Merge tag 'drm-intel-fixes-2015-08-14' into drm-intel-next-fixes
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42
43 #include <target/target_core_base.h>
44 #include <target/target_core_backend.h>
45 #include <target/target_core_fabric.h>
46
47 #include "target_core_internal.h"
48 #include "target_core_alua.h"
49 #include "target_core_pr.h"
50 #include "target_core_ua.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/target.h>
54
55 static struct workqueue_struct *target_completion_wq;
56 static struct kmem_cache *se_sess_cache;
57 struct kmem_cache *se_ua_cache;
58 struct kmem_cache *t10_pr_reg_cache;
59 struct kmem_cache *t10_alua_lu_gp_cache;
60 struct kmem_cache *t10_alua_lu_gp_mem_cache;
61 struct kmem_cache *t10_alua_tg_pt_gp_cache;
62 struct kmem_cache *t10_alua_lba_map_cache;
63 struct kmem_cache *t10_alua_lba_map_mem_cache;
64
65 static void transport_complete_task_attr(struct se_cmd *cmd);
66 static void transport_handle_queue_full(struct se_cmd *cmd,
67 struct se_device *dev);
68 static int transport_put_cmd(struct se_cmd *cmd);
69 static void target_complete_ok_work(struct work_struct *work);
70
71 int init_se_kmem_caches(void)
72 {
73 se_sess_cache = kmem_cache_create("se_sess_cache",
74 sizeof(struct se_session), __alignof__(struct se_session),
75 0, NULL);
76 if (!se_sess_cache) {
77 pr_err("kmem_cache_create() for struct se_session"
78 " failed\n");
79 goto out;
80 }
81 se_ua_cache = kmem_cache_create("se_ua_cache",
82 sizeof(struct se_ua), __alignof__(struct se_ua),
83 0, NULL);
84 if (!se_ua_cache) {
85 pr_err("kmem_cache_create() for struct se_ua failed\n");
86 goto out_free_sess_cache;
87 }
88 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
89 sizeof(struct t10_pr_registration),
90 __alignof__(struct t10_pr_registration), 0, NULL);
91 if (!t10_pr_reg_cache) {
92 pr_err("kmem_cache_create() for struct t10_pr_registration"
93 " failed\n");
94 goto out_free_ua_cache;
95 }
96 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
97 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
98 0, NULL);
99 if (!t10_alua_lu_gp_cache) {
100 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
101 " failed\n");
102 goto out_free_pr_reg_cache;
103 }
104 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
105 sizeof(struct t10_alua_lu_gp_member),
106 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
107 if (!t10_alua_lu_gp_mem_cache) {
108 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
109 "cache failed\n");
110 goto out_free_lu_gp_cache;
111 }
112 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
113 sizeof(struct t10_alua_tg_pt_gp),
114 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
115 if (!t10_alua_tg_pt_gp_cache) {
116 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
117 "cache failed\n");
118 goto out_free_lu_gp_mem_cache;
119 }
120 t10_alua_lba_map_cache = kmem_cache_create(
121 "t10_alua_lba_map_cache",
122 sizeof(struct t10_alua_lba_map),
123 __alignof__(struct t10_alua_lba_map), 0, NULL);
124 if (!t10_alua_lba_map_cache) {
125 pr_err("kmem_cache_create() for t10_alua_lba_map_"
126 "cache failed\n");
127 goto out_free_tg_pt_gp_cache;
128 }
129 t10_alua_lba_map_mem_cache = kmem_cache_create(
130 "t10_alua_lba_map_mem_cache",
131 sizeof(struct t10_alua_lba_map_member),
132 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
133 if (!t10_alua_lba_map_mem_cache) {
134 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
135 "cache failed\n");
136 goto out_free_lba_map_cache;
137 }
138
139 target_completion_wq = alloc_workqueue("target_completion",
140 WQ_MEM_RECLAIM, 0);
141 if (!target_completion_wq)
142 goto out_free_lba_map_mem_cache;
143
144 return 0;
145
146 out_free_lba_map_mem_cache:
147 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
148 out_free_lba_map_cache:
149 kmem_cache_destroy(t10_alua_lba_map_cache);
150 out_free_tg_pt_gp_cache:
151 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
152 out_free_lu_gp_mem_cache:
153 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
154 out_free_lu_gp_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_cache);
156 out_free_pr_reg_cache:
157 kmem_cache_destroy(t10_pr_reg_cache);
158 out_free_ua_cache:
159 kmem_cache_destroy(se_ua_cache);
160 out_free_sess_cache:
161 kmem_cache_destroy(se_sess_cache);
162 out:
163 return -ENOMEM;
164 }
165
166 void release_se_kmem_caches(void)
167 {
168 destroy_workqueue(target_completion_wq);
169 kmem_cache_destroy(se_sess_cache);
170 kmem_cache_destroy(se_ua_cache);
171 kmem_cache_destroy(t10_pr_reg_cache);
172 kmem_cache_destroy(t10_alua_lu_gp_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
174 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
175 kmem_cache_destroy(t10_alua_lba_map_cache);
176 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184 * Allocate a new row index for the entry type specified
185 */
186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188 u32 new_index;
189
190 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192 spin_lock(&scsi_mib_index_lock);
193 new_index = ++scsi_mib_index[type];
194 spin_unlock(&scsi_mib_index_lock);
195
196 return new_index;
197 }
198
199 void transport_subsystem_check_init(void)
200 {
201 int ret;
202 static int sub_api_initialized;
203
204 if (sub_api_initialized)
205 return;
206
207 ret = request_module("target_core_iblock");
208 if (ret != 0)
209 pr_err("Unable to load target_core_iblock\n");
210
211 ret = request_module("target_core_file");
212 if (ret != 0)
213 pr_err("Unable to load target_core_file\n");
214
215 ret = request_module("target_core_pscsi");
216 if (ret != 0)
217 pr_err("Unable to load target_core_pscsi\n");
218
219 ret = request_module("target_core_user");
220 if (ret != 0)
221 pr_err("Unable to load target_core_user\n");
222
223 sub_api_initialized = 1;
224 }
225
226 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
227 {
228 struct se_session *se_sess;
229
230 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
231 if (!se_sess) {
232 pr_err("Unable to allocate struct se_session from"
233 " se_sess_cache\n");
234 return ERR_PTR(-ENOMEM);
235 }
236 INIT_LIST_HEAD(&se_sess->sess_list);
237 INIT_LIST_HEAD(&se_sess->sess_acl_list);
238 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
239 INIT_LIST_HEAD(&se_sess->sess_wait_list);
240 spin_lock_init(&se_sess->sess_cmd_lock);
241 kref_init(&se_sess->sess_kref);
242 se_sess->sup_prot_ops = sup_prot_ops;
243
244 return se_sess;
245 }
246 EXPORT_SYMBOL(transport_init_session);
247
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 unsigned int tag_num, unsigned int tag_size)
250 {
251 int rc;
252
253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255 if (!se_sess->sess_cmd_map) {
256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 if (!se_sess->sess_cmd_map) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 return -ENOMEM;
260 }
261 }
262
263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 if (rc < 0) {
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num);
267 kvfree(se_sess->sess_cmd_map);
268 se_sess->sess_cmd_map = NULL;
269 return -ENOMEM;
270 }
271
272 return 0;
273 }
274 EXPORT_SYMBOL(transport_alloc_session_tags);
275
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 unsigned int tag_size,
278 enum target_prot_op sup_prot_ops)
279 {
280 struct se_session *se_sess;
281 int rc;
282
283 se_sess = transport_init_session(sup_prot_ops);
284 if (IS_ERR(se_sess))
285 return se_sess;
286
287 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
288 if (rc < 0) {
289 transport_free_session(se_sess);
290 return ERR_PTR(-ENOMEM);
291 }
292
293 return se_sess;
294 }
295 EXPORT_SYMBOL(transport_init_session_tags);
296
297 /*
298 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
299 */
300 void __transport_register_session(
301 struct se_portal_group *se_tpg,
302 struct se_node_acl *se_nacl,
303 struct se_session *se_sess,
304 void *fabric_sess_ptr)
305 {
306 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
307 unsigned char buf[PR_REG_ISID_LEN];
308
309 se_sess->se_tpg = se_tpg;
310 se_sess->fabric_sess_ptr = fabric_sess_ptr;
311 /*
312 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
313 *
314 * Only set for struct se_session's that will actually be moving I/O.
315 * eg: *NOT* discovery sessions.
316 */
317 if (se_nacl) {
318 /*
319 *
320 * Determine if fabric allows for T10-PI feature bits exposed to
321 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
322 *
323 * If so, then always save prot_type on a per se_node_acl node
324 * basis and re-instate the previous sess_prot_type to avoid
325 * disabling PI from below any previously initiator side
326 * registered LUNs.
327 */
328 if (se_nacl->saved_prot_type)
329 se_sess->sess_prot_type = se_nacl->saved_prot_type;
330 else if (tfo->tpg_check_prot_fabric_only)
331 se_sess->sess_prot_type = se_nacl->saved_prot_type =
332 tfo->tpg_check_prot_fabric_only(se_tpg);
333 /*
334 * If the fabric module supports an ISID based TransportID,
335 * save this value in binary from the fabric I_T Nexus now.
336 */
337 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
338 memset(&buf[0], 0, PR_REG_ISID_LEN);
339 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
340 &buf[0], PR_REG_ISID_LEN);
341 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
342 }
343 kref_get(&se_nacl->acl_kref);
344
345 spin_lock_irq(&se_nacl->nacl_sess_lock);
346 /*
347 * The se_nacl->nacl_sess pointer will be set to the
348 * last active I_T Nexus for each struct se_node_acl.
349 */
350 se_nacl->nacl_sess = se_sess;
351
352 list_add_tail(&se_sess->sess_acl_list,
353 &se_nacl->acl_sess_list);
354 spin_unlock_irq(&se_nacl->nacl_sess_lock);
355 }
356 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
357
358 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
359 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
360 }
361 EXPORT_SYMBOL(__transport_register_session);
362
363 void transport_register_session(
364 struct se_portal_group *se_tpg,
365 struct se_node_acl *se_nacl,
366 struct se_session *se_sess,
367 void *fabric_sess_ptr)
368 {
369 unsigned long flags;
370
371 spin_lock_irqsave(&se_tpg->session_lock, flags);
372 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
373 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
374 }
375 EXPORT_SYMBOL(transport_register_session);
376
377 static void target_release_session(struct kref *kref)
378 {
379 struct se_session *se_sess = container_of(kref,
380 struct se_session, sess_kref);
381 struct se_portal_group *se_tpg = se_sess->se_tpg;
382
383 se_tpg->se_tpg_tfo->close_session(se_sess);
384 }
385
386 void target_get_session(struct se_session *se_sess)
387 {
388 kref_get(&se_sess->sess_kref);
389 }
390 EXPORT_SYMBOL(target_get_session);
391
392 void target_put_session(struct se_session *se_sess)
393 {
394 kref_put(&se_sess->sess_kref, target_release_session);
395 }
396 EXPORT_SYMBOL(target_put_session);
397
398 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
399 {
400 struct se_session *se_sess;
401 ssize_t len = 0;
402
403 spin_lock_bh(&se_tpg->session_lock);
404 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
405 if (!se_sess->se_node_acl)
406 continue;
407 if (!se_sess->se_node_acl->dynamic_node_acl)
408 continue;
409 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
410 break;
411
412 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
413 se_sess->se_node_acl->initiatorname);
414 len += 1; /* Include NULL terminator */
415 }
416 spin_unlock_bh(&se_tpg->session_lock);
417
418 return len;
419 }
420 EXPORT_SYMBOL(target_show_dynamic_sessions);
421
422 static void target_complete_nacl(struct kref *kref)
423 {
424 struct se_node_acl *nacl = container_of(kref,
425 struct se_node_acl, acl_kref);
426
427 complete(&nacl->acl_free_comp);
428 }
429
430 void target_put_nacl(struct se_node_acl *nacl)
431 {
432 kref_put(&nacl->acl_kref, target_complete_nacl);
433 }
434
435 void transport_deregister_session_configfs(struct se_session *se_sess)
436 {
437 struct se_node_acl *se_nacl;
438 unsigned long flags;
439 /*
440 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
441 */
442 se_nacl = se_sess->se_node_acl;
443 if (se_nacl) {
444 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
445 if (se_nacl->acl_stop == 0)
446 list_del(&se_sess->sess_acl_list);
447 /*
448 * If the session list is empty, then clear the pointer.
449 * Otherwise, set the struct se_session pointer from the tail
450 * element of the per struct se_node_acl active session list.
451 */
452 if (list_empty(&se_nacl->acl_sess_list))
453 se_nacl->nacl_sess = NULL;
454 else {
455 se_nacl->nacl_sess = container_of(
456 se_nacl->acl_sess_list.prev,
457 struct se_session, sess_acl_list);
458 }
459 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
460 }
461 }
462 EXPORT_SYMBOL(transport_deregister_session_configfs);
463
464 void transport_free_session(struct se_session *se_sess)
465 {
466 if (se_sess->sess_cmd_map) {
467 percpu_ida_destroy(&se_sess->sess_tag_pool);
468 kvfree(se_sess->sess_cmd_map);
469 }
470 kmem_cache_free(se_sess_cache, se_sess);
471 }
472 EXPORT_SYMBOL(transport_free_session);
473
474 void transport_deregister_session(struct se_session *se_sess)
475 {
476 struct se_portal_group *se_tpg = se_sess->se_tpg;
477 const struct target_core_fabric_ops *se_tfo;
478 struct se_node_acl *se_nacl;
479 unsigned long flags;
480 bool comp_nacl = true, drop_nacl = false;
481
482 if (!se_tpg) {
483 transport_free_session(se_sess);
484 return;
485 }
486 se_tfo = se_tpg->se_tpg_tfo;
487
488 spin_lock_irqsave(&se_tpg->session_lock, flags);
489 list_del(&se_sess->sess_list);
490 se_sess->se_tpg = NULL;
491 se_sess->fabric_sess_ptr = NULL;
492 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
493
494 /*
495 * Determine if we need to do extra work for this initiator node's
496 * struct se_node_acl if it had been previously dynamically generated.
497 */
498 se_nacl = se_sess->se_node_acl;
499
500 mutex_lock(&se_tpg->acl_node_mutex);
501 if (se_nacl && se_nacl->dynamic_node_acl) {
502 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
503 list_del(&se_nacl->acl_list);
504 se_tpg->num_node_acls--;
505 drop_nacl = true;
506 }
507 }
508 mutex_unlock(&se_tpg->acl_node_mutex);
509
510 if (drop_nacl) {
511 core_tpg_wait_for_nacl_pr_ref(se_nacl);
512 core_free_device_list_for_node(se_nacl, se_tpg);
513 kfree(se_nacl);
514 comp_nacl = false;
515 }
516 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
517 se_tpg->se_tpg_tfo->get_fabric_name());
518 /*
519 * If last kref is dropping now for an explicit NodeACL, awake sleeping
520 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
521 * removal context.
522 */
523 if (se_nacl && comp_nacl)
524 target_put_nacl(se_nacl);
525
526 transport_free_session(se_sess);
527 }
528 EXPORT_SYMBOL(transport_deregister_session);
529
530 /*
531 * Called with cmd->t_state_lock held.
532 */
533 static void target_remove_from_state_list(struct se_cmd *cmd)
534 {
535 struct se_device *dev = cmd->se_dev;
536 unsigned long flags;
537
538 if (!dev)
539 return;
540
541 if (cmd->transport_state & CMD_T_BUSY)
542 return;
543
544 spin_lock_irqsave(&dev->execute_task_lock, flags);
545 if (cmd->state_active) {
546 list_del(&cmd->state_list);
547 cmd->state_active = false;
548 }
549 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
550 }
551
552 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
553 bool write_pending)
554 {
555 unsigned long flags;
556
557 spin_lock_irqsave(&cmd->t_state_lock, flags);
558 if (write_pending)
559 cmd->t_state = TRANSPORT_WRITE_PENDING;
560
561 if (remove_from_lists) {
562 target_remove_from_state_list(cmd);
563
564 /*
565 * Clear struct se_cmd->se_lun before the handoff to FE.
566 */
567 cmd->se_lun = NULL;
568 }
569
570 /*
571 * Determine if frontend context caller is requesting the stopping of
572 * this command for frontend exceptions.
573 */
574 if (cmd->transport_state & CMD_T_STOP) {
575 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
576 __func__, __LINE__, cmd->tag);
577
578 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
579
580 complete_all(&cmd->t_transport_stop_comp);
581 return 1;
582 }
583
584 cmd->transport_state &= ~CMD_T_ACTIVE;
585 if (remove_from_lists) {
586 /*
587 * Some fabric modules like tcm_loop can release
588 * their internally allocated I/O reference now and
589 * struct se_cmd now.
590 *
591 * Fabric modules are expected to return '1' here if the
592 * se_cmd being passed is released at this point,
593 * or zero if not being released.
594 */
595 if (cmd->se_tfo->check_stop_free != NULL) {
596 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
597 return cmd->se_tfo->check_stop_free(cmd);
598 }
599 }
600
601 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
602 return 0;
603 }
604
605 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
606 {
607 return transport_cmd_check_stop(cmd, true, false);
608 }
609
610 static void transport_lun_remove_cmd(struct se_cmd *cmd)
611 {
612 struct se_lun *lun = cmd->se_lun;
613
614 if (!lun)
615 return;
616
617 if (cmpxchg(&cmd->lun_ref_active, true, false))
618 percpu_ref_put(&lun->lun_ref);
619 }
620
621 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
622 {
623 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
624 transport_lun_remove_cmd(cmd);
625 /*
626 * Allow the fabric driver to unmap any resources before
627 * releasing the descriptor via TFO->release_cmd()
628 */
629 if (remove)
630 cmd->se_tfo->aborted_task(cmd);
631
632 if (transport_cmd_check_stop_to_fabric(cmd))
633 return;
634 if (remove)
635 transport_put_cmd(cmd);
636 }
637
638 static void target_complete_failure_work(struct work_struct *work)
639 {
640 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
641
642 transport_generic_request_failure(cmd,
643 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
644 }
645
646 /*
647 * Used when asking transport to copy Sense Data from the underlying
648 * Linux/SCSI struct scsi_cmnd
649 */
650 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
651 {
652 struct se_device *dev = cmd->se_dev;
653
654 WARN_ON(!cmd->se_lun);
655
656 if (!dev)
657 return NULL;
658
659 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
660 return NULL;
661
662 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
663
664 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
665 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
666 return cmd->sense_buffer;
667 }
668
669 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
670 {
671 struct se_device *dev = cmd->se_dev;
672 int success = scsi_status == GOOD;
673 unsigned long flags;
674
675 cmd->scsi_status = scsi_status;
676
677
678 spin_lock_irqsave(&cmd->t_state_lock, flags);
679 cmd->transport_state &= ~CMD_T_BUSY;
680
681 if (dev && dev->transport->transport_complete) {
682 dev->transport->transport_complete(cmd,
683 cmd->t_data_sg,
684 transport_get_sense_buffer(cmd));
685 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
686 success = 1;
687 }
688
689 /*
690 * See if we are waiting to complete for an exception condition.
691 */
692 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
693 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
694 complete(&cmd->task_stop_comp);
695 return;
696 }
697
698 /*
699 * Check for case where an explicit ABORT_TASK has been received
700 * and transport_wait_for_tasks() will be waiting for completion..
701 */
702 if (cmd->transport_state & CMD_T_ABORTED &&
703 cmd->transport_state & CMD_T_STOP) {
704 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
705 complete_all(&cmd->t_transport_stop_comp);
706 return;
707 } else if (!success) {
708 INIT_WORK(&cmd->work, target_complete_failure_work);
709 } else {
710 INIT_WORK(&cmd->work, target_complete_ok_work);
711 }
712
713 cmd->t_state = TRANSPORT_COMPLETE;
714 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
715 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
716
717 queue_work(target_completion_wq, &cmd->work);
718 }
719 EXPORT_SYMBOL(target_complete_cmd);
720
721 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
722 {
723 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
724 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
725 cmd->residual_count += cmd->data_length - length;
726 } else {
727 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
728 cmd->residual_count = cmd->data_length - length;
729 }
730
731 cmd->data_length = length;
732 }
733
734 target_complete_cmd(cmd, scsi_status);
735 }
736 EXPORT_SYMBOL(target_complete_cmd_with_length);
737
738 static void target_add_to_state_list(struct se_cmd *cmd)
739 {
740 struct se_device *dev = cmd->se_dev;
741 unsigned long flags;
742
743 spin_lock_irqsave(&dev->execute_task_lock, flags);
744 if (!cmd->state_active) {
745 list_add_tail(&cmd->state_list, &dev->state_list);
746 cmd->state_active = true;
747 }
748 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
749 }
750
751 /*
752 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
753 */
754 static void transport_write_pending_qf(struct se_cmd *cmd);
755 static void transport_complete_qf(struct se_cmd *cmd);
756
757 void target_qf_do_work(struct work_struct *work)
758 {
759 struct se_device *dev = container_of(work, struct se_device,
760 qf_work_queue);
761 LIST_HEAD(qf_cmd_list);
762 struct se_cmd *cmd, *cmd_tmp;
763
764 spin_lock_irq(&dev->qf_cmd_lock);
765 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
766 spin_unlock_irq(&dev->qf_cmd_lock);
767
768 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
769 list_del(&cmd->se_qf_node);
770 atomic_dec_mb(&dev->dev_qf_count);
771
772 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
773 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
774 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
775 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
776 : "UNKNOWN");
777
778 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
779 transport_write_pending_qf(cmd);
780 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
781 transport_complete_qf(cmd);
782 }
783 }
784
785 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
786 {
787 switch (cmd->data_direction) {
788 case DMA_NONE:
789 return "NONE";
790 case DMA_FROM_DEVICE:
791 return "READ";
792 case DMA_TO_DEVICE:
793 return "WRITE";
794 case DMA_BIDIRECTIONAL:
795 return "BIDI";
796 default:
797 break;
798 }
799
800 return "UNKNOWN";
801 }
802
803 void transport_dump_dev_state(
804 struct se_device *dev,
805 char *b,
806 int *bl)
807 {
808 *bl += sprintf(b + *bl, "Status: ");
809 if (dev->export_count)
810 *bl += sprintf(b + *bl, "ACTIVATED");
811 else
812 *bl += sprintf(b + *bl, "DEACTIVATED");
813
814 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
815 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
816 dev->dev_attrib.block_size,
817 dev->dev_attrib.hw_max_sectors);
818 *bl += sprintf(b + *bl, " ");
819 }
820
821 void transport_dump_vpd_proto_id(
822 struct t10_vpd *vpd,
823 unsigned char *p_buf,
824 int p_buf_len)
825 {
826 unsigned char buf[VPD_TMP_BUF_SIZE];
827 int len;
828
829 memset(buf, 0, VPD_TMP_BUF_SIZE);
830 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
831
832 switch (vpd->protocol_identifier) {
833 case 0x00:
834 sprintf(buf+len, "Fibre Channel\n");
835 break;
836 case 0x10:
837 sprintf(buf+len, "Parallel SCSI\n");
838 break;
839 case 0x20:
840 sprintf(buf+len, "SSA\n");
841 break;
842 case 0x30:
843 sprintf(buf+len, "IEEE 1394\n");
844 break;
845 case 0x40:
846 sprintf(buf+len, "SCSI Remote Direct Memory Access"
847 " Protocol\n");
848 break;
849 case 0x50:
850 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
851 break;
852 case 0x60:
853 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
854 break;
855 case 0x70:
856 sprintf(buf+len, "Automation/Drive Interface Transport"
857 " Protocol\n");
858 break;
859 case 0x80:
860 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
861 break;
862 default:
863 sprintf(buf+len, "Unknown 0x%02x\n",
864 vpd->protocol_identifier);
865 break;
866 }
867
868 if (p_buf)
869 strncpy(p_buf, buf, p_buf_len);
870 else
871 pr_debug("%s", buf);
872 }
873
874 void
875 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
876 {
877 /*
878 * Check if the Protocol Identifier Valid (PIV) bit is set..
879 *
880 * from spc3r23.pdf section 7.5.1
881 */
882 if (page_83[1] & 0x80) {
883 vpd->protocol_identifier = (page_83[0] & 0xf0);
884 vpd->protocol_identifier_set = 1;
885 transport_dump_vpd_proto_id(vpd, NULL, 0);
886 }
887 }
888 EXPORT_SYMBOL(transport_set_vpd_proto_id);
889
890 int transport_dump_vpd_assoc(
891 struct t10_vpd *vpd,
892 unsigned char *p_buf,
893 int p_buf_len)
894 {
895 unsigned char buf[VPD_TMP_BUF_SIZE];
896 int ret = 0;
897 int len;
898
899 memset(buf, 0, VPD_TMP_BUF_SIZE);
900 len = sprintf(buf, "T10 VPD Identifier Association: ");
901
902 switch (vpd->association) {
903 case 0x00:
904 sprintf(buf+len, "addressed logical unit\n");
905 break;
906 case 0x10:
907 sprintf(buf+len, "target port\n");
908 break;
909 case 0x20:
910 sprintf(buf+len, "SCSI target device\n");
911 break;
912 default:
913 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
914 ret = -EINVAL;
915 break;
916 }
917
918 if (p_buf)
919 strncpy(p_buf, buf, p_buf_len);
920 else
921 pr_debug("%s", buf);
922
923 return ret;
924 }
925
926 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
927 {
928 /*
929 * The VPD identification association..
930 *
931 * from spc3r23.pdf Section 7.6.3.1 Table 297
932 */
933 vpd->association = (page_83[1] & 0x30);
934 return transport_dump_vpd_assoc(vpd, NULL, 0);
935 }
936 EXPORT_SYMBOL(transport_set_vpd_assoc);
937
938 int transport_dump_vpd_ident_type(
939 struct t10_vpd *vpd,
940 unsigned char *p_buf,
941 int p_buf_len)
942 {
943 unsigned char buf[VPD_TMP_BUF_SIZE];
944 int ret = 0;
945 int len;
946
947 memset(buf, 0, VPD_TMP_BUF_SIZE);
948 len = sprintf(buf, "T10 VPD Identifier Type: ");
949
950 switch (vpd->device_identifier_type) {
951 case 0x00:
952 sprintf(buf+len, "Vendor specific\n");
953 break;
954 case 0x01:
955 sprintf(buf+len, "T10 Vendor ID based\n");
956 break;
957 case 0x02:
958 sprintf(buf+len, "EUI-64 based\n");
959 break;
960 case 0x03:
961 sprintf(buf+len, "NAA\n");
962 break;
963 case 0x04:
964 sprintf(buf+len, "Relative target port identifier\n");
965 break;
966 case 0x08:
967 sprintf(buf+len, "SCSI name string\n");
968 break;
969 default:
970 sprintf(buf+len, "Unsupported: 0x%02x\n",
971 vpd->device_identifier_type);
972 ret = -EINVAL;
973 break;
974 }
975
976 if (p_buf) {
977 if (p_buf_len < strlen(buf)+1)
978 return -EINVAL;
979 strncpy(p_buf, buf, p_buf_len);
980 } else {
981 pr_debug("%s", buf);
982 }
983
984 return ret;
985 }
986
987 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
988 {
989 /*
990 * The VPD identifier type..
991 *
992 * from spc3r23.pdf Section 7.6.3.1 Table 298
993 */
994 vpd->device_identifier_type = (page_83[1] & 0x0f);
995 return transport_dump_vpd_ident_type(vpd, NULL, 0);
996 }
997 EXPORT_SYMBOL(transport_set_vpd_ident_type);
998
999 int transport_dump_vpd_ident(
1000 struct t10_vpd *vpd,
1001 unsigned char *p_buf,
1002 int p_buf_len)
1003 {
1004 unsigned char buf[VPD_TMP_BUF_SIZE];
1005 int ret = 0;
1006
1007 memset(buf, 0, VPD_TMP_BUF_SIZE);
1008
1009 switch (vpd->device_identifier_code_set) {
1010 case 0x01: /* Binary */
1011 snprintf(buf, sizeof(buf),
1012 "T10 VPD Binary Device Identifier: %s\n",
1013 &vpd->device_identifier[0]);
1014 break;
1015 case 0x02: /* ASCII */
1016 snprintf(buf, sizeof(buf),
1017 "T10 VPD ASCII Device Identifier: %s\n",
1018 &vpd->device_identifier[0]);
1019 break;
1020 case 0x03: /* UTF-8 */
1021 snprintf(buf, sizeof(buf),
1022 "T10 VPD UTF-8 Device Identifier: %s\n",
1023 &vpd->device_identifier[0]);
1024 break;
1025 default:
1026 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1027 " 0x%02x", vpd->device_identifier_code_set);
1028 ret = -EINVAL;
1029 break;
1030 }
1031
1032 if (p_buf)
1033 strncpy(p_buf, buf, p_buf_len);
1034 else
1035 pr_debug("%s", buf);
1036
1037 return ret;
1038 }
1039
1040 int
1041 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1042 {
1043 static const char hex_str[] = "0123456789abcdef";
1044 int j = 0, i = 4; /* offset to start of the identifier */
1045
1046 /*
1047 * The VPD Code Set (encoding)
1048 *
1049 * from spc3r23.pdf Section 7.6.3.1 Table 296
1050 */
1051 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1052 switch (vpd->device_identifier_code_set) {
1053 case 0x01: /* Binary */
1054 vpd->device_identifier[j++] =
1055 hex_str[vpd->device_identifier_type];
1056 while (i < (4 + page_83[3])) {
1057 vpd->device_identifier[j++] =
1058 hex_str[(page_83[i] & 0xf0) >> 4];
1059 vpd->device_identifier[j++] =
1060 hex_str[page_83[i] & 0x0f];
1061 i++;
1062 }
1063 break;
1064 case 0x02: /* ASCII */
1065 case 0x03: /* UTF-8 */
1066 while (i < (4 + page_83[3]))
1067 vpd->device_identifier[j++] = page_83[i++];
1068 break;
1069 default:
1070 break;
1071 }
1072
1073 return transport_dump_vpd_ident(vpd, NULL, 0);
1074 }
1075 EXPORT_SYMBOL(transport_set_vpd_ident);
1076
1077 sense_reason_t
1078 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1079 {
1080 struct se_device *dev = cmd->se_dev;
1081
1082 if (cmd->unknown_data_length) {
1083 cmd->data_length = size;
1084 } else if (size != cmd->data_length) {
1085 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1086 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1087 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1088 cmd->data_length, size, cmd->t_task_cdb[0]);
1089
1090 if (cmd->data_direction == DMA_TO_DEVICE) {
1091 pr_err("Rejecting underflow/overflow"
1092 " WRITE data\n");
1093 return TCM_INVALID_CDB_FIELD;
1094 }
1095 /*
1096 * Reject READ_* or WRITE_* with overflow/underflow for
1097 * type SCF_SCSI_DATA_CDB.
1098 */
1099 if (dev->dev_attrib.block_size != 512) {
1100 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1101 " CDB on non 512-byte sector setup subsystem"
1102 " plugin: %s\n", dev->transport->name);
1103 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1104 return TCM_INVALID_CDB_FIELD;
1105 }
1106 /*
1107 * For the overflow case keep the existing fabric provided
1108 * ->data_length. Otherwise for the underflow case, reset
1109 * ->data_length to the smaller SCSI expected data transfer
1110 * length.
1111 */
1112 if (size > cmd->data_length) {
1113 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1114 cmd->residual_count = (size - cmd->data_length);
1115 } else {
1116 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1117 cmd->residual_count = (cmd->data_length - size);
1118 cmd->data_length = size;
1119 }
1120 }
1121
1122 return 0;
1123
1124 }
1125
1126 /*
1127 * Used by fabric modules containing a local struct se_cmd within their
1128 * fabric dependent per I/O descriptor.
1129 *
1130 * Preserves the value of @cmd->tag.
1131 */
1132 void transport_init_se_cmd(
1133 struct se_cmd *cmd,
1134 const struct target_core_fabric_ops *tfo,
1135 struct se_session *se_sess,
1136 u32 data_length,
1137 int data_direction,
1138 int task_attr,
1139 unsigned char *sense_buffer)
1140 {
1141 INIT_LIST_HEAD(&cmd->se_delayed_node);
1142 INIT_LIST_HEAD(&cmd->se_qf_node);
1143 INIT_LIST_HEAD(&cmd->se_cmd_list);
1144 INIT_LIST_HEAD(&cmd->state_list);
1145 init_completion(&cmd->t_transport_stop_comp);
1146 init_completion(&cmd->cmd_wait_comp);
1147 init_completion(&cmd->task_stop_comp);
1148 spin_lock_init(&cmd->t_state_lock);
1149 kref_init(&cmd->cmd_kref);
1150 cmd->transport_state = CMD_T_DEV_ACTIVE;
1151
1152 cmd->se_tfo = tfo;
1153 cmd->se_sess = se_sess;
1154 cmd->data_length = data_length;
1155 cmd->data_direction = data_direction;
1156 cmd->sam_task_attr = task_attr;
1157 cmd->sense_buffer = sense_buffer;
1158
1159 cmd->state_active = false;
1160 }
1161 EXPORT_SYMBOL(transport_init_se_cmd);
1162
1163 static sense_reason_t
1164 transport_check_alloc_task_attr(struct se_cmd *cmd)
1165 {
1166 struct se_device *dev = cmd->se_dev;
1167
1168 /*
1169 * Check if SAM Task Attribute emulation is enabled for this
1170 * struct se_device storage object
1171 */
1172 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1173 return 0;
1174
1175 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1176 pr_debug("SAM Task Attribute ACA"
1177 " emulation is not supported\n");
1178 return TCM_INVALID_CDB_FIELD;
1179 }
1180 /*
1181 * Used to determine when ORDERED commands should go from
1182 * Dormant to Active status.
1183 */
1184 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1185 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1186 cmd->se_ordered_id, cmd->sam_task_attr,
1187 dev->transport->name);
1188 return 0;
1189 }
1190
1191 sense_reason_t
1192 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1193 {
1194 struct se_device *dev = cmd->se_dev;
1195 sense_reason_t ret;
1196
1197 /*
1198 * Ensure that the received CDB is less than the max (252 + 8) bytes
1199 * for VARIABLE_LENGTH_CMD
1200 */
1201 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1202 pr_err("Received SCSI CDB with command_size: %d that"
1203 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1204 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1205 return TCM_INVALID_CDB_FIELD;
1206 }
1207 /*
1208 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1209 * allocate the additional extended CDB buffer now.. Otherwise
1210 * setup the pointer from __t_task_cdb to t_task_cdb.
1211 */
1212 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1213 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1214 GFP_KERNEL);
1215 if (!cmd->t_task_cdb) {
1216 pr_err("Unable to allocate cmd->t_task_cdb"
1217 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1218 scsi_command_size(cdb),
1219 (unsigned long)sizeof(cmd->__t_task_cdb));
1220 return TCM_OUT_OF_RESOURCES;
1221 }
1222 } else
1223 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1224 /*
1225 * Copy the original CDB into cmd->
1226 */
1227 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1228
1229 trace_target_sequencer_start(cmd);
1230
1231 /*
1232 * Check for an existing UNIT ATTENTION condition
1233 */
1234 ret = target_scsi3_ua_check(cmd);
1235 if (ret)
1236 return ret;
1237
1238 ret = target_alua_state_check(cmd);
1239 if (ret)
1240 return ret;
1241
1242 ret = target_check_reservation(cmd);
1243 if (ret) {
1244 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1245 return ret;
1246 }
1247
1248 ret = dev->transport->parse_cdb(cmd);
1249 if (ret)
1250 return ret;
1251
1252 ret = transport_check_alloc_task_attr(cmd);
1253 if (ret)
1254 return ret;
1255
1256 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1257 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1258 return 0;
1259 }
1260 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1261
1262 /*
1263 * Used by fabric module frontends to queue tasks directly.
1264 * Many only be used from process context only
1265 */
1266 int transport_handle_cdb_direct(
1267 struct se_cmd *cmd)
1268 {
1269 sense_reason_t ret;
1270
1271 if (!cmd->se_lun) {
1272 dump_stack();
1273 pr_err("cmd->se_lun is NULL\n");
1274 return -EINVAL;
1275 }
1276 if (in_interrupt()) {
1277 dump_stack();
1278 pr_err("transport_generic_handle_cdb cannot be called"
1279 " from interrupt context\n");
1280 return -EINVAL;
1281 }
1282 /*
1283 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1284 * outstanding descriptors are handled correctly during shutdown via
1285 * transport_wait_for_tasks()
1286 *
1287 * Also, we don't take cmd->t_state_lock here as we only expect
1288 * this to be called for initial descriptor submission.
1289 */
1290 cmd->t_state = TRANSPORT_NEW_CMD;
1291 cmd->transport_state |= CMD_T_ACTIVE;
1292
1293 /*
1294 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1295 * so follow TRANSPORT_NEW_CMD processing thread context usage
1296 * and call transport_generic_request_failure() if necessary..
1297 */
1298 ret = transport_generic_new_cmd(cmd);
1299 if (ret)
1300 transport_generic_request_failure(cmd, ret);
1301 return 0;
1302 }
1303 EXPORT_SYMBOL(transport_handle_cdb_direct);
1304
1305 sense_reason_t
1306 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1307 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1308 {
1309 if (!sgl || !sgl_count)
1310 return 0;
1311
1312 /*
1313 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1314 * scatterlists already have been set to follow what the fabric
1315 * passes for the original expected data transfer length.
1316 */
1317 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1318 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1319 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1320 return TCM_INVALID_CDB_FIELD;
1321 }
1322
1323 cmd->t_data_sg = sgl;
1324 cmd->t_data_nents = sgl_count;
1325 cmd->t_bidi_data_sg = sgl_bidi;
1326 cmd->t_bidi_data_nents = sgl_bidi_count;
1327
1328 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1329 return 0;
1330 }
1331
1332 /*
1333 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1334 * se_cmd + use pre-allocated SGL memory.
1335 *
1336 * @se_cmd: command descriptor to submit
1337 * @se_sess: associated se_sess for endpoint
1338 * @cdb: pointer to SCSI CDB
1339 * @sense: pointer to SCSI sense buffer
1340 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1341 * @data_length: fabric expected data transfer length
1342 * @task_addr: SAM task attribute
1343 * @data_dir: DMA data direction
1344 * @flags: flags for command submission from target_sc_flags_tables
1345 * @sgl: struct scatterlist memory for unidirectional mapping
1346 * @sgl_count: scatterlist count for unidirectional mapping
1347 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1348 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1349 * @sgl_prot: struct scatterlist memory protection information
1350 * @sgl_prot_count: scatterlist count for protection information
1351 *
1352 * Task tags are supported if the caller has set @se_cmd->tag.
1353 *
1354 * Returns non zero to signal active I/O shutdown failure. All other
1355 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1356 * but still return zero here.
1357 *
1358 * This may only be called from process context, and also currently
1359 * assumes internal allocation of fabric payload buffer by target-core.
1360 */
1361 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1362 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1363 u32 data_length, int task_attr, int data_dir, int flags,
1364 struct scatterlist *sgl, u32 sgl_count,
1365 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1366 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1367 {
1368 struct se_portal_group *se_tpg;
1369 sense_reason_t rc;
1370 int ret;
1371
1372 se_tpg = se_sess->se_tpg;
1373 BUG_ON(!se_tpg);
1374 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1375 BUG_ON(in_interrupt());
1376 /*
1377 * Initialize se_cmd for target operation. From this point
1378 * exceptions are handled by sending exception status via
1379 * target_core_fabric_ops->queue_status() callback
1380 */
1381 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1382 data_length, data_dir, task_attr, sense);
1383 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1384 se_cmd->unknown_data_length = 1;
1385 /*
1386 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1387 * se_sess->sess_cmd_list. A second kref_get here is necessary
1388 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1389 * kref_put() to happen during fabric packet acknowledgement.
1390 */
1391 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1392 if (ret)
1393 return ret;
1394 /*
1395 * Signal bidirectional data payloads to target-core
1396 */
1397 if (flags & TARGET_SCF_BIDI_OP)
1398 se_cmd->se_cmd_flags |= SCF_BIDI;
1399 /*
1400 * Locate se_lun pointer and attach it to struct se_cmd
1401 */
1402 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1403 if (rc) {
1404 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1405 target_put_sess_cmd(se_cmd);
1406 return 0;
1407 }
1408
1409 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1410 if (rc != 0) {
1411 transport_generic_request_failure(se_cmd, rc);
1412 return 0;
1413 }
1414
1415 /*
1416 * Save pointers for SGLs containing protection information,
1417 * if present.
1418 */
1419 if (sgl_prot_count) {
1420 se_cmd->t_prot_sg = sgl_prot;
1421 se_cmd->t_prot_nents = sgl_prot_count;
1422 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1423 }
1424
1425 /*
1426 * When a non zero sgl_count has been passed perform SGL passthrough
1427 * mapping for pre-allocated fabric memory instead of having target
1428 * core perform an internal SGL allocation..
1429 */
1430 if (sgl_count != 0) {
1431 BUG_ON(!sgl);
1432
1433 /*
1434 * A work-around for tcm_loop as some userspace code via
1435 * scsi-generic do not memset their associated read buffers,
1436 * so go ahead and do that here for type non-data CDBs. Also
1437 * note that this is currently guaranteed to be a single SGL
1438 * for this case by target core in target_setup_cmd_from_cdb()
1439 * -> transport_generic_cmd_sequencer().
1440 */
1441 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1442 se_cmd->data_direction == DMA_FROM_DEVICE) {
1443 unsigned char *buf = NULL;
1444
1445 if (sgl)
1446 buf = kmap(sg_page(sgl)) + sgl->offset;
1447
1448 if (buf) {
1449 memset(buf, 0, sgl->length);
1450 kunmap(sg_page(sgl));
1451 }
1452 }
1453
1454 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1455 sgl_bidi, sgl_bidi_count);
1456 if (rc != 0) {
1457 transport_generic_request_failure(se_cmd, rc);
1458 return 0;
1459 }
1460 }
1461
1462 /*
1463 * Check if we need to delay processing because of ALUA
1464 * Active/NonOptimized primary access state..
1465 */
1466 core_alua_check_nonop_delay(se_cmd);
1467
1468 transport_handle_cdb_direct(se_cmd);
1469 return 0;
1470 }
1471 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1472
1473 /*
1474 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1475 *
1476 * @se_cmd: command descriptor to submit
1477 * @se_sess: associated se_sess for endpoint
1478 * @cdb: pointer to SCSI CDB
1479 * @sense: pointer to SCSI sense buffer
1480 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1481 * @data_length: fabric expected data transfer length
1482 * @task_addr: SAM task attribute
1483 * @data_dir: DMA data direction
1484 * @flags: flags for command submission from target_sc_flags_tables
1485 *
1486 * Task tags are supported if the caller has set @se_cmd->tag.
1487 *
1488 * Returns non zero to signal active I/O shutdown failure. All other
1489 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1490 * but still return zero here.
1491 *
1492 * This may only be called from process context, and also currently
1493 * assumes internal allocation of fabric payload buffer by target-core.
1494 *
1495 * It also assumes interal target core SGL memory allocation.
1496 */
1497 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1498 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1499 u32 data_length, int task_attr, int data_dir, int flags)
1500 {
1501 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1502 unpacked_lun, data_length, task_attr, data_dir,
1503 flags, NULL, 0, NULL, 0, NULL, 0);
1504 }
1505 EXPORT_SYMBOL(target_submit_cmd);
1506
1507 static void target_complete_tmr_failure(struct work_struct *work)
1508 {
1509 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1510
1511 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1512 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1513
1514 transport_cmd_check_stop_to_fabric(se_cmd);
1515 }
1516
1517 /**
1518 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1519 * for TMR CDBs
1520 *
1521 * @se_cmd: command descriptor to submit
1522 * @se_sess: associated se_sess for endpoint
1523 * @sense: pointer to SCSI sense buffer
1524 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1525 * @fabric_context: fabric context for TMR req
1526 * @tm_type: Type of TM request
1527 * @gfp: gfp type for caller
1528 * @tag: referenced task tag for TMR_ABORT_TASK
1529 * @flags: submit cmd flags
1530 *
1531 * Callable from all contexts.
1532 **/
1533
1534 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1535 unsigned char *sense, u64 unpacked_lun,
1536 void *fabric_tmr_ptr, unsigned char tm_type,
1537 gfp_t gfp, unsigned int tag, int flags)
1538 {
1539 struct se_portal_group *se_tpg;
1540 int ret;
1541
1542 se_tpg = se_sess->se_tpg;
1543 BUG_ON(!se_tpg);
1544
1545 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1546 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1547 /*
1548 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1549 * allocation failure.
1550 */
1551 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1552 if (ret < 0)
1553 return -ENOMEM;
1554
1555 if (tm_type == TMR_ABORT_TASK)
1556 se_cmd->se_tmr_req->ref_task_tag = tag;
1557
1558 /* See target_submit_cmd for commentary */
1559 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1560 if (ret) {
1561 core_tmr_release_req(se_cmd->se_tmr_req);
1562 return ret;
1563 }
1564
1565 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1566 if (ret) {
1567 /*
1568 * For callback during failure handling, push this work off
1569 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1570 */
1571 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1572 schedule_work(&se_cmd->work);
1573 return 0;
1574 }
1575 transport_generic_handle_tmr(se_cmd);
1576 return 0;
1577 }
1578 EXPORT_SYMBOL(target_submit_tmr);
1579
1580 /*
1581 * If the cmd is active, request it to be stopped and sleep until it
1582 * has completed.
1583 */
1584 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1585 __releases(&cmd->t_state_lock)
1586 __acquires(&cmd->t_state_lock)
1587 {
1588 bool was_active = false;
1589
1590 if (cmd->transport_state & CMD_T_BUSY) {
1591 cmd->transport_state |= CMD_T_REQUEST_STOP;
1592 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1593
1594 pr_debug("cmd %p waiting to complete\n", cmd);
1595 wait_for_completion(&cmd->task_stop_comp);
1596 pr_debug("cmd %p stopped successfully\n", cmd);
1597
1598 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1599 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1600 cmd->transport_state &= ~CMD_T_BUSY;
1601 was_active = true;
1602 }
1603
1604 return was_active;
1605 }
1606
1607 /*
1608 * Handle SAM-esque emulation for generic transport request failures.
1609 */
1610 void transport_generic_request_failure(struct se_cmd *cmd,
1611 sense_reason_t sense_reason)
1612 {
1613 int ret = 0;
1614
1615 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1616 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1617 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1618 cmd->se_tfo->get_cmd_state(cmd),
1619 cmd->t_state, sense_reason);
1620 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1621 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1622 (cmd->transport_state & CMD_T_STOP) != 0,
1623 (cmd->transport_state & CMD_T_SENT) != 0);
1624
1625 /*
1626 * For SAM Task Attribute emulation for failed struct se_cmd
1627 */
1628 transport_complete_task_attr(cmd);
1629 /*
1630 * Handle special case for COMPARE_AND_WRITE failure, where the
1631 * callback is expected to drop the per device ->caw_sem.
1632 */
1633 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1634 cmd->transport_complete_callback)
1635 cmd->transport_complete_callback(cmd, false);
1636
1637 switch (sense_reason) {
1638 case TCM_NON_EXISTENT_LUN:
1639 case TCM_UNSUPPORTED_SCSI_OPCODE:
1640 case TCM_INVALID_CDB_FIELD:
1641 case TCM_INVALID_PARAMETER_LIST:
1642 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1643 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1644 case TCM_UNKNOWN_MODE_PAGE:
1645 case TCM_WRITE_PROTECTED:
1646 case TCM_ADDRESS_OUT_OF_RANGE:
1647 case TCM_CHECK_CONDITION_ABORT_CMD:
1648 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1649 case TCM_CHECK_CONDITION_NOT_READY:
1650 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1651 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1652 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1653 break;
1654 case TCM_OUT_OF_RESOURCES:
1655 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1656 break;
1657 case TCM_RESERVATION_CONFLICT:
1658 /*
1659 * No SENSE Data payload for this case, set SCSI Status
1660 * and queue the response to $FABRIC_MOD.
1661 *
1662 * Uses linux/include/scsi/scsi.h SAM status codes defs
1663 */
1664 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1665 /*
1666 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1667 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1668 * CONFLICT STATUS.
1669 *
1670 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1671 */
1672 if (cmd->se_sess &&
1673 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1674 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1675 cmd->orig_fe_lun, 0x2C,
1676 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1677 }
1678 trace_target_cmd_complete(cmd);
1679 ret = cmd->se_tfo->queue_status(cmd);
1680 if (ret == -EAGAIN || ret == -ENOMEM)
1681 goto queue_full;
1682 goto check_stop;
1683 default:
1684 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1685 cmd->t_task_cdb[0], sense_reason);
1686 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1687 break;
1688 }
1689
1690 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1691 if (ret == -EAGAIN || ret == -ENOMEM)
1692 goto queue_full;
1693
1694 check_stop:
1695 transport_lun_remove_cmd(cmd);
1696 if (!transport_cmd_check_stop_to_fabric(cmd))
1697 ;
1698 return;
1699
1700 queue_full:
1701 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1702 transport_handle_queue_full(cmd, cmd->se_dev);
1703 }
1704 EXPORT_SYMBOL(transport_generic_request_failure);
1705
1706 void __target_execute_cmd(struct se_cmd *cmd)
1707 {
1708 sense_reason_t ret;
1709
1710 if (cmd->execute_cmd) {
1711 ret = cmd->execute_cmd(cmd);
1712 if (ret) {
1713 spin_lock_irq(&cmd->t_state_lock);
1714 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1715 spin_unlock_irq(&cmd->t_state_lock);
1716
1717 transport_generic_request_failure(cmd, ret);
1718 }
1719 }
1720 }
1721
1722 static int target_write_prot_action(struct se_cmd *cmd)
1723 {
1724 u32 sectors;
1725 /*
1726 * Perform WRITE_INSERT of PI using software emulation when backend
1727 * device has PI enabled, if the transport has not already generated
1728 * PI using hardware WRITE_INSERT offload.
1729 */
1730 switch (cmd->prot_op) {
1731 case TARGET_PROT_DOUT_INSERT:
1732 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1733 sbc_dif_generate(cmd);
1734 break;
1735 case TARGET_PROT_DOUT_STRIP:
1736 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1737 break;
1738
1739 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1740 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1741 sectors, 0, cmd->t_prot_sg, 0);
1742 if (unlikely(cmd->pi_err)) {
1743 spin_lock_irq(&cmd->t_state_lock);
1744 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1745 spin_unlock_irq(&cmd->t_state_lock);
1746 transport_generic_request_failure(cmd, cmd->pi_err);
1747 return -1;
1748 }
1749 break;
1750 default:
1751 break;
1752 }
1753
1754 return 0;
1755 }
1756
1757 static bool target_handle_task_attr(struct se_cmd *cmd)
1758 {
1759 struct se_device *dev = cmd->se_dev;
1760
1761 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1762 return false;
1763
1764 /*
1765 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1766 * to allow the passed struct se_cmd list of tasks to the front of the list.
1767 */
1768 switch (cmd->sam_task_attr) {
1769 case TCM_HEAD_TAG:
1770 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1771 "se_ordered_id: %u\n",
1772 cmd->t_task_cdb[0], cmd->se_ordered_id);
1773 return false;
1774 case TCM_ORDERED_TAG:
1775 atomic_inc_mb(&dev->dev_ordered_sync);
1776
1777 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1778 " se_ordered_id: %u\n",
1779 cmd->t_task_cdb[0], cmd->se_ordered_id);
1780
1781 /*
1782 * Execute an ORDERED command if no other older commands
1783 * exist that need to be completed first.
1784 */
1785 if (!atomic_read(&dev->simple_cmds))
1786 return false;
1787 break;
1788 default:
1789 /*
1790 * For SIMPLE and UNTAGGED Task Attribute commands
1791 */
1792 atomic_inc_mb(&dev->simple_cmds);
1793 break;
1794 }
1795
1796 if (atomic_read(&dev->dev_ordered_sync) == 0)
1797 return false;
1798
1799 spin_lock(&dev->delayed_cmd_lock);
1800 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1801 spin_unlock(&dev->delayed_cmd_lock);
1802
1803 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1804 " delayed CMD list, se_ordered_id: %u\n",
1805 cmd->t_task_cdb[0], cmd->sam_task_attr,
1806 cmd->se_ordered_id);
1807 return true;
1808 }
1809
1810 void target_execute_cmd(struct se_cmd *cmd)
1811 {
1812 /*
1813 * If the received CDB has aleady been aborted stop processing it here.
1814 */
1815 if (transport_check_aborted_status(cmd, 1))
1816 return;
1817
1818 /*
1819 * Determine if frontend context caller is requesting the stopping of
1820 * this command for frontend exceptions.
1821 */
1822 spin_lock_irq(&cmd->t_state_lock);
1823 if (cmd->transport_state & CMD_T_STOP) {
1824 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1825 __func__, __LINE__, cmd->tag);
1826
1827 spin_unlock_irq(&cmd->t_state_lock);
1828 complete_all(&cmd->t_transport_stop_comp);
1829 return;
1830 }
1831
1832 cmd->t_state = TRANSPORT_PROCESSING;
1833 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1834 spin_unlock_irq(&cmd->t_state_lock);
1835
1836 if (target_write_prot_action(cmd))
1837 return;
1838
1839 if (target_handle_task_attr(cmd)) {
1840 spin_lock_irq(&cmd->t_state_lock);
1841 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1842 spin_unlock_irq(&cmd->t_state_lock);
1843 return;
1844 }
1845
1846 __target_execute_cmd(cmd);
1847 }
1848 EXPORT_SYMBOL(target_execute_cmd);
1849
1850 /*
1851 * Process all commands up to the last received ORDERED task attribute which
1852 * requires another blocking boundary
1853 */
1854 static void target_restart_delayed_cmds(struct se_device *dev)
1855 {
1856 for (;;) {
1857 struct se_cmd *cmd;
1858
1859 spin_lock(&dev->delayed_cmd_lock);
1860 if (list_empty(&dev->delayed_cmd_list)) {
1861 spin_unlock(&dev->delayed_cmd_lock);
1862 break;
1863 }
1864
1865 cmd = list_entry(dev->delayed_cmd_list.next,
1866 struct se_cmd, se_delayed_node);
1867 list_del(&cmd->se_delayed_node);
1868 spin_unlock(&dev->delayed_cmd_lock);
1869
1870 __target_execute_cmd(cmd);
1871
1872 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1873 break;
1874 }
1875 }
1876
1877 /*
1878 * Called from I/O completion to determine which dormant/delayed
1879 * and ordered cmds need to have their tasks added to the execution queue.
1880 */
1881 static void transport_complete_task_attr(struct se_cmd *cmd)
1882 {
1883 struct se_device *dev = cmd->se_dev;
1884
1885 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1886 return;
1887
1888 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1889 atomic_dec_mb(&dev->simple_cmds);
1890 dev->dev_cur_ordered_id++;
1891 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1892 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1893 cmd->se_ordered_id);
1894 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1895 dev->dev_cur_ordered_id++;
1896 pr_debug("Incremented dev_cur_ordered_id: %u for"
1897 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1898 cmd->se_ordered_id);
1899 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1900 atomic_dec_mb(&dev->dev_ordered_sync);
1901
1902 dev->dev_cur_ordered_id++;
1903 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1904 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1905 }
1906
1907 target_restart_delayed_cmds(dev);
1908 }
1909
1910 static void transport_complete_qf(struct se_cmd *cmd)
1911 {
1912 int ret = 0;
1913
1914 transport_complete_task_attr(cmd);
1915
1916 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1917 trace_target_cmd_complete(cmd);
1918 ret = cmd->se_tfo->queue_status(cmd);
1919 goto out;
1920 }
1921
1922 switch (cmd->data_direction) {
1923 case DMA_FROM_DEVICE:
1924 trace_target_cmd_complete(cmd);
1925 ret = cmd->se_tfo->queue_data_in(cmd);
1926 break;
1927 case DMA_TO_DEVICE:
1928 if (cmd->se_cmd_flags & SCF_BIDI) {
1929 ret = cmd->se_tfo->queue_data_in(cmd);
1930 break;
1931 }
1932 /* Fall through for DMA_TO_DEVICE */
1933 case DMA_NONE:
1934 trace_target_cmd_complete(cmd);
1935 ret = cmd->se_tfo->queue_status(cmd);
1936 break;
1937 default:
1938 break;
1939 }
1940
1941 out:
1942 if (ret < 0) {
1943 transport_handle_queue_full(cmd, cmd->se_dev);
1944 return;
1945 }
1946 transport_lun_remove_cmd(cmd);
1947 transport_cmd_check_stop_to_fabric(cmd);
1948 }
1949
1950 static void transport_handle_queue_full(
1951 struct se_cmd *cmd,
1952 struct se_device *dev)
1953 {
1954 spin_lock_irq(&dev->qf_cmd_lock);
1955 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1956 atomic_inc_mb(&dev->dev_qf_count);
1957 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1958
1959 schedule_work(&cmd->se_dev->qf_work_queue);
1960 }
1961
1962 static bool target_read_prot_action(struct se_cmd *cmd)
1963 {
1964 switch (cmd->prot_op) {
1965 case TARGET_PROT_DIN_STRIP:
1966 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1967 u32 sectors = cmd->data_length >>
1968 ilog2(cmd->se_dev->dev_attrib.block_size);
1969
1970 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1971 sectors, 0, cmd->t_prot_sg,
1972 0);
1973 if (cmd->pi_err)
1974 return true;
1975 }
1976 break;
1977 case TARGET_PROT_DIN_INSERT:
1978 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
1979 break;
1980
1981 sbc_dif_generate(cmd);
1982 break;
1983 default:
1984 break;
1985 }
1986
1987 return false;
1988 }
1989
1990 static void target_complete_ok_work(struct work_struct *work)
1991 {
1992 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1993 int ret;
1994
1995 /*
1996 * Check if we need to move delayed/dormant tasks from cmds on the
1997 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1998 * Attribute.
1999 */
2000 transport_complete_task_attr(cmd);
2001
2002 /*
2003 * Check to schedule QUEUE_FULL work, or execute an existing
2004 * cmd->transport_qf_callback()
2005 */
2006 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2007 schedule_work(&cmd->se_dev->qf_work_queue);
2008
2009 /*
2010 * Check if we need to send a sense buffer from
2011 * the struct se_cmd in question.
2012 */
2013 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2014 WARN_ON(!cmd->scsi_status);
2015 ret = transport_send_check_condition_and_sense(
2016 cmd, 0, 1);
2017 if (ret == -EAGAIN || ret == -ENOMEM)
2018 goto queue_full;
2019
2020 transport_lun_remove_cmd(cmd);
2021 transport_cmd_check_stop_to_fabric(cmd);
2022 return;
2023 }
2024 /*
2025 * Check for a callback, used by amongst other things
2026 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2027 */
2028 if (cmd->transport_complete_callback) {
2029 sense_reason_t rc;
2030
2031 rc = cmd->transport_complete_callback(cmd, true);
2032 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
2033 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2034 !cmd->data_length)
2035 goto queue_rsp;
2036
2037 return;
2038 } else if (rc) {
2039 ret = transport_send_check_condition_and_sense(cmd,
2040 rc, 0);
2041 if (ret == -EAGAIN || ret == -ENOMEM)
2042 goto queue_full;
2043
2044 transport_lun_remove_cmd(cmd);
2045 transport_cmd_check_stop_to_fabric(cmd);
2046 return;
2047 }
2048 }
2049
2050 queue_rsp:
2051 switch (cmd->data_direction) {
2052 case DMA_FROM_DEVICE:
2053 atomic_long_add(cmd->data_length,
2054 &cmd->se_lun->lun_stats.tx_data_octets);
2055 /*
2056 * Perform READ_STRIP of PI using software emulation when
2057 * backend had PI enabled, if the transport will not be
2058 * performing hardware READ_STRIP offload.
2059 */
2060 if (target_read_prot_action(cmd)) {
2061 ret = transport_send_check_condition_and_sense(cmd,
2062 cmd->pi_err, 0);
2063 if (ret == -EAGAIN || ret == -ENOMEM)
2064 goto queue_full;
2065
2066 transport_lun_remove_cmd(cmd);
2067 transport_cmd_check_stop_to_fabric(cmd);
2068 return;
2069 }
2070
2071 trace_target_cmd_complete(cmd);
2072 ret = cmd->se_tfo->queue_data_in(cmd);
2073 if (ret == -EAGAIN || ret == -ENOMEM)
2074 goto queue_full;
2075 break;
2076 case DMA_TO_DEVICE:
2077 atomic_long_add(cmd->data_length,
2078 &cmd->se_lun->lun_stats.rx_data_octets);
2079 /*
2080 * Check if we need to send READ payload for BIDI-COMMAND
2081 */
2082 if (cmd->se_cmd_flags & SCF_BIDI) {
2083 atomic_long_add(cmd->data_length,
2084 &cmd->se_lun->lun_stats.tx_data_octets);
2085 ret = cmd->se_tfo->queue_data_in(cmd);
2086 if (ret == -EAGAIN || ret == -ENOMEM)
2087 goto queue_full;
2088 break;
2089 }
2090 /* Fall through for DMA_TO_DEVICE */
2091 case DMA_NONE:
2092 trace_target_cmd_complete(cmd);
2093 ret = cmd->se_tfo->queue_status(cmd);
2094 if (ret == -EAGAIN || ret == -ENOMEM)
2095 goto queue_full;
2096 break;
2097 default:
2098 break;
2099 }
2100
2101 transport_lun_remove_cmd(cmd);
2102 transport_cmd_check_stop_to_fabric(cmd);
2103 return;
2104
2105 queue_full:
2106 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2107 " data_direction: %d\n", cmd, cmd->data_direction);
2108 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2109 transport_handle_queue_full(cmd, cmd->se_dev);
2110 }
2111
2112 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2113 {
2114 struct scatterlist *sg;
2115 int count;
2116
2117 for_each_sg(sgl, sg, nents, count)
2118 __free_page(sg_page(sg));
2119
2120 kfree(sgl);
2121 }
2122
2123 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2124 {
2125 /*
2126 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2127 * emulation, and free + reset pointers if necessary..
2128 */
2129 if (!cmd->t_data_sg_orig)
2130 return;
2131
2132 kfree(cmd->t_data_sg);
2133 cmd->t_data_sg = cmd->t_data_sg_orig;
2134 cmd->t_data_sg_orig = NULL;
2135 cmd->t_data_nents = cmd->t_data_nents_orig;
2136 cmd->t_data_nents_orig = 0;
2137 }
2138
2139 static inline void transport_free_pages(struct se_cmd *cmd)
2140 {
2141 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2142 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2143 cmd->t_prot_sg = NULL;
2144 cmd->t_prot_nents = 0;
2145 }
2146
2147 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2148 /*
2149 * Release special case READ buffer payload required for
2150 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2151 */
2152 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2153 transport_free_sgl(cmd->t_bidi_data_sg,
2154 cmd->t_bidi_data_nents);
2155 cmd->t_bidi_data_sg = NULL;
2156 cmd->t_bidi_data_nents = 0;
2157 }
2158 transport_reset_sgl_orig(cmd);
2159 return;
2160 }
2161 transport_reset_sgl_orig(cmd);
2162
2163 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2164 cmd->t_data_sg = NULL;
2165 cmd->t_data_nents = 0;
2166
2167 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2168 cmd->t_bidi_data_sg = NULL;
2169 cmd->t_bidi_data_nents = 0;
2170 }
2171
2172 /**
2173 * transport_release_cmd - free a command
2174 * @cmd: command to free
2175 *
2176 * This routine unconditionally frees a command, and reference counting
2177 * or list removal must be done in the caller.
2178 */
2179 static int transport_release_cmd(struct se_cmd *cmd)
2180 {
2181 BUG_ON(!cmd->se_tfo);
2182
2183 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2184 core_tmr_release_req(cmd->se_tmr_req);
2185 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2186 kfree(cmd->t_task_cdb);
2187 /*
2188 * If this cmd has been setup with target_get_sess_cmd(), drop
2189 * the kref and call ->release_cmd() in kref callback.
2190 */
2191 return target_put_sess_cmd(cmd);
2192 }
2193
2194 /**
2195 * transport_put_cmd - release a reference to a command
2196 * @cmd: command to release
2197 *
2198 * This routine releases our reference to the command and frees it if possible.
2199 */
2200 static int transport_put_cmd(struct se_cmd *cmd)
2201 {
2202 transport_free_pages(cmd);
2203 return transport_release_cmd(cmd);
2204 }
2205
2206 void *transport_kmap_data_sg(struct se_cmd *cmd)
2207 {
2208 struct scatterlist *sg = cmd->t_data_sg;
2209 struct page **pages;
2210 int i;
2211
2212 /*
2213 * We need to take into account a possible offset here for fabrics like
2214 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2215 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2216 */
2217 if (!cmd->t_data_nents)
2218 return NULL;
2219
2220 BUG_ON(!sg);
2221 if (cmd->t_data_nents == 1)
2222 return kmap(sg_page(sg)) + sg->offset;
2223
2224 /* >1 page. use vmap */
2225 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2226 if (!pages)
2227 return NULL;
2228
2229 /* convert sg[] to pages[] */
2230 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2231 pages[i] = sg_page(sg);
2232 }
2233
2234 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2235 kfree(pages);
2236 if (!cmd->t_data_vmap)
2237 return NULL;
2238
2239 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2240 }
2241 EXPORT_SYMBOL(transport_kmap_data_sg);
2242
2243 void transport_kunmap_data_sg(struct se_cmd *cmd)
2244 {
2245 if (!cmd->t_data_nents) {
2246 return;
2247 } else if (cmd->t_data_nents == 1) {
2248 kunmap(sg_page(cmd->t_data_sg));
2249 return;
2250 }
2251
2252 vunmap(cmd->t_data_vmap);
2253 cmd->t_data_vmap = NULL;
2254 }
2255 EXPORT_SYMBOL(transport_kunmap_data_sg);
2256
2257 int
2258 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2259 bool zero_page)
2260 {
2261 struct scatterlist *sg;
2262 struct page *page;
2263 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2264 unsigned int nent;
2265 int i = 0;
2266
2267 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2268 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2269 if (!sg)
2270 return -ENOMEM;
2271
2272 sg_init_table(sg, nent);
2273
2274 while (length) {
2275 u32 page_len = min_t(u32, length, PAGE_SIZE);
2276 page = alloc_page(GFP_KERNEL | zero_flag);
2277 if (!page)
2278 goto out;
2279
2280 sg_set_page(&sg[i], page, page_len, 0);
2281 length -= page_len;
2282 i++;
2283 }
2284 *sgl = sg;
2285 *nents = nent;
2286 return 0;
2287
2288 out:
2289 while (i > 0) {
2290 i--;
2291 __free_page(sg_page(&sg[i]));
2292 }
2293 kfree(sg);
2294 return -ENOMEM;
2295 }
2296
2297 /*
2298 * Allocate any required resources to execute the command. For writes we
2299 * might not have the payload yet, so notify the fabric via a call to
2300 * ->write_pending instead. Otherwise place it on the execution queue.
2301 */
2302 sense_reason_t
2303 transport_generic_new_cmd(struct se_cmd *cmd)
2304 {
2305 int ret = 0;
2306 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2307
2308 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2309 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2310 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2311 cmd->prot_length, true);
2312 if (ret < 0)
2313 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2314 }
2315
2316 /*
2317 * Determine is the TCM fabric module has already allocated physical
2318 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2319 * beforehand.
2320 */
2321 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2322 cmd->data_length) {
2323
2324 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2325 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2326 u32 bidi_length;
2327
2328 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2329 bidi_length = cmd->t_task_nolb *
2330 cmd->se_dev->dev_attrib.block_size;
2331 else
2332 bidi_length = cmd->data_length;
2333
2334 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2335 &cmd->t_bidi_data_nents,
2336 bidi_length, zero_flag);
2337 if (ret < 0)
2338 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2339 }
2340
2341 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2342 cmd->data_length, zero_flag);
2343 if (ret < 0)
2344 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2345 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2346 cmd->data_length) {
2347 /*
2348 * Special case for COMPARE_AND_WRITE with fabrics
2349 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2350 */
2351 u32 caw_length = cmd->t_task_nolb *
2352 cmd->se_dev->dev_attrib.block_size;
2353
2354 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2355 &cmd->t_bidi_data_nents,
2356 caw_length, zero_flag);
2357 if (ret < 0)
2358 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2359 }
2360 /*
2361 * If this command is not a write we can execute it right here,
2362 * for write buffers we need to notify the fabric driver first
2363 * and let it call back once the write buffers are ready.
2364 */
2365 target_add_to_state_list(cmd);
2366 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2367 target_execute_cmd(cmd);
2368 return 0;
2369 }
2370 transport_cmd_check_stop(cmd, false, true);
2371
2372 ret = cmd->se_tfo->write_pending(cmd);
2373 if (ret == -EAGAIN || ret == -ENOMEM)
2374 goto queue_full;
2375
2376 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2377 WARN_ON(ret);
2378
2379 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2380
2381 queue_full:
2382 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2383 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2384 transport_handle_queue_full(cmd, cmd->se_dev);
2385 return 0;
2386 }
2387 EXPORT_SYMBOL(transport_generic_new_cmd);
2388
2389 static void transport_write_pending_qf(struct se_cmd *cmd)
2390 {
2391 int ret;
2392
2393 ret = cmd->se_tfo->write_pending(cmd);
2394 if (ret == -EAGAIN || ret == -ENOMEM) {
2395 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2396 cmd);
2397 transport_handle_queue_full(cmd, cmd->se_dev);
2398 }
2399 }
2400
2401 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2402 {
2403 unsigned long flags;
2404 int ret = 0;
2405
2406 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2407 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2408 transport_wait_for_tasks(cmd);
2409
2410 ret = transport_release_cmd(cmd);
2411 } else {
2412 if (wait_for_tasks)
2413 transport_wait_for_tasks(cmd);
2414 /*
2415 * Handle WRITE failure case where transport_generic_new_cmd()
2416 * has already added se_cmd to state_list, but fabric has
2417 * failed command before I/O submission.
2418 */
2419 if (cmd->state_active) {
2420 spin_lock_irqsave(&cmd->t_state_lock, flags);
2421 target_remove_from_state_list(cmd);
2422 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2423 }
2424
2425 if (cmd->se_lun)
2426 transport_lun_remove_cmd(cmd);
2427
2428 ret = transport_put_cmd(cmd);
2429 }
2430 return ret;
2431 }
2432 EXPORT_SYMBOL(transport_generic_free_cmd);
2433
2434 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2435 * @se_cmd: command descriptor to add
2436 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2437 */
2438 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2439 {
2440 struct se_session *se_sess = se_cmd->se_sess;
2441 unsigned long flags;
2442 int ret = 0;
2443
2444 /*
2445 * Add a second kref if the fabric caller is expecting to handle
2446 * fabric acknowledgement that requires two target_put_sess_cmd()
2447 * invocations before se_cmd descriptor release.
2448 */
2449 if (ack_kref)
2450 kref_get(&se_cmd->cmd_kref);
2451
2452 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2453 if (se_sess->sess_tearing_down) {
2454 ret = -ESHUTDOWN;
2455 goto out;
2456 }
2457 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2458 out:
2459 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2460
2461 if (ret && ack_kref)
2462 target_put_sess_cmd(se_cmd);
2463
2464 return ret;
2465 }
2466 EXPORT_SYMBOL(target_get_sess_cmd);
2467
2468 static void target_release_cmd_kref(struct kref *kref)
2469 __releases(&se_cmd->se_sess->sess_cmd_lock)
2470 {
2471 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2472 struct se_session *se_sess = se_cmd->se_sess;
2473
2474 if (list_empty(&se_cmd->se_cmd_list)) {
2475 spin_unlock(&se_sess->sess_cmd_lock);
2476 se_cmd->se_tfo->release_cmd(se_cmd);
2477 return;
2478 }
2479 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2480 spin_unlock(&se_sess->sess_cmd_lock);
2481 complete(&se_cmd->cmd_wait_comp);
2482 return;
2483 }
2484 list_del(&se_cmd->se_cmd_list);
2485 spin_unlock(&se_sess->sess_cmd_lock);
2486
2487 se_cmd->se_tfo->release_cmd(se_cmd);
2488 }
2489
2490 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2491 * @se_cmd: command descriptor to drop
2492 */
2493 int target_put_sess_cmd(struct se_cmd *se_cmd)
2494 {
2495 struct se_session *se_sess = se_cmd->se_sess;
2496
2497 if (!se_sess) {
2498 se_cmd->se_tfo->release_cmd(se_cmd);
2499 return 1;
2500 }
2501 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2502 &se_sess->sess_cmd_lock);
2503 }
2504 EXPORT_SYMBOL(target_put_sess_cmd);
2505
2506 /* target_sess_cmd_list_set_waiting - Flag all commands in
2507 * sess_cmd_list to complete cmd_wait_comp. Set
2508 * sess_tearing_down so no more commands are queued.
2509 * @se_sess: session to flag
2510 */
2511 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2512 {
2513 struct se_cmd *se_cmd;
2514 unsigned long flags;
2515
2516 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2517 if (se_sess->sess_tearing_down) {
2518 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2519 return;
2520 }
2521 se_sess->sess_tearing_down = 1;
2522 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2523
2524 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2525 se_cmd->cmd_wait_set = 1;
2526
2527 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2528 }
2529 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2530
2531 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2532 * @se_sess: session to wait for active I/O
2533 */
2534 void target_wait_for_sess_cmds(struct se_session *se_sess)
2535 {
2536 struct se_cmd *se_cmd, *tmp_cmd;
2537 unsigned long flags;
2538
2539 list_for_each_entry_safe(se_cmd, tmp_cmd,
2540 &se_sess->sess_wait_list, se_cmd_list) {
2541 list_del(&se_cmd->se_cmd_list);
2542
2543 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2544 " %d\n", se_cmd, se_cmd->t_state,
2545 se_cmd->se_tfo->get_cmd_state(se_cmd));
2546
2547 wait_for_completion(&se_cmd->cmd_wait_comp);
2548 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2549 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2550 se_cmd->se_tfo->get_cmd_state(se_cmd));
2551
2552 se_cmd->se_tfo->release_cmd(se_cmd);
2553 }
2554
2555 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2556 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2557 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2558
2559 }
2560 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2561
2562 void transport_clear_lun_ref(struct se_lun *lun)
2563 {
2564 percpu_ref_kill(&lun->lun_ref);
2565 wait_for_completion(&lun->lun_ref_comp);
2566 }
2567
2568 /**
2569 * transport_wait_for_tasks - wait for completion to occur
2570 * @cmd: command to wait
2571 *
2572 * Called from frontend fabric context to wait for storage engine
2573 * to pause and/or release frontend generated struct se_cmd.
2574 */
2575 bool transport_wait_for_tasks(struct se_cmd *cmd)
2576 {
2577 unsigned long flags;
2578
2579 spin_lock_irqsave(&cmd->t_state_lock, flags);
2580 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2581 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2582 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2583 return false;
2584 }
2585
2586 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2587 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2588 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2589 return false;
2590 }
2591
2592 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2593 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2594 return false;
2595 }
2596
2597 cmd->transport_state |= CMD_T_STOP;
2598
2599 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d, t_state: %d, CMD_T_STOP\n",
2600 cmd, cmd->tag, cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2601
2602 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2603
2604 wait_for_completion(&cmd->t_transport_stop_comp);
2605
2606 spin_lock_irqsave(&cmd->t_state_lock, flags);
2607 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2608
2609 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->t_transport_stop_comp) for ITT: 0x%08llx\n",
2610 cmd->tag);
2611
2612 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2613
2614 return true;
2615 }
2616 EXPORT_SYMBOL(transport_wait_for_tasks);
2617
2618 static int transport_get_sense_codes(
2619 struct se_cmd *cmd,
2620 u8 *asc,
2621 u8 *ascq)
2622 {
2623 *asc = cmd->scsi_asc;
2624 *ascq = cmd->scsi_ascq;
2625
2626 return 0;
2627 }
2628
2629 static
2630 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2631 {
2632 /* Place failed LBA in sense data information descriptor 0. */
2633 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2634 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2635 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2636 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2637
2638 /* Descriptor Information: failing sector */
2639 put_unaligned_be64(bad_sector, &buffer[12]);
2640 }
2641
2642 int
2643 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2644 sense_reason_t reason, int from_transport)
2645 {
2646 unsigned char *buffer = cmd->sense_buffer;
2647 unsigned long flags;
2648 u8 asc = 0, ascq = 0;
2649
2650 spin_lock_irqsave(&cmd->t_state_lock, flags);
2651 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2652 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2653 return 0;
2654 }
2655 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2656 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2657
2658 if (!reason && from_transport)
2659 goto after_reason;
2660
2661 if (!from_transport)
2662 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2663
2664 /*
2665 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2666 * SENSE KEY values from include/scsi/scsi.h
2667 */
2668 switch (reason) {
2669 case TCM_NO_SENSE:
2670 /* CURRENT ERROR */
2671 buffer[0] = 0x70;
2672 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2673 /* Not Ready */
2674 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2675 /* NO ADDITIONAL SENSE INFORMATION */
2676 buffer[SPC_ASC_KEY_OFFSET] = 0;
2677 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2678 break;
2679 case TCM_NON_EXISTENT_LUN:
2680 /* CURRENT ERROR */
2681 buffer[0] = 0x70;
2682 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2683 /* ILLEGAL REQUEST */
2684 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2685 /* LOGICAL UNIT NOT SUPPORTED */
2686 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2687 break;
2688 case TCM_UNSUPPORTED_SCSI_OPCODE:
2689 case TCM_SECTOR_COUNT_TOO_MANY:
2690 /* CURRENT ERROR */
2691 buffer[0] = 0x70;
2692 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2693 /* ILLEGAL REQUEST */
2694 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2695 /* INVALID COMMAND OPERATION CODE */
2696 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2697 break;
2698 case TCM_UNKNOWN_MODE_PAGE:
2699 /* CURRENT ERROR */
2700 buffer[0] = 0x70;
2701 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2702 /* ILLEGAL REQUEST */
2703 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2704 /* INVALID FIELD IN CDB */
2705 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2706 break;
2707 case TCM_CHECK_CONDITION_ABORT_CMD:
2708 /* CURRENT ERROR */
2709 buffer[0] = 0x70;
2710 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2711 /* ABORTED COMMAND */
2712 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2713 /* BUS DEVICE RESET FUNCTION OCCURRED */
2714 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2715 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2716 break;
2717 case TCM_INCORRECT_AMOUNT_OF_DATA:
2718 /* CURRENT ERROR */
2719 buffer[0] = 0x70;
2720 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2721 /* ABORTED COMMAND */
2722 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2723 /* WRITE ERROR */
2724 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2725 /* NOT ENOUGH UNSOLICITED DATA */
2726 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2727 break;
2728 case TCM_INVALID_CDB_FIELD:
2729 /* CURRENT ERROR */
2730 buffer[0] = 0x70;
2731 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2732 /* ILLEGAL REQUEST */
2733 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2734 /* INVALID FIELD IN CDB */
2735 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2736 break;
2737 case TCM_INVALID_PARAMETER_LIST:
2738 /* CURRENT ERROR */
2739 buffer[0] = 0x70;
2740 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2741 /* ILLEGAL REQUEST */
2742 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2743 /* INVALID FIELD IN PARAMETER LIST */
2744 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2745 break;
2746 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2747 /* CURRENT ERROR */
2748 buffer[0] = 0x70;
2749 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2750 /* ILLEGAL REQUEST */
2751 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2752 /* PARAMETER LIST LENGTH ERROR */
2753 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2754 break;
2755 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2756 /* CURRENT ERROR */
2757 buffer[0] = 0x70;
2758 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2759 /* ABORTED COMMAND */
2760 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2761 /* WRITE ERROR */
2762 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2763 /* UNEXPECTED_UNSOLICITED_DATA */
2764 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2765 break;
2766 case TCM_SERVICE_CRC_ERROR:
2767 /* CURRENT ERROR */
2768 buffer[0] = 0x70;
2769 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2770 /* ABORTED COMMAND */
2771 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2772 /* PROTOCOL SERVICE CRC ERROR */
2773 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2774 /* N/A */
2775 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2776 break;
2777 case TCM_SNACK_REJECTED:
2778 /* CURRENT ERROR */
2779 buffer[0] = 0x70;
2780 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2781 /* ABORTED COMMAND */
2782 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2783 /* READ ERROR */
2784 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2785 /* FAILED RETRANSMISSION REQUEST */
2786 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2787 break;
2788 case TCM_WRITE_PROTECTED:
2789 /* CURRENT ERROR */
2790 buffer[0] = 0x70;
2791 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2792 /* DATA PROTECT */
2793 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2794 /* WRITE PROTECTED */
2795 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2796 break;
2797 case TCM_ADDRESS_OUT_OF_RANGE:
2798 /* CURRENT ERROR */
2799 buffer[0] = 0x70;
2800 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2801 /* ILLEGAL REQUEST */
2802 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2803 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2804 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2805 break;
2806 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2807 /* CURRENT ERROR */
2808 buffer[0] = 0x70;
2809 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2810 /* UNIT ATTENTION */
2811 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2812 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2813 buffer[SPC_ASC_KEY_OFFSET] = asc;
2814 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2815 break;
2816 case TCM_CHECK_CONDITION_NOT_READY:
2817 /* CURRENT ERROR */
2818 buffer[0] = 0x70;
2819 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2820 /* Not Ready */
2821 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2822 transport_get_sense_codes(cmd, &asc, &ascq);
2823 buffer[SPC_ASC_KEY_OFFSET] = asc;
2824 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2825 break;
2826 case TCM_MISCOMPARE_VERIFY:
2827 /* CURRENT ERROR */
2828 buffer[0] = 0x70;
2829 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2830 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2831 /* MISCOMPARE DURING VERIFY OPERATION */
2832 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2833 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2834 break;
2835 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2836 /* CURRENT ERROR */
2837 buffer[0] = 0x70;
2838 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2839 /* ILLEGAL REQUEST */
2840 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2841 /* LOGICAL BLOCK GUARD CHECK FAILED */
2842 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2843 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2844 transport_err_sector_info(buffer, cmd->bad_sector);
2845 break;
2846 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2847 /* CURRENT ERROR */
2848 buffer[0] = 0x70;
2849 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2850 /* ILLEGAL REQUEST */
2851 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2852 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2853 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2854 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2855 transport_err_sector_info(buffer, cmd->bad_sector);
2856 break;
2857 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2858 /* CURRENT ERROR */
2859 buffer[0] = 0x70;
2860 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2861 /* ILLEGAL REQUEST */
2862 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2863 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2864 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2865 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2866 transport_err_sector_info(buffer, cmd->bad_sector);
2867 break;
2868 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2869 default:
2870 /* CURRENT ERROR */
2871 buffer[0] = 0x70;
2872 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2873 /*
2874 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2875 * Solaris initiators. Returning NOT READY instead means the
2876 * operations will be retried a finite number of times and we
2877 * can survive intermittent errors.
2878 */
2879 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2880 /* LOGICAL UNIT COMMUNICATION FAILURE */
2881 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2882 break;
2883 }
2884 /*
2885 * This code uses linux/include/scsi/scsi.h SAM status codes!
2886 */
2887 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2888 /*
2889 * Automatically padded, this value is encoded in the fabric's
2890 * data_length response PDU containing the SCSI defined sense data.
2891 */
2892 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2893
2894 after_reason:
2895 trace_target_cmd_complete(cmd);
2896 return cmd->se_tfo->queue_status(cmd);
2897 }
2898 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2899
2900 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2901 {
2902 if (!(cmd->transport_state & CMD_T_ABORTED))
2903 return 0;
2904
2905 /*
2906 * If cmd has been aborted but either no status is to be sent or it has
2907 * already been sent, just return
2908 */
2909 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2910 return 1;
2911
2912 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08llx\n",
2913 cmd->t_task_cdb[0], cmd->tag);
2914
2915 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2916 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2917 trace_target_cmd_complete(cmd);
2918 cmd->se_tfo->queue_status(cmd);
2919
2920 return 1;
2921 }
2922 EXPORT_SYMBOL(transport_check_aborted_status);
2923
2924 void transport_send_task_abort(struct se_cmd *cmd)
2925 {
2926 unsigned long flags;
2927
2928 spin_lock_irqsave(&cmd->t_state_lock, flags);
2929 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2930 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2931 return;
2932 }
2933 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2934
2935 /*
2936 * If there are still expected incoming fabric WRITEs, we wait
2937 * until until they have completed before sending a TASK_ABORTED
2938 * response. This response with TASK_ABORTED status will be
2939 * queued back to fabric module by transport_check_aborted_status().
2940 */
2941 if (cmd->data_direction == DMA_TO_DEVICE) {
2942 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2943 cmd->transport_state |= CMD_T_ABORTED;
2944 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2945 return;
2946 }
2947 }
2948 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2949
2950 transport_lun_remove_cmd(cmd);
2951
2952 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
2953 cmd->t_task_cdb[0], cmd->tag);
2954
2955 trace_target_cmd_complete(cmd);
2956 cmd->se_tfo->queue_status(cmd);
2957 }
2958
2959 static void target_tmr_work(struct work_struct *work)
2960 {
2961 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2962 struct se_device *dev = cmd->se_dev;
2963 struct se_tmr_req *tmr = cmd->se_tmr_req;
2964 int ret;
2965
2966 switch (tmr->function) {
2967 case TMR_ABORT_TASK:
2968 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2969 break;
2970 case TMR_ABORT_TASK_SET:
2971 case TMR_CLEAR_ACA:
2972 case TMR_CLEAR_TASK_SET:
2973 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2974 break;
2975 case TMR_LUN_RESET:
2976 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2977 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2978 TMR_FUNCTION_REJECTED;
2979 if (tmr->response == TMR_FUNCTION_COMPLETE) {
2980 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2981 cmd->orig_fe_lun, 0x29,
2982 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
2983 }
2984 break;
2985 case TMR_TARGET_WARM_RESET:
2986 tmr->response = TMR_FUNCTION_REJECTED;
2987 break;
2988 case TMR_TARGET_COLD_RESET:
2989 tmr->response = TMR_FUNCTION_REJECTED;
2990 break;
2991 default:
2992 pr_err("Uknown TMR function: 0x%02x.\n",
2993 tmr->function);
2994 tmr->response = TMR_FUNCTION_REJECTED;
2995 break;
2996 }
2997
2998 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2999 cmd->se_tfo->queue_tm_rsp(cmd);
3000
3001 transport_cmd_check_stop_to_fabric(cmd);
3002 }
3003
3004 int transport_generic_handle_tmr(
3005 struct se_cmd *cmd)
3006 {
3007 unsigned long flags;
3008
3009 spin_lock_irqsave(&cmd->t_state_lock, flags);
3010 cmd->transport_state |= CMD_T_ACTIVE;
3011 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3012
3013 INIT_WORK(&cmd->work, target_tmr_work);
3014 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3015 return 0;
3016 }
3017 EXPORT_SYMBOL(transport_generic_handle_tmr);
3018
3019 bool
3020 target_check_wce(struct se_device *dev)
3021 {
3022 bool wce = false;
3023
3024 if (dev->transport->get_write_cache)
3025 wce = dev->transport->get_write_cache(dev);
3026 else if (dev->dev_attrib.emulate_write_cache > 0)
3027 wce = true;
3028
3029 return wce;
3030 }
3031
3032 bool
3033 target_check_fua(struct se_device *dev)
3034 {
3035 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3036 }
This page took 0.108467 seconds and 5 git commands to generate.