Merge branch 'for-3.16' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / drivers / thermal / intel_powerclamp.c
1 /*
2 * intel_powerclamp.c - package c-state idle injection
3 *
4 * Copyright (c) 2012, Intel Corporation.
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 * Jacob Pan <jacob.jun.pan@linux.intel.com>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
22 *
23 *
24 * TODO:
25 * 1. better handle wakeup from external interrupts, currently a fixed
26 * compensation is added to clamping duration when excessive amount
27 * of wakeups are observed during idle time. the reason is that in
28 * case of external interrupts without need for ack, clamping down
29 * cpu in non-irq context does not reduce irq. for majority of the
30 * cases, clamping down cpu does help reduce irq as well, we should
31 * be able to differenciate the two cases and give a quantitative
32 * solution for the irqs that we can control. perhaps based on
33 * get_cpu_iowait_time_us()
34 *
35 * 2. synchronization with other hw blocks
36 *
37 *
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47 #include <linux/cpu.h>
48 #include <linux/thermal.h>
49 #include <linux/slab.h>
50 #include <linux/tick.h>
51 #include <linux/debugfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/sched/rt.h>
54
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/idle.h>
60 #include <asm/hardirq.h>
61
62 #define MAX_TARGET_RATIO (50U)
63 /* For each undisturbed clamping period (no extra wake ups during idle time),
64 * we increment the confidence counter for the given target ratio.
65 * CONFIDENCE_OK defines the level where runtime calibration results are
66 * valid.
67 */
68 #define CONFIDENCE_OK (3)
69 /* Default idle injection duration, driver adjust sleep time to meet target
70 * idle ratio. Similar to frequency modulation.
71 */
72 #define DEFAULT_DURATION_JIFFIES (6)
73
74 static unsigned int target_mwait;
75 static struct dentry *debug_dir;
76
77 /* user selected target */
78 static unsigned int set_target_ratio;
79 static unsigned int current_ratio;
80 static bool should_skip;
81 static bool reduce_irq;
82 static atomic_t idle_wakeup_counter;
83 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84 * control parameters. default to BSP but BSP
85 * can be offlined.
86 */
87 static bool clamping;
88
89
90 static struct task_struct * __percpu *powerclamp_thread;
91 static struct thermal_cooling_device *cooling_dev;
92 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
93 * clamping thread
94 */
95
96 static unsigned int duration;
97 static unsigned int pkg_cstate_ratio_cur;
98 static unsigned int window_size;
99
100 static int duration_set(const char *arg, const struct kernel_param *kp)
101 {
102 int ret = 0;
103 unsigned long new_duration;
104
105 ret = kstrtoul(arg, 10, &new_duration);
106 if (ret)
107 goto exit;
108 if (new_duration > 25 || new_duration < 6) {
109 pr_err("Out of recommended range %lu, between 6-25ms\n",
110 new_duration);
111 ret = -EINVAL;
112 }
113
114 duration = clamp(new_duration, 6ul, 25ul);
115 smp_mb();
116
117 exit:
118
119 return ret;
120 }
121
122 static struct kernel_param_ops duration_ops = {
123 .set = duration_set,
124 .get = param_get_int,
125 };
126
127
128 module_param_cb(duration, &duration_ops, &duration, 0644);
129 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
130
131 struct powerclamp_calibration_data {
132 unsigned long confidence; /* used for calibration, basically a counter
133 * gets incremented each time a clamping
134 * period is completed without extra wakeups
135 * once that counter is reached given level,
136 * compensation is deemed usable.
137 */
138 unsigned long steady_comp; /* steady state compensation used when
139 * no extra wakeups occurred.
140 */
141 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142 * mostly from external interrupts.
143 */
144 };
145
146 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
147
148 static int window_size_set(const char *arg, const struct kernel_param *kp)
149 {
150 int ret = 0;
151 unsigned long new_window_size;
152
153 ret = kstrtoul(arg, 10, &new_window_size);
154 if (ret)
155 goto exit_win;
156 if (new_window_size > 10 || new_window_size < 2) {
157 pr_err("Out of recommended window size %lu, between 2-10\n",
158 new_window_size);
159 ret = -EINVAL;
160 }
161
162 window_size = clamp(new_window_size, 2ul, 10ul);
163 smp_mb();
164
165 exit_win:
166
167 return ret;
168 }
169
170 static struct kernel_param_ops window_size_ops = {
171 .set = window_size_set,
172 .get = param_get_int,
173 };
174
175 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177 "\tpowerclamp controls idle ratio within this window. larger\n"
178 "\twindow size results in slower response time but more smooth\n"
179 "\tclamping results. default to 2.");
180
181 static void find_target_mwait(void)
182 {
183 unsigned int eax, ebx, ecx, edx;
184 unsigned int highest_cstate = 0;
185 unsigned int highest_subcstate = 0;
186 int i;
187
188 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189 return;
190
191 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
192
193 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195 return;
196
197 edx >>= MWAIT_SUBSTATE_SIZE;
198 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199 if (edx & MWAIT_SUBSTATE_MASK) {
200 highest_cstate = i;
201 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
202 }
203 }
204 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205 (highest_subcstate - 1);
206
207 }
208
209 static bool has_pkg_state_counter(void)
210 {
211 u64 tmp;
212 return !rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &tmp) ||
213 !rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &tmp) ||
214 !rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &tmp) ||
215 !rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &tmp);
216 }
217
218 static u64 pkg_state_counter(void)
219 {
220 u64 val;
221 u64 count = 0;
222
223 static bool skip_c2;
224 static bool skip_c3;
225 static bool skip_c6;
226 static bool skip_c7;
227
228 if (!skip_c2) {
229 if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val))
230 count += val;
231 else
232 skip_c2 = true;
233 }
234
235 if (!skip_c3) {
236 if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val))
237 count += val;
238 else
239 skip_c3 = true;
240 }
241
242 if (!skip_c6) {
243 if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val))
244 count += val;
245 else
246 skip_c6 = true;
247 }
248
249 if (!skip_c7) {
250 if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val))
251 count += val;
252 else
253 skip_c7 = true;
254 }
255
256 return count;
257 }
258
259 static void noop_timer(unsigned long foo)
260 {
261 /* empty... just the fact that we get the interrupt wakes us up */
262 }
263
264 static unsigned int get_compensation(int ratio)
265 {
266 unsigned int comp = 0;
267
268 /* we only use compensation if all adjacent ones are good */
269 if (ratio == 1 &&
270 cal_data[ratio].confidence >= CONFIDENCE_OK &&
271 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
272 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
273 comp = (cal_data[ratio].steady_comp +
274 cal_data[ratio + 1].steady_comp +
275 cal_data[ratio + 2].steady_comp) / 3;
276 } else if (ratio == MAX_TARGET_RATIO - 1 &&
277 cal_data[ratio].confidence >= CONFIDENCE_OK &&
278 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
279 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
280 comp = (cal_data[ratio].steady_comp +
281 cal_data[ratio - 1].steady_comp +
282 cal_data[ratio - 2].steady_comp) / 3;
283 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
284 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
286 comp = (cal_data[ratio].steady_comp +
287 cal_data[ratio - 1].steady_comp +
288 cal_data[ratio + 1].steady_comp) / 3;
289 }
290
291 /* REVISIT: simple penalty of double idle injection */
292 if (reduce_irq)
293 comp = ratio;
294 /* do not exceed limit */
295 if (comp + ratio >= MAX_TARGET_RATIO)
296 comp = MAX_TARGET_RATIO - ratio - 1;
297
298 return comp;
299 }
300
301 static void adjust_compensation(int target_ratio, unsigned int win)
302 {
303 int delta;
304 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
305
306 /*
307 * adjust compensations if confidence level has not been reached or
308 * there are too many wakeups during the last idle injection period, we
309 * cannot trust the data for compensation.
310 */
311 if (d->confidence >= CONFIDENCE_OK ||
312 atomic_read(&idle_wakeup_counter) >
313 win * num_online_cpus())
314 return;
315
316 delta = set_target_ratio - current_ratio;
317 /* filter out bad data */
318 if (delta >= 0 && delta <= (1+target_ratio/10)) {
319 if (d->steady_comp)
320 d->steady_comp =
321 roundup(delta+d->steady_comp, 2)/2;
322 else
323 d->steady_comp = delta;
324 d->confidence++;
325 }
326 }
327
328 static bool powerclamp_adjust_controls(unsigned int target_ratio,
329 unsigned int guard, unsigned int win)
330 {
331 static u64 msr_last, tsc_last;
332 u64 msr_now, tsc_now;
333 u64 val64;
334
335 /* check result for the last window */
336 msr_now = pkg_state_counter();
337 rdtscll(tsc_now);
338
339 /* calculate pkg cstate vs tsc ratio */
340 if (!msr_last || !tsc_last)
341 current_ratio = 1;
342 else if (tsc_now-tsc_last) {
343 val64 = 100*(msr_now-msr_last);
344 do_div(val64, (tsc_now-tsc_last));
345 current_ratio = val64;
346 }
347
348 /* update record */
349 msr_last = msr_now;
350 tsc_last = tsc_now;
351
352 adjust_compensation(target_ratio, win);
353 /*
354 * too many external interrupts, set flag such
355 * that we can take measure later.
356 */
357 reduce_irq = atomic_read(&idle_wakeup_counter) >=
358 2 * win * num_online_cpus();
359
360 atomic_set(&idle_wakeup_counter, 0);
361 /* if we are above target+guard, skip */
362 return set_target_ratio + guard <= current_ratio;
363 }
364
365 static int clamp_thread(void *arg)
366 {
367 int cpunr = (unsigned long)arg;
368 DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
369 static const struct sched_param param = {
370 .sched_priority = MAX_USER_RT_PRIO/2,
371 };
372 unsigned int count = 0;
373 unsigned int target_ratio;
374
375 set_bit(cpunr, cpu_clamping_mask);
376 set_freezable();
377 init_timer_on_stack(&wakeup_timer);
378 sched_setscheduler(current, SCHED_FIFO, &param);
379
380 while (true == clamping && !kthread_should_stop() &&
381 cpu_online(cpunr)) {
382 int sleeptime;
383 unsigned long target_jiffies;
384 unsigned int guard;
385 unsigned int compensation = 0;
386 int interval; /* jiffies to sleep for each attempt */
387 unsigned int duration_jiffies = msecs_to_jiffies(duration);
388 unsigned int window_size_now;
389
390 try_to_freeze();
391 /*
392 * make sure user selected ratio does not take effect until
393 * the next round. adjust target_ratio if user has changed
394 * target such that we can converge quickly.
395 */
396 target_ratio = set_target_ratio;
397 guard = 1 + target_ratio/20;
398 window_size_now = window_size;
399 count++;
400
401 /*
402 * systems may have different ability to enter package level
403 * c-states, thus we need to compensate the injected idle ratio
404 * to achieve the actual target reported by the HW.
405 */
406 compensation = get_compensation(target_ratio);
407 interval = duration_jiffies*100/(target_ratio+compensation);
408
409 /* align idle time */
410 target_jiffies = roundup(jiffies, interval);
411 sleeptime = target_jiffies - jiffies;
412 if (sleeptime <= 0)
413 sleeptime = 1;
414 schedule_timeout_interruptible(sleeptime);
415 /*
416 * only elected controlling cpu can collect stats and update
417 * control parameters.
418 */
419 if (cpunr == control_cpu && !(count%window_size_now)) {
420 should_skip =
421 powerclamp_adjust_controls(target_ratio,
422 guard, window_size_now);
423 smp_mb();
424 }
425
426 if (should_skip)
427 continue;
428
429 target_jiffies = jiffies + duration_jiffies;
430 mod_timer(&wakeup_timer, target_jiffies);
431 if (unlikely(local_softirq_pending()))
432 continue;
433 /*
434 * stop tick sched during idle time, interrupts are still
435 * allowed. thus jiffies are updated properly.
436 */
437 preempt_disable();
438 tick_nohz_idle_enter();
439 /* mwait until target jiffies is reached */
440 while (time_before(jiffies, target_jiffies)) {
441 unsigned long ecx = 1;
442 unsigned long eax = target_mwait;
443
444 /*
445 * REVISIT: may call enter_idle() to notify drivers who
446 * can save power during cpu idle. same for exit_idle()
447 */
448 local_touch_nmi();
449 stop_critical_timings();
450 mwait_idle_with_hints(eax, ecx);
451 start_critical_timings();
452 atomic_inc(&idle_wakeup_counter);
453 }
454 tick_nohz_idle_exit();
455 preempt_enable();
456 }
457 del_timer_sync(&wakeup_timer);
458 clear_bit(cpunr, cpu_clamping_mask);
459
460 return 0;
461 }
462
463 /*
464 * 1 HZ polling while clamping is active, useful for userspace
465 * to monitor actual idle ratio.
466 */
467 static void poll_pkg_cstate(struct work_struct *dummy);
468 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
469 static void poll_pkg_cstate(struct work_struct *dummy)
470 {
471 static u64 msr_last;
472 static u64 tsc_last;
473 static unsigned long jiffies_last;
474
475 u64 msr_now;
476 unsigned long jiffies_now;
477 u64 tsc_now;
478 u64 val64;
479
480 msr_now = pkg_state_counter();
481 rdtscll(tsc_now);
482 jiffies_now = jiffies;
483
484 /* calculate pkg cstate vs tsc ratio */
485 if (!msr_last || !tsc_last)
486 pkg_cstate_ratio_cur = 1;
487 else {
488 if (tsc_now - tsc_last) {
489 val64 = 100 * (msr_now - msr_last);
490 do_div(val64, (tsc_now - tsc_last));
491 pkg_cstate_ratio_cur = val64;
492 }
493 }
494
495 /* update record */
496 msr_last = msr_now;
497 jiffies_last = jiffies_now;
498 tsc_last = tsc_now;
499
500 if (true == clamping)
501 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
502 }
503
504 static int start_power_clamp(void)
505 {
506 unsigned long cpu;
507 struct task_struct *thread;
508
509 /* check if pkg cstate counter is completely 0, abort in this case */
510 if (!has_pkg_state_counter()) {
511 pr_err("pkg cstate counter not functional, abort\n");
512 return -EINVAL;
513 }
514
515 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
516 /* prevent cpu hotplug */
517 get_online_cpus();
518
519 /* prefer BSP */
520 control_cpu = 0;
521 if (!cpu_online(control_cpu))
522 control_cpu = smp_processor_id();
523
524 clamping = true;
525 schedule_delayed_work(&poll_pkg_cstate_work, 0);
526
527 /* start one thread per online cpu */
528 for_each_online_cpu(cpu) {
529 struct task_struct **p =
530 per_cpu_ptr(powerclamp_thread, cpu);
531
532 thread = kthread_create_on_node(clamp_thread,
533 (void *) cpu,
534 cpu_to_node(cpu),
535 "kidle_inject/%ld", cpu);
536 /* bind to cpu here */
537 if (likely(!IS_ERR(thread))) {
538 kthread_bind(thread, cpu);
539 wake_up_process(thread);
540 *p = thread;
541 }
542
543 }
544 put_online_cpus();
545
546 return 0;
547 }
548
549 static void end_power_clamp(void)
550 {
551 int i;
552 struct task_struct *thread;
553
554 clamping = false;
555 /*
556 * make clamping visible to other cpus and give per cpu clamping threads
557 * sometime to exit, or gets killed later.
558 */
559 smp_mb();
560 msleep(20);
561 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
562 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
563 pr_debug("clamping thread for cpu %d alive, kill\n", i);
564 thread = *per_cpu_ptr(powerclamp_thread, i);
565 kthread_stop(thread);
566 }
567 }
568 }
569
570 static int powerclamp_cpu_callback(struct notifier_block *nfb,
571 unsigned long action, void *hcpu)
572 {
573 unsigned long cpu = (unsigned long)hcpu;
574 struct task_struct *thread;
575 struct task_struct **percpu_thread =
576 per_cpu_ptr(powerclamp_thread, cpu);
577
578 if (false == clamping)
579 goto exit_ok;
580
581 switch (action) {
582 case CPU_ONLINE:
583 thread = kthread_create_on_node(clamp_thread,
584 (void *) cpu,
585 cpu_to_node(cpu),
586 "kidle_inject/%lu", cpu);
587 if (likely(!IS_ERR(thread))) {
588 kthread_bind(thread, cpu);
589 wake_up_process(thread);
590 *percpu_thread = thread;
591 }
592 /* prefer BSP as controlling CPU */
593 if (cpu == 0) {
594 control_cpu = 0;
595 smp_mb();
596 }
597 break;
598 case CPU_DEAD:
599 if (test_bit(cpu, cpu_clamping_mask)) {
600 pr_err("cpu %lu dead but powerclamping thread is not\n",
601 cpu);
602 kthread_stop(*percpu_thread);
603 }
604 if (cpu == control_cpu) {
605 control_cpu = smp_processor_id();
606 smp_mb();
607 }
608 }
609
610 exit_ok:
611 return NOTIFY_OK;
612 }
613
614 static struct notifier_block powerclamp_cpu_notifier = {
615 .notifier_call = powerclamp_cpu_callback,
616 };
617
618 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
619 unsigned long *state)
620 {
621 *state = MAX_TARGET_RATIO;
622
623 return 0;
624 }
625
626 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
627 unsigned long *state)
628 {
629 if (true == clamping)
630 *state = pkg_cstate_ratio_cur;
631 else
632 /* to save power, do not poll idle ratio while not clamping */
633 *state = -1; /* indicates invalid state */
634
635 return 0;
636 }
637
638 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
639 unsigned long new_target_ratio)
640 {
641 int ret = 0;
642
643 new_target_ratio = clamp(new_target_ratio, 0UL,
644 (unsigned long) (MAX_TARGET_RATIO-1));
645 if (set_target_ratio == 0 && new_target_ratio > 0) {
646 pr_info("Start idle injection to reduce power\n");
647 set_target_ratio = new_target_ratio;
648 ret = start_power_clamp();
649 goto exit_set;
650 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
651 pr_info("Stop forced idle injection\n");
652 set_target_ratio = 0;
653 end_power_clamp();
654 } else /* adjust currently running */ {
655 set_target_ratio = new_target_ratio;
656 /* make new set_target_ratio visible to other cpus */
657 smp_mb();
658 }
659
660 exit_set:
661 return ret;
662 }
663
664 /* bind to generic thermal layer as cooling device*/
665 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
666 .get_max_state = powerclamp_get_max_state,
667 .get_cur_state = powerclamp_get_cur_state,
668 .set_cur_state = powerclamp_set_cur_state,
669 };
670
671 /* runs on Nehalem and later */
672 static const struct x86_cpu_id intel_powerclamp_ids[] = {
673 { X86_VENDOR_INTEL, 6, 0x1a},
674 { X86_VENDOR_INTEL, 6, 0x1c},
675 { X86_VENDOR_INTEL, 6, 0x1e},
676 { X86_VENDOR_INTEL, 6, 0x1f},
677 { X86_VENDOR_INTEL, 6, 0x25},
678 { X86_VENDOR_INTEL, 6, 0x26},
679 { X86_VENDOR_INTEL, 6, 0x2a},
680 { X86_VENDOR_INTEL, 6, 0x2c},
681 { X86_VENDOR_INTEL, 6, 0x2d},
682 { X86_VENDOR_INTEL, 6, 0x2e},
683 { X86_VENDOR_INTEL, 6, 0x2f},
684 { X86_VENDOR_INTEL, 6, 0x37},
685 { X86_VENDOR_INTEL, 6, 0x3a},
686 { X86_VENDOR_INTEL, 6, 0x3c},
687 { X86_VENDOR_INTEL, 6, 0x3d},
688 { X86_VENDOR_INTEL, 6, 0x3e},
689 { X86_VENDOR_INTEL, 6, 0x3f},
690 { X86_VENDOR_INTEL, 6, 0x45},
691 { X86_VENDOR_INTEL, 6, 0x46},
692 {}
693 };
694 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
695
696 static int powerclamp_probe(void)
697 {
698 if (!x86_match_cpu(intel_powerclamp_ids)) {
699 pr_err("Intel powerclamp does not run on family %d model %d\n",
700 boot_cpu_data.x86, boot_cpu_data.x86_model);
701 return -ENODEV;
702 }
703 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
704 !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
705 !boot_cpu_has(X86_FEATURE_MWAIT) ||
706 !boot_cpu_has(X86_FEATURE_ARAT))
707 return -ENODEV;
708
709 /* find the deepest mwait value */
710 find_target_mwait();
711
712 return 0;
713 }
714
715 static int powerclamp_debug_show(struct seq_file *m, void *unused)
716 {
717 int i = 0;
718
719 seq_printf(m, "controlling cpu: %d\n", control_cpu);
720 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
721 for (i = 0; i < MAX_TARGET_RATIO; i++) {
722 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
723 i,
724 cal_data[i].confidence,
725 cal_data[i].steady_comp,
726 cal_data[i].dynamic_comp);
727 }
728
729 return 0;
730 }
731
732 static int powerclamp_debug_open(struct inode *inode,
733 struct file *file)
734 {
735 return single_open(file, powerclamp_debug_show, inode->i_private);
736 }
737
738 static const struct file_operations powerclamp_debug_fops = {
739 .open = powerclamp_debug_open,
740 .read = seq_read,
741 .llseek = seq_lseek,
742 .release = single_release,
743 .owner = THIS_MODULE,
744 };
745
746 static inline void powerclamp_create_debug_files(void)
747 {
748 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
749 if (!debug_dir)
750 return;
751
752 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
753 cal_data, &powerclamp_debug_fops))
754 goto file_error;
755
756 return;
757
758 file_error:
759 debugfs_remove_recursive(debug_dir);
760 }
761
762 static int powerclamp_init(void)
763 {
764 int retval;
765 int bitmap_size;
766
767 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
768 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
769 if (!cpu_clamping_mask)
770 return -ENOMEM;
771
772 /* probe cpu features and ids here */
773 retval = powerclamp_probe();
774 if (retval)
775 goto exit_free;
776
777 /* set default limit, maybe adjusted during runtime based on feedback */
778 window_size = 2;
779 register_hotcpu_notifier(&powerclamp_cpu_notifier);
780
781 powerclamp_thread = alloc_percpu(struct task_struct *);
782 if (!powerclamp_thread) {
783 retval = -ENOMEM;
784 goto exit_unregister;
785 }
786
787 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
788 &powerclamp_cooling_ops);
789 if (IS_ERR(cooling_dev)) {
790 retval = -ENODEV;
791 goto exit_free_thread;
792 }
793
794 if (!duration)
795 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
796
797 powerclamp_create_debug_files();
798
799 return 0;
800
801 exit_free_thread:
802 free_percpu(powerclamp_thread);
803 exit_unregister:
804 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
805 exit_free:
806 kfree(cpu_clamping_mask);
807 return retval;
808 }
809 module_init(powerclamp_init);
810
811 static void powerclamp_exit(void)
812 {
813 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
814 end_power_clamp();
815 free_percpu(powerclamp_thread);
816 thermal_cooling_device_unregister(cooling_dev);
817 kfree(cpu_clamping_mask);
818
819 cancel_delayed_work_sync(&poll_pkg_cstate_work);
820 debugfs_remove_recursive(debug_dir);
821 }
822 module_exit(powerclamp_exit);
823
824 MODULE_LICENSE("GPL");
825 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
826 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
827 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
This page took 0.081159 seconds and 5 git commands to generate.