Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / thermal / intel_powerclamp.c
1 /*
2 * intel_powerclamp.c - package c-state idle injection
3 *
4 * Copyright (c) 2012, Intel Corporation.
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 * Jacob Pan <jacob.jun.pan@linux.intel.com>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
22 *
23 *
24 * TODO:
25 * 1. better handle wakeup from external interrupts, currently a fixed
26 * compensation is added to clamping duration when excessive amount
27 * of wakeups are observed during idle time. the reason is that in
28 * case of external interrupts without need for ack, clamping down
29 * cpu in non-irq context does not reduce irq. for majority of the
30 * cases, clamping down cpu does help reduce irq as well, we should
31 * be able to differenciate the two cases and give a quantitative
32 * solution for the irqs that we can control. perhaps based on
33 * get_cpu_iowait_time_us()
34 *
35 * 2. synchronization with other hw blocks
36 *
37 *
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47 #include <linux/cpu.h>
48 #include <linux/thermal.h>
49 #include <linux/slab.h>
50 #include <linux/tick.h>
51 #include <linux/debugfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/sched/rt.h>
54
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/idle.h>
60 #include <asm/hardirq.h>
61
62 #define MAX_TARGET_RATIO (50U)
63 /* For each undisturbed clamping period (no extra wake ups during idle time),
64 * we increment the confidence counter for the given target ratio.
65 * CONFIDENCE_OK defines the level where runtime calibration results are
66 * valid.
67 */
68 #define CONFIDENCE_OK (3)
69 /* Default idle injection duration, driver adjust sleep time to meet target
70 * idle ratio. Similar to frequency modulation.
71 */
72 #define DEFAULT_DURATION_JIFFIES (6)
73
74 static unsigned int target_mwait;
75 static struct dentry *debug_dir;
76
77 /* user selected target */
78 static unsigned int set_target_ratio;
79 static unsigned int current_ratio;
80 static bool should_skip;
81 static bool reduce_irq;
82 static atomic_t idle_wakeup_counter;
83 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84 * control parameters. default to BSP but BSP
85 * can be offlined.
86 */
87 static bool clamping;
88
89
90 static struct task_struct * __percpu *powerclamp_thread;
91 static struct thermal_cooling_device *cooling_dev;
92 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
93 * clamping thread
94 */
95
96 static unsigned int duration;
97 static unsigned int pkg_cstate_ratio_cur;
98 static unsigned int window_size;
99
100 static int duration_set(const char *arg, const struct kernel_param *kp)
101 {
102 int ret = 0;
103 unsigned long new_duration;
104
105 ret = kstrtoul(arg, 10, &new_duration);
106 if (ret)
107 goto exit;
108 if (new_duration > 25 || new_duration < 6) {
109 pr_err("Out of recommended range %lu, between 6-25ms\n",
110 new_duration);
111 ret = -EINVAL;
112 }
113
114 duration = clamp(new_duration, 6ul, 25ul);
115 smp_mb();
116
117 exit:
118
119 return ret;
120 }
121
122 static const struct kernel_param_ops duration_ops = {
123 .set = duration_set,
124 .get = param_get_int,
125 };
126
127
128 module_param_cb(duration, &duration_ops, &duration, 0644);
129 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
130
131 struct powerclamp_calibration_data {
132 unsigned long confidence; /* used for calibration, basically a counter
133 * gets incremented each time a clamping
134 * period is completed without extra wakeups
135 * once that counter is reached given level,
136 * compensation is deemed usable.
137 */
138 unsigned long steady_comp; /* steady state compensation used when
139 * no extra wakeups occurred.
140 */
141 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142 * mostly from external interrupts.
143 */
144 };
145
146 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
147
148 static int window_size_set(const char *arg, const struct kernel_param *kp)
149 {
150 int ret = 0;
151 unsigned long new_window_size;
152
153 ret = kstrtoul(arg, 10, &new_window_size);
154 if (ret)
155 goto exit_win;
156 if (new_window_size > 10 || new_window_size < 2) {
157 pr_err("Out of recommended window size %lu, between 2-10\n",
158 new_window_size);
159 ret = -EINVAL;
160 }
161
162 window_size = clamp(new_window_size, 2ul, 10ul);
163 smp_mb();
164
165 exit_win:
166
167 return ret;
168 }
169
170 static const struct kernel_param_ops window_size_ops = {
171 .set = window_size_set,
172 .get = param_get_int,
173 };
174
175 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177 "\tpowerclamp controls idle ratio within this window. larger\n"
178 "\twindow size results in slower response time but more smooth\n"
179 "\tclamping results. default to 2.");
180
181 static void find_target_mwait(void)
182 {
183 unsigned int eax, ebx, ecx, edx;
184 unsigned int highest_cstate = 0;
185 unsigned int highest_subcstate = 0;
186 int i;
187
188 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189 return;
190
191 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
192
193 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195 return;
196
197 edx >>= MWAIT_SUBSTATE_SIZE;
198 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199 if (edx & MWAIT_SUBSTATE_MASK) {
200 highest_cstate = i;
201 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
202 }
203 }
204 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205 (highest_subcstate - 1);
206
207 }
208
209 struct pkg_cstate_info {
210 bool skip;
211 int msr_index;
212 int cstate_id;
213 };
214
215 #define PKG_CSTATE_INIT(id) { \
216 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
217 .cstate_id = id \
218 }
219
220 static struct pkg_cstate_info pkg_cstates[] = {
221 PKG_CSTATE_INIT(2),
222 PKG_CSTATE_INIT(3),
223 PKG_CSTATE_INIT(6),
224 PKG_CSTATE_INIT(7),
225 PKG_CSTATE_INIT(8),
226 PKG_CSTATE_INIT(9),
227 PKG_CSTATE_INIT(10),
228 {NULL},
229 };
230
231 static bool has_pkg_state_counter(void)
232 {
233 u64 val;
234 struct pkg_cstate_info *info = pkg_cstates;
235
236 /* check if any one of the counter msrs exists */
237 while (info->msr_index) {
238 if (!rdmsrl_safe(info->msr_index, &val))
239 return true;
240 info++;
241 }
242
243 return false;
244 }
245
246 static u64 pkg_state_counter(void)
247 {
248 u64 val;
249 u64 count = 0;
250 struct pkg_cstate_info *info = pkg_cstates;
251
252 while (info->msr_index) {
253 if (!info->skip) {
254 if (!rdmsrl_safe(info->msr_index, &val))
255 count += val;
256 else
257 info->skip = true;
258 }
259 info++;
260 }
261
262 return count;
263 }
264
265 static void noop_timer(unsigned long foo)
266 {
267 /* empty... just the fact that we get the interrupt wakes us up */
268 }
269
270 static unsigned int get_compensation(int ratio)
271 {
272 unsigned int comp = 0;
273
274 /* we only use compensation if all adjacent ones are good */
275 if (ratio == 1 &&
276 cal_data[ratio].confidence >= CONFIDENCE_OK &&
277 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
278 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
279 comp = (cal_data[ratio].steady_comp +
280 cal_data[ratio + 1].steady_comp +
281 cal_data[ratio + 2].steady_comp) / 3;
282 } else if (ratio == MAX_TARGET_RATIO - 1 &&
283 cal_data[ratio].confidence >= CONFIDENCE_OK &&
284 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
286 comp = (cal_data[ratio].steady_comp +
287 cal_data[ratio - 1].steady_comp +
288 cal_data[ratio - 2].steady_comp) / 3;
289 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
290 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
291 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
292 comp = (cal_data[ratio].steady_comp +
293 cal_data[ratio - 1].steady_comp +
294 cal_data[ratio + 1].steady_comp) / 3;
295 }
296
297 /* REVISIT: simple penalty of double idle injection */
298 if (reduce_irq)
299 comp = ratio;
300 /* do not exceed limit */
301 if (comp + ratio >= MAX_TARGET_RATIO)
302 comp = MAX_TARGET_RATIO - ratio - 1;
303
304 return comp;
305 }
306
307 static void adjust_compensation(int target_ratio, unsigned int win)
308 {
309 int delta;
310 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
311
312 /*
313 * adjust compensations if confidence level has not been reached or
314 * there are too many wakeups during the last idle injection period, we
315 * cannot trust the data for compensation.
316 */
317 if (d->confidence >= CONFIDENCE_OK ||
318 atomic_read(&idle_wakeup_counter) >
319 win * num_online_cpus())
320 return;
321
322 delta = set_target_ratio - current_ratio;
323 /* filter out bad data */
324 if (delta >= 0 && delta <= (1+target_ratio/10)) {
325 if (d->steady_comp)
326 d->steady_comp =
327 roundup(delta+d->steady_comp, 2)/2;
328 else
329 d->steady_comp = delta;
330 d->confidence++;
331 }
332 }
333
334 static bool powerclamp_adjust_controls(unsigned int target_ratio,
335 unsigned int guard, unsigned int win)
336 {
337 static u64 msr_last, tsc_last;
338 u64 msr_now, tsc_now;
339 u64 val64;
340
341 /* check result for the last window */
342 msr_now = pkg_state_counter();
343 tsc_now = rdtsc();
344
345 /* calculate pkg cstate vs tsc ratio */
346 if (!msr_last || !tsc_last)
347 current_ratio = 1;
348 else if (tsc_now-tsc_last) {
349 val64 = 100*(msr_now-msr_last);
350 do_div(val64, (tsc_now-tsc_last));
351 current_ratio = val64;
352 }
353
354 /* update record */
355 msr_last = msr_now;
356 tsc_last = tsc_now;
357
358 adjust_compensation(target_ratio, win);
359 /*
360 * too many external interrupts, set flag such
361 * that we can take measure later.
362 */
363 reduce_irq = atomic_read(&idle_wakeup_counter) >=
364 2 * win * num_online_cpus();
365
366 atomic_set(&idle_wakeup_counter, 0);
367 /* if we are above target+guard, skip */
368 return set_target_ratio + guard <= current_ratio;
369 }
370
371 static int clamp_thread(void *arg)
372 {
373 int cpunr = (unsigned long)arg;
374 DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
375 static const struct sched_param param = {
376 .sched_priority = MAX_USER_RT_PRIO/2,
377 };
378 unsigned int count = 0;
379 unsigned int target_ratio;
380
381 set_bit(cpunr, cpu_clamping_mask);
382 set_freezable();
383 init_timer_on_stack(&wakeup_timer);
384 sched_setscheduler(current, SCHED_FIFO, &param);
385
386 while (true == clamping && !kthread_should_stop() &&
387 cpu_online(cpunr)) {
388 int sleeptime;
389 unsigned long target_jiffies;
390 unsigned int guard;
391 unsigned int compensation = 0;
392 int interval; /* jiffies to sleep for each attempt */
393 unsigned int duration_jiffies = msecs_to_jiffies(duration);
394 unsigned int window_size_now;
395
396 try_to_freeze();
397 /*
398 * make sure user selected ratio does not take effect until
399 * the next round. adjust target_ratio if user has changed
400 * target such that we can converge quickly.
401 */
402 target_ratio = set_target_ratio;
403 guard = 1 + target_ratio/20;
404 window_size_now = window_size;
405 count++;
406
407 /*
408 * systems may have different ability to enter package level
409 * c-states, thus we need to compensate the injected idle ratio
410 * to achieve the actual target reported by the HW.
411 */
412 compensation = get_compensation(target_ratio);
413 interval = duration_jiffies*100/(target_ratio+compensation);
414
415 /* align idle time */
416 target_jiffies = roundup(jiffies, interval);
417 sleeptime = target_jiffies - jiffies;
418 if (sleeptime <= 0)
419 sleeptime = 1;
420 schedule_timeout_interruptible(sleeptime);
421 /*
422 * only elected controlling cpu can collect stats and update
423 * control parameters.
424 */
425 if (cpunr == control_cpu && !(count%window_size_now)) {
426 should_skip =
427 powerclamp_adjust_controls(target_ratio,
428 guard, window_size_now);
429 smp_mb();
430 }
431
432 if (should_skip)
433 continue;
434
435 target_jiffies = jiffies + duration_jiffies;
436 mod_timer(&wakeup_timer, target_jiffies);
437 if (unlikely(local_softirq_pending()))
438 continue;
439 /*
440 * stop tick sched during idle time, interrupts are still
441 * allowed. thus jiffies are updated properly.
442 */
443 preempt_disable();
444 /* mwait until target jiffies is reached */
445 while (time_before(jiffies, target_jiffies)) {
446 unsigned long ecx = 1;
447 unsigned long eax = target_mwait;
448
449 /*
450 * REVISIT: may call enter_idle() to notify drivers who
451 * can save power during cpu idle. same for exit_idle()
452 */
453 local_touch_nmi();
454 stop_critical_timings();
455 mwait_idle_with_hints(eax, ecx);
456 start_critical_timings();
457 atomic_inc(&idle_wakeup_counter);
458 }
459 preempt_enable();
460 }
461 del_timer_sync(&wakeup_timer);
462 clear_bit(cpunr, cpu_clamping_mask);
463
464 return 0;
465 }
466
467 /*
468 * 1 HZ polling while clamping is active, useful for userspace
469 * to monitor actual idle ratio.
470 */
471 static void poll_pkg_cstate(struct work_struct *dummy);
472 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
473 static void poll_pkg_cstate(struct work_struct *dummy)
474 {
475 static u64 msr_last;
476 static u64 tsc_last;
477 static unsigned long jiffies_last;
478
479 u64 msr_now;
480 unsigned long jiffies_now;
481 u64 tsc_now;
482 u64 val64;
483
484 msr_now = pkg_state_counter();
485 tsc_now = rdtsc();
486 jiffies_now = jiffies;
487
488 /* calculate pkg cstate vs tsc ratio */
489 if (!msr_last || !tsc_last)
490 pkg_cstate_ratio_cur = 1;
491 else {
492 if (tsc_now - tsc_last) {
493 val64 = 100 * (msr_now - msr_last);
494 do_div(val64, (tsc_now - tsc_last));
495 pkg_cstate_ratio_cur = val64;
496 }
497 }
498
499 /* update record */
500 msr_last = msr_now;
501 jiffies_last = jiffies_now;
502 tsc_last = tsc_now;
503
504 if (true == clamping)
505 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
506 }
507
508 static int start_power_clamp(void)
509 {
510 unsigned long cpu;
511 struct task_struct *thread;
512
513 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
514 /* prevent cpu hotplug */
515 get_online_cpus();
516
517 /* prefer BSP */
518 control_cpu = 0;
519 if (!cpu_online(control_cpu))
520 control_cpu = smp_processor_id();
521
522 clamping = true;
523 schedule_delayed_work(&poll_pkg_cstate_work, 0);
524
525 /* start one thread per online cpu */
526 for_each_online_cpu(cpu) {
527 struct task_struct **p =
528 per_cpu_ptr(powerclamp_thread, cpu);
529
530 thread = kthread_create_on_node(clamp_thread,
531 (void *) cpu,
532 cpu_to_node(cpu),
533 "kidle_inject/%ld", cpu);
534 /* bind to cpu here */
535 if (likely(!IS_ERR(thread))) {
536 kthread_bind(thread, cpu);
537 wake_up_process(thread);
538 *p = thread;
539 }
540
541 }
542 put_online_cpus();
543
544 return 0;
545 }
546
547 static void end_power_clamp(void)
548 {
549 int i;
550 struct task_struct *thread;
551
552 clamping = false;
553 /*
554 * make clamping visible to other cpus and give per cpu clamping threads
555 * sometime to exit, or gets killed later.
556 */
557 smp_mb();
558 msleep(20);
559 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
560 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
561 pr_debug("clamping thread for cpu %d alive, kill\n", i);
562 thread = *per_cpu_ptr(powerclamp_thread, i);
563 kthread_stop(thread);
564 }
565 }
566 }
567
568 static int powerclamp_cpu_callback(struct notifier_block *nfb,
569 unsigned long action, void *hcpu)
570 {
571 unsigned long cpu = (unsigned long)hcpu;
572 struct task_struct *thread;
573 struct task_struct **percpu_thread =
574 per_cpu_ptr(powerclamp_thread, cpu);
575
576 if (false == clamping)
577 goto exit_ok;
578
579 switch (action) {
580 case CPU_ONLINE:
581 thread = kthread_create_on_node(clamp_thread,
582 (void *) cpu,
583 cpu_to_node(cpu),
584 "kidle_inject/%lu", cpu);
585 if (likely(!IS_ERR(thread))) {
586 kthread_bind(thread, cpu);
587 wake_up_process(thread);
588 *percpu_thread = thread;
589 }
590 /* prefer BSP as controlling CPU */
591 if (cpu == 0) {
592 control_cpu = 0;
593 smp_mb();
594 }
595 break;
596 case CPU_DEAD:
597 if (test_bit(cpu, cpu_clamping_mask)) {
598 pr_err("cpu %lu dead but powerclamping thread is not\n",
599 cpu);
600 kthread_stop(*percpu_thread);
601 }
602 if (cpu == control_cpu) {
603 control_cpu = smp_processor_id();
604 smp_mb();
605 }
606 }
607
608 exit_ok:
609 return NOTIFY_OK;
610 }
611
612 static struct notifier_block powerclamp_cpu_notifier = {
613 .notifier_call = powerclamp_cpu_callback,
614 };
615
616 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
617 unsigned long *state)
618 {
619 *state = MAX_TARGET_RATIO;
620
621 return 0;
622 }
623
624 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
625 unsigned long *state)
626 {
627 if (true == clamping)
628 *state = pkg_cstate_ratio_cur;
629 else
630 /* to save power, do not poll idle ratio while not clamping */
631 *state = -1; /* indicates invalid state */
632
633 return 0;
634 }
635
636 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
637 unsigned long new_target_ratio)
638 {
639 int ret = 0;
640
641 new_target_ratio = clamp(new_target_ratio, 0UL,
642 (unsigned long) (MAX_TARGET_RATIO-1));
643 if (set_target_ratio == 0 && new_target_ratio > 0) {
644 pr_info("Start idle injection to reduce power\n");
645 set_target_ratio = new_target_ratio;
646 ret = start_power_clamp();
647 goto exit_set;
648 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
649 pr_info("Stop forced idle injection\n");
650 set_target_ratio = 0;
651 end_power_clamp();
652 } else /* adjust currently running */ {
653 set_target_ratio = new_target_ratio;
654 /* make new set_target_ratio visible to other cpus */
655 smp_mb();
656 }
657
658 exit_set:
659 return ret;
660 }
661
662 /* bind to generic thermal layer as cooling device*/
663 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
664 .get_max_state = powerclamp_get_max_state,
665 .get_cur_state = powerclamp_get_cur_state,
666 .set_cur_state = powerclamp_set_cur_state,
667 };
668
669 static const struct x86_cpu_id intel_powerclamp_ids[] __initconst = {
670 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
671 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_ARAT },
672 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_NONSTOP_TSC },
673 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_CONSTANT_TSC},
674 {}
675 };
676 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
677
678 static int __init powerclamp_probe(void)
679 {
680 if (!x86_match_cpu(intel_powerclamp_ids)) {
681 pr_err("Intel powerclamp does not run on family %d model %d\n",
682 boot_cpu_data.x86, boot_cpu_data.x86_model);
683 return -ENODEV;
684 }
685
686 /* The goal for idle time alignment is to achieve package cstate. */
687 if (!has_pkg_state_counter()) {
688 pr_info("No package C-state available");
689 return -ENODEV;
690 }
691
692 /* find the deepest mwait value */
693 find_target_mwait();
694
695 return 0;
696 }
697
698 static int powerclamp_debug_show(struct seq_file *m, void *unused)
699 {
700 int i = 0;
701
702 seq_printf(m, "controlling cpu: %d\n", control_cpu);
703 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
704 for (i = 0; i < MAX_TARGET_RATIO; i++) {
705 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
706 i,
707 cal_data[i].confidence,
708 cal_data[i].steady_comp,
709 cal_data[i].dynamic_comp);
710 }
711
712 return 0;
713 }
714
715 static int powerclamp_debug_open(struct inode *inode,
716 struct file *file)
717 {
718 return single_open(file, powerclamp_debug_show, inode->i_private);
719 }
720
721 static const struct file_operations powerclamp_debug_fops = {
722 .open = powerclamp_debug_open,
723 .read = seq_read,
724 .llseek = seq_lseek,
725 .release = single_release,
726 .owner = THIS_MODULE,
727 };
728
729 static inline void powerclamp_create_debug_files(void)
730 {
731 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
732 if (!debug_dir)
733 return;
734
735 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
736 cal_data, &powerclamp_debug_fops))
737 goto file_error;
738
739 return;
740
741 file_error:
742 debugfs_remove_recursive(debug_dir);
743 }
744
745 static int __init powerclamp_init(void)
746 {
747 int retval;
748 int bitmap_size;
749
750 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
751 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
752 if (!cpu_clamping_mask)
753 return -ENOMEM;
754
755 /* probe cpu features and ids here */
756 retval = powerclamp_probe();
757 if (retval)
758 goto exit_free;
759
760 /* set default limit, maybe adjusted during runtime based on feedback */
761 window_size = 2;
762 register_hotcpu_notifier(&powerclamp_cpu_notifier);
763
764 powerclamp_thread = alloc_percpu(struct task_struct *);
765 if (!powerclamp_thread) {
766 retval = -ENOMEM;
767 goto exit_unregister;
768 }
769
770 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
771 &powerclamp_cooling_ops);
772 if (IS_ERR(cooling_dev)) {
773 retval = -ENODEV;
774 goto exit_free_thread;
775 }
776
777 if (!duration)
778 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
779
780 powerclamp_create_debug_files();
781
782 return 0;
783
784 exit_free_thread:
785 free_percpu(powerclamp_thread);
786 exit_unregister:
787 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
788 exit_free:
789 kfree(cpu_clamping_mask);
790 return retval;
791 }
792 module_init(powerclamp_init);
793
794 static void __exit powerclamp_exit(void)
795 {
796 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
797 end_power_clamp();
798 free_percpu(powerclamp_thread);
799 thermal_cooling_device_unregister(cooling_dev);
800 kfree(cpu_clamping_mask);
801
802 cancel_delayed_work_sync(&poll_pkg_cstate_work);
803 debugfs_remove_recursive(debug_dir);
804 }
805 module_exit(powerclamp_exit);
806
807 MODULE_LICENSE("GPL");
808 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
809 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
810 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
This page took 0.048084 seconds and 6 git commands to generate.