target: header reshuffle, part2
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56
57 static int sub_api_initialized;
58
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82
83 int init_se_kmem_caches(void)
84 {
85 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87 0, NULL);
88 if (!se_tmr_req_cache) {
89 pr_err("kmem_cache_create() for struct se_tmr_req"
90 " failed\n");
91 goto out;
92 }
93 se_sess_cache = kmem_cache_create("se_sess_cache",
94 sizeof(struct se_session), __alignof__(struct se_session),
95 0, NULL);
96 if (!se_sess_cache) {
97 pr_err("kmem_cache_create() for struct se_session"
98 " failed\n");
99 goto out_free_tmr_req_cache;
100 }
101 se_ua_cache = kmem_cache_create("se_ua_cache",
102 sizeof(struct se_ua), __alignof__(struct se_ua),
103 0, NULL);
104 if (!se_ua_cache) {
105 pr_err("kmem_cache_create() for struct se_ua failed\n");
106 goto out_free_sess_cache;
107 }
108 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109 sizeof(struct t10_pr_registration),
110 __alignof__(struct t10_pr_registration), 0, NULL);
111 if (!t10_pr_reg_cache) {
112 pr_err("kmem_cache_create() for struct t10_pr_registration"
113 " failed\n");
114 goto out_free_ua_cache;
115 }
116 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118 0, NULL);
119 if (!t10_alua_lu_gp_cache) {
120 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121 " failed\n");
122 goto out_free_pr_reg_cache;
123 }
124 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125 sizeof(struct t10_alua_lu_gp_member),
126 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127 if (!t10_alua_lu_gp_mem_cache) {
128 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129 "cache failed\n");
130 goto out_free_lu_gp_cache;
131 }
132 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133 sizeof(struct t10_alua_tg_pt_gp),
134 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135 if (!t10_alua_tg_pt_gp_cache) {
136 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 "cache failed\n");
138 goto out_free_lu_gp_mem_cache;
139 }
140 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141 "t10_alua_tg_pt_gp_mem_cache",
142 sizeof(struct t10_alua_tg_pt_gp_member),
143 __alignof__(struct t10_alua_tg_pt_gp_member),
144 0, NULL);
145 if (!t10_alua_tg_pt_gp_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147 "mem_t failed\n");
148 goto out_free_tg_pt_gp_cache;
149 }
150
151 target_completion_wq = alloc_workqueue("target_completion",
152 WQ_MEM_RECLAIM, 0);
153 if (!target_completion_wq)
154 goto out_free_tg_pt_gp_mem_cache;
155
156 return 0;
157
158 out_free_tg_pt_gp_mem_cache:
159 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165 kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167 kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169 kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171 kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173 kmem_cache_destroy(se_tmr_req_cache);
174 out:
175 return -ENOMEM;
176 }
177
178 void release_se_kmem_caches(void)
179 {
180 destroy_workqueue(target_completion_wq);
181 kmem_cache_destroy(se_tmr_req_cache);
182 kmem_cache_destroy(se_sess_cache);
183 kmem_cache_destroy(se_ua_cache);
184 kmem_cache_destroy(t10_pr_reg_cache);
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194
195 /*
196 * Allocate a new row index for the entry type specified
197 */
198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200 u32 new_index;
201
202 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203
204 spin_lock(&scsi_mib_index_lock);
205 new_index = ++scsi_mib_index[type];
206 spin_unlock(&scsi_mib_index_lock);
207
208 return new_index;
209 }
210
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213 atomic_set(&qobj->queue_cnt, 0);
214 INIT_LIST_HEAD(&qobj->qobj_list);
215 init_waitqueue_head(&qobj->thread_wq);
216 spin_lock_init(&qobj->cmd_queue_lock);
217 }
218
219 void transport_subsystem_check_init(void)
220 {
221 int ret;
222
223 if (sub_api_initialized)
224 return;
225
226 ret = request_module("target_core_iblock");
227 if (ret != 0)
228 pr_err("Unable to load target_core_iblock\n");
229
230 ret = request_module("target_core_file");
231 if (ret != 0)
232 pr_err("Unable to load target_core_file\n");
233
234 ret = request_module("target_core_pscsi");
235 if (ret != 0)
236 pr_err("Unable to load target_core_pscsi\n");
237
238 ret = request_module("target_core_stgt");
239 if (ret != 0)
240 pr_err("Unable to load target_core_stgt\n");
241
242 sub_api_initialized = 1;
243 return;
244 }
245
246 struct se_session *transport_init_session(void)
247 {
248 struct se_session *se_sess;
249
250 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251 if (!se_sess) {
252 pr_err("Unable to allocate struct se_session from"
253 " se_sess_cache\n");
254 return ERR_PTR(-ENOMEM);
255 }
256 INIT_LIST_HEAD(&se_sess->sess_list);
257 INIT_LIST_HEAD(&se_sess->sess_acl_list);
258 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259 INIT_LIST_HEAD(&se_sess->sess_wait_list);
260 spin_lock_init(&se_sess->sess_cmd_lock);
261
262 return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265
266 /*
267 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268 */
269 void __transport_register_session(
270 struct se_portal_group *se_tpg,
271 struct se_node_acl *se_nacl,
272 struct se_session *se_sess,
273 void *fabric_sess_ptr)
274 {
275 unsigned char buf[PR_REG_ISID_LEN];
276
277 se_sess->se_tpg = se_tpg;
278 se_sess->fabric_sess_ptr = fabric_sess_ptr;
279 /*
280 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281 *
282 * Only set for struct se_session's that will actually be moving I/O.
283 * eg: *NOT* discovery sessions.
284 */
285 if (se_nacl) {
286 /*
287 * If the fabric module supports an ISID based TransportID,
288 * save this value in binary from the fabric I_T Nexus now.
289 */
290 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291 memset(&buf[0], 0, PR_REG_ISID_LEN);
292 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293 &buf[0], PR_REG_ISID_LEN);
294 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295 }
296 spin_lock_irq(&se_nacl->nacl_sess_lock);
297 /*
298 * The se_nacl->nacl_sess pointer will be set to the
299 * last active I_T Nexus for each struct se_node_acl.
300 */
301 se_nacl->nacl_sess = se_sess;
302
303 list_add_tail(&se_sess->sess_acl_list,
304 &se_nacl->acl_sess_list);
305 spin_unlock_irq(&se_nacl->nacl_sess_lock);
306 }
307 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308
309 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313
314 void transport_register_session(
315 struct se_portal_group *se_tpg,
316 struct se_node_acl *se_nacl,
317 struct se_session *se_sess,
318 void *fabric_sess_ptr)
319 {
320 spin_lock_bh(&se_tpg->session_lock);
321 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322 spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325
326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328 struct se_node_acl *se_nacl;
329 unsigned long flags;
330 /*
331 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332 */
333 se_nacl = se_sess->se_node_acl;
334 if (se_nacl) {
335 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336 list_del(&se_sess->sess_acl_list);
337 /*
338 * If the session list is empty, then clear the pointer.
339 * Otherwise, set the struct se_session pointer from the tail
340 * element of the per struct se_node_acl active session list.
341 */
342 if (list_empty(&se_nacl->acl_sess_list))
343 se_nacl->nacl_sess = NULL;
344 else {
345 se_nacl->nacl_sess = container_of(
346 se_nacl->acl_sess_list.prev,
347 struct se_session, sess_acl_list);
348 }
349 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350 }
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353
354 void transport_free_session(struct se_session *se_sess)
355 {
356 kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359
360 void transport_deregister_session(struct se_session *se_sess)
361 {
362 struct se_portal_group *se_tpg = se_sess->se_tpg;
363 struct se_node_acl *se_nacl;
364 unsigned long flags;
365
366 if (!se_tpg) {
367 transport_free_session(se_sess);
368 return;
369 }
370
371 spin_lock_irqsave(&se_tpg->session_lock, flags);
372 list_del(&se_sess->sess_list);
373 se_sess->se_tpg = NULL;
374 se_sess->fabric_sess_ptr = NULL;
375 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376
377 /*
378 * Determine if we need to do extra work for this initiator node's
379 * struct se_node_acl if it had been previously dynamically generated.
380 */
381 se_nacl = se_sess->se_node_acl;
382 if (se_nacl) {
383 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384 if (se_nacl->dynamic_node_acl) {
385 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386 se_tpg)) {
387 list_del(&se_nacl->acl_list);
388 se_tpg->num_node_acls--;
389 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390
391 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392 core_free_device_list_for_node(se_nacl, se_tpg);
393 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394 se_nacl);
395 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396 }
397 }
398 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399 }
400
401 transport_free_session(se_sess);
402
403 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404 se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407
408 /*
409 * Called with cmd->t_state_lock held.
410 */
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413 struct se_device *dev = cmd->se_dev;
414 struct se_task *task;
415 unsigned long flags;
416
417 if (!dev)
418 return;
419
420 list_for_each_entry(task, &cmd->t_task_list, t_list) {
421 if (task->task_flags & TF_ACTIVE)
422 continue;
423
424 if (!atomic_read(&task->task_state_active))
425 continue;
426
427 spin_lock_irqsave(&dev->execute_task_lock, flags);
428 list_del(&task->t_state_list);
429 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
430 cmd->se_tfo->get_task_tag(cmd), dev, task);
431 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
432
433 atomic_set(&task->task_state_active, 0);
434 atomic_dec(&cmd->t_task_cdbs_ex_left);
435 }
436 }
437
438 /* transport_cmd_check_stop():
439 *
440 * 'transport_off = 1' determines if t_transport_active should be cleared.
441 * 'transport_off = 2' determines if task_dev_state should be removed.
442 *
443 * A non-zero u8 t_state sets cmd->t_state.
444 * Returns 1 when command is stopped, else 0.
445 */
446 static int transport_cmd_check_stop(
447 struct se_cmd *cmd,
448 int transport_off,
449 u8 t_state)
450 {
451 unsigned long flags;
452
453 spin_lock_irqsave(&cmd->t_state_lock, flags);
454 /*
455 * Determine if IOCTL context caller in requesting the stopping of this
456 * command for LUN shutdown purposes.
457 */
458 if (atomic_read(&cmd->transport_lun_stop)) {
459 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461 cmd->se_tfo->get_task_tag(cmd));
462
463 atomic_set(&cmd->t_transport_active, 0);
464 if (transport_off == 2)
465 transport_all_task_dev_remove_state(cmd);
466 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467
468 complete(&cmd->transport_lun_stop_comp);
469 return 1;
470 }
471 /*
472 * Determine if frontend context caller is requesting the stopping of
473 * this command for frontend exceptions.
474 */
475 if (atomic_read(&cmd->t_transport_stop)) {
476 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478 cmd->se_tfo->get_task_tag(cmd));
479
480 if (transport_off == 2)
481 transport_all_task_dev_remove_state(cmd);
482
483 /*
484 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485 * to FE.
486 */
487 if (transport_off == 2)
488 cmd->se_lun = NULL;
489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491 complete(&cmd->t_transport_stop_comp);
492 return 1;
493 }
494 if (transport_off) {
495 atomic_set(&cmd->t_transport_active, 0);
496 if (transport_off == 2) {
497 transport_all_task_dev_remove_state(cmd);
498 /*
499 * Clear struct se_cmd->se_lun before the transport_off == 2
500 * handoff to fabric module.
501 */
502 cmd->se_lun = NULL;
503 /*
504 * Some fabric modules like tcm_loop can release
505 * their internally allocated I/O reference now and
506 * struct se_cmd now.
507 *
508 * Fabric modules are expected to return '1' here if the
509 * se_cmd being passed is released at this point,
510 * or zero if not being released.
511 */
512 if (cmd->se_tfo->check_stop_free != NULL) {
513 spin_unlock_irqrestore(
514 &cmd->t_state_lock, flags);
515
516 return cmd->se_tfo->check_stop_free(cmd);
517 }
518 }
519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521 return 0;
522 } else if (t_state)
523 cmd->t_state = t_state;
524 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526 return 0;
527 }
528
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531 return transport_cmd_check_stop(cmd, 2, 0);
532 }
533
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536 struct se_lun *lun = cmd->se_lun;
537 unsigned long flags;
538
539 if (!lun)
540 return;
541
542 spin_lock_irqsave(&cmd->t_state_lock, flags);
543 if (!atomic_read(&cmd->transport_dev_active)) {
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545 goto check_lun;
546 }
547 atomic_set(&cmd->transport_dev_active, 0);
548 transport_all_task_dev_remove_state(cmd);
549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551
552 check_lun:
553 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554 if (atomic_read(&cmd->transport_lun_active)) {
555 list_del(&cmd->se_lun_node);
556 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561 }
562 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567 if (!cmd->se_tmr_req)
568 transport_lun_remove_cmd(cmd);
569
570 if (transport_cmd_check_stop_to_fabric(cmd))
571 return;
572 if (remove) {
573 transport_remove_cmd_from_queue(cmd);
574 transport_put_cmd(cmd);
575 }
576 }
577
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579 bool at_head)
580 {
581 struct se_device *dev = cmd->se_dev;
582 struct se_queue_obj *qobj = &dev->dev_queue_obj;
583 unsigned long flags;
584
585 if (t_state) {
586 spin_lock_irqsave(&cmd->t_state_lock, flags);
587 cmd->t_state = t_state;
588 atomic_set(&cmd->t_transport_active, 1);
589 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590 }
591
592 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593
594 /* If the cmd is already on the list, remove it before we add it */
595 if (!list_empty(&cmd->se_queue_node))
596 list_del(&cmd->se_queue_node);
597 else
598 atomic_inc(&qobj->queue_cnt);
599
600 if (at_head)
601 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602 else
603 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604 atomic_set(&cmd->t_transport_queue_active, 1);
605 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606
607 wake_up_interruptible(&qobj->thread_wq);
608 }
609
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613 struct se_cmd *cmd;
614 unsigned long flags;
615
616 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617 if (list_empty(&qobj->qobj_list)) {
618 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619 return NULL;
620 }
621 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622
623 atomic_set(&cmd->t_transport_queue_active, 0);
624
625 list_del_init(&cmd->se_queue_node);
626 atomic_dec(&qobj->queue_cnt);
627 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629 return cmd;
630 }
631
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635 unsigned long flags;
636
637 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638 if (!atomic_read(&cmd->t_transport_queue_active)) {
639 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640 return;
641 }
642 atomic_set(&cmd->t_transport_queue_active, 0);
643 atomic_dec(&qobj->queue_cnt);
644 list_del_init(&cmd->se_queue_node);
645 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646
647 if (atomic_read(&cmd->t_transport_queue_active)) {
648 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649 cmd->se_tfo->get_task_tag(cmd),
650 atomic_read(&cmd->t_transport_queue_active));
651 }
652 }
653
654 /*
655 * Completion function used by TCM subsystem plugins (such as FILEIO)
656 * for queueing up response from struct se_subsystem_api->do_task()
657 */
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660 struct se_task *task = list_entry(cmd->t_task_list.next,
661 struct se_task, t_list);
662
663 if (good) {
664 cmd->scsi_status = SAM_STAT_GOOD;
665 task->task_scsi_status = GOOD;
666 } else {
667 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668 task->task_se_cmd->scsi_sense_reason =
669 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670
671 }
672
673 transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681 transport_generic_request_failure(cmd);
682 }
683
684 /* transport_complete_task():
685 *
686 * Called from interrupt and non interrupt context depending
687 * on the transport plugin.
688 */
689 void transport_complete_task(struct se_task *task, int success)
690 {
691 struct se_cmd *cmd = task->task_se_cmd;
692 struct se_device *dev = cmd->se_dev;
693 unsigned long flags;
694 #if 0
695 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
696 cmd->t_task_cdb[0], dev);
697 #endif
698 if (dev)
699 atomic_inc(&dev->depth_left);
700
701 spin_lock_irqsave(&cmd->t_state_lock, flags);
702 task->task_flags &= ~TF_ACTIVE;
703
704 /*
705 * See if any sense data exists, if so set the TASK_SENSE flag.
706 * Also check for any other post completion work that needs to be
707 * done by the plugins.
708 */
709 if (dev && dev->transport->transport_complete) {
710 if (dev->transport->transport_complete(task) != 0) {
711 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
712 task->task_sense = 1;
713 success = 1;
714 }
715 }
716
717 /*
718 * See if we are waiting for outstanding struct se_task
719 * to complete for an exception condition
720 */
721 if (task->task_flags & TF_REQUEST_STOP) {
722 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723 complete(&task->task_stop_comp);
724 return;
725 }
726
727 if (!success)
728 cmd->t_tasks_failed = 1;
729
730 /*
731 * Decrement the outstanding t_task_cdbs_left count. The last
732 * struct se_task from struct se_cmd will complete itself into the
733 * device queue depending upon int success.
734 */
735 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
736 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
737 return;
738 }
739
740 if (cmd->t_tasks_failed) {
741 if (!task->task_error_status) {
742 task->task_error_status =
743 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
744 cmd->scsi_sense_reason =
745 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
746 }
747
748 INIT_WORK(&cmd->work, target_complete_failure_work);
749 } else {
750 atomic_set(&cmd->t_transport_complete, 1);
751 INIT_WORK(&cmd->work, target_complete_ok_work);
752 }
753
754 cmd->t_state = TRANSPORT_COMPLETE;
755 atomic_set(&cmd->t_transport_active, 1);
756 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
757
758 queue_work(target_completion_wq, &cmd->work);
759 }
760 EXPORT_SYMBOL(transport_complete_task);
761
762 /*
763 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
764 * struct se_task list are ready to be added to the active execution list
765 * struct se_device
766
767 * Called with se_dev_t->execute_task_lock called.
768 */
769 static inline int transport_add_task_check_sam_attr(
770 struct se_task *task,
771 struct se_task *task_prev,
772 struct se_device *dev)
773 {
774 /*
775 * No SAM Task attribute emulation enabled, add to tail of
776 * execution queue
777 */
778 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
779 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
780 return 0;
781 }
782 /*
783 * HEAD_OF_QUEUE attribute for received CDB, which means
784 * the first task that is associated with a struct se_cmd goes to
785 * head of the struct se_device->execute_task_list, and task_prev
786 * after that for each subsequent task
787 */
788 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
789 list_add(&task->t_execute_list,
790 (task_prev != NULL) ?
791 &task_prev->t_execute_list :
792 &dev->execute_task_list);
793
794 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
795 " in execution queue\n",
796 task->task_se_cmd->t_task_cdb[0]);
797 return 1;
798 }
799 /*
800 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
801 * transitioned from Dermant -> Active state, and are added to the end
802 * of the struct se_device->execute_task_list
803 */
804 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
805 return 0;
806 }
807
808 /* __transport_add_task_to_execute_queue():
809 *
810 * Called with se_dev_t->execute_task_lock called.
811 */
812 static void __transport_add_task_to_execute_queue(
813 struct se_task *task,
814 struct se_task *task_prev,
815 struct se_device *dev)
816 {
817 int head_of_queue;
818
819 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
820 atomic_inc(&dev->execute_tasks);
821
822 if (atomic_read(&task->task_state_active))
823 return;
824 /*
825 * Determine if this task needs to go to HEAD_OF_QUEUE for the
826 * state list as well. Running with SAM Task Attribute emulation
827 * will always return head_of_queue == 0 here
828 */
829 if (head_of_queue)
830 list_add(&task->t_state_list, (task_prev) ?
831 &task_prev->t_state_list :
832 &dev->state_task_list);
833 else
834 list_add_tail(&task->t_state_list, &dev->state_task_list);
835
836 atomic_set(&task->task_state_active, 1);
837
838 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
839 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
840 task, dev);
841 }
842
843 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
844 {
845 struct se_device *dev = cmd->se_dev;
846 struct se_task *task;
847 unsigned long flags;
848
849 spin_lock_irqsave(&cmd->t_state_lock, flags);
850 list_for_each_entry(task, &cmd->t_task_list, t_list) {
851 if (atomic_read(&task->task_state_active))
852 continue;
853
854 spin_lock(&dev->execute_task_lock);
855 list_add_tail(&task->t_state_list, &dev->state_task_list);
856 atomic_set(&task->task_state_active, 1);
857
858 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
859 task->task_se_cmd->se_tfo->get_task_tag(
860 task->task_se_cmd), task, dev);
861
862 spin_unlock(&dev->execute_task_lock);
863 }
864 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
865 }
866
867 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
868 {
869 struct se_device *dev = cmd->se_dev;
870 struct se_task *task, *task_prev = NULL;
871 unsigned long flags;
872
873 spin_lock_irqsave(&dev->execute_task_lock, flags);
874 list_for_each_entry(task, &cmd->t_task_list, t_list) {
875 if (!list_empty(&task->t_execute_list))
876 continue;
877 /*
878 * __transport_add_task_to_execute_queue() handles the
879 * SAM Task Attribute emulation if enabled
880 */
881 __transport_add_task_to_execute_queue(task, task_prev, dev);
882 task_prev = task;
883 }
884 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
885 }
886
887 void __transport_remove_task_from_execute_queue(struct se_task *task,
888 struct se_device *dev)
889 {
890 list_del_init(&task->t_execute_list);
891 atomic_dec(&dev->execute_tasks);
892 }
893
894 static void transport_remove_task_from_execute_queue(
895 struct se_task *task,
896 struct se_device *dev)
897 {
898 unsigned long flags;
899
900 if (WARN_ON(list_empty(&task->t_execute_list)))
901 return;
902
903 spin_lock_irqsave(&dev->execute_task_lock, flags);
904 __transport_remove_task_from_execute_queue(task, dev);
905 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
906 }
907
908 /*
909 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
910 */
911
912 static void target_qf_do_work(struct work_struct *work)
913 {
914 struct se_device *dev = container_of(work, struct se_device,
915 qf_work_queue);
916 LIST_HEAD(qf_cmd_list);
917 struct se_cmd *cmd, *cmd_tmp;
918
919 spin_lock_irq(&dev->qf_cmd_lock);
920 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
921 spin_unlock_irq(&dev->qf_cmd_lock);
922
923 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
924 list_del(&cmd->se_qf_node);
925 atomic_dec(&dev->dev_qf_count);
926 smp_mb__after_atomic_dec();
927
928 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
929 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
930 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
931 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
932 : "UNKNOWN");
933
934 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
935 }
936 }
937
938 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
939 {
940 switch (cmd->data_direction) {
941 case DMA_NONE:
942 return "NONE";
943 case DMA_FROM_DEVICE:
944 return "READ";
945 case DMA_TO_DEVICE:
946 return "WRITE";
947 case DMA_BIDIRECTIONAL:
948 return "BIDI";
949 default:
950 break;
951 }
952
953 return "UNKNOWN";
954 }
955
956 void transport_dump_dev_state(
957 struct se_device *dev,
958 char *b,
959 int *bl)
960 {
961 *bl += sprintf(b + *bl, "Status: ");
962 switch (dev->dev_status) {
963 case TRANSPORT_DEVICE_ACTIVATED:
964 *bl += sprintf(b + *bl, "ACTIVATED");
965 break;
966 case TRANSPORT_DEVICE_DEACTIVATED:
967 *bl += sprintf(b + *bl, "DEACTIVATED");
968 break;
969 case TRANSPORT_DEVICE_SHUTDOWN:
970 *bl += sprintf(b + *bl, "SHUTDOWN");
971 break;
972 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
973 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
974 *bl += sprintf(b + *bl, "OFFLINE");
975 break;
976 default:
977 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
978 break;
979 }
980
981 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
982 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
983 dev->queue_depth);
984 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
985 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
986 *bl += sprintf(b + *bl, " ");
987 }
988
989 void transport_dump_vpd_proto_id(
990 struct t10_vpd *vpd,
991 unsigned char *p_buf,
992 int p_buf_len)
993 {
994 unsigned char buf[VPD_TMP_BUF_SIZE];
995 int len;
996
997 memset(buf, 0, VPD_TMP_BUF_SIZE);
998 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
999
1000 switch (vpd->protocol_identifier) {
1001 case 0x00:
1002 sprintf(buf+len, "Fibre Channel\n");
1003 break;
1004 case 0x10:
1005 sprintf(buf+len, "Parallel SCSI\n");
1006 break;
1007 case 0x20:
1008 sprintf(buf+len, "SSA\n");
1009 break;
1010 case 0x30:
1011 sprintf(buf+len, "IEEE 1394\n");
1012 break;
1013 case 0x40:
1014 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1015 " Protocol\n");
1016 break;
1017 case 0x50:
1018 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1019 break;
1020 case 0x60:
1021 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1022 break;
1023 case 0x70:
1024 sprintf(buf+len, "Automation/Drive Interface Transport"
1025 " Protocol\n");
1026 break;
1027 case 0x80:
1028 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1029 break;
1030 default:
1031 sprintf(buf+len, "Unknown 0x%02x\n",
1032 vpd->protocol_identifier);
1033 break;
1034 }
1035
1036 if (p_buf)
1037 strncpy(p_buf, buf, p_buf_len);
1038 else
1039 pr_debug("%s", buf);
1040 }
1041
1042 void
1043 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1044 {
1045 /*
1046 * Check if the Protocol Identifier Valid (PIV) bit is set..
1047 *
1048 * from spc3r23.pdf section 7.5.1
1049 */
1050 if (page_83[1] & 0x80) {
1051 vpd->protocol_identifier = (page_83[0] & 0xf0);
1052 vpd->protocol_identifier_set = 1;
1053 transport_dump_vpd_proto_id(vpd, NULL, 0);
1054 }
1055 }
1056 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1057
1058 int transport_dump_vpd_assoc(
1059 struct t10_vpd *vpd,
1060 unsigned char *p_buf,
1061 int p_buf_len)
1062 {
1063 unsigned char buf[VPD_TMP_BUF_SIZE];
1064 int ret = 0;
1065 int len;
1066
1067 memset(buf, 0, VPD_TMP_BUF_SIZE);
1068 len = sprintf(buf, "T10 VPD Identifier Association: ");
1069
1070 switch (vpd->association) {
1071 case 0x00:
1072 sprintf(buf+len, "addressed logical unit\n");
1073 break;
1074 case 0x10:
1075 sprintf(buf+len, "target port\n");
1076 break;
1077 case 0x20:
1078 sprintf(buf+len, "SCSI target device\n");
1079 break;
1080 default:
1081 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1082 ret = -EINVAL;
1083 break;
1084 }
1085
1086 if (p_buf)
1087 strncpy(p_buf, buf, p_buf_len);
1088 else
1089 pr_debug("%s", buf);
1090
1091 return ret;
1092 }
1093
1094 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1095 {
1096 /*
1097 * The VPD identification association..
1098 *
1099 * from spc3r23.pdf Section 7.6.3.1 Table 297
1100 */
1101 vpd->association = (page_83[1] & 0x30);
1102 return transport_dump_vpd_assoc(vpd, NULL, 0);
1103 }
1104 EXPORT_SYMBOL(transport_set_vpd_assoc);
1105
1106 int transport_dump_vpd_ident_type(
1107 struct t10_vpd *vpd,
1108 unsigned char *p_buf,
1109 int p_buf_len)
1110 {
1111 unsigned char buf[VPD_TMP_BUF_SIZE];
1112 int ret = 0;
1113 int len;
1114
1115 memset(buf, 0, VPD_TMP_BUF_SIZE);
1116 len = sprintf(buf, "T10 VPD Identifier Type: ");
1117
1118 switch (vpd->device_identifier_type) {
1119 case 0x00:
1120 sprintf(buf+len, "Vendor specific\n");
1121 break;
1122 case 0x01:
1123 sprintf(buf+len, "T10 Vendor ID based\n");
1124 break;
1125 case 0x02:
1126 sprintf(buf+len, "EUI-64 based\n");
1127 break;
1128 case 0x03:
1129 sprintf(buf+len, "NAA\n");
1130 break;
1131 case 0x04:
1132 sprintf(buf+len, "Relative target port identifier\n");
1133 break;
1134 case 0x08:
1135 sprintf(buf+len, "SCSI name string\n");
1136 break;
1137 default:
1138 sprintf(buf+len, "Unsupported: 0x%02x\n",
1139 vpd->device_identifier_type);
1140 ret = -EINVAL;
1141 break;
1142 }
1143
1144 if (p_buf) {
1145 if (p_buf_len < strlen(buf)+1)
1146 return -EINVAL;
1147 strncpy(p_buf, buf, p_buf_len);
1148 } else {
1149 pr_debug("%s", buf);
1150 }
1151
1152 return ret;
1153 }
1154
1155 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1156 {
1157 /*
1158 * The VPD identifier type..
1159 *
1160 * from spc3r23.pdf Section 7.6.3.1 Table 298
1161 */
1162 vpd->device_identifier_type = (page_83[1] & 0x0f);
1163 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1164 }
1165 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1166
1167 int transport_dump_vpd_ident(
1168 struct t10_vpd *vpd,
1169 unsigned char *p_buf,
1170 int p_buf_len)
1171 {
1172 unsigned char buf[VPD_TMP_BUF_SIZE];
1173 int ret = 0;
1174
1175 memset(buf, 0, VPD_TMP_BUF_SIZE);
1176
1177 switch (vpd->device_identifier_code_set) {
1178 case 0x01: /* Binary */
1179 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1180 &vpd->device_identifier[0]);
1181 break;
1182 case 0x02: /* ASCII */
1183 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1184 &vpd->device_identifier[0]);
1185 break;
1186 case 0x03: /* UTF-8 */
1187 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1188 &vpd->device_identifier[0]);
1189 break;
1190 default:
1191 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1192 " 0x%02x", vpd->device_identifier_code_set);
1193 ret = -EINVAL;
1194 break;
1195 }
1196
1197 if (p_buf)
1198 strncpy(p_buf, buf, p_buf_len);
1199 else
1200 pr_debug("%s", buf);
1201
1202 return ret;
1203 }
1204
1205 int
1206 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1207 {
1208 static const char hex_str[] = "0123456789abcdef";
1209 int j = 0, i = 4; /* offset to start of the identifer */
1210
1211 /*
1212 * The VPD Code Set (encoding)
1213 *
1214 * from spc3r23.pdf Section 7.6.3.1 Table 296
1215 */
1216 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1217 switch (vpd->device_identifier_code_set) {
1218 case 0x01: /* Binary */
1219 vpd->device_identifier[j++] =
1220 hex_str[vpd->device_identifier_type];
1221 while (i < (4 + page_83[3])) {
1222 vpd->device_identifier[j++] =
1223 hex_str[(page_83[i] & 0xf0) >> 4];
1224 vpd->device_identifier[j++] =
1225 hex_str[page_83[i] & 0x0f];
1226 i++;
1227 }
1228 break;
1229 case 0x02: /* ASCII */
1230 case 0x03: /* UTF-8 */
1231 while (i < (4 + page_83[3]))
1232 vpd->device_identifier[j++] = page_83[i++];
1233 break;
1234 default:
1235 break;
1236 }
1237
1238 return transport_dump_vpd_ident(vpd, NULL, 0);
1239 }
1240 EXPORT_SYMBOL(transport_set_vpd_ident);
1241
1242 static void core_setup_task_attr_emulation(struct se_device *dev)
1243 {
1244 /*
1245 * If this device is from Target_Core_Mod/pSCSI, disable the
1246 * SAM Task Attribute emulation.
1247 *
1248 * This is currently not available in upsream Linux/SCSI Target
1249 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1250 */
1251 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1252 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1253 return;
1254 }
1255
1256 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1257 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1258 " device\n", dev->transport->name,
1259 dev->transport->get_device_rev(dev));
1260 }
1261
1262 static void scsi_dump_inquiry(struct se_device *dev)
1263 {
1264 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1265 int i, device_type;
1266 /*
1267 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1268 */
1269 pr_debug(" Vendor: ");
1270 for (i = 0; i < 8; i++)
1271 if (wwn->vendor[i] >= 0x20)
1272 pr_debug("%c", wwn->vendor[i]);
1273 else
1274 pr_debug(" ");
1275
1276 pr_debug(" Model: ");
1277 for (i = 0; i < 16; i++)
1278 if (wwn->model[i] >= 0x20)
1279 pr_debug("%c", wwn->model[i]);
1280 else
1281 pr_debug(" ");
1282
1283 pr_debug(" Revision: ");
1284 for (i = 0; i < 4; i++)
1285 if (wwn->revision[i] >= 0x20)
1286 pr_debug("%c", wwn->revision[i]);
1287 else
1288 pr_debug(" ");
1289
1290 pr_debug("\n");
1291
1292 device_type = dev->transport->get_device_type(dev);
1293 pr_debug(" Type: %s ", scsi_device_type(device_type));
1294 pr_debug(" ANSI SCSI revision: %02x\n",
1295 dev->transport->get_device_rev(dev));
1296 }
1297
1298 struct se_device *transport_add_device_to_core_hba(
1299 struct se_hba *hba,
1300 struct se_subsystem_api *transport,
1301 struct se_subsystem_dev *se_dev,
1302 u32 device_flags,
1303 void *transport_dev,
1304 struct se_dev_limits *dev_limits,
1305 const char *inquiry_prod,
1306 const char *inquiry_rev)
1307 {
1308 int force_pt;
1309 struct se_device *dev;
1310
1311 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1312 if (!dev) {
1313 pr_err("Unable to allocate memory for se_dev_t\n");
1314 return NULL;
1315 }
1316
1317 transport_init_queue_obj(&dev->dev_queue_obj);
1318 dev->dev_flags = device_flags;
1319 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1320 dev->dev_ptr = transport_dev;
1321 dev->se_hba = hba;
1322 dev->se_sub_dev = se_dev;
1323 dev->transport = transport;
1324 INIT_LIST_HEAD(&dev->dev_list);
1325 INIT_LIST_HEAD(&dev->dev_sep_list);
1326 INIT_LIST_HEAD(&dev->dev_tmr_list);
1327 INIT_LIST_HEAD(&dev->execute_task_list);
1328 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1329 INIT_LIST_HEAD(&dev->state_task_list);
1330 INIT_LIST_HEAD(&dev->qf_cmd_list);
1331 spin_lock_init(&dev->execute_task_lock);
1332 spin_lock_init(&dev->delayed_cmd_lock);
1333 spin_lock_init(&dev->dev_reservation_lock);
1334 spin_lock_init(&dev->dev_status_lock);
1335 spin_lock_init(&dev->se_port_lock);
1336 spin_lock_init(&dev->se_tmr_lock);
1337 spin_lock_init(&dev->qf_cmd_lock);
1338
1339 dev->queue_depth = dev_limits->queue_depth;
1340 atomic_set(&dev->depth_left, dev->queue_depth);
1341 atomic_set(&dev->dev_ordered_id, 0);
1342
1343 se_dev_set_default_attribs(dev, dev_limits);
1344
1345 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1346 dev->creation_time = get_jiffies_64();
1347 spin_lock_init(&dev->stats_lock);
1348
1349 spin_lock(&hba->device_lock);
1350 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1351 hba->dev_count++;
1352 spin_unlock(&hba->device_lock);
1353 /*
1354 * Setup the SAM Task Attribute emulation for struct se_device
1355 */
1356 core_setup_task_attr_emulation(dev);
1357 /*
1358 * Force PR and ALUA passthrough emulation with internal object use.
1359 */
1360 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1361 /*
1362 * Setup the Reservations infrastructure for struct se_device
1363 */
1364 core_setup_reservations(dev, force_pt);
1365 /*
1366 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1367 */
1368 if (core_setup_alua(dev, force_pt) < 0)
1369 goto out;
1370
1371 /*
1372 * Startup the struct se_device processing thread
1373 */
1374 dev->process_thread = kthread_run(transport_processing_thread, dev,
1375 "LIO_%s", dev->transport->name);
1376 if (IS_ERR(dev->process_thread)) {
1377 pr_err("Unable to create kthread: LIO_%s\n",
1378 dev->transport->name);
1379 goto out;
1380 }
1381 /*
1382 * Setup work_queue for QUEUE_FULL
1383 */
1384 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1385 /*
1386 * Preload the initial INQUIRY const values if we are doing
1387 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1388 * passthrough because this is being provided by the backend LLD.
1389 * This is required so that transport_get_inquiry() copies these
1390 * originals once back into DEV_T10_WWN(dev) for the virtual device
1391 * setup.
1392 */
1393 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1394 if (!inquiry_prod || !inquiry_rev) {
1395 pr_err("All non TCM/pSCSI plugins require"
1396 " INQUIRY consts\n");
1397 goto out;
1398 }
1399
1400 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1401 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1402 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1403 }
1404 scsi_dump_inquiry(dev);
1405
1406 return dev;
1407 out:
1408 kthread_stop(dev->process_thread);
1409
1410 spin_lock(&hba->device_lock);
1411 list_del(&dev->dev_list);
1412 hba->dev_count--;
1413 spin_unlock(&hba->device_lock);
1414
1415 se_release_vpd_for_dev(dev);
1416
1417 kfree(dev);
1418
1419 return NULL;
1420 }
1421 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1422
1423 /* transport_generic_prepare_cdb():
1424 *
1425 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1426 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1427 * The point of this is since we are mapping iSCSI LUNs to
1428 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1429 * devices and HBAs for a loop.
1430 */
1431 static inline void transport_generic_prepare_cdb(
1432 unsigned char *cdb)
1433 {
1434 switch (cdb[0]) {
1435 case READ_10: /* SBC - RDProtect */
1436 case READ_12: /* SBC - RDProtect */
1437 case READ_16: /* SBC - RDProtect */
1438 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1439 case VERIFY: /* SBC - VRProtect */
1440 case VERIFY_16: /* SBC - VRProtect */
1441 case WRITE_VERIFY: /* SBC - VRProtect */
1442 case WRITE_VERIFY_12: /* SBC - VRProtect */
1443 break;
1444 default:
1445 cdb[1] &= 0x1f; /* clear logical unit number */
1446 break;
1447 }
1448 }
1449
1450 static struct se_task *
1451 transport_generic_get_task(struct se_cmd *cmd,
1452 enum dma_data_direction data_direction)
1453 {
1454 struct se_task *task;
1455 struct se_device *dev = cmd->se_dev;
1456
1457 task = dev->transport->alloc_task(cmd->t_task_cdb);
1458 if (!task) {
1459 pr_err("Unable to allocate struct se_task\n");
1460 return NULL;
1461 }
1462
1463 INIT_LIST_HEAD(&task->t_list);
1464 INIT_LIST_HEAD(&task->t_execute_list);
1465 INIT_LIST_HEAD(&task->t_state_list);
1466 init_completion(&task->task_stop_comp);
1467 task->task_se_cmd = cmd;
1468 task->task_data_direction = data_direction;
1469
1470 return task;
1471 }
1472
1473 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1474
1475 /*
1476 * Used by fabric modules containing a local struct se_cmd within their
1477 * fabric dependent per I/O descriptor.
1478 */
1479 void transport_init_se_cmd(
1480 struct se_cmd *cmd,
1481 struct target_core_fabric_ops *tfo,
1482 struct se_session *se_sess,
1483 u32 data_length,
1484 int data_direction,
1485 int task_attr,
1486 unsigned char *sense_buffer)
1487 {
1488 INIT_LIST_HEAD(&cmd->se_lun_node);
1489 INIT_LIST_HEAD(&cmd->se_delayed_node);
1490 INIT_LIST_HEAD(&cmd->se_qf_node);
1491 INIT_LIST_HEAD(&cmd->se_queue_node);
1492 INIT_LIST_HEAD(&cmd->se_cmd_list);
1493 INIT_LIST_HEAD(&cmd->t_task_list);
1494 init_completion(&cmd->transport_lun_fe_stop_comp);
1495 init_completion(&cmd->transport_lun_stop_comp);
1496 init_completion(&cmd->t_transport_stop_comp);
1497 init_completion(&cmd->cmd_wait_comp);
1498 spin_lock_init(&cmd->t_state_lock);
1499 atomic_set(&cmd->transport_dev_active, 1);
1500
1501 cmd->se_tfo = tfo;
1502 cmd->se_sess = se_sess;
1503 cmd->data_length = data_length;
1504 cmd->data_direction = data_direction;
1505 cmd->sam_task_attr = task_attr;
1506 cmd->sense_buffer = sense_buffer;
1507 }
1508 EXPORT_SYMBOL(transport_init_se_cmd);
1509
1510 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1511 {
1512 /*
1513 * Check if SAM Task Attribute emulation is enabled for this
1514 * struct se_device storage object
1515 */
1516 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1517 return 0;
1518
1519 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1520 pr_debug("SAM Task Attribute ACA"
1521 " emulation is not supported\n");
1522 return -EINVAL;
1523 }
1524 /*
1525 * Used to determine when ORDERED commands should go from
1526 * Dormant to Active status.
1527 */
1528 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1529 smp_mb__after_atomic_inc();
1530 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1531 cmd->se_ordered_id, cmd->sam_task_attr,
1532 cmd->se_dev->transport->name);
1533 return 0;
1534 }
1535
1536 /* transport_generic_allocate_tasks():
1537 *
1538 * Called from fabric RX Thread.
1539 */
1540 int transport_generic_allocate_tasks(
1541 struct se_cmd *cmd,
1542 unsigned char *cdb)
1543 {
1544 int ret;
1545
1546 transport_generic_prepare_cdb(cdb);
1547 /*
1548 * Ensure that the received CDB is less than the max (252 + 8) bytes
1549 * for VARIABLE_LENGTH_CMD
1550 */
1551 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1552 pr_err("Received SCSI CDB with command_size: %d that"
1553 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1554 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1555 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1556 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1557 return -EINVAL;
1558 }
1559 /*
1560 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1561 * allocate the additional extended CDB buffer now.. Otherwise
1562 * setup the pointer from __t_task_cdb to t_task_cdb.
1563 */
1564 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1565 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1566 GFP_KERNEL);
1567 if (!cmd->t_task_cdb) {
1568 pr_err("Unable to allocate cmd->t_task_cdb"
1569 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1570 scsi_command_size(cdb),
1571 (unsigned long)sizeof(cmd->__t_task_cdb));
1572 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1573 cmd->scsi_sense_reason =
1574 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1575 return -ENOMEM;
1576 }
1577 } else
1578 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1579 /*
1580 * Copy the original CDB into cmd->
1581 */
1582 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1583 /*
1584 * Setup the received CDB based on SCSI defined opcodes and
1585 * perform unit attention, persistent reservations and ALUA
1586 * checks for virtual device backends. The cmd->t_task_cdb
1587 * pointer is expected to be setup before we reach this point.
1588 */
1589 ret = transport_generic_cmd_sequencer(cmd, cdb);
1590 if (ret < 0)
1591 return ret;
1592 /*
1593 * Check for SAM Task Attribute Emulation
1594 */
1595 if (transport_check_alloc_task_attr(cmd) < 0) {
1596 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1597 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1598 return -EINVAL;
1599 }
1600 spin_lock(&cmd->se_lun->lun_sep_lock);
1601 if (cmd->se_lun->lun_sep)
1602 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1603 spin_unlock(&cmd->se_lun->lun_sep_lock);
1604 return 0;
1605 }
1606 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1607
1608 /*
1609 * Used by fabric module frontends to queue tasks directly.
1610 * Many only be used from process context only
1611 */
1612 int transport_handle_cdb_direct(
1613 struct se_cmd *cmd)
1614 {
1615 int ret;
1616
1617 if (!cmd->se_lun) {
1618 dump_stack();
1619 pr_err("cmd->se_lun is NULL\n");
1620 return -EINVAL;
1621 }
1622 if (in_interrupt()) {
1623 dump_stack();
1624 pr_err("transport_generic_handle_cdb cannot be called"
1625 " from interrupt context\n");
1626 return -EINVAL;
1627 }
1628 /*
1629 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1630 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1631 * in existing usage to ensure that outstanding descriptors are handled
1632 * correctly during shutdown via transport_wait_for_tasks()
1633 *
1634 * Also, we don't take cmd->t_state_lock here as we only expect
1635 * this to be called for initial descriptor submission.
1636 */
1637 cmd->t_state = TRANSPORT_NEW_CMD;
1638 atomic_set(&cmd->t_transport_active, 1);
1639 /*
1640 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1641 * so follow TRANSPORT_NEW_CMD processing thread context usage
1642 * and call transport_generic_request_failure() if necessary..
1643 */
1644 ret = transport_generic_new_cmd(cmd);
1645 if (ret < 0)
1646 transport_generic_request_failure(cmd);
1647
1648 return 0;
1649 }
1650 EXPORT_SYMBOL(transport_handle_cdb_direct);
1651
1652 /*
1653 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1654 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1655 * complete setup in TCM process context w/ TFO->new_cmd_map().
1656 */
1657 int transport_generic_handle_cdb_map(
1658 struct se_cmd *cmd)
1659 {
1660 if (!cmd->se_lun) {
1661 dump_stack();
1662 pr_err("cmd->se_lun is NULL\n");
1663 return -EINVAL;
1664 }
1665
1666 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1667 return 0;
1668 }
1669 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1670
1671 /* transport_generic_handle_data():
1672 *
1673 *
1674 */
1675 int transport_generic_handle_data(
1676 struct se_cmd *cmd)
1677 {
1678 /*
1679 * For the software fabric case, then we assume the nexus is being
1680 * failed/shutdown when signals are pending from the kthread context
1681 * caller, so we return a failure. For the HW target mode case running
1682 * in interrupt code, the signal_pending() check is skipped.
1683 */
1684 if (!in_interrupt() && signal_pending(current))
1685 return -EPERM;
1686 /*
1687 * If the received CDB has aleady been ABORTED by the generic
1688 * target engine, we now call transport_check_aborted_status()
1689 * to queue any delated TASK_ABORTED status for the received CDB to the
1690 * fabric module as we are expecting no further incoming DATA OUT
1691 * sequences at this point.
1692 */
1693 if (transport_check_aborted_status(cmd, 1) != 0)
1694 return 0;
1695
1696 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1697 return 0;
1698 }
1699 EXPORT_SYMBOL(transport_generic_handle_data);
1700
1701 /* transport_generic_handle_tmr():
1702 *
1703 *
1704 */
1705 int transport_generic_handle_tmr(
1706 struct se_cmd *cmd)
1707 {
1708 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1709 return 0;
1710 }
1711 EXPORT_SYMBOL(transport_generic_handle_tmr);
1712
1713 /*
1714 * If the task is active, request it to be stopped and sleep until it
1715 * has completed.
1716 */
1717 bool target_stop_task(struct se_task *task, unsigned long *flags)
1718 {
1719 struct se_cmd *cmd = task->task_se_cmd;
1720 bool was_active = false;
1721
1722 if (task->task_flags & TF_ACTIVE) {
1723 task->task_flags |= TF_REQUEST_STOP;
1724 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1725
1726 pr_debug("Task %p waiting to complete\n", task);
1727 wait_for_completion(&task->task_stop_comp);
1728 pr_debug("Task %p stopped successfully\n", task);
1729
1730 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1731 atomic_dec(&cmd->t_task_cdbs_left);
1732 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1733 was_active = true;
1734 }
1735
1736 return was_active;
1737 }
1738
1739 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1740 {
1741 struct se_task *task, *task_tmp;
1742 unsigned long flags;
1743 int ret = 0;
1744
1745 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1746 cmd->se_tfo->get_task_tag(cmd));
1747
1748 /*
1749 * No tasks remain in the execution queue
1750 */
1751 spin_lock_irqsave(&cmd->t_state_lock, flags);
1752 list_for_each_entry_safe(task, task_tmp,
1753 &cmd->t_task_list, t_list) {
1754 pr_debug("Processing task %p\n", task);
1755 /*
1756 * If the struct se_task has not been sent and is not active,
1757 * remove the struct se_task from the execution queue.
1758 */
1759 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1760 spin_unlock_irqrestore(&cmd->t_state_lock,
1761 flags);
1762 transport_remove_task_from_execute_queue(task,
1763 cmd->se_dev);
1764
1765 pr_debug("Task %p removed from execute queue\n", task);
1766 spin_lock_irqsave(&cmd->t_state_lock, flags);
1767 continue;
1768 }
1769
1770 if (!target_stop_task(task, &flags)) {
1771 pr_debug("Task %p - did nothing\n", task);
1772 ret++;
1773 }
1774 }
1775 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1776
1777 return ret;
1778 }
1779
1780 /*
1781 * Handle SAM-esque emulation for generic transport request failures.
1782 */
1783 static void transport_generic_request_failure(struct se_cmd *cmd)
1784 {
1785 int ret = 0;
1786
1787 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1788 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1789 cmd->t_task_cdb[0]);
1790 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1791 cmd->se_tfo->get_cmd_state(cmd),
1792 cmd->t_state, cmd->scsi_sense_reason);
1793 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1794 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1795 " t_transport_active: %d t_transport_stop: %d"
1796 " t_transport_sent: %d\n", cmd->t_task_list_num,
1797 atomic_read(&cmd->t_task_cdbs_left),
1798 atomic_read(&cmd->t_task_cdbs_sent),
1799 atomic_read(&cmd->t_task_cdbs_ex_left),
1800 atomic_read(&cmd->t_transport_active),
1801 atomic_read(&cmd->t_transport_stop),
1802 atomic_read(&cmd->t_transport_sent));
1803
1804 /*
1805 * For SAM Task Attribute emulation for failed struct se_cmd
1806 */
1807 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1808 transport_complete_task_attr(cmd);
1809
1810 switch (cmd->scsi_sense_reason) {
1811 case TCM_NON_EXISTENT_LUN:
1812 case TCM_UNSUPPORTED_SCSI_OPCODE:
1813 case TCM_INVALID_CDB_FIELD:
1814 case TCM_INVALID_PARAMETER_LIST:
1815 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1816 case TCM_UNKNOWN_MODE_PAGE:
1817 case TCM_WRITE_PROTECTED:
1818 case TCM_CHECK_CONDITION_ABORT_CMD:
1819 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1820 case TCM_CHECK_CONDITION_NOT_READY:
1821 break;
1822 case TCM_RESERVATION_CONFLICT:
1823 /*
1824 * No SENSE Data payload for this case, set SCSI Status
1825 * and queue the response to $FABRIC_MOD.
1826 *
1827 * Uses linux/include/scsi/scsi.h SAM status codes defs
1828 */
1829 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1830 /*
1831 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1832 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1833 * CONFLICT STATUS.
1834 *
1835 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1836 */
1837 if (cmd->se_sess &&
1838 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1839 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1840 cmd->orig_fe_lun, 0x2C,
1841 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1842
1843 ret = cmd->se_tfo->queue_status(cmd);
1844 if (ret == -EAGAIN || ret == -ENOMEM)
1845 goto queue_full;
1846 goto check_stop;
1847 default:
1848 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1849 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1850 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1851 break;
1852 }
1853 /*
1854 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1855 * make the call to transport_send_check_condition_and_sense()
1856 * directly. Otherwise expect the fabric to make the call to
1857 * transport_send_check_condition_and_sense() after handling
1858 * possible unsoliticied write data payloads.
1859 */
1860 ret = transport_send_check_condition_and_sense(cmd,
1861 cmd->scsi_sense_reason, 0);
1862 if (ret == -EAGAIN || ret == -ENOMEM)
1863 goto queue_full;
1864
1865 check_stop:
1866 transport_lun_remove_cmd(cmd);
1867 if (!transport_cmd_check_stop_to_fabric(cmd))
1868 ;
1869 return;
1870
1871 queue_full:
1872 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1873 transport_handle_queue_full(cmd, cmd->se_dev);
1874 }
1875
1876 static inline u32 transport_lba_21(unsigned char *cdb)
1877 {
1878 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1879 }
1880
1881 static inline u32 transport_lba_32(unsigned char *cdb)
1882 {
1883 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1884 }
1885
1886 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1887 {
1888 unsigned int __v1, __v2;
1889
1890 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1891 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1892
1893 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1894 }
1895
1896 /*
1897 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1898 */
1899 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1900 {
1901 unsigned int __v1, __v2;
1902
1903 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1904 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1905
1906 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1907 }
1908
1909 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1910 {
1911 unsigned long flags;
1912
1913 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1914 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1915 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1916 }
1917
1918 static inline int transport_tcq_window_closed(struct se_device *dev)
1919 {
1920 if (dev->dev_tcq_window_closed++ <
1921 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1922 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1923 } else
1924 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1925
1926 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1927 return 0;
1928 }
1929
1930 /*
1931 * Called from Fabric Module context from transport_execute_tasks()
1932 *
1933 * The return of this function determins if the tasks from struct se_cmd
1934 * get added to the execution queue in transport_execute_tasks(),
1935 * or are added to the delayed or ordered lists here.
1936 */
1937 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1938 {
1939 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1940 return 1;
1941 /*
1942 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1943 * to allow the passed struct se_cmd list of tasks to the front of the list.
1944 */
1945 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1946 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1947 " 0x%02x, se_ordered_id: %u\n",
1948 cmd->t_task_cdb[0],
1949 cmd->se_ordered_id);
1950 return 1;
1951 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1952 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1953 smp_mb__after_atomic_inc();
1954
1955 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1956 " list, se_ordered_id: %u\n",
1957 cmd->t_task_cdb[0],
1958 cmd->se_ordered_id);
1959 /*
1960 * Add ORDERED command to tail of execution queue if
1961 * no other older commands exist that need to be
1962 * completed first.
1963 */
1964 if (!atomic_read(&cmd->se_dev->simple_cmds))
1965 return 1;
1966 } else {
1967 /*
1968 * For SIMPLE and UNTAGGED Task Attribute commands
1969 */
1970 atomic_inc(&cmd->se_dev->simple_cmds);
1971 smp_mb__after_atomic_inc();
1972 }
1973 /*
1974 * Otherwise if one or more outstanding ORDERED task attribute exist,
1975 * add the dormant task(s) built for the passed struct se_cmd to the
1976 * execution queue and become in Active state for this struct se_device.
1977 */
1978 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1979 /*
1980 * Otherwise, add cmd w/ tasks to delayed cmd queue that
1981 * will be drained upon completion of HEAD_OF_QUEUE task.
1982 */
1983 spin_lock(&cmd->se_dev->delayed_cmd_lock);
1984 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1985 list_add_tail(&cmd->se_delayed_node,
1986 &cmd->se_dev->delayed_cmd_list);
1987 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1988
1989 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1990 " delayed CMD list, se_ordered_id: %u\n",
1991 cmd->t_task_cdb[0], cmd->sam_task_attr,
1992 cmd->se_ordered_id);
1993 /*
1994 * Return zero to let transport_execute_tasks() know
1995 * not to add the delayed tasks to the execution list.
1996 */
1997 return 0;
1998 }
1999 /*
2000 * Otherwise, no ORDERED task attributes exist..
2001 */
2002 return 1;
2003 }
2004
2005 /*
2006 * Called from fabric module context in transport_generic_new_cmd() and
2007 * transport_generic_process_write()
2008 */
2009 static int transport_execute_tasks(struct se_cmd *cmd)
2010 {
2011 int add_tasks;
2012
2013 if (se_dev_check_online(cmd->se_dev) != 0) {
2014 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2015 transport_generic_request_failure(cmd);
2016 return 0;
2017 }
2018
2019 /*
2020 * Call transport_cmd_check_stop() to see if a fabric exception
2021 * has occurred that prevents execution.
2022 */
2023 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2024 /*
2025 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2026 * attribute for the tasks of the received struct se_cmd CDB
2027 */
2028 add_tasks = transport_execute_task_attr(cmd);
2029 if (!add_tasks)
2030 goto execute_tasks;
2031 /*
2032 * This calls transport_add_tasks_from_cmd() to handle
2033 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2034 * (if enabled) in __transport_add_task_to_execute_queue() and
2035 * transport_add_task_check_sam_attr().
2036 */
2037 transport_add_tasks_from_cmd(cmd);
2038 }
2039 /*
2040 * Kick the execution queue for the cmd associated struct se_device
2041 * storage object.
2042 */
2043 execute_tasks:
2044 __transport_execute_tasks(cmd->se_dev);
2045 return 0;
2046 }
2047
2048 /*
2049 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2050 * from struct se_device->execute_task_list and
2051 *
2052 * Called from transport_processing_thread()
2053 */
2054 static int __transport_execute_tasks(struct se_device *dev)
2055 {
2056 int error;
2057 struct se_cmd *cmd = NULL;
2058 struct se_task *task = NULL;
2059 unsigned long flags;
2060
2061 /*
2062 * Check if there is enough room in the device and HBA queue to send
2063 * struct se_tasks to the selected transport.
2064 */
2065 check_depth:
2066 if (!atomic_read(&dev->depth_left))
2067 return transport_tcq_window_closed(dev);
2068
2069 dev->dev_tcq_window_closed = 0;
2070
2071 spin_lock_irq(&dev->execute_task_lock);
2072 if (list_empty(&dev->execute_task_list)) {
2073 spin_unlock_irq(&dev->execute_task_lock);
2074 return 0;
2075 }
2076 task = list_first_entry(&dev->execute_task_list,
2077 struct se_task, t_execute_list);
2078 __transport_remove_task_from_execute_queue(task, dev);
2079 spin_unlock_irq(&dev->execute_task_lock);
2080
2081 atomic_dec(&dev->depth_left);
2082
2083 cmd = task->task_se_cmd;
2084
2085 spin_lock_irqsave(&cmd->t_state_lock, flags);
2086 task->task_flags |= (TF_ACTIVE | TF_SENT);
2087 atomic_inc(&cmd->t_task_cdbs_sent);
2088
2089 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2090 cmd->t_task_list_num)
2091 atomic_set(&cmd->t_transport_sent, 1);
2092
2093 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2094
2095 if (cmd->execute_task)
2096 error = cmd->execute_task(task);
2097 else
2098 error = dev->transport->do_task(task);
2099 if (error != 0) {
2100 spin_lock_irqsave(&cmd->t_state_lock, flags);
2101 task->task_flags &= ~TF_ACTIVE;
2102 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2103 atomic_set(&cmd->t_transport_sent, 0);
2104 transport_stop_tasks_for_cmd(cmd);
2105 atomic_inc(&dev->depth_left);
2106 transport_generic_request_failure(cmd);
2107 }
2108
2109 goto check_depth;
2110
2111 return 0;
2112 }
2113
2114 static inline u32 transport_get_sectors_6(
2115 unsigned char *cdb,
2116 struct se_cmd *cmd,
2117 int *ret)
2118 {
2119 struct se_device *dev = cmd->se_dev;
2120
2121 /*
2122 * Assume TYPE_DISK for non struct se_device objects.
2123 * Use 8-bit sector value.
2124 */
2125 if (!dev)
2126 goto type_disk;
2127
2128 /*
2129 * Use 24-bit allocation length for TYPE_TAPE.
2130 */
2131 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2132 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2133
2134 /*
2135 * Everything else assume TYPE_DISK Sector CDB location.
2136 * Use 8-bit sector value. SBC-3 says:
2137 *
2138 * A TRANSFER LENGTH field set to zero specifies that 256
2139 * logical blocks shall be written. Any other value
2140 * specifies the number of logical blocks that shall be
2141 * written.
2142 */
2143 type_disk:
2144 return cdb[4] ? : 256;
2145 }
2146
2147 static inline u32 transport_get_sectors_10(
2148 unsigned char *cdb,
2149 struct se_cmd *cmd,
2150 int *ret)
2151 {
2152 struct se_device *dev = cmd->se_dev;
2153
2154 /*
2155 * Assume TYPE_DISK for non struct se_device objects.
2156 * Use 16-bit sector value.
2157 */
2158 if (!dev)
2159 goto type_disk;
2160
2161 /*
2162 * XXX_10 is not defined in SSC, throw an exception
2163 */
2164 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2165 *ret = -EINVAL;
2166 return 0;
2167 }
2168
2169 /*
2170 * Everything else assume TYPE_DISK Sector CDB location.
2171 * Use 16-bit sector value.
2172 */
2173 type_disk:
2174 return (u32)(cdb[7] << 8) + cdb[8];
2175 }
2176
2177 static inline u32 transport_get_sectors_12(
2178 unsigned char *cdb,
2179 struct se_cmd *cmd,
2180 int *ret)
2181 {
2182 struct se_device *dev = cmd->se_dev;
2183
2184 /*
2185 * Assume TYPE_DISK for non struct se_device objects.
2186 * Use 32-bit sector value.
2187 */
2188 if (!dev)
2189 goto type_disk;
2190
2191 /*
2192 * XXX_12 is not defined in SSC, throw an exception
2193 */
2194 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2195 *ret = -EINVAL;
2196 return 0;
2197 }
2198
2199 /*
2200 * Everything else assume TYPE_DISK Sector CDB location.
2201 * Use 32-bit sector value.
2202 */
2203 type_disk:
2204 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2205 }
2206
2207 static inline u32 transport_get_sectors_16(
2208 unsigned char *cdb,
2209 struct se_cmd *cmd,
2210 int *ret)
2211 {
2212 struct se_device *dev = cmd->se_dev;
2213
2214 /*
2215 * Assume TYPE_DISK for non struct se_device objects.
2216 * Use 32-bit sector value.
2217 */
2218 if (!dev)
2219 goto type_disk;
2220
2221 /*
2222 * Use 24-bit allocation length for TYPE_TAPE.
2223 */
2224 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2225 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2226
2227 type_disk:
2228 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2229 (cdb[12] << 8) + cdb[13];
2230 }
2231
2232 /*
2233 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2234 */
2235 static inline u32 transport_get_sectors_32(
2236 unsigned char *cdb,
2237 struct se_cmd *cmd,
2238 int *ret)
2239 {
2240 /*
2241 * Assume TYPE_DISK for non struct se_device objects.
2242 * Use 32-bit sector value.
2243 */
2244 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2245 (cdb[30] << 8) + cdb[31];
2246
2247 }
2248
2249 static inline u32 transport_get_size(
2250 u32 sectors,
2251 unsigned char *cdb,
2252 struct se_cmd *cmd)
2253 {
2254 struct se_device *dev = cmd->se_dev;
2255
2256 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2257 if (cdb[1] & 1) { /* sectors */
2258 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2259 } else /* bytes */
2260 return sectors;
2261 }
2262 #if 0
2263 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2264 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2265 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2266 dev->transport->name);
2267 #endif
2268 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2269 }
2270
2271 static void transport_xor_callback(struct se_cmd *cmd)
2272 {
2273 unsigned char *buf, *addr;
2274 struct scatterlist *sg;
2275 unsigned int offset;
2276 int i;
2277 int count;
2278 /*
2279 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2280 *
2281 * 1) read the specified logical block(s);
2282 * 2) transfer logical blocks from the data-out buffer;
2283 * 3) XOR the logical blocks transferred from the data-out buffer with
2284 * the logical blocks read, storing the resulting XOR data in a buffer;
2285 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2286 * blocks transferred from the data-out buffer; and
2287 * 5) transfer the resulting XOR data to the data-in buffer.
2288 */
2289 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2290 if (!buf) {
2291 pr_err("Unable to allocate xor_callback buf\n");
2292 return;
2293 }
2294 /*
2295 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2296 * into the locally allocated *buf
2297 */
2298 sg_copy_to_buffer(cmd->t_data_sg,
2299 cmd->t_data_nents,
2300 buf,
2301 cmd->data_length);
2302
2303 /*
2304 * Now perform the XOR against the BIDI read memory located at
2305 * cmd->t_mem_bidi_list
2306 */
2307
2308 offset = 0;
2309 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2310 addr = kmap_atomic(sg_page(sg), KM_USER0);
2311 if (!addr)
2312 goto out;
2313
2314 for (i = 0; i < sg->length; i++)
2315 *(addr + sg->offset + i) ^= *(buf + offset + i);
2316
2317 offset += sg->length;
2318 kunmap_atomic(addr, KM_USER0);
2319 }
2320
2321 out:
2322 kfree(buf);
2323 }
2324
2325 /*
2326 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2327 */
2328 static int transport_get_sense_data(struct se_cmd *cmd)
2329 {
2330 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2331 struct se_device *dev = cmd->se_dev;
2332 struct se_task *task = NULL, *task_tmp;
2333 unsigned long flags;
2334 u32 offset = 0;
2335
2336 WARN_ON(!cmd->se_lun);
2337
2338 if (!dev)
2339 return 0;
2340
2341 spin_lock_irqsave(&cmd->t_state_lock, flags);
2342 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2343 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2344 return 0;
2345 }
2346
2347 list_for_each_entry_safe(task, task_tmp,
2348 &cmd->t_task_list, t_list) {
2349 if (!task->task_sense)
2350 continue;
2351
2352 if (!dev->transport->get_sense_buffer) {
2353 pr_err("dev->transport->get_sense_buffer"
2354 " is NULL\n");
2355 continue;
2356 }
2357
2358 sense_buffer = dev->transport->get_sense_buffer(task);
2359 if (!sense_buffer) {
2360 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2361 " sense buffer for task with sense\n",
2362 cmd->se_tfo->get_task_tag(cmd), task);
2363 continue;
2364 }
2365 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2366
2367 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2368 TRANSPORT_SENSE_BUFFER);
2369
2370 memcpy(&buffer[offset], sense_buffer,
2371 TRANSPORT_SENSE_BUFFER);
2372 cmd->scsi_status = task->task_scsi_status;
2373 /* Automatically padded */
2374 cmd->scsi_sense_length =
2375 (TRANSPORT_SENSE_BUFFER + offset);
2376
2377 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2378 " and sense\n",
2379 dev->se_hba->hba_id, dev->transport->name,
2380 cmd->scsi_status);
2381 return 0;
2382 }
2383 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2384
2385 return -1;
2386 }
2387
2388 static inline long long transport_dev_end_lba(struct se_device *dev)
2389 {
2390 return dev->transport->get_blocks(dev) + 1;
2391 }
2392
2393 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2394 {
2395 struct se_device *dev = cmd->se_dev;
2396 u32 sectors;
2397
2398 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2399 return 0;
2400
2401 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2402
2403 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2404 pr_err("LBA: %llu Sectors: %u exceeds"
2405 " transport_dev_end_lba(): %llu\n",
2406 cmd->t_task_lba, sectors,
2407 transport_dev_end_lba(dev));
2408 return -EINVAL;
2409 }
2410
2411 return 0;
2412 }
2413
2414 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2415 {
2416 /*
2417 * Determine if the received WRITE_SAME is used to for direct
2418 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2419 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2420 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2421 */
2422 int passthrough = (dev->transport->transport_type ==
2423 TRANSPORT_PLUGIN_PHBA_PDEV);
2424
2425 if (!passthrough) {
2426 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2427 pr_err("WRITE_SAME PBDATA and LBDATA"
2428 " bits not supported for Block Discard"
2429 " Emulation\n");
2430 return -ENOSYS;
2431 }
2432 /*
2433 * Currently for the emulated case we only accept
2434 * tpws with the UNMAP=1 bit set.
2435 */
2436 if (!(flags[0] & 0x08)) {
2437 pr_err("WRITE_SAME w/o UNMAP bit not"
2438 " supported for Block Discard Emulation\n");
2439 return -ENOSYS;
2440 }
2441 }
2442
2443 return 0;
2444 }
2445
2446 /* transport_generic_cmd_sequencer():
2447 *
2448 * Generic Command Sequencer that should work for most DAS transport
2449 * drivers.
2450 *
2451 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2452 * RX Thread.
2453 *
2454 * FIXME: Need to support other SCSI OPCODES where as well.
2455 */
2456 static int transport_generic_cmd_sequencer(
2457 struct se_cmd *cmd,
2458 unsigned char *cdb)
2459 {
2460 struct se_device *dev = cmd->se_dev;
2461 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2462 int ret = 0, sector_ret = 0, passthrough;
2463 u32 sectors = 0, size = 0, pr_reg_type = 0;
2464 u16 service_action;
2465 u8 alua_ascq = 0;
2466 /*
2467 * Check for an existing UNIT ATTENTION condition
2468 */
2469 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2470 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2471 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2472 return -EINVAL;
2473 }
2474 /*
2475 * Check status of Asymmetric Logical Unit Assignment port
2476 */
2477 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2478 if (ret != 0) {
2479 /*
2480 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2481 * The ALUA additional sense code qualifier (ASCQ) is determined
2482 * by the ALUA primary or secondary access state..
2483 */
2484 if (ret > 0) {
2485 #if 0
2486 pr_debug("[%s]: ALUA TG Port not available,"
2487 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2488 cmd->se_tfo->get_fabric_name(), alua_ascq);
2489 #endif
2490 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2491 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2492 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2493 return -EINVAL;
2494 }
2495 goto out_invalid_cdb_field;
2496 }
2497 /*
2498 * Check status for SPC-3 Persistent Reservations
2499 */
2500 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2501 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2502 cmd, cdb, pr_reg_type) != 0) {
2503 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2504 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2505 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2506 return -EBUSY;
2507 }
2508 /*
2509 * This means the CDB is allowed for the SCSI Initiator port
2510 * when said port is *NOT* holding the legacy SPC-2 or
2511 * SPC-3 Persistent Reservation.
2512 */
2513 }
2514
2515 /*
2516 * If we operate in passthrough mode we skip most CDB emulation and
2517 * instead hand the commands down to the physical SCSI device.
2518 */
2519 passthrough =
2520 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2521
2522 switch (cdb[0]) {
2523 case READ_6:
2524 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2525 if (sector_ret)
2526 goto out_unsupported_cdb;
2527 size = transport_get_size(sectors, cdb, cmd);
2528 cmd->t_task_lba = transport_lba_21(cdb);
2529 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2530 break;
2531 case READ_10:
2532 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2533 if (sector_ret)
2534 goto out_unsupported_cdb;
2535 size = transport_get_size(sectors, cdb, cmd);
2536 cmd->t_task_lba = transport_lba_32(cdb);
2537 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2538 break;
2539 case READ_12:
2540 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2541 if (sector_ret)
2542 goto out_unsupported_cdb;
2543 size = transport_get_size(sectors, cdb, cmd);
2544 cmd->t_task_lba = transport_lba_32(cdb);
2545 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2546 break;
2547 case READ_16:
2548 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2549 if (sector_ret)
2550 goto out_unsupported_cdb;
2551 size = transport_get_size(sectors, cdb, cmd);
2552 cmd->t_task_lba = transport_lba_64(cdb);
2553 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2554 break;
2555 case WRITE_6:
2556 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2557 if (sector_ret)
2558 goto out_unsupported_cdb;
2559 size = transport_get_size(sectors, cdb, cmd);
2560 cmd->t_task_lba = transport_lba_21(cdb);
2561 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2562 break;
2563 case WRITE_10:
2564 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2565 if (sector_ret)
2566 goto out_unsupported_cdb;
2567 size = transport_get_size(sectors, cdb, cmd);
2568 cmd->t_task_lba = transport_lba_32(cdb);
2569 if (cdb[1] & 0x8)
2570 cmd->se_cmd_flags |= SCF_FUA;
2571 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2572 break;
2573 case WRITE_12:
2574 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2575 if (sector_ret)
2576 goto out_unsupported_cdb;
2577 size = transport_get_size(sectors, cdb, cmd);
2578 cmd->t_task_lba = transport_lba_32(cdb);
2579 if (cdb[1] & 0x8)
2580 cmd->se_cmd_flags |= SCF_FUA;
2581 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2582 break;
2583 case WRITE_16:
2584 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2585 if (sector_ret)
2586 goto out_unsupported_cdb;
2587 size = transport_get_size(sectors, cdb, cmd);
2588 cmd->t_task_lba = transport_lba_64(cdb);
2589 if (cdb[1] & 0x8)
2590 cmd->se_cmd_flags |= SCF_FUA;
2591 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2592 break;
2593 case XDWRITEREAD_10:
2594 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2595 !(cmd->se_cmd_flags & SCF_BIDI))
2596 goto out_invalid_cdb_field;
2597 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2598 if (sector_ret)
2599 goto out_unsupported_cdb;
2600 size = transport_get_size(sectors, cdb, cmd);
2601 cmd->t_task_lba = transport_lba_32(cdb);
2602 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2603
2604 /*
2605 * Do now allow BIDI commands for passthrough mode.
2606 */
2607 if (passthrough)
2608 goto out_unsupported_cdb;
2609
2610 /*
2611 * Setup BIDI XOR callback to be run after I/O completion.
2612 */
2613 cmd->transport_complete_callback = &transport_xor_callback;
2614 if (cdb[1] & 0x8)
2615 cmd->se_cmd_flags |= SCF_FUA;
2616 break;
2617 case VARIABLE_LENGTH_CMD:
2618 service_action = get_unaligned_be16(&cdb[8]);
2619 switch (service_action) {
2620 case XDWRITEREAD_32:
2621 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2622 if (sector_ret)
2623 goto out_unsupported_cdb;
2624 size = transport_get_size(sectors, cdb, cmd);
2625 /*
2626 * Use WRITE_32 and READ_32 opcodes for the emulated
2627 * XDWRITE_READ_32 logic.
2628 */
2629 cmd->t_task_lba = transport_lba_64_ext(cdb);
2630 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2631
2632 /*
2633 * Do now allow BIDI commands for passthrough mode.
2634 */
2635 if (passthrough)
2636 goto out_unsupported_cdb;
2637
2638 /*
2639 * Setup BIDI XOR callback to be run during after I/O
2640 * completion.
2641 */
2642 cmd->transport_complete_callback = &transport_xor_callback;
2643 if (cdb[1] & 0x8)
2644 cmd->se_cmd_flags |= SCF_FUA;
2645 break;
2646 case WRITE_SAME_32:
2647 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2648 if (sector_ret)
2649 goto out_unsupported_cdb;
2650
2651 if (sectors)
2652 size = transport_get_size(1, cdb, cmd);
2653 else {
2654 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2655 " supported\n");
2656 goto out_invalid_cdb_field;
2657 }
2658
2659 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2660 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2661
2662 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2663 goto out_invalid_cdb_field;
2664 if (!passthrough)
2665 cmd->execute_task = target_emulate_write_same;
2666 break;
2667 default:
2668 pr_err("VARIABLE_LENGTH_CMD service action"
2669 " 0x%04x not supported\n", service_action);
2670 goto out_unsupported_cdb;
2671 }
2672 break;
2673 case MAINTENANCE_IN:
2674 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2675 /* MAINTENANCE_IN from SCC-2 */
2676 /*
2677 * Check for emulated MI_REPORT_TARGET_PGS.
2678 */
2679 if (cdb[1] == MI_REPORT_TARGET_PGS &&
2680 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2681 cmd->execute_task =
2682 target_emulate_report_target_port_groups;
2683 }
2684 size = (cdb[6] << 24) | (cdb[7] << 16) |
2685 (cdb[8] << 8) | cdb[9];
2686 } else {
2687 /* GPCMD_SEND_KEY from multi media commands */
2688 size = (cdb[8] << 8) + cdb[9];
2689 }
2690 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2691 break;
2692 case MODE_SELECT:
2693 size = cdb[4];
2694 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2695 break;
2696 case MODE_SELECT_10:
2697 size = (cdb[7] << 8) + cdb[8];
2698 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2699 break;
2700 case MODE_SENSE:
2701 size = cdb[4];
2702 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2703 if (!passthrough)
2704 cmd->execute_task = target_emulate_modesense;
2705 break;
2706 case MODE_SENSE_10:
2707 size = (cdb[7] << 8) + cdb[8];
2708 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2709 if (!passthrough)
2710 cmd->execute_task = target_emulate_modesense;
2711 break;
2712 case GPCMD_READ_BUFFER_CAPACITY:
2713 case GPCMD_SEND_OPC:
2714 case LOG_SELECT:
2715 case LOG_SENSE:
2716 size = (cdb[7] << 8) + cdb[8];
2717 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2718 break;
2719 case READ_BLOCK_LIMITS:
2720 size = READ_BLOCK_LEN;
2721 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2722 break;
2723 case GPCMD_GET_CONFIGURATION:
2724 case GPCMD_READ_FORMAT_CAPACITIES:
2725 case GPCMD_READ_DISC_INFO:
2726 case GPCMD_READ_TRACK_RZONE_INFO:
2727 size = (cdb[7] << 8) + cdb[8];
2728 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2729 break;
2730 case PERSISTENT_RESERVE_IN:
2731 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2732 cmd->execute_task = target_scsi3_emulate_pr_in;
2733 size = (cdb[7] << 8) + cdb[8];
2734 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2735 break;
2736 case PERSISTENT_RESERVE_OUT:
2737 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2738 cmd->execute_task = target_scsi3_emulate_pr_out;
2739 size = (cdb[7] << 8) + cdb[8];
2740 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2741 break;
2742 case GPCMD_MECHANISM_STATUS:
2743 case GPCMD_READ_DVD_STRUCTURE:
2744 size = (cdb[8] << 8) + cdb[9];
2745 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2746 break;
2747 case READ_POSITION:
2748 size = READ_POSITION_LEN;
2749 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2750 break;
2751 case MAINTENANCE_OUT:
2752 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2753 /* MAINTENANCE_OUT from SCC-2
2754 *
2755 * Check for emulated MO_SET_TARGET_PGS.
2756 */
2757 if (cdb[1] == MO_SET_TARGET_PGS &&
2758 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2759 cmd->execute_task =
2760 target_emulate_set_target_port_groups;
2761 }
2762
2763 size = (cdb[6] << 24) | (cdb[7] << 16) |
2764 (cdb[8] << 8) | cdb[9];
2765 } else {
2766 /* GPCMD_REPORT_KEY from multi media commands */
2767 size = (cdb[8] << 8) + cdb[9];
2768 }
2769 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2770 break;
2771 case INQUIRY:
2772 size = (cdb[3] << 8) + cdb[4];
2773 /*
2774 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2775 * See spc4r17 section 5.3
2776 */
2777 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2778 cmd->sam_task_attr = MSG_HEAD_TAG;
2779 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2780 if (!passthrough)
2781 cmd->execute_task = target_emulate_inquiry;
2782 break;
2783 case READ_BUFFER:
2784 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2785 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2786 break;
2787 case READ_CAPACITY:
2788 size = READ_CAP_LEN;
2789 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2790 if (!passthrough)
2791 cmd->execute_task = target_emulate_readcapacity;
2792 break;
2793 case READ_MEDIA_SERIAL_NUMBER:
2794 case SECURITY_PROTOCOL_IN:
2795 case SECURITY_PROTOCOL_OUT:
2796 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2797 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2798 break;
2799 case SERVICE_ACTION_IN:
2800 switch (cmd->t_task_cdb[1] & 0x1f) {
2801 case SAI_READ_CAPACITY_16:
2802 if (!passthrough)
2803 cmd->execute_task =
2804 target_emulate_readcapacity_16;
2805 break;
2806 default:
2807 if (passthrough)
2808 break;
2809
2810 pr_err("Unsupported SA: 0x%02x\n",
2811 cmd->t_task_cdb[1] & 0x1f);
2812 goto out_unsupported_cdb;
2813 }
2814 /*FALLTHROUGH*/
2815 case ACCESS_CONTROL_IN:
2816 case ACCESS_CONTROL_OUT:
2817 case EXTENDED_COPY:
2818 case READ_ATTRIBUTE:
2819 case RECEIVE_COPY_RESULTS:
2820 case WRITE_ATTRIBUTE:
2821 size = (cdb[10] << 24) | (cdb[11] << 16) |
2822 (cdb[12] << 8) | cdb[13];
2823 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2824 break;
2825 case RECEIVE_DIAGNOSTIC:
2826 case SEND_DIAGNOSTIC:
2827 size = (cdb[3] << 8) | cdb[4];
2828 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2829 break;
2830 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2831 #if 0
2832 case GPCMD_READ_CD:
2833 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2834 size = (2336 * sectors);
2835 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836 break;
2837 #endif
2838 case READ_TOC:
2839 size = cdb[8];
2840 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2841 break;
2842 case REQUEST_SENSE:
2843 size = cdb[4];
2844 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2845 if (!passthrough)
2846 cmd->execute_task = target_emulate_request_sense;
2847 break;
2848 case READ_ELEMENT_STATUS:
2849 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2850 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2851 break;
2852 case WRITE_BUFFER:
2853 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2854 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2855 break;
2856 case RESERVE:
2857 case RESERVE_10:
2858 /*
2859 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2860 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2861 */
2862 if (cdb[0] == RESERVE_10)
2863 size = (cdb[7] << 8) | cdb[8];
2864 else
2865 size = cmd->data_length;
2866
2867 /*
2868 * Setup the legacy emulated handler for SPC-2 and
2869 * >= SPC-3 compatible reservation handling (CRH=1)
2870 * Otherwise, we assume the underlying SCSI logic is
2871 * is running in SPC_PASSTHROUGH, and wants reservations
2872 * emulation disabled.
2873 */
2874 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2875 cmd->execute_task = target_scsi2_reservation_reserve;
2876 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2877 break;
2878 case RELEASE:
2879 case RELEASE_10:
2880 /*
2881 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2882 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2883 */
2884 if (cdb[0] == RELEASE_10)
2885 size = (cdb[7] << 8) | cdb[8];
2886 else
2887 size = cmd->data_length;
2888
2889 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2890 cmd->execute_task = target_scsi2_reservation_release;
2891 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2892 break;
2893 case SYNCHRONIZE_CACHE:
2894 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2895 /*
2896 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2897 */
2898 if (cdb[0] == SYNCHRONIZE_CACHE) {
2899 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2900 cmd->t_task_lba = transport_lba_32(cdb);
2901 } else {
2902 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2903 cmd->t_task_lba = transport_lba_64(cdb);
2904 }
2905 if (sector_ret)
2906 goto out_unsupported_cdb;
2907
2908 size = transport_get_size(sectors, cdb, cmd);
2909 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2910
2911 if (passthrough)
2912 break;
2913
2914 /*
2915 * Check to ensure that LBA + Range does not exceed past end of
2916 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2917 */
2918 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2919 if (transport_cmd_get_valid_sectors(cmd) < 0)
2920 goto out_invalid_cdb_field;
2921 }
2922 cmd->execute_task = target_emulate_synchronize_cache;
2923 break;
2924 case UNMAP:
2925 size = get_unaligned_be16(&cdb[7]);
2926 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2927 if (!passthrough)
2928 cmd->execute_task = target_emulate_unmap;
2929 break;
2930 case WRITE_SAME_16:
2931 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2932 if (sector_ret)
2933 goto out_unsupported_cdb;
2934
2935 if (sectors)
2936 size = transport_get_size(1, cdb, cmd);
2937 else {
2938 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2939 goto out_invalid_cdb_field;
2940 }
2941
2942 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2943 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2944
2945 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2946 goto out_invalid_cdb_field;
2947 if (!passthrough)
2948 cmd->execute_task = target_emulate_write_same;
2949 break;
2950 case WRITE_SAME:
2951 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2952 if (sector_ret)
2953 goto out_unsupported_cdb;
2954
2955 if (sectors)
2956 size = transport_get_size(1, cdb, cmd);
2957 else {
2958 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2959 goto out_invalid_cdb_field;
2960 }
2961
2962 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2963 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2964 /*
2965 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2966 * of byte 1 bit 3 UNMAP instead of original reserved field
2967 */
2968 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2969 goto out_invalid_cdb_field;
2970 if (!passthrough)
2971 cmd->execute_task = target_emulate_write_same;
2972 break;
2973 case ALLOW_MEDIUM_REMOVAL:
2974 case ERASE:
2975 case REZERO_UNIT:
2976 case SEEK_10:
2977 case SPACE:
2978 case START_STOP:
2979 case TEST_UNIT_READY:
2980 case VERIFY:
2981 case WRITE_FILEMARKS:
2982 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2983 if (!passthrough)
2984 cmd->execute_task = target_emulate_noop;
2985 break;
2986 case GPCMD_CLOSE_TRACK:
2987 case INITIALIZE_ELEMENT_STATUS:
2988 case GPCMD_LOAD_UNLOAD:
2989 case GPCMD_SET_SPEED:
2990 case MOVE_MEDIUM:
2991 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2992 break;
2993 case REPORT_LUNS:
2994 cmd->execute_task = target_report_luns;
2995 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2996 /*
2997 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
2998 * See spc4r17 section 5.3
2999 */
3000 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3001 cmd->sam_task_attr = MSG_HEAD_TAG;
3002 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3003 break;
3004 default:
3005 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3006 " 0x%02x, sending CHECK_CONDITION.\n",
3007 cmd->se_tfo->get_fabric_name(), cdb[0]);
3008 goto out_unsupported_cdb;
3009 }
3010
3011 if (size != cmd->data_length) {
3012 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3013 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3014 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3015 cmd->data_length, size, cdb[0]);
3016
3017 cmd->cmd_spdtl = size;
3018
3019 if (cmd->data_direction == DMA_TO_DEVICE) {
3020 pr_err("Rejecting underflow/overflow"
3021 " WRITE data\n");
3022 goto out_invalid_cdb_field;
3023 }
3024 /*
3025 * Reject READ_* or WRITE_* with overflow/underflow for
3026 * type SCF_SCSI_DATA_SG_IO_CDB.
3027 */
3028 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3029 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3030 " CDB on non 512-byte sector setup subsystem"
3031 " plugin: %s\n", dev->transport->name);
3032 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3033 goto out_invalid_cdb_field;
3034 }
3035
3036 if (size > cmd->data_length) {
3037 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3038 cmd->residual_count = (size - cmd->data_length);
3039 } else {
3040 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3041 cmd->residual_count = (cmd->data_length - size);
3042 }
3043 cmd->data_length = size;
3044 }
3045
3046 /* reject any command that we don't have a handler for */
3047 if (!(passthrough || cmd->execute_task ||
3048 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3049 goto out_unsupported_cdb;
3050
3051 /* Let's limit control cdbs to a page, for simplicity's sake. */
3052 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3053 size > PAGE_SIZE)
3054 goto out_invalid_cdb_field;
3055
3056 transport_set_supported_SAM_opcode(cmd);
3057 return ret;
3058
3059 out_unsupported_cdb:
3060 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3061 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3062 return -EINVAL;
3063 out_invalid_cdb_field:
3064 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3065 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3066 return -EINVAL;
3067 }
3068
3069 /*
3070 * Called from I/O completion to determine which dormant/delayed
3071 * and ordered cmds need to have their tasks added to the execution queue.
3072 */
3073 static void transport_complete_task_attr(struct se_cmd *cmd)
3074 {
3075 struct se_device *dev = cmd->se_dev;
3076 struct se_cmd *cmd_p, *cmd_tmp;
3077 int new_active_tasks = 0;
3078
3079 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3080 atomic_dec(&dev->simple_cmds);
3081 smp_mb__after_atomic_dec();
3082 dev->dev_cur_ordered_id++;
3083 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3084 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3085 cmd->se_ordered_id);
3086 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3087 dev->dev_cur_ordered_id++;
3088 pr_debug("Incremented dev_cur_ordered_id: %u for"
3089 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3090 cmd->se_ordered_id);
3091 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3092 atomic_dec(&dev->dev_ordered_sync);
3093 smp_mb__after_atomic_dec();
3094
3095 dev->dev_cur_ordered_id++;
3096 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3097 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3098 }
3099 /*
3100 * Process all commands up to the last received
3101 * ORDERED task attribute which requires another blocking
3102 * boundary
3103 */
3104 spin_lock(&dev->delayed_cmd_lock);
3105 list_for_each_entry_safe(cmd_p, cmd_tmp,
3106 &dev->delayed_cmd_list, se_delayed_node) {
3107
3108 list_del(&cmd_p->se_delayed_node);
3109 spin_unlock(&dev->delayed_cmd_lock);
3110
3111 pr_debug("Calling add_tasks() for"
3112 " cmd_p: 0x%02x Task Attr: 0x%02x"
3113 " Dormant -> Active, se_ordered_id: %u\n",
3114 cmd_p->t_task_cdb[0],
3115 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3116
3117 transport_add_tasks_from_cmd(cmd_p);
3118 new_active_tasks++;
3119
3120 spin_lock(&dev->delayed_cmd_lock);
3121 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3122 break;
3123 }
3124 spin_unlock(&dev->delayed_cmd_lock);
3125 /*
3126 * If new tasks have become active, wake up the transport thread
3127 * to do the processing of the Active tasks.
3128 */
3129 if (new_active_tasks != 0)
3130 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3131 }
3132
3133 static void transport_complete_qf(struct se_cmd *cmd)
3134 {
3135 int ret = 0;
3136
3137 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3138 transport_complete_task_attr(cmd);
3139
3140 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3141 ret = cmd->se_tfo->queue_status(cmd);
3142 if (ret)
3143 goto out;
3144 }
3145
3146 switch (cmd->data_direction) {
3147 case DMA_FROM_DEVICE:
3148 ret = cmd->se_tfo->queue_data_in(cmd);
3149 break;
3150 case DMA_TO_DEVICE:
3151 if (cmd->t_bidi_data_sg) {
3152 ret = cmd->se_tfo->queue_data_in(cmd);
3153 if (ret < 0)
3154 break;
3155 }
3156 /* Fall through for DMA_TO_DEVICE */
3157 case DMA_NONE:
3158 ret = cmd->se_tfo->queue_status(cmd);
3159 break;
3160 default:
3161 break;
3162 }
3163
3164 out:
3165 if (ret < 0) {
3166 transport_handle_queue_full(cmd, cmd->se_dev);
3167 return;
3168 }
3169 transport_lun_remove_cmd(cmd);
3170 transport_cmd_check_stop_to_fabric(cmd);
3171 }
3172
3173 static void transport_handle_queue_full(
3174 struct se_cmd *cmd,
3175 struct se_device *dev)
3176 {
3177 spin_lock_irq(&dev->qf_cmd_lock);
3178 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3179 atomic_inc(&dev->dev_qf_count);
3180 smp_mb__after_atomic_inc();
3181 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3182
3183 schedule_work(&cmd->se_dev->qf_work_queue);
3184 }
3185
3186 static void target_complete_ok_work(struct work_struct *work)
3187 {
3188 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3189 int reason = 0, ret;
3190
3191 /*
3192 * Check if we need to move delayed/dormant tasks from cmds on the
3193 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3194 * Attribute.
3195 */
3196 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3197 transport_complete_task_attr(cmd);
3198 /*
3199 * Check to schedule QUEUE_FULL work, or execute an existing
3200 * cmd->transport_qf_callback()
3201 */
3202 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3203 schedule_work(&cmd->se_dev->qf_work_queue);
3204
3205 /*
3206 * Check if we need to retrieve a sense buffer from
3207 * the struct se_cmd in question.
3208 */
3209 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3210 if (transport_get_sense_data(cmd) < 0)
3211 reason = TCM_NON_EXISTENT_LUN;
3212
3213 /*
3214 * Only set when an struct se_task->task_scsi_status returned
3215 * a non GOOD status.
3216 */
3217 if (cmd->scsi_status) {
3218 ret = transport_send_check_condition_and_sense(
3219 cmd, reason, 1);
3220 if (ret == -EAGAIN || ret == -ENOMEM)
3221 goto queue_full;
3222
3223 transport_lun_remove_cmd(cmd);
3224 transport_cmd_check_stop_to_fabric(cmd);
3225 return;
3226 }
3227 }
3228 /*
3229 * Check for a callback, used by amongst other things
3230 * XDWRITE_READ_10 emulation.
3231 */
3232 if (cmd->transport_complete_callback)
3233 cmd->transport_complete_callback(cmd);
3234
3235 switch (cmd->data_direction) {
3236 case DMA_FROM_DEVICE:
3237 spin_lock(&cmd->se_lun->lun_sep_lock);
3238 if (cmd->se_lun->lun_sep) {
3239 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3240 cmd->data_length;
3241 }
3242 spin_unlock(&cmd->se_lun->lun_sep_lock);
3243
3244 ret = cmd->se_tfo->queue_data_in(cmd);
3245 if (ret == -EAGAIN || ret == -ENOMEM)
3246 goto queue_full;
3247 break;
3248 case DMA_TO_DEVICE:
3249 spin_lock(&cmd->se_lun->lun_sep_lock);
3250 if (cmd->se_lun->lun_sep) {
3251 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3252 cmd->data_length;
3253 }
3254 spin_unlock(&cmd->se_lun->lun_sep_lock);
3255 /*
3256 * Check if we need to send READ payload for BIDI-COMMAND
3257 */
3258 if (cmd->t_bidi_data_sg) {
3259 spin_lock(&cmd->se_lun->lun_sep_lock);
3260 if (cmd->se_lun->lun_sep) {
3261 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3262 cmd->data_length;
3263 }
3264 spin_unlock(&cmd->se_lun->lun_sep_lock);
3265 ret = cmd->se_tfo->queue_data_in(cmd);
3266 if (ret == -EAGAIN || ret == -ENOMEM)
3267 goto queue_full;
3268 break;
3269 }
3270 /* Fall through for DMA_TO_DEVICE */
3271 case DMA_NONE:
3272 ret = cmd->se_tfo->queue_status(cmd);
3273 if (ret == -EAGAIN || ret == -ENOMEM)
3274 goto queue_full;
3275 break;
3276 default:
3277 break;
3278 }
3279
3280 transport_lun_remove_cmd(cmd);
3281 transport_cmd_check_stop_to_fabric(cmd);
3282 return;
3283
3284 queue_full:
3285 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3286 " data_direction: %d\n", cmd, cmd->data_direction);
3287 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3288 transport_handle_queue_full(cmd, cmd->se_dev);
3289 }
3290
3291 static void transport_free_dev_tasks(struct se_cmd *cmd)
3292 {
3293 struct se_task *task, *task_tmp;
3294 unsigned long flags;
3295 LIST_HEAD(dispose_list);
3296
3297 spin_lock_irqsave(&cmd->t_state_lock, flags);
3298 list_for_each_entry_safe(task, task_tmp,
3299 &cmd->t_task_list, t_list) {
3300 if (!(task->task_flags & TF_ACTIVE))
3301 list_move_tail(&task->t_list, &dispose_list);
3302 }
3303 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3304
3305 while (!list_empty(&dispose_list)) {
3306 task = list_first_entry(&dispose_list, struct se_task, t_list);
3307
3308 if (task->task_sg != cmd->t_data_sg &&
3309 task->task_sg != cmd->t_bidi_data_sg)
3310 kfree(task->task_sg);
3311
3312 list_del(&task->t_list);
3313
3314 cmd->se_dev->transport->free_task(task);
3315 }
3316 }
3317
3318 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3319 {
3320 struct scatterlist *sg;
3321 int count;
3322
3323 for_each_sg(sgl, sg, nents, count)
3324 __free_page(sg_page(sg));
3325
3326 kfree(sgl);
3327 }
3328
3329 static inline void transport_free_pages(struct se_cmd *cmd)
3330 {
3331 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3332 return;
3333
3334 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3335 cmd->t_data_sg = NULL;
3336 cmd->t_data_nents = 0;
3337
3338 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3339 cmd->t_bidi_data_sg = NULL;
3340 cmd->t_bidi_data_nents = 0;
3341 }
3342
3343 /**
3344 * transport_release_cmd - free a command
3345 * @cmd: command to free
3346 *
3347 * This routine unconditionally frees a command, and reference counting
3348 * or list removal must be done in the caller.
3349 */
3350 static void transport_release_cmd(struct se_cmd *cmd)
3351 {
3352 BUG_ON(!cmd->se_tfo);
3353
3354 if (cmd->se_tmr_req)
3355 core_tmr_release_req(cmd->se_tmr_req);
3356 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3357 kfree(cmd->t_task_cdb);
3358 /*
3359 * Check if target_wait_for_sess_cmds() is expecting to
3360 * release se_cmd directly here..
3361 */
3362 if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3363 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3364 return;
3365
3366 cmd->se_tfo->release_cmd(cmd);
3367 }
3368
3369 /**
3370 * transport_put_cmd - release a reference to a command
3371 * @cmd: command to release
3372 *
3373 * This routine releases our reference to the command and frees it if possible.
3374 */
3375 static void transport_put_cmd(struct se_cmd *cmd)
3376 {
3377 unsigned long flags;
3378 int free_tasks = 0;
3379
3380 spin_lock_irqsave(&cmd->t_state_lock, flags);
3381 if (atomic_read(&cmd->t_fe_count)) {
3382 if (!atomic_dec_and_test(&cmd->t_fe_count))
3383 goto out_busy;
3384 }
3385
3386 if (atomic_read(&cmd->t_se_count)) {
3387 if (!atomic_dec_and_test(&cmd->t_se_count))
3388 goto out_busy;
3389 }
3390
3391 if (atomic_read(&cmd->transport_dev_active)) {
3392 atomic_set(&cmd->transport_dev_active, 0);
3393 transport_all_task_dev_remove_state(cmd);
3394 free_tasks = 1;
3395 }
3396 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3397
3398 if (free_tasks != 0)
3399 transport_free_dev_tasks(cmd);
3400
3401 transport_free_pages(cmd);
3402 transport_release_cmd(cmd);
3403 return;
3404 out_busy:
3405 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3406 }
3407
3408 /*
3409 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3410 * allocating in the core.
3411 * @cmd: Associated se_cmd descriptor
3412 * @mem: SGL style memory for TCM WRITE / READ
3413 * @sg_mem_num: Number of SGL elements
3414 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3415 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3416 *
3417 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3418 * of parameters.
3419 */
3420 int transport_generic_map_mem_to_cmd(
3421 struct se_cmd *cmd,
3422 struct scatterlist *sgl,
3423 u32 sgl_count,
3424 struct scatterlist *sgl_bidi,
3425 u32 sgl_bidi_count)
3426 {
3427 if (!sgl || !sgl_count)
3428 return 0;
3429
3430 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3431 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3432 /*
3433 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3434 * scatterlists already have been set to follow what the fabric
3435 * passes for the original expected data transfer length.
3436 */
3437 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3438 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3439 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3440 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3441 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3442 return -EINVAL;
3443 }
3444
3445 cmd->t_data_sg = sgl;
3446 cmd->t_data_nents = sgl_count;
3447
3448 if (sgl_bidi && sgl_bidi_count) {
3449 cmd->t_bidi_data_sg = sgl_bidi;
3450 cmd->t_bidi_data_nents = sgl_bidi_count;
3451 }
3452 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3453 }
3454
3455 return 0;
3456 }
3457 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3458
3459 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3460 {
3461 struct scatterlist *sg = cmd->t_data_sg;
3462
3463 BUG_ON(!sg);
3464 /*
3465 * We need to take into account a possible offset here for fabrics like
3466 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3467 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3468 */
3469 return kmap(sg_page(sg)) + sg->offset;
3470 }
3471 EXPORT_SYMBOL(transport_kmap_first_data_page);
3472
3473 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3474 {
3475 kunmap(sg_page(cmd->t_data_sg));
3476 }
3477 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3478
3479 static int
3480 transport_generic_get_mem(struct se_cmd *cmd)
3481 {
3482 u32 length = cmd->data_length;
3483 unsigned int nents;
3484 struct page *page;
3485 int i = 0;
3486
3487 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3488 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3489 if (!cmd->t_data_sg)
3490 return -ENOMEM;
3491
3492 cmd->t_data_nents = nents;
3493 sg_init_table(cmd->t_data_sg, nents);
3494
3495 while (length) {
3496 u32 page_len = min_t(u32, length, PAGE_SIZE);
3497 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3498 if (!page)
3499 goto out;
3500
3501 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3502 length -= page_len;
3503 i++;
3504 }
3505 return 0;
3506
3507 out:
3508 while (i >= 0) {
3509 __free_page(sg_page(&cmd->t_data_sg[i]));
3510 i--;
3511 }
3512 kfree(cmd->t_data_sg);
3513 cmd->t_data_sg = NULL;
3514 return -ENOMEM;
3515 }
3516
3517 /* Reduce sectors if they are too long for the device */
3518 static inline sector_t transport_limit_task_sectors(
3519 struct se_device *dev,
3520 unsigned long long lba,
3521 sector_t sectors)
3522 {
3523 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3524
3525 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3526 if ((lba + sectors) > transport_dev_end_lba(dev))
3527 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3528
3529 return sectors;
3530 }
3531
3532
3533 /*
3534 * This function can be used by HW target mode drivers to create a linked
3535 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3536 * This is intended to be called during the completion path by TCM Core
3537 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3538 */
3539 void transport_do_task_sg_chain(struct se_cmd *cmd)
3540 {
3541 struct scatterlist *sg_first = NULL;
3542 struct scatterlist *sg_prev = NULL;
3543 int sg_prev_nents = 0;
3544 struct scatterlist *sg;
3545 struct se_task *task;
3546 u32 chained_nents = 0;
3547 int i;
3548
3549 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3550
3551 /*
3552 * Walk the struct se_task list and setup scatterlist chains
3553 * for each contiguously allocated struct se_task->task_sg[].
3554 */
3555 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3556 if (!task->task_sg)
3557 continue;
3558
3559 if (!sg_first) {
3560 sg_first = task->task_sg;
3561 chained_nents = task->task_sg_nents;
3562 } else {
3563 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3564 chained_nents += task->task_sg_nents;
3565 }
3566 /*
3567 * For the padded tasks, use the extra SGL vector allocated
3568 * in transport_allocate_data_tasks() for the sg_prev_nents
3569 * offset into sg_chain() above.
3570 *
3571 * We do not need the padding for the last task (or a single
3572 * task), but in that case we will never use the sg_prev_nents
3573 * value below which would be incorrect.
3574 */
3575 sg_prev_nents = (task->task_sg_nents + 1);
3576 sg_prev = task->task_sg;
3577 }
3578 /*
3579 * Setup the starting pointer and total t_tasks_sg_linked_no including
3580 * padding SGs for linking and to mark the end.
3581 */
3582 cmd->t_tasks_sg_chained = sg_first;
3583 cmd->t_tasks_sg_chained_no = chained_nents;
3584
3585 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3586 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3587 cmd->t_tasks_sg_chained_no);
3588
3589 for_each_sg(cmd->t_tasks_sg_chained, sg,
3590 cmd->t_tasks_sg_chained_no, i) {
3591
3592 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3593 i, sg, sg_page(sg), sg->length, sg->offset);
3594 if (sg_is_chain(sg))
3595 pr_debug("SG: %p sg_is_chain=1\n", sg);
3596 if (sg_is_last(sg))
3597 pr_debug("SG: %p sg_is_last=1\n", sg);
3598 }
3599 }
3600 EXPORT_SYMBOL(transport_do_task_sg_chain);
3601
3602 /*
3603 * Break up cmd into chunks transport can handle
3604 */
3605 static int
3606 transport_allocate_data_tasks(struct se_cmd *cmd,
3607 enum dma_data_direction data_direction,
3608 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3609 {
3610 struct se_device *dev = cmd->se_dev;
3611 int task_count, i;
3612 unsigned long long lba;
3613 sector_t sectors, dev_max_sectors;
3614 u32 sector_size;
3615
3616 if (transport_cmd_get_valid_sectors(cmd) < 0)
3617 return -EINVAL;
3618
3619 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3620 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3621
3622 WARN_ON(cmd->data_length % sector_size);
3623
3624 lba = cmd->t_task_lba;
3625 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3626 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3627
3628 /*
3629 * If we need just a single task reuse the SG list in the command
3630 * and avoid a lot of work.
3631 */
3632 if (task_count == 1) {
3633 struct se_task *task;
3634 unsigned long flags;
3635
3636 task = transport_generic_get_task(cmd, data_direction);
3637 if (!task)
3638 return -ENOMEM;
3639
3640 task->task_sg = cmd_sg;
3641 task->task_sg_nents = sgl_nents;
3642
3643 task->task_lba = lba;
3644 task->task_sectors = sectors;
3645 task->task_size = task->task_sectors * sector_size;
3646
3647 spin_lock_irqsave(&cmd->t_state_lock, flags);
3648 list_add_tail(&task->t_list, &cmd->t_task_list);
3649 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3650
3651 return task_count;
3652 }
3653
3654 for (i = 0; i < task_count; i++) {
3655 struct se_task *task;
3656 unsigned int task_size, task_sg_nents_padded;
3657 struct scatterlist *sg;
3658 unsigned long flags;
3659 int count;
3660
3661 task = transport_generic_get_task(cmd, data_direction);
3662 if (!task)
3663 return -ENOMEM;
3664
3665 task->task_lba = lba;
3666 task->task_sectors = min(sectors, dev_max_sectors);
3667 task->task_size = task->task_sectors * sector_size;
3668
3669 /*
3670 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3671 * in order to calculate the number per task SGL entries
3672 */
3673 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3674 /*
3675 * Check if the fabric module driver is requesting that all
3676 * struct se_task->task_sg[] be chained together.. If so,
3677 * then allocate an extra padding SG entry for linking and
3678 * marking the end of the chained SGL for every task except
3679 * the last one for (task_count > 1) operation, or skipping
3680 * the extra padding for the (task_count == 1) case.
3681 */
3682 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3683 task_sg_nents_padded = (task->task_sg_nents + 1);
3684 } else
3685 task_sg_nents_padded = task->task_sg_nents;
3686
3687 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3688 task_sg_nents_padded, GFP_KERNEL);
3689 if (!task->task_sg) {
3690 cmd->se_dev->transport->free_task(task);
3691 return -ENOMEM;
3692 }
3693
3694 sg_init_table(task->task_sg, task_sg_nents_padded);
3695
3696 task_size = task->task_size;
3697
3698 /* Build new sgl, only up to task_size */
3699 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3700 if (cmd_sg->length > task_size)
3701 break;
3702
3703 *sg = *cmd_sg;
3704 task_size -= cmd_sg->length;
3705 cmd_sg = sg_next(cmd_sg);
3706 }
3707
3708 lba += task->task_sectors;
3709 sectors -= task->task_sectors;
3710
3711 spin_lock_irqsave(&cmd->t_state_lock, flags);
3712 list_add_tail(&task->t_list, &cmd->t_task_list);
3713 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3714 }
3715
3716 return task_count;
3717 }
3718
3719 static int
3720 transport_allocate_control_task(struct se_cmd *cmd)
3721 {
3722 struct se_task *task;
3723 unsigned long flags;
3724
3725 task = transport_generic_get_task(cmd, cmd->data_direction);
3726 if (!task)
3727 return -ENOMEM;
3728
3729 task->task_sg = cmd->t_data_sg;
3730 task->task_size = cmd->data_length;
3731 task->task_sg_nents = cmd->t_data_nents;
3732
3733 spin_lock_irqsave(&cmd->t_state_lock, flags);
3734 list_add_tail(&task->t_list, &cmd->t_task_list);
3735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3736
3737 /* Success! Return number of tasks allocated */
3738 return 1;
3739 }
3740
3741 /*
3742 * Allocate any required ressources to execute the command, and either place
3743 * it on the execution queue if possible. For writes we might not have the
3744 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3745 */
3746 int transport_generic_new_cmd(struct se_cmd *cmd)
3747 {
3748 struct se_device *dev = cmd->se_dev;
3749 int task_cdbs, task_cdbs_bidi = 0;
3750 int set_counts = 1;
3751 int ret = 0;
3752
3753 /*
3754 * Determine is the TCM fabric module has already allocated physical
3755 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3756 * beforehand.
3757 */
3758 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3759 cmd->data_length) {
3760 ret = transport_generic_get_mem(cmd);
3761 if (ret < 0)
3762 goto out_fail;
3763 }
3764
3765 /*
3766 * For BIDI command set up the read tasks first.
3767 */
3768 if (cmd->t_bidi_data_sg &&
3769 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3770 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3771
3772 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3773 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3774 cmd->t_bidi_data_nents);
3775 if (task_cdbs_bidi <= 0)
3776 goto out_fail;
3777
3778 atomic_inc(&cmd->t_fe_count);
3779 atomic_inc(&cmd->t_se_count);
3780 set_counts = 0;
3781 }
3782
3783 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3784 task_cdbs = transport_allocate_data_tasks(cmd,
3785 cmd->data_direction, cmd->t_data_sg,
3786 cmd->t_data_nents);
3787 } else {
3788 task_cdbs = transport_allocate_control_task(cmd);
3789 }
3790
3791 if (task_cdbs < 0)
3792 goto out_fail;
3793 else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3794 cmd->t_state = TRANSPORT_COMPLETE;
3795 atomic_set(&cmd->t_transport_active, 1);
3796 INIT_WORK(&cmd->work, target_complete_ok_work);
3797 queue_work(target_completion_wq, &cmd->work);
3798 return 0;
3799 }
3800
3801 if (set_counts) {
3802 atomic_inc(&cmd->t_fe_count);
3803 atomic_inc(&cmd->t_se_count);
3804 }
3805
3806 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3807 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3808 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3809
3810 /*
3811 * For WRITEs, let the fabric know its buffer is ready..
3812 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3813 * will be added to the struct se_device execution queue after its WRITE
3814 * data has arrived. (ie: It gets handled by the transport processing
3815 * thread a second time)
3816 */
3817 if (cmd->data_direction == DMA_TO_DEVICE) {
3818 transport_add_tasks_to_state_queue(cmd);
3819 return transport_generic_write_pending(cmd);
3820 }
3821 /*
3822 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3823 * to the execution queue.
3824 */
3825 transport_execute_tasks(cmd);
3826 return 0;
3827
3828 out_fail:
3829 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3830 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3831 return -EINVAL;
3832 }
3833 EXPORT_SYMBOL(transport_generic_new_cmd);
3834
3835 /* transport_generic_process_write():
3836 *
3837 *
3838 */
3839 void transport_generic_process_write(struct se_cmd *cmd)
3840 {
3841 transport_execute_tasks(cmd);
3842 }
3843 EXPORT_SYMBOL(transport_generic_process_write);
3844
3845 static void transport_write_pending_qf(struct se_cmd *cmd)
3846 {
3847 int ret;
3848
3849 ret = cmd->se_tfo->write_pending(cmd);
3850 if (ret == -EAGAIN || ret == -ENOMEM) {
3851 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3852 cmd);
3853 transport_handle_queue_full(cmd, cmd->se_dev);
3854 }
3855 }
3856
3857 static int transport_generic_write_pending(struct se_cmd *cmd)
3858 {
3859 unsigned long flags;
3860 int ret;
3861
3862 spin_lock_irqsave(&cmd->t_state_lock, flags);
3863 cmd->t_state = TRANSPORT_WRITE_PENDING;
3864 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3865
3866 /*
3867 * Clear the se_cmd for WRITE_PENDING status in order to set
3868 * cmd->t_transport_active=0 so that transport_generic_handle_data
3869 * can be called from HW target mode interrupt code. This is safe
3870 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3871 * because the se_cmd->se_lun pointer is not being cleared.
3872 */
3873 transport_cmd_check_stop(cmd, 1, 0);
3874
3875 /*
3876 * Call the fabric write_pending function here to let the
3877 * frontend know that WRITE buffers are ready.
3878 */
3879 ret = cmd->se_tfo->write_pending(cmd);
3880 if (ret == -EAGAIN || ret == -ENOMEM)
3881 goto queue_full;
3882 else if (ret < 0)
3883 return ret;
3884
3885 return 1;
3886
3887 queue_full:
3888 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3889 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3890 transport_handle_queue_full(cmd, cmd->se_dev);
3891 return 0;
3892 }
3893
3894 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3895 {
3896 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3897 if (wait_for_tasks && cmd->se_tmr_req)
3898 transport_wait_for_tasks(cmd);
3899
3900 transport_release_cmd(cmd);
3901 } else {
3902 if (wait_for_tasks)
3903 transport_wait_for_tasks(cmd);
3904
3905 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3906
3907 if (cmd->se_lun)
3908 transport_lun_remove_cmd(cmd);
3909
3910 transport_free_dev_tasks(cmd);
3911
3912 transport_put_cmd(cmd);
3913 }
3914 }
3915 EXPORT_SYMBOL(transport_generic_free_cmd);
3916
3917 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3918 * @se_sess: session to reference
3919 * @se_cmd: command descriptor to add
3920 */
3921 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3922 {
3923 unsigned long flags;
3924
3925 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3926 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3927 se_cmd->check_release = 1;
3928 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3929 }
3930 EXPORT_SYMBOL(target_get_sess_cmd);
3931
3932 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
3933 * @se_sess: session to reference
3934 * @se_cmd: command descriptor to drop
3935 */
3936 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3937 {
3938 unsigned long flags;
3939
3940 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3941 if (list_empty(&se_cmd->se_cmd_list)) {
3942 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3943 WARN_ON(1);
3944 return 0;
3945 }
3946
3947 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3948 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3949 complete(&se_cmd->cmd_wait_comp);
3950 return 1;
3951 }
3952 list_del(&se_cmd->se_cmd_list);
3953 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3954
3955 return 0;
3956 }
3957 EXPORT_SYMBOL(target_put_sess_cmd);
3958
3959 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3960 * @se_sess: session to split
3961 */
3962 void target_splice_sess_cmd_list(struct se_session *se_sess)
3963 {
3964 struct se_cmd *se_cmd;
3965 unsigned long flags;
3966
3967 WARN_ON(!list_empty(&se_sess->sess_wait_list));
3968 INIT_LIST_HEAD(&se_sess->sess_wait_list);
3969
3970 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3971 se_sess->sess_tearing_down = 1;
3972
3973 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
3974
3975 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
3976 se_cmd->cmd_wait_set = 1;
3977
3978 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3979 }
3980 EXPORT_SYMBOL(target_splice_sess_cmd_list);
3981
3982 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
3983 * @se_sess: session to wait for active I/O
3984 * @wait_for_tasks: Make extra transport_wait_for_tasks call
3985 */
3986 void target_wait_for_sess_cmds(
3987 struct se_session *se_sess,
3988 int wait_for_tasks)
3989 {
3990 struct se_cmd *se_cmd, *tmp_cmd;
3991 bool rc = false;
3992
3993 list_for_each_entry_safe(se_cmd, tmp_cmd,
3994 &se_sess->sess_wait_list, se_cmd_list) {
3995 list_del(&se_cmd->se_cmd_list);
3996
3997 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
3998 " %d\n", se_cmd, se_cmd->t_state,
3999 se_cmd->se_tfo->get_cmd_state(se_cmd));
4000
4001 if (wait_for_tasks) {
4002 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4003 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4004 se_cmd->se_tfo->get_cmd_state(se_cmd));
4005
4006 rc = transport_wait_for_tasks(se_cmd);
4007
4008 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4009 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4010 se_cmd->se_tfo->get_cmd_state(se_cmd));
4011 }
4012
4013 if (!rc) {
4014 wait_for_completion(&se_cmd->cmd_wait_comp);
4015 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4016 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4017 se_cmd->se_tfo->get_cmd_state(se_cmd));
4018 }
4019
4020 se_cmd->se_tfo->release_cmd(se_cmd);
4021 }
4022 }
4023 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4024
4025 /* transport_lun_wait_for_tasks():
4026 *
4027 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4028 * an struct se_lun to be successfully shutdown.
4029 */
4030 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4031 {
4032 unsigned long flags;
4033 int ret;
4034 /*
4035 * If the frontend has already requested this struct se_cmd to
4036 * be stopped, we can safely ignore this struct se_cmd.
4037 */
4038 spin_lock_irqsave(&cmd->t_state_lock, flags);
4039 if (atomic_read(&cmd->t_transport_stop)) {
4040 atomic_set(&cmd->transport_lun_stop, 0);
4041 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4042 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4043 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4044 transport_cmd_check_stop(cmd, 1, 0);
4045 return -EPERM;
4046 }
4047 atomic_set(&cmd->transport_lun_fe_stop, 1);
4048 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4049
4050 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4051
4052 ret = transport_stop_tasks_for_cmd(cmd);
4053
4054 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4055 " %d\n", cmd, cmd->t_task_list_num, ret);
4056 if (!ret) {
4057 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4058 cmd->se_tfo->get_task_tag(cmd));
4059 wait_for_completion(&cmd->transport_lun_stop_comp);
4060 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4061 cmd->se_tfo->get_task_tag(cmd));
4062 }
4063 transport_remove_cmd_from_queue(cmd);
4064
4065 return 0;
4066 }
4067
4068 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4069 {
4070 struct se_cmd *cmd = NULL;
4071 unsigned long lun_flags, cmd_flags;
4072 /*
4073 * Do exception processing and return CHECK_CONDITION status to the
4074 * Initiator Port.
4075 */
4076 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4077 while (!list_empty(&lun->lun_cmd_list)) {
4078 cmd = list_first_entry(&lun->lun_cmd_list,
4079 struct se_cmd, se_lun_node);
4080 list_del(&cmd->se_lun_node);
4081
4082 atomic_set(&cmd->transport_lun_active, 0);
4083 /*
4084 * This will notify iscsi_target_transport.c:
4085 * transport_cmd_check_stop() that a LUN shutdown is in
4086 * progress for the iscsi_cmd_t.
4087 */
4088 spin_lock(&cmd->t_state_lock);
4089 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4090 "_lun_stop for ITT: 0x%08x\n",
4091 cmd->se_lun->unpacked_lun,
4092 cmd->se_tfo->get_task_tag(cmd));
4093 atomic_set(&cmd->transport_lun_stop, 1);
4094 spin_unlock(&cmd->t_state_lock);
4095
4096 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4097
4098 if (!cmd->se_lun) {
4099 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4100 cmd->se_tfo->get_task_tag(cmd),
4101 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4102 BUG();
4103 }
4104 /*
4105 * If the Storage engine still owns the iscsi_cmd_t, determine
4106 * and/or stop its context.
4107 */
4108 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4109 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4110 cmd->se_tfo->get_task_tag(cmd));
4111
4112 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4113 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4114 continue;
4115 }
4116
4117 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4118 "_wait_for_tasks(): SUCCESS\n",
4119 cmd->se_lun->unpacked_lun,
4120 cmd->se_tfo->get_task_tag(cmd));
4121
4122 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4123 if (!atomic_read(&cmd->transport_dev_active)) {
4124 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4125 goto check_cond;
4126 }
4127 atomic_set(&cmd->transport_dev_active, 0);
4128 transport_all_task_dev_remove_state(cmd);
4129 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4130
4131 transport_free_dev_tasks(cmd);
4132 /*
4133 * The Storage engine stopped this struct se_cmd before it was
4134 * send to the fabric frontend for delivery back to the
4135 * Initiator Node. Return this SCSI CDB back with an
4136 * CHECK_CONDITION status.
4137 */
4138 check_cond:
4139 transport_send_check_condition_and_sense(cmd,
4140 TCM_NON_EXISTENT_LUN, 0);
4141 /*
4142 * If the fabric frontend is waiting for this iscsi_cmd_t to
4143 * be released, notify the waiting thread now that LU has
4144 * finished accessing it.
4145 */
4146 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4147 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4148 pr_debug("SE_LUN[%d] - Detected FE stop for"
4149 " struct se_cmd: %p ITT: 0x%08x\n",
4150 lun->unpacked_lun,
4151 cmd, cmd->se_tfo->get_task_tag(cmd));
4152
4153 spin_unlock_irqrestore(&cmd->t_state_lock,
4154 cmd_flags);
4155 transport_cmd_check_stop(cmd, 1, 0);
4156 complete(&cmd->transport_lun_fe_stop_comp);
4157 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4158 continue;
4159 }
4160 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4161 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4162
4163 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4164 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4165 }
4166 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4167 }
4168
4169 static int transport_clear_lun_thread(void *p)
4170 {
4171 struct se_lun *lun = (struct se_lun *)p;
4172
4173 __transport_clear_lun_from_sessions(lun);
4174 complete(&lun->lun_shutdown_comp);
4175
4176 return 0;
4177 }
4178
4179 int transport_clear_lun_from_sessions(struct se_lun *lun)
4180 {
4181 struct task_struct *kt;
4182
4183 kt = kthread_run(transport_clear_lun_thread, lun,
4184 "tcm_cl_%u", lun->unpacked_lun);
4185 if (IS_ERR(kt)) {
4186 pr_err("Unable to start clear_lun thread\n");
4187 return PTR_ERR(kt);
4188 }
4189 wait_for_completion(&lun->lun_shutdown_comp);
4190
4191 return 0;
4192 }
4193
4194 /**
4195 * transport_wait_for_tasks - wait for completion to occur
4196 * @cmd: command to wait
4197 *
4198 * Called from frontend fabric context to wait for storage engine
4199 * to pause and/or release frontend generated struct se_cmd.
4200 */
4201 bool transport_wait_for_tasks(struct se_cmd *cmd)
4202 {
4203 unsigned long flags;
4204
4205 spin_lock_irqsave(&cmd->t_state_lock, flags);
4206 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4207 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4208 return false;
4209 }
4210 /*
4211 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4212 * has been set in transport_set_supported_SAM_opcode().
4213 */
4214 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4215 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4216 return false;
4217 }
4218 /*
4219 * If we are already stopped due to an external event (ie: LUN shutdown)
4220 * sleep until the connection can have the passed struct se_cmd back.
4221 * The cmd->transport_lun_stopped_sem will be upped by
4222 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4223 * has completed its operation on the struct se_cmd.
4224 */
4225 if (atomic_read(&cmd->transport_lun_stop)) {
4226
4227 pr_debug("wait_for_tasks: Stopping"
4228 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4229 "_stop_comp); for ITT: 0x%08x\n",
4230 cmd->se_tfo->get_task_tag(cmd));
4231 /*
4232 * There is a special case for WRITES where a FE exception +
4233 * LUN shutdown means ConfigFS context is still sleeping on
4234 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4235 * We go ahead and up transport_lun_stop_comp just to be sure
4236 * here.
4237 */
4238 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4239 complete(&cmd->transport_lun_stop_comp);
4240 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4241 spin_lock_irqsave(&cmd->t_state_lock, flags);
4242
4243 transport_all_task_dev_remove_state(cmd);
4244 /*
4245 * At this point, the frontend who was the originator of this
4246 * struct se_cmd, now owns the structure and can be released through
4247 * normal means below.
4248 */
4249 pr_debug("wait_for_tasks: Stopped"
4250 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4251 "stop_comp); for ITT: 0x%08x\n",
4252 cmd->se_tfo->get_task_tag(cmd));
4253
4254 atomic_set(&cmd->transport_lun_stop, 0);
4255 }
4256 if (!atomic_read(&cmd->t_transport_active) ||
4257 atomic_read(&cmd->t_transport_aborted)) {
4258 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4259 return false;
4260 }
4261
4262 atomic_set(&cmd->t_transport_stop, 1);
4263
4264 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4265 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4266 cmd, cmd->se_tfo->get_task_tag(cmd),
4267 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4268
4269 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4270
4271 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4272
4273 wait_for_completion(&cmd->t_transport_stop_comp);
4274
4275 spin_lock_irqsave(&cmd->t_state_lock, flags);
4276 atomic_set(&cmd->t_transport_active, 0);
4277 atomic_set(&cmd->t_transport_stop, 0);
4278
4279 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4280 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4281 cmd->se_tfo->get_task_tag(cmd));
4282
4283 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4284
4285 return true;
4286 }
4287 EXPORT_SYMBOL(transport_wait_for_tasks);
4288
4289 static int transport_get_sense_codes(
4290 struct se_cmd *cmd,
4291 u8 *asc,
4292 u8 *ascq)
4293 {
4294 *asc = cmd->scsi_asc;
4295 *ascq = cmd->scsi_ascq;
4296
4297 return 0;
4298 }
4299
4300 static int transport_set_sense_codes(
4301 struct se_cmd *cmd,
4302 u8 asc,
4303 u8 ascq)
4304 {
4305 cmd->scsi_asc = asc;
4306 cmd->scsi_ascq = ascq;
4307
4308 return 0;
4309 }
4310
4311 int transport_send_check_condition_and_sense(
4312 struct se_cmd *cmd,
4313 u8 reason,
4314 int from_transport)
4315 {
4316 unsigned char *buffer = cmd->sense_buffer;
4317 unsigned long flags;
4318 int offset;
4319 u8 asc = 0, ascq = 0;
4320
4321 spin_lock_irqsave(&cmd->t_state_lock, flags);
4322 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4323 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4324 return 0;
4325 }
4326 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4327 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4328
4329 if (!reason && from_transport)
4330 goto after_reason;
4331
4332 if (!from_transport)
4333 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4334 /*
4335 * Data Segment and SenseLength of the fabric response PDU.
4336 *
4337 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4338 * from include/scsi/scsi_cmnd.h
4339 */
4340 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4341 TRANSPORT_SENSE_BUFFER);
4342 /*
4343 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4344 * SENSE KEY values from include/scsi/scsi.h
4345 */
4346 switch (reason) {
4347 case TCM_NON_EXISTENT_LUN:
4348 /* CURRENT ERROR */
4349 buffer[offset] = 0x70;
4350 /* ILLEGAL REQUEST */
4351 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4352 /* LOGICAL UNIT NOT SUPPORTED */
4353 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4354 break;
4355 case TCM_UNSUPPORTED_SCSI_OPCODE:
4356 case TCM_SECTOR_COUNT_TOO_MANY:
4357 /* CURRENT ERROR */
4358 buffer[offset] = 0x70;
4359 /* ILLEGAL REQUEST */
4360 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4361 /* INVALID COMMAND OPERATION CODE */
4362 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4363 break;
4364 case TCM_UNKNOWN_MODE_PAGE:
4365 /* CURRENT ERROR */
4366 buffer[offset] = 0x70;
4367 /* ILLEGAL REQUEST */
4368 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4369 /* INVALID FIELD IN CDB */
4370 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4371 break;
4372 case TCM_CHECK_CONDITION_ABORT_CMD:
4373 /* CURRENT ERROR */
4374 buffer[offset] = 0x70;
4375 /* ABORTED COMMAND */
4376 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4377 /* BUS DEVICE RESET FUNCTION OCCURRED */
4378 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4379 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4380 break;
4381 case TCM_INCORRECT_AMOUNT_OF_DATA:
4382 /* CURRENT ERROR */
4383 buffer[offset] = 0x70;
4384 /* ABORTED COMMAND */
4385 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4386 /* WRITE ERROR */
4387 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4388 /* NOT ENOUGH UNSOLICITED DATA */
4389 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4390 break;
4391 case TCM_INVALID_CDB_FIELD:
4392 /* CURRENT ERROR */
4393 buffer[offset] = 0x70;
4394 /* ABORTED COMMAND */
4395 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4396 /* INVALID FIELD IN CDB */
4397 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4398 break;
4399 case TCM_INVALID_PARAMETER_LIST:
4400 /* CURRENT ERROR */
4401 buffer[offset] = 0x70;
4402 /* ABORTED COMMAND */
4403 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4404 /* INVALID FIELD IN PARAMETER LIST */
4405 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4406 break;
4407 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4408 /* CURRENT ERROR */
4409 buffer[offset] = 0x70;
4410 /* ABORTED COMMAND */
4411 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4412 /* WRITE ERROR */
4413 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4414 /* UNEXPECTED_UNSOLICITED_DATA */
4415 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4416 break;
4417 case TCM_SERVICE_CRC_ERROR:
4418 /* CURRENT ERROR */
4419 buffer[offset] = 0x70;
4420 /* ABORTED COMMAND */
4421 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4422 /* PROTOCOL SERVICE CRC ERROR */
4423 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4424 /* N/A */
4425 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4426 break;
4427 case TCM_SNACK_REJECTED:
4428 /* CURRENT ERROR */
4429 buffer[offset] = 0x70;
4430 /* ABORTED COMMAND */
4431 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4432 /* READ ERROR */
4433 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4434 /* FAILED RETRANSMISSION REQUEST */
4435 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4436 break;
4437 case TCM_WRITE_PROTECTED:
4438 /* CURRENT ERROR */
4439 buffer[offset] = 0x70;
4440 /* DATA PROTECT */
4441 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4442 /* WRITE PROTECTED */
4443 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4444 break;
4445 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4446 /* CURRENT ERROR */
4447 buffer[offset] = 0x70;
4448 /* UNIT ATTENTION */
4449 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4450 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4451 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4452 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4453 break;
4454 case TCM_CHECK_CONDITION_NOT_READY:
4455 /* CURRENT ERROR */
4456 buffer[offset] = 0x70;
4457 /* Not Ready */
4458 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4459 transport_get_sense_codes(cmd, &asc, &ascq);
4460 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4461 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4462 break;
4463 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4464 default:
4465 /* CURRENT ERROR */
4466 buffer[offset] = 0x70;
4467 /* ILLEGAL REQUEST */
4468 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4469 /* LOGICAL UNIT COMMUNICATION FAILURE */
4470 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4471 break;
4472 }
4473 /*
4474 * This code uses linux/include/scsi/scsi.h SAM status codes!
4475 */
4476 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4477 /*
4478 * Automatically padded, this value is encoded in the fabric's
4479 * data_length response PDU containing the SCSI defined sense data.
4480 */
4481 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4482
4483 after_reason:
4484 return cmd->se_tfo->queue_status(cmd);
4485 }
4486 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4487
4488 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4489 {
4490 int ret = 0;
4491
4492 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4493 if (!send_status ||
4494 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4495 return 1;
4496 #if 0
4497 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4498 " status for CDB: 0x%02x ITT: 0x%08x\n",
4499 cmd->t_task_cdb[0],
4500 cmd->se_tfo->get_task_tag(cmd));
4501 #endif
4502 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4503 cmd->se_tfo->queue_status(cmd);
4504 ret = 1;
4505 }
4506 return ret;
4507 }
4508 EXPORT_SYMBOL(transport_check_aborted_status);
4509
4510 void transport_send_task_abort(struct se_cmd *cmd)
4511 {
4512 unsigned long flags;
4513
4514 spin_lock_irqsave(&cmd->t_state_lock, flags);
4515 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4516 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4517 return;
4518 }
4519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4520
4521 /*
4522 * If there are still expected incoming fabric WRITEs, we wait
4523 * until until they have completed before sending a TASK_ABORTED
4524 * response. This response with TASK_ABORTED status will be
4525 * queued back to fabric module by transport_check_aborted_status().
4526 */
4527 if (cmd->data_direction == DMA_TO_DEVICE) {
4528 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4529 atomic_inc(&cmd->t_transport_aborted);
4530 smp_mb__after_atomic_inc();
4531 }
4532 }
4533 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4534 #if 0
4535 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4536 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4537 cmd->se_tfo->get_task_tag(cmd));
4538 #endif
4539 cmd->se_tfo->queue_status(cmd);
4540 }
4541
4542 static int transport_generic_do_tmr(struct se_cmd *cmd)
4543 {
4544 struct se_device *dev = cmd->se_dev;
4545 struct se_tmr_req *tmr = cmd->se_tmr_req;
4546 int ret;
4547
4548 switch (tmr->function) {
4549 case TMR_ABORT_TASK:
4550 tmr->response = TMR_FUNCTION_REJECTED;
4551 break;
4552 case TMR_ABORT_TASK_SET:
4553 case TMR_CLEAR_ACA:
4554 case TMR_CLEAR_TASK_SET:
4555 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4556 break;
4557 case TMR_LUN_RESET:
4558 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4559 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4560 TMR_FUNCTION_REJECTED;
4561 break;
4562 case TMR_TARGET_WARM_RESET:
4563 tmr->response = TMR_FUNCTION_REJECTED;
4564 break;
4565 case TMR_TARGET_COLD_RESET:
4566 tmr->response = TMR_FUNCTION_REJECTED;
4567 break;
4568 default:
4569 pr_err("Uknown TMR function: 0x%02x.\n",
4570 tmr->function);
4571 tmr->response = TMR_FUNCTION_REJECTED;
4572 break;
4573 }
4574
4575 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4576 cmd->se_tfo->queue_tm_rsp(cmd);
4577
4578 transport_cmd_check_stop_to_fabric(cmd);
4579 return 0;
4580 }
4581
4582 /* transport_processing_thread():
4583 *
4584 *
4585 */
4586 static int transport_processing_thread(void *param)
4587 {
4588 int ret;
4589 struct se_cmd *cmd;
4590 struct se_device *dev = (struct se_device *) param;
4591
4592 while (!kthread_should_stop()) {
4593 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4594 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4595 kthread_should_stop());
4596 if (ret < 0)
4597 goto out;
4598
4599 get_cmd:
4600 __transport_execute_tasks(dev);
4601
4602 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4603 if (!cmd)
4604 continue;
4605
4606 switch (cmd->t_state) {
4607 case TRANSPORT_NEW_CMD:
4608 BUG();
4609 break;
4610 case TRANSPORT_NEW_CMD_MAP:
4611 if (!cmd->se_tfo->new_cmd_map) {
4612 pr_err("cmd->se_tfo->new_cmd_map is"
4613 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4614 BUG();
4615 }
4616 ret = cmd->se_tfo->new_cmd_map(cmd);
4617 if (ret < 0) {
4618 transport_generic_request_failure(cmd);
4619 break;
4620 }
4621 ret = transport_generic_new_cmd(cmd);
4622 if (ret < 0) {
4623 transport_generic_request_failure(cmd);
4624 break;
4625 }
4626 break;
4627 case TRANSPORT_PROCESS_WRITE:
4628 transport_generic_process_write(cmd);
4629 break;
4630 case TRANSPORT_PROCESS_TMR:
4631 transport_generic_do_tmr(cmd);
4632 break;
4633 case TRANSPORT_COMPLETE_QF_WP:
4634 transport_write_pending_qf(cmd);
4635 break;
4636 case TRANSPORT_COMPLETE_QF_OK:
4637 transport_complete_qf(cmd);
4638 break;
4639 default:
4640 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4641 "i_state: %d on SE LUN: %u\n",
4642 cmd->t_state,
4643 cmd->se_tfo->get_task_tag(cmd),
4644 cmd->se_tfo->get_cmd_state(cmd),
4645 cmd->se_lun->unpacked_lun);
4646 BUG();
4647 }
4648
4649 goto get_cmd;
4650 }
4651
4652 out:
4653 WARN_ON(!list_empty(&dev->state_task_list));
4654 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4655 dev->process_thread = NULL;
4656 return 0;
4657 }
This page took 0.133777 seconds and 5 git commands to generate.