUN_RESET:
3029 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3030 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3031 TMR_FUNCTION_REJECTED;
3032 break;
3033 case TMR_TARGET_WARM_RESET:
3034 tmr->response = TMR_FUNCTION_REJECTED;
3035 break;
3036 case TMR_TARGET_COLD_RESET:
3037 tmr->response = TMR_FUNCTION_REJECTED;
3038 break;
3039 default:
3040 pr_err("Uknown TMR function: 0x%02x.\n",
3041 tmr->function);
3042 tmr->response = TMR_FUNCTION_REJECTED;
3043 break;
3044 }
3045
3046 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3047 cmd->se_tfo->queue_tm_rsp(cmd);
3048
3049 transport_cmd_check_stop_to_fabric(cmd);
3050 }
3051
3052 int transport_generic_handle_tmr(
3053 struct se_cmd *cmd)
3054 {
3055 unsigned long flags;
3056
3057 spin_lock_irqsave(&cmd->t_state_lock, flags);
3058 cmd->transport_state |= CMD_T_ACTIVE;
3059 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3060
3061 INIT_WORK(&cmd->work, target_tmr_work);
3062 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3063 return 0;
3064 }
3065 EXPORT_SYMBOL(transport_generic_handle_tmr);
This page took 0.11364 seconds and 5 git commands to generate.