Merge tag 'tag-for-linus-3.9' of git://git.linaro.org/people/sumitsemwal/linux-dma-buf
[deliverable/linux.git] / drivers / thermal / exynos_thermal.c
1 /*
2 * exynos_thermal.c - Samsung EXYNOS TMU (Thermal Management Unit)
3 *
4 * Copyright (C) 2011 Samsung Electronics
5 * Donggeun Kim <dg77.kim@samsung.com>
6 * Amit Daniel Kachhap <amit.kachhap@linaro.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/err.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/platform_device.h>
29 #include <linux/interrupt.h>
30 #include <linux/clk.h>
31 #include <linux/workqueue.h>
32 #include <linux/sysfs.h>
33 #include <linux/kobject.h>
34 #include <linux/io.h>
35 #include <linux/mutex.h>
36 #include <linux/platform_data/exynos_thermal.h>
37 #include <linux/thermal.h>
38 #include <linux/cpufreq.h>
39 #include <linux/cpu_cooling.h>
40 #include <linux/of.h>
41
42 #include <plat/cpu.h>
43
44 /* Exynos generic registers */
45 #define EXYNOS_TMU_REG_TRIMINFO 0x0
46 #define EXYNOS_TMU_REG_CONTROL 0x20
47 #define EXYNOS_TMU_REG_STATUS 0x28
48 #define EXYNOS_TMU_REG_CURRENT_TEMP 0x40
49 #define EXYNOS_TMU_REG_INTEN 0x70
50 #define EXYNOS_TMU_REG_INTSTAT 0x74
51 #define EXYNOS_TMU_REG_INTCLEAR 0x78
52
53 #define EXYNOS_TMU_TRIM_TEMP_MASK 0xff
54 #define EXYNOS_TMU_GAIN_SHIFT 8
55 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT 24
56 #define EXYNOS_TMU_CORE_ON 3
57 #define EXYNOS_TMU_CORE_OFF 2
58 #define EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET 50
59
60 /* Exynos4210 specific registers */
61 #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP 0x44
62 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0 0x50
63 #define EXYNOS4210_TMU_REG_TRIG_LEVEL1 0x54
64 #define EXYNOS4210_TMU_REG_TRIG_LEVEL2 0x58
65 #define EXYNOS4210_TMU_REG_TRIG_LEVEL3 0x5C
66 #define EXYNOS4210_TMU_REG_PAST_TEMP0 0x60
67 #define EXYNOS4210_TMU_REG_PAST_TEMP1 0x64
68 #define EXYNOS4210_TMU_REG_PAST_TEMP2 0x68
69 #define EXYNOS4210_TMU_REG_PAST_TEMP3 0x6C
70
71 #define EXYNOS4210_TMU_TRIG_LEVEL0_MASK 0x1
72 #define EXYNOS4210_TMU_TRIG_LEVEL1_MASK 0x10
73 #define EXYNOS4210_TMU_TRIG_LEVEL2_MASK 0x100
74 #define EXYNOS4210_TMU_TRIG_LEVEL3_MASK 0x1000
75 #define EXYNOS4210_TMU_INTCLEAR_VAL 0x1111
76
77 /* Exynos5250 and Exynos4412 specific registers */
78 #define EXYNOS_TMU_TRIMINFO_CON 0x14
79 #define EXYNOS_THD_TEMP_RISE 0x50
80 #define EXYNOS_THD_TEMP_FALL 0x54
81 #define EXYNOS_EMUL_CON 0x80
82
83 #define EXYNOS_TRIMINFO_RELOAD 0x1
84 #define EXYNOS_TMU_CLEAR_RISE_INT 0x111
85 #define EXYNOS_TMU_CLEAR_FALL_INT (0x111 << 16)
86 #define EXYNOS_MUX_ADDR_VALUE 6
87 #define EXYNOS_MUX_ADDR_SHIFT 20
88 #define EXYNOS_TMU_TRIP_MODE_SHIFT 13
89
90 #define EFUSE_MIN_VALUE 40
91 #define EFUSE_MAX_VALUE 100
92
93 /* In-kernel thermal framework related macros & definations */
94 #define SENSOR_NAME_LEN 16
95 #define MAX_TRIP_COUNT 8
96 #define MAX_COOLING_DEVICE 4
97
98 #define ACTIVE_INTERVAL 500
99 #define IDLE_INTERVAL 10000
100 #define MCELSIUS 1000
101
102 /* CPU Zone information */
103 #define PANIC_ZONE 4
104 #define WARN_ZONE 3
105 #define MONITOR_ZONE 2
106 #define SAFE_ZONE 1
107
108 #define GET_ZONE(trip) (trip + 2)
109 #define GET_TRIP(zone) (zone - 2)
110
111 #define EXYNOS_ZONE_COUNT 3
112
113 struct exynos_tmu_data {
114 struct exynos_tmu_platform_data *pdata;
115 struct resource *mem;
116 void __iomem *base;
117 int irq;
118 enum soc_type soc;
119 struct work_struct irq_work;
120 struct mutex lock;
121 struct clk *clk;
122 u8 temp_error1, temp_error2;
123 };
124
125 struct thermal_trip_point_conf {
126 int trip_val[MAX_TRIP_COUNT];
127 int trip_count;
128 };
129
130 struct thermal_cooling_conf {
131 struct freq_clip_table freq_data[MAX_TRIP_COUNT];
132 int freq_clip_count;
133 };
134
135 struct thermal_sensor_conf {
136 char name[SENSOR_NAME_LEN];
137 int (*read_temperature)(void *data);
138 struct thermal_trip_point_conf trip_data;
139 struct thermal_cooling_conf cooling_data;
140 void *private_data;
141 };
142
143 struct exynos_thermal_zone {
144 enum thermal_device_mode mode;
145 struct thermal_zone_device *therm_dev;
146 struct thermal_cooling_device *cool_dev[MAX_COOLING_DEVICE];
147 unsigned int cool_dev_size;
148 struct platform_device *exynos4_dev;
149 struct thermal_sensor_conf *sensor_conf;
150 bool bind;
151 };
152
153 static struct exynos_thermal_zone *th_zone;
154 static void exynos_unregister_thermal(void);
155 static int exynos_register_thermal(struct thermal_sensor_conf *sensor_conf);
156
157 /* Get mode callback functions for thermal zone */
158 static int exynos_get_mode(struct thermal_zone_device *thermal,
159 enum thermal_device_mode *mode)
160 {
161 if (th_zone)
162 *mode = th_zone->mode;
163 return 0;
164 }
165
166 /* Set mode callback functions for thermal zone */
167 static int exynos_set_mode(struct thermal_zone_device *thermal,
168 enum thermal_device_mode mode)
169 {
170 if (!th_zone->therm_dev) {
171 pr_notice("thermal zone not registered\n");
172 return 0;
173 }
174
175 mutex_lock(&th_zone->therm_dev->lock);
176
177 if (mode == THERMAL_DEVICE_ENABLED)
178 th_zone->therm_dev->polling_delay = IDLE_INTERVAL;
179 else
180 th_zone->therm_dev->polling_delay = 0;
181
182 mutex_unlock(&th_zone->therm_dev->lock);
183
184 th_zone->mode = mode;
185 thermal_zone_device_update(th_zone->therm_dev);
186 pr_info("thermal polling set for duration=%d msec\n",
187 th_zone->therm_dev->polling_delay);
188 return 0;
189 }
190
191
192 /* Get trip type callback functions for thermal zone */
193 static int exynos_get_trip_type(struct thermal_zone_device *thermal, int trip,
194 enum thermal_trip_type *type)
195 {
196 switch (GET_ZONE(trip)) {
197 case MONITOR_ZONE:
198 case WARN_ZONE:
199 *type = THERMAL_TRIP_ACTIVE;
200 break;
201 case PANIC_ZONE:
202 *type = THERMAL_TRIP_CRITICAL;
203 break;
204 default:
205 return -EINVAL;
206 }
207 return 0;
208 }
209
210 /* Get trip temperature callback functions for thermal zone */
211 static int exynos_get_trip_temp(struct thermal_zone_device *thermal, int trip,
212 unsigned long *temp)
213 {
214 if (trip < GET_TRIP(MONITOR_ZONE) || trip > GET_TRIP(PANIC_ZONE))
215 return -EINVAL;
216
217 *temp = th_zone->sensor_conf->trip_data.trip_val[trip];
218 /* convert the temperature into millicelsius */
219 *temp = *temp * MCELSIUS;
220
221 return 0;
222 }
223
224 /* Get critical temperature callback functions for thermal zone */
225 static int exynos_get_crit_temp(struct thermal_zone_device *thermal,
226 unsigned long *temp)
227 {
228 int ret;
229 /* Panic zone */
230 ret = exynos_get_trip_temp(thermal, GET_TRIP(PANIC_ZONE), temp);
231 return ret;
232 }
233
234 static int exynos_get_frequency_level(unsigned int cpu, unsigned int freq)
235 {
236 int i = 0, ret = -EINVAL;
237 struct cpufreq_frequency_table *table = NULL;
238 #ifdef CONFIG_CPU_FREQ
239 table = cpufreq_frequency_get_table(cpu);
240 #endif
241 if (!table)
242 return ret;
243
244 while (table[i].frequency != CPUFREQ_TABLE_END) {
245 if (table[i].frequency == CPUFREQ_ENTRY_INVALID)
246 continue;
247 if (table[i].frequency == freq)
248 return i;
249 i++;
250 }
251 return ret;
252 }
253
254 /* Bind callback functions for thermal zone */
255 static int exynos_bind(struct thermal_zone_device *thermal,
256 struct thermal_cooling_device *cdev)
257 {
258 int ret = 0, i, tab_size, level;
259 struct freq_clip_table *tab_ptr, *clip_data;
260 struct thermal_sensor_conf *data = th_zone->sensor_conf;
261
262 tab_ptr = (struct freq_clip_table *)data->cooling_data.freq_data;
263 tab_size = data->cooling_data.freq_clip_count;
264
265 if (tab_ptr == NULL || tab_size == 0)
266 return -EINVAL;
267
268 /* find the cooling device registered*/
269 for (i = 0; i < th_zone->cool_dev_size; i++)
270 if (cdev == th_zone->cool_dev[i])
271 break;
272
273 /* No matching cooling device */
274 if (i == th_zone->cool_dev_size)
275 return 0;
276
277 /* Bind the thermal zone to the cpufreq cooling device */
278 for (i = 0; i < tab_size; i++) {
279 clip_data = (struct freq_clip_table *)&(tab_ptr[i]);
280 level = exynos_get_frequency_level(0, clip_data->freq_clip_max);
281 if (level < 0)
282 return 0;
283 switch (GET_ZONE(i)) {
284 case MONITOR_ZONE:
285 case WARN_ZONE:
286 if (thermal_zone_bind_cooling_device(thermal, i, cdev,
287 level, level)) {
288 pr_err("error binding cdev inst %d\n", i);
289 ret = -EINVAL;
290 }
291 th_zone->bind = true;
292 break;
293 default:
294 ret = -EINVAL;
295 }
296 }
297
298 return ret;
299 }
300
301 /* Unbind callback functions for thermal zone */
302 static int exynos_unbind(struct thermal_zone_device *thermal,
303 struct thermal_cooling_device *cdev)
304 {
305 int ret = 0, i, tab_size;
306 struct thermal_sensor_conf *data = th_zone->sensor_conf;
307
308 if (th_zone->bind == false)
309 return 0;
310
311 tab_size = data->cooling_data.freq_clip_count;
312
313 if (tab_size == 0)
314 return -EINVAL;
315
316 /* find the cooling device registered*/
317 for (i = 0; i < th_zone->cool_dev_size; i++)
318 if (cdev == th_zone->cool_dev[i])
319 break;
320
321 /* No matching cooling device */
322 if (i == th_zone->cool_dev_size)
323 return 0;
324
325 /* Bind the thermal zone to the cpufreq cooling device */
326 for (i = 0; i < tab_size; i++) {
327 switch (GET_ZONE(i)) {
328 case MONITOR_ZONE:
329 case WARN_ZONE:
330 if (thermal_zone_unbind_cooling_device(thermal, i,
331 cdev)) {
332 pr_err("error unbinding cdev inst=%d\n", i);
333 ret = -EINVAL;
334 }
335 th_zone->bind = false;
336 break;
337 default:
338 ret = -EINVAL;
339 }
340 }
341 return ret;
342 }
343
344 /* Get temperature callback functions for thermal zone */
345 static int exynos_get_temp(struct thermal_zone_device *thermal,
346 unsigned long *temp)
347 {
348 void *data;
349
350 if (!th_zone->sensor_conf) {
351 pr_info("Temperature sensor not initialised\n");
352 return -EINVAL;
353 }
354 data = th_zone->sensor_conf->private_data;
355 *temp = th_zone->sensor_conf->read_temperature(data);
356 /* convert the temperature into millicelsius */
357 *temp = *temp * MCELSIUS;
358 return 0;
359 }
360
361 /* Get the temperature trend */
362 static int exynos_get_trend(struct thermal_zone_device *thermal,
363 int trip, enum thermal_trend *trend)
364 {
365 if (thermal->temperature >= trip)
366 *trend = THERMAL_TREND_RAISING;
367 else
368 *trend = THERMAL_TREND_DROPPING;
369
370 return 0;
371 }
372 /* Operation callback functions for thermal zone */
373 static struct thermal_zone_device_ops const exynos_dev_ops = {
374 .bind = exynos_bind,
375 .unbind = exynos_unbind,
376 .get_temp = exynos_get_temp,
377 .get_trend = exynos_get_trend,
378 .get_mode = exynos_get_mode,
379 .set_mode = exynos_set_mode,
380 .get_trip_type = exynos_get_trip_type,
381 .get_trip_temp = exynos_get_trip_temp,
382 .get_crit_temp = exynos_get_crit_temp,
383 };
384
385 /*
386 * This function may be called from interrupt based temperature sensor
387 * when threshold is changed.
388 */
389 static void exynos_report_trigger(void)
390 {
391 unsigned int i;
392 char data[10];
393 char *envp[] = { data, NULL };
394
395 if (!th_zone || !th_zone->therm_dev)
396 return;
397 if (th_zone->bind == false) {
398 for (i = 0; i < th_zone->cool_dev_size; i++) {
399 if (!th_zone->cool_dev[i])
400 continue;
401 exynos_bind(th_zone->therm_dev,
402 th_zone->cool_dev[i]);
403 }
404 }
405
406 thermal_zone_device_update(th_zone->therm_dev);
407
408 mutex_lock(&th_zone->therm_dev->lock);
409 /* Find the level for which trip happened */
410 for (i = 0; i < th_zone->sensor_conf->trip_data.trip_count; i++) {
411 if (th_zone->therm_dev->last_temperature <
412 th_zone->sensor_conf->trip_data.trip_val[i] * MCELSIUS)
413 break;
414 }
415
416 if (th_zone->mode == THERMAL_DEVICE_ENABLED) {
417 if (i > 0)
418 th_zone->therm_dev->polling_delay = ACTIVE_INTERVAL;
419 else
420 th_zone->therm_dev->polling_delay = IDLE_INTERVAL;
421 }
422
423 snprintf(data, sizeof(data), "%u", i);
424 kobject_uevent_env(&th_zone->therm_dev->device.kobj, KOBJ_CHANGE, envp);
425 mutex_unlock(&th_zone->therm_dev->lock);
426 }
427
428 /* Register with the in-kernel thermal management */
429 static int exynos_register_thermal(struct thermal_sensor_conf *sensor_conf)
430 {
431 int ret;
432 struct cpumask mask_val;
433
434 if (!sensor_conf || !sensor_conf->read_temperature) {
435 pr_err("Temperature sensor not initialised\n");
436 return -EINVAL;
437 }
438
439 th_zone = kzalloc(sizeof(struct exynos_thermal_zone), GFP_KERNEL);
440 if (!th_zone)
441 return -ENOMEM;
442
443 th_zone->sensor_conf = sensor_conf;
444 cpumask_set_cpu(0, &mask_val);
445 th_zone->cool_dev[0] = cpufreq_cooling_register(&mask_val);
446 if (IS_ERR(th_zone->cool_dev[0])) {
447 pr_err("Failed to register cpufreq cooling device\n");
448 ret = -EINVAL;
449 goto err_unregister;
450 }
451 th_zone->cool_dev_size++;
452
453 th_zone->therm_dev = thermal_zone_device_register(sensor_conf->name,
454 EXYNOS_ZONE_COUNT, 0, NULL, &exynos_dev_ops, NULL, 0,
455 IDLE_INTERVAL);
456
457 if (IS_ERR(th_zone->therm_dev)) {
458 pr_err("Failed to register thermal zone device\n");
459 ret = -EINVAL;
460 goto err_unregister;
461 }
462 th_zone->mode = THERMAL_DEVICE_ENABLED;
463
464 pr_info("Exynos: Kernel Thermal management registered\n");
465
466 return 0;
467
468 err_unregister:
469 exynos_unregister_thermal();
470 return ret;
471 }
472
473 /* Un-Register with the in-kernel thermal management */
474 static void exynos_unregister_thermal(void)
475 {
476 int i;
477
478 if (!th_zone)
479 return;
480
481 if (th_zone->therm_dev)
482 thermal_zone_device_unregister(th_zone->therm_dev);
483
484 for (i = 0; i < th_zone->cool_dev_size; i++) {
485 if (th_zone->cool_dev[i])
486 cpufreq_cooling_unregister(th_zone->cool_dev[i]);
487 }
488
489 kfree(th_zone);
490 pr_info("Exynos: Kernel Thermal management unregistered\n");
491 }
492
493 /*
494 * TMU treats temperature as a mapped temperature code.
495 * The temperature is converted differently depending on the calibration type.
496 */
497 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
498 {
499 struct exynos_tmu_platform_data *pdata = data->pdata;
500 int temp_code;
501
502 if (data->soc == SOC_ARCH_EXYNOS4210)
503 /* temp should range between 25 and 125 */
504 if (temp < 25 || temp > 125) {
505 temp_code = -EINVAL;
506 goto out;
507 }
508
509 switch (pdata->cal_type) {
510 case TYPE_TWO_POINT_TRIMMING:
511 temp_code = (temp - 25) *
512 (data->temp_error2 - data->temp_error1) /
513 (85 - 25) + data->temp_error1;
514 break;
515 case TYPE_ONE_POINT_TRIMMING:
516 temp_code = temp + data->temp_error1 - 25;
517 break;
518 default:
519 temp_code = temp + EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET;
520 break;
521 }
522 out:
523 return temp_code;
524 }
525
526 /*
527 * Calculate a temperature value from a temperature code.
528 * The unit of the temperature is degree Celsius.
529 */
530 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
531 {
532 struct exynos_tmu_platform_data *pdata = data->pdata;
533 int temp;
534
535 if (data->soc == SOC_ARCH_EXYNOS4210)
536 /* temp_code should range between 75 and 175 */
537 if (temp_code < 75 || temp_code > 175) {
538 temp = -ENODATA;
539 goto out;
540 }
541
542 switch (pdata->cal_type) {
543 case TYPE_TWO_POINT_TRIMMING:
544 temp = (temp_code - data->temp_error1) * (85 - 25) /
545 (data->temp_error2 - data->temp_error1) + 25;
546 break;
547 case TYPE_ONE_POINT_TRIMMING:
548 temp = temp_code - data->temp_error1 + 25;
549 break;
550 default:
551 temp = temp_code - EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET;
552 break;
553 }
554 out:
555 return temp;
556 }
557
558 static int exynos_tmu_initialize(struct platform_device *pdev)
559 {
560 struct exynos_tmu_data *data = platform_get_drvdata(pdev);
561 struct exynos_tmu_platform_data *pdata = data->pdata;
562 unsigned int status, trim_info, rising_threshold;
563 int ret = 0, threshold_code;
564
565 mutex_lock(&data->lock);
566 clk_enable(data->clk);
567
568 status = readb(data->base + EXYNOS_TMU_REG_STATUS);
569 if (!status) {
570 ret = -EBUSY;
571 goto out;
572 }
573
574 if (data->soc == SOC_ARCH_EXYNOS) {
575 __raw_writel(EXYNOS_TRIMINFO_RELOAD,
576 data->base + EXYNOS_TMU_TRIMINFO_CON);
577 }
578 /* Save trimming info in order to perform calibration */
579 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
580 data->temp_error1 = trim_info & EXYNOS_TMU_TRIM_TEMP_MASK;
581 data->temp_error2 = ((trim_info >> 8) & EXYNOS_TMU_TRIM_TEMP_MASK);
582
583 if ((EFUSE_MIN_VALUE > data->temp_error1) ||
584 (data->temp_error1 > EFUSE_MAX_VALUE) ||
585 (data->temp_error2 != 0))
586 data->temp_error1 = pdata->efuse_value;
587
588 if (data->soc == SOC_ARCH_EXYNOS4210) {
589 /* Write temperature code for threshold */
590 threshold_code = temp_to_code(data, pdata->threshold);
591 if (threshold_code < 0) {
592 ret = threshold_code;
593 goto out;
594 }
595 writeb(threshold_code,
596 data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
597
598 writeb(pdata->trigger_levels[0],
599 data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL0);
600 writeb(pdata->trigger_levels[1],
601 data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL1);
602 writeb(pdata->trigger_levels[2],
603 data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL2);
604 writeb(pdata->trigger_levels[3],
605 data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL3);
606
607 writel(EXYNOS4210_TMU_INTCLEAR_VAL,
608 data->base + EXYNOS_TMU_REG_INTCLEAR);
609 } else if (data->soc == SOC_ARCH_EXYNOS) {
610 /* Write temperature code for threshold */
611 threshold_code = temp_to_code(data, pdata->trigger_levels[0]);
612 if (threshold_code < 0) {
613 ret = threshold_code;
614 goto out;
615 }
616 rising_threshold = threshold_code;
617 threshold_code = temp_to_code(data, pdata->trigger_levels[1]);
618 if (threshold_code < 0) {
619 ret = threshold_code;
620 goto out;
621 }
622 rising_threshold |= (threshold_code << 8);
623 threshold_code = temp_to_code(data, pdata->trigger_levels[2]);
624 if (threshold_code < 0) {
625 ret = threshold_code;
626 goto out;
627 }
628 rising_threshold |= (threshold_code << 16);
629
630 writel(rising_threshold,
631 data->base + EXYNOS_THD_TEMP_RISE);
632 writel(0, data->base + EXYNOS_THD_TEMP_FALL);
633
634 writel(EXYNOS_TMU_CLEAR_RISE_INT|EXYNOS_TMU_CLEAR_FALL_INT,
635 data->base + EXYNOS_TMU_REG_INTCLEAR);
636 }
637 out:
638 clk_disable(data->clk);
639 mutex_unlock(&data->lock);
640
641 return ret;
642 }
643
644 static void exynos_tmu_control(struct platform_device *pdev, bool on)
645 {
646 struct exynos_tmu_data *data = platform_get_drvdata(pdev);
647 struct exynos_tmu_platform_data *pdata = data->pdata;
648 unsigned int con, interrupt_en;
649
650 mutex_lock(&data->lock);
651 clk_enable(data->clk);
652
653 con = pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT |
654 pdata->gain << EXYNOS_TMU_GAIN_SHIFT;
655
656 if (data->soc == SOC_ARCH_EXYNOS) {
657 con |= pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT;
658 con |= (EXYNOS_MUX_ADDR_VALUE << EXYNOS_MUX_ADDR_SHIFT);
659 }
660
661 if (on) {
662 con |= EXYNOS_TMU_CORE_ON;
663 interrupt_en = pdata->trigger_level3_en << 12 |
664 pdata->trigger_level2_en << 8 |
665 pdata->trigger_level1_en << 4 |
666 pdata->trigger_level0_en;
667 } else {
668 con |= EXYNOS_TMU_CORE_OFF;
669 interrupt_en = 0; /* Disable all interrupts */
670 }
671 writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
672 writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
673
674 clk_disable(data->clk);
675 mutex_unlock(&data->lock);
676 }
677
678 static int exynos_tmu_read(struct exynos_tmu_data *data)
679 {
680 u8 temp_code;
681 int temp;
682
683 mutex_lock(&data->lock);
684 clk_enable(data->clk);
685
686 temp_code = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
687 temp = code_to_temp(data, temp_code);
688
689 clk_disable(data->clk);
690 mutex_unlock(&data->lock);
691
692 return temp;
693 }
694
695 static void exynos_tmu_work(struct work_struct *work)
696 {
697 struct exynos_tmu_data *data = container_of(work,
698 struct exynos_tmu_data, irq_work);
699
700 mutex_lock(&data->lock);
701 clk_enable(data->clk);
702
703
704 if (data->soc == SOC_ARCH_EXYNOS)
705 writel(EXYNOS_TMU_CLEAR_RISE_INT,
706 data->base + EXYNOS_TMU_REG_INTCLEAR);
707 else
708 writel(EXYNOS4210_TMU_INTCLEAR_VAL,
709 data->base + EXYNOS_TMU_REG_INTCLEAR);
710
711 clk_disable(data->clk);
712 mutex_unlock(&data->lock);
713 exynos_report_trigger();
714 enable_irq(data->irq);
715 }
716
717 static irqreturn_t exynos_tmu_irq(int irq, void *id)
718 {
719 struct exynos_tmu_data *data = id;
720
721 disable_irq_nosync(irq);
722 schedule_work(&data->irq_work);
723
724 return IRQ_HANDLED;
725 }
726 static struct thermal_sensor_conf exynos_sensor_conf = {
727 .name = "exynos-therm",
728 .read_temperature = (int (*)(void *))exynos_tmu_read,
729 };
730
731 #if defined(CONFIG_CPU_EXYNOS4210)
732 static struct exynos_tmu_platform_data const exynos4210_default_tmu_data = {
733 .threshold = 80,
734 .trigger_levels[0] = 5,
735 .trigger_levels[1] = 20,
736 .trigger_levels[2] = 30,
737 .trigger_level0_en = 1,
738 .trigger_level1_en = 1,
739 .trigger_level2_en = 1,
740 .trigger_level3_en = 0,
741 .gain = 15,
742 .reference_voltage = 7,
743 .cal_type = TYPE_ONE_POINT_TRIMMING,
744 .freq_tab[0] = {
745 .freq_clip_max = 800 * 1000,
746 .temp_level = 85,
747 },
748 .freq_tab[1] = {
749 .freq_clip_max = 200 * 1000,
750 .temp_level = 100,
751 },
752 .freq_tab_count = 2,
753 .type = SOC_ARCH_EXYNOS4210,
754 };
755 #define EXYNOS4210_TMU_DRV_DATA (&exynos4210_default_tmu_data)
756 #else
757 #define EXYNOS4210_TMU_DRV_DATA (NULL)
758 #endif
759
760 #if defined(CONFIG_SOC_EXYNOS5250) || defined(CONFIG_SOC_EXYNOS4412)
761 static struct exynos_tmu_platform_data const exynos_default_tmu_data = {
762 .trigger_levels[0] = 85,
763 .trigger_levels[1] = 103,
764 .trigger_levels[2] = 110,
765 .trigger_level0_en = 1,
766 .trigger_level1_en = 1,
767 .trigger_level2_en = 1,
768 .trigger_level3_en = 0,
769 .gain = 8,
770 .reference_voltage = 16,
771 .noise_cancel_mode = 4,
772 .cal_type = TYPE_ONE_POINT_TRIMMING,
773 .efuse_value = 55,
774 .freq_tab[0] = {
775 .freq_clip_max = 800 * 1000,
776 .temp_level = 85,
777 },
778 .freq_tab[1] = {
779 .freq_clip_max = 200 * 1000,
780 .temp_level = 103,
781 },
782 .freq_tab_count = 2,
783 .type = SOC_ARCH_EXYNOS,
784 };
785 #define EXYNOS_TMU_DRV_DATA (&exynos_default_tmu_data)
786 #else
787 #define EXYNOS_TMU_DRV_DATA (NULL)
788 #endif
789
790 #ifdef CONFIG_OF
791 static const struct of_device_id exynos_tmu_match[] = {
792 {
793 .compatible = "samsung,exynos4210-tmu",
794 .data = (void *)EXYNOS4210_TMU_DRV_DATA,
795 },
796 {
797 .compatible = "samsung,exynos5250-tmu",
798 .data = (void *)EXYNOS_TMU_DRV_DATA,
799 },
800 {},
801 };
802 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
803 #else
804 #define exynos_tmu_match NULL
805 #endif
806
807 static struct platform_device_id exynos_tmu_driver_ids[] = {
808 {
809 .name = "exynos4210-tmu",
810 .driver_data = (kernel_ulong_t)EXYNOS4210_TMU_DRV_DATA,
811 },
812 {
813 .name = "exynos5250-tmu",
814 .driver_data = (kernel_ulong_t)EXYNOS_TMU_DRV_DATA,
815 },
816 { },
817 };
818 MODULE_DEVICE_TABLE(platform, exynos_tmu_driver_ids);
819
820 static inline struct exynos_tmu_platform_data *exynos_get_driver_data(
821 struct platform_device *pdev)
822 {
823 #ifdef CONFIG_OF
824 if (pdev->dev.of_node) {
825 const struct of_device_id *match;
826 match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
827 if (!match)
828 return NULL;
829 return (struct exynos_tmu_platform_data *) match->data;
830 }
831 #endif
832 return (struct exynos_tmu_platform_data *)
833 platform_get_device_id(pdev)->driver_data;
834 }
835 static int exynos_tmu_probe(struct platform_device *pdev)
836 {
837 struct exynos_tmu_data *data;
838 struct exynos_tmu_platform_data *pdata = pdev->dev.platform_data;
839 int ret, i;
840
841 if (!pdata)
842 pdata = exynos_get_driver_data(pdev);
843
844 if (!pdata) {
845 dev_err(&pdev->dev, "No platform init data supplied.\n");
846 return -ENODEV;
847 }
848 data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
849 GFP_KERNEL);
850 if (!data) {
851 dev_err(&pdev->dev, "Failed to allocate driver structure\n");
852 return -ENOMEM;
853 }
854
855 data->irq = platform_get_irq(pdev, 0);
856 if (data->irq < 0) {
857 dev_err(&pdev->dev, "Failed to get platform irq\n");
858 return data->irq;
859 }
860
861 INIT_WORK(&data->irq_work, exynos_tmu_work);
862
863 data->mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
864 if (!data->mem) {
865 dev_err(&pdev->dev, "Failed to get platform resource\n");
866 return -ENOENT;
867 }
868
869 data->base = devm_ioremap_resource(&pdev->dev, data->mem);
870 if (IS_ERR(data->base))
871 return PTR_ERR(data->base);
872
873 ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
874 IRQF_TRIGGER_RISING, "exynos-tmu", data);
875 if (ret) {
876 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
877 return ret;
878 }
879
880 data->clk = clk_get(NULL, "tmu_apbif");
881 if (IS_ERR(data->clk)) {
882 dev_err(&pdev->dev, "Failed to get clock\n");
883 return PTR_ERR(data->clk);
884 }
885
886 if (pdata->type == SOC_ARCH_EXYNOS ||
887 pdata->type == SOC_ARCH_EXYNOS4210)
888 data->soc = pdata->type;
889 else {
890 ret = -EINVAL;
891 dev_err(&pdev->dev, "Platform not supported\n");
892 goto err_clk;
893 }
894
895 data->pdata = pdata;
896 platform_set_drvdata(pdev, data);
897 mutex_init(&data->lock);
898
899 ret = exynos_tmu_initialize(pdev);
900 if (ret) {
901 dev_err(&pdev->dev, "Failed to initialize TMU\n");
902 goto err_clk;
903 }
904
905 exynos_tmu_control(pdev, true);
906
907 /* Register the sensor with thermal management interface */
908 (&exynos_sensor_conf)->private_data = data;
909 exynos_sensor_conf.trip_data.trip_count = pdata->trigger_level0_en +
910 pdata->trigger_level1_en + pdata->trigger_level2_en +
911 pdata->trigger_level3_en;
912
913 for (i = 0; i < exynos_sensor_conf.trip_data.trip_count; i++)
914 exynos_sensor_conf.trip_data.trip_val[i] =
915 pdata->threshold + pdata->trigger_levels[i];
916
917 exynos_sensor_conf.cooling_data.freq_clip_count =
918 pdata->freq_tab_count;
919 for (i = 0; i < pdata->freq_tab_count; i++) {
920 exynos_sensor_conf.cooling_data.freq_data[i].freq_clip_max =
921 pdata->freq_tab[i].freq_clip_max;
922 exynos_sensor_conf.cooling_data.freq_data[i].temp_level =
923 pdata->freq_tab[i].temp_level;
924 }
925
926 ret = exynos_register_thermal(&exynos_sensor_conf);
927 if (ret) {
928 dev_err(&pdev->dev, "Failed to register thermal interface\n");
929 goto err_clk;
930 }
931 return 0;
932 err_clk:
933 platform_set_drvdata(pdev, NULL);
934 clk_put(data->clk);
935 return ret;
936 }
937
938 static int exynos_tmu_remove(struct platform_device *pdev)
939 {
940 struct exynos_tmu_data *data = platform_get_drvdata(pdev);
941
942 exynos_tmu_control(pdev, false);
943
944 exynos_unregister_thermal();
945
946 clk_put(data->clk);
947
948 platform_set_drvdata(pdev, NULL);
949
950 return 0;
951 }
952
953 #ifdef CONFIG_PM_SLEEP
954 static int exynos_tmu_suspend(struct device *dev)
955 {
956 exynos_tmu_control(to_platform_device(dev), false);
957
958 return 0;
959 }
960
961 static int exynos_tmu_resume(struct device *dev)
962 {
963 struct platform_device *pdev = to_platform_device(dev);
964
965 exynos_tmu_initialize(pdev);
966 exynos_tmu_control(pdev, true);
967
968 return 0;
969 }
970
971 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
972 exynos_tmu_suspend, exynos_tmu_resume);
973 #define EXYNOS_TMU_PM (&exynos_tmu_pm)
974 #else
975 #define EXYNOS_TMU_PM NULL
976 #endif
977
978 static struct platform_driver exynos_tmu_driver = {
979 .driver = {
980 .name = "exynos-tmu",
981 .owner = THIS_MODULE,
982 .pm = EXYNOS_TMU_PM,
983 .of_match_table = exynos_tmu_match,
984 },
985 .probe = exynos_tmu_probe,
986 .remove = exynos_tmu_remove,
987 .id_table = exynos_tmu_driver_ids,
988 };
989
990 module_platform_driver(exynos_tmu_driver);
991
992 MODULE_DESCRIPTION("EXYNOS TMU Driver");
993 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
994 MODULE_LICENSE("GPL");
995 MODULE_ALIAS("platform:exynos-tmu");
This page took 0.080905 seconds and 5 git commands to generate.