51473473f15481eba0e08a01cd992cb32a8100d9
[deliverable/linux.git] / drivers / thermal / power_allocator.c
1 /*
2 * A power allocator to manage temperature
3 *
4 * Copyright (C) 2014 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #define pr_fmt(fmt) "Power allocator: " fmt
17
18 #include <linux/rculist.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/thermal_power_allocator.h>
24
25 #include "thermal_core.h"
26
27 #define FRAC_BITS 10
28 #define int_to_frac(x) ((x) << FRAC_BITS)
29 #define frac_to_int(x) ((x) >> FRAC_BITS)
30
31 /**
32 * mul_frac() - multiply two fixed-point numbers
33 * @x: first multiplicand
34 * @y: second multiplicand
35 *
36 * Return: the result of multiplying two fixed-point numbers. The
37 * result is also a fixed-point number.
38 */
39 static inline s64 mul_frac(s64 x, s64 y)
40 {
41 return (x * y) >> FRAC_BITS;
42 }
43
44 /**
45 * div_frac() - divide two fixed-point numbers
46 * @x: the dividend
47 * @y: the divisor
48 *
49 * Return: the result of dividing two fixed-point numbers. The
50 * result is also a fixed-point number.
51 */
52 static inline s64 div_frac(s64 x, s64 y)
53 {
54 return div_s64(x << FRAC_BITS, y);
55 }
56
57 /**
58 * struct power_allocator_params - parameters for the power allocator governor
59 * @err_integral: accumulated error in the PID controller.
60 * @prev_err: error in the previous iteration of the PID controller.
61 * Used to calculate the derivative term.
62 * @trip_switch_on: first passive trip point of the thermal zone. The
63 * governor switches on when this trip point is crossed.
64 * @trip_max_desired_temperature: last passive trip point of the thermal
65 * zone. The temperature we are
66 * controlling for.
67 */
68 struct power_allocator_params {
69 s64 err_integral;
70 s32 prev_err;
71 int trip_switch_on;
72 int trip_max_desired_temperature;
73 };
74
75 /**
76 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
77 * @tz: thermal zone we are operating in
78 *
79 * For thermal zones that don't provide a sustainable_power in their
80 * thermal_zone_params, estimate one. Calculate it using the minimum
81 * power of all the cooling devices as that gives a valid value that
82 * can give some degree of functionality. For optimal performance of
83 * this governor, provide a sustainable_power in the thermal zone's
84 * thermal_zone_params.
85 */
86 static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
87 {
88 u32 sustainable_power = 0;
89 struct thermal_instance *instance;
90 struct power_allocator_params *params = tz->governor_data;
91
92 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
93 struct thermal_cooling_device *cdev = instance->cdev;
94 u32 min_power;
95
96 if (instance->trip != params->trip_max_desired_temperature)
97 continue;
98
99 if (power_actor_get_min_power(cdev, tz, &min_power))
100 continue;
101
102 sustainable_power += min_power;
103 }
104
105 return sustainable_power;
106 }
107
108 /**
109 * estimate_pid_constants() - Estimate the constants for the PID controller
110 * @tz: thermal zone for which to estimate the constants
111 * @sustainable_power: sustainable power for the thermal zone
112 * @trip_switch_on: trip point number for the switch on temperature
113 * @control_temp: target temperature for the power allocator governor
114 * @force: whether to force the update of the constants
115 *
116 * This function is used to update the estimation of the PID
117 * controller constants in struct thermal_zone_parameters.
118 * Sustainable power is provided in case it was estimated. The
119 * estimated sustainable_power should not be stored in the
120 * thermal_zone_parameters so it has to be passed explicitly to this
121 * function.
122 *
123 * If @force is not set, the values in the thermal zone's parameters
124 * are preserved if they are not zero. If @force is set, the values
125 * in thermal zone's parameters are overwritten.
126 */
127 static void estimate_pid_constants(struct thermal_zone_device *tz,
128 u32 sustainable_power, int trip_switch_on,
129 int control_temp, bool force)
130 {
131 int ret;
132 int switch_on_temp;
133 u32 temperature_threshold;
134
135 ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
136 if (ret)
137 switch_on_temp = 0;
138
139 temperature_threshold = control_temp - switch_on_temp;
140
141 if (!tz->tzp->k_po || force)
142 tz->tzp->k_po = int_to_frac(sustainable_power) /
143 temperature_threshold;
144
145 if (!tz->tzp->k_pu || force)
146 tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
147 temperature_threshold;
148
149 if (!tz->tzp->k_i || force)
150 tz->tzp->k_i = int_to_frac(10) / 1000;
151 /*
152 * The default for k_d and integral_cutoff is 0, so we can
153 * leave them as they are.
154 */
155 }
156
157 /**
158 * pid_controller() - PID controller
159 * @tz: thermal zone we are operating in
160 * @current_temp: the current temperature in millicelsius
161 * @control_temp: the target temperature in millicelsius
162 * @max_allocatable_power: maximum allocatable power for this thermal zone
163 *
164 * This PID controller increases the available power budget so that the
165 * temperature of the thermal zone gets as close as possible to
166 * @control_temp and limits the power if it exceeds it. k_po is the
167 * proportional term when we are overshooting, k_pu is the
168 * proportional term when we are undershooting. integral_cutoff is a
169 * threshold below which we stop accumulating the error. The
170 * accumulated error is only valid if the requested power will make
171 * the system warmer. If the system is mostly idle, there's no point
172 * in accumulating positive error.
173 *
174 * Return: The power budget for the next period.
175 */
176 static u32 pid_controller(struct thermal_zone_device *tz,
177 int current_temp,
178 int control_temp,
179 u32 max_allocatable_power)
180 {
181 s64 p, i, d, power_range;
182 s32 err, max_power_frac;
183 u32 sustainable_power;
184 struct power_allocator_params *params = tz->governor_data;
185
186 max_power_frac = int_to_frac(max_allocatable_power);
187
188 if (tz->tzp->sustainable_power) {
189 sustainable_power = tz->tzp->sustainable_power;
190 } else {
191 sustainable_power = estimate_sustainable_power(tz);
192 estimate_pid_constants(tz, sustainable_power,
193 params->trip_switch_on, control_temp,
194 true);
195 }
196
197 err = control_temp - current_temp;
198 err = int_to_frac(err);
199
200 /* Calculate the proportional term */
201 p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
202
203 /*
204 * Calculate the integral term
205 *
206 * if the error is less than cut off allow integration (but
207 * the integral is limited to max power)
208 */
209 i = mul_frac(tz->tzp->k_i, params->err_integral);
210
211 if (err < int_to_frac(tz->tzp->integral_cutoff)) {
212 s64 i_next = i + mul_frac(tz->tzp->k_i, err);
213
214 if (abs64(i_next) < max_power_frac) {
215 i = i_next;
216 params->err_integral += err;
217 }
218 }
219
220 /*
221 * Calculate the derivative term
222 *
223 * We do err - prev_err, so with a positive k_d, a decreasing
224 * error (i.e. driving closer to the line) results in less
225 * power being applied, slowing down the controller)
226 */
227 d = mul_frac(tz->tzp->k_d, err - params->prev_err);
228 d = div_frac(d, tz->passive_delay);
229 params->prev_err = err;
230
231 power_range = p + i + d;
232
233 /* feed-forward the known sustainable dissipatable power */
234 power_range = sustainable_power + frac_to_int(power_range);
235
236 power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
237
238 trace_thermal_power_allocator_pid(tz, frac_to_int(err),
239 frac_to_int(params->err_integral),
240 frac_to_int(p), frac_to_int(i),
241 frac_to_int(d), power_range);
242
243 return power_range;
244 }
245
246 /**
247 * divvy_up_power() - divvy the allocated power between the actors
248 * @req_power: each actor's requested power
249 * @max_power: each actor's maximum available power
250 * @num_actors: size of the @req_power, @max_power and @granted_power's array
251 * @total_req_power: sum of @req_power
252 * @power_range: total allocated power
253 * @granted_power: output array: each actor's granted power
254 * @extra_actor_power: an appropriately sized array to be used in the
255 * function as temporary storage of the extra power given
256 * to the actors
257 *
258 * This function divides the total allocated power (@power_range)
259 * fairly between the actors. It first tries to give each actor a
260 * share of the @power_range according to how much power it requested
261 * compared to the rest of the actors. For example, if only one actor
262 * requests power, then it receives all the @power_range. If
263 * three actors each requests 1mW, each receives a third of the
264 * @power_range.
265 *
266 * If any actor received more than their maximum power, then that
267 * surplus is re-divvied among the actors based on how far they are
268 * from their respective maximums.
269 *
270 * Granted power for each actor is written to @granted_power, which
271 * should've been allocated by the calling function.
272 */
273 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
274 u32 total_req_power, u32 power_range,
275 u32 *granted_power, u32 *extra_actor_power)
276 {
277 u32 extra_power, capped_extra_power;
278 int i;
279
280 /*
281 * Prevent division by 0 if none of the actors request power.
282 */
283 if (!total_req_power)
284 total_req_power = 1;
285
286 capped_extra_power = 0;
287 extra_power = 0;
288 for (i = 0; i < num_actors; i++) {
289 u64 req_range = req_power[i] * power_range;
290
291 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
292 total_req_power);
293
294 if (granted_power[i] > max_power[i]) {
295 extra_power += granted_power[i] - max_power[i];
296 granted_power[i] = max_power[i];
297 }
298
299 extra_actor_power[i] = max_power[i] - granted_power[i];
300 capped_extra_power += extra_actor_power[i];
301 }
302
303 if (!extra_power)
304 return;
305
306 /*
307 * Re-divvy the reclaimed extra among actors based on
308 * how far they are from the max
309 */
310 extra_power = min(extra_power, capped_extra_power);
311 if (capped_extra_power > 0)
312 for (i = 0; i < num_actors; i++)
313 granted_power[i] += (extra_actor_power[i] *
314 extra_power) / capped_extra_power;
315 }
316
317 static int allocate_power(struct thermal_zone_device *tz,
318 int current_temp,
319 int control_temp)
320 {
321 struct thermal_instance *instance;
322 struct power_allocator_params *params = tz->governor_data;
323 u32 *req_power, *max_power, *granted_power, *extra_actor_power;
324 u32 *weighted_req_power;
325 u32 total_req_power, max_allocatable_power, total_weighted_req_power;
326 u32 total_granted_power, power_range;
327 int i, num_actors, total_weight, ret = 0;
328 int trip_max_desired_temperature = params->trip_max_desired_temperature;
329
330 mutex_lock(&tz->lock);
331
332 num_actors = 0;
333 total_weight = 0;
334 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
335 if ((instance->trip == trip_max_desired_temperature) &&
336 cdev_is_power_actor(instance->cdev)) {
337 num_actors++;
338 total_weight += instance->weight;
339 }
340 }
341
342 /*
343 * We need to allocate five arrays of the same size:
344 * req_power, max_power, granted_power, extra_actor_power and
345 * weighted_req_power. They are going to be needed until this
346 * function returns. Allocate them all in one go to simplify
347 * the allocation and deallocation logic.
348 */
349 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
350 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
351 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
352 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
353 req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
354 if (!req_power) {
355 ret = -ENOMEM;
356 goto unlock;
357 }
358
359 max_power = &req_power[num_actors];
360 granted_power = &req_power[2 * num_actors];
361 extra_actor_power = &req_power[3 * num_actors];
362 weighted_req_power = &req_power[4 * num_actors];
363
364 i = 0;
365 total_weighted_req_power = 0;
366 total_req_power = 0;
367 max_allocatable_power = 0;
368
369 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
370 int weight;
371 struct thermal_cooling_device *cdev = instance->cdev;
372
373 if (instance->trip != trip_max_desired_temperature)
374 continue;
375
376 if (!cdev_is_power_actor(cdev))
377 continue;
378
379 if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
380 continue;
381
382 if (!total_weight)
383 weight = 1 << FRAC_BITS;
384 else
385 weight = instance->weight;
386
387 weighted_req_power[i] = frac_to_int(weight * req_power[i]);
388
389 if (power_actor_get_max_power(cdev, tz, &max_power[i]))
390 continue;
391
392 total_req_power += req_power[i];
393 max_allocatable_power += max_power[i];
394 total_weighted_req_power += weighted_req_power[i];
395
396 i++;
397 }
398
399 power_range = pid_controller(tz, current_temp, control_temp,
400 max_allocatable_power);
401
402 divvy_up_power(weighted_req_power, max_power, num_actors,
403 total_weighted_req_power, power_range, granted_power,
404 extra_actor_power);
405
406 total_granted_power = 0;
407 i = 0;
408 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
409 if (instance->trip != trip_max_desired_temperature)
410 continue;
411
412 if (!cdev_is_power_actor(instance->cdev))
413 continue;
414
415 power_actor_set_power(instance->cdev, instance,
416 granted_power[i]);
417 total_granted_power += granted_power[i];
418
419 i++;
420 }
421
422 trace_thermal_power_allocator(tz, req_power, total_req_power,
423 granted_power, total_granted_power,
424 num_actors, power_range,
425 max_allocatable_power, current_temp,
426 control_temp - current_temp);
427
428 kfree(req_power);
429 unlock:
430 mutex_unlock(&tz->lock);
431
432 return ret;
433 }
434
435 static int get_governor_trips(struct thermal_zone_device *tz,
436 struct power_allocator_params *params)
437 {
438 int i, ret, last_passive;
439 bool found_first_passive;
440
441 found_first_passive = false;
442 last_passive = -1;
443 ret = -EINVAL;
444
445 for (i = 0; i < tz->trips; i++) {
446 enum thermal_trip_type type;
447
448 ret = tz->ops->get_trip_type(tz, i, &type);
449 if (ret)
450 return ret;
451
452 if (!found_first_passive) {
453 if (type == THERMAL_TRIP_PASSIVE) {
454 params->trip_switch_on = i;
455 found_first_passive = true;
456 }
457 } else if (type == THERMAL_TRIP_PASSIVE) {
458 last_passive = i;
459 } else {
460 break;
461 }
462 }
463
464 if (last_passive != -1) {
465 params->trip_max_desired_temperature = last_passive;
466 ret = 0;
467 } else {
468 ret = -EINVAL;
469 }
470
471 return ret;
472 }
473
474 static void reset_pid_controller(struct power_allocator_params *params)
475 {
476 params->err_integral = 0;
477 params->prev_err = 0;
478 }
479
480 static void allow_maximum_power(struct thermal_zone_device *tz)
481 {
482 struct thermal_instance *instance;
483 struct power_allocator_params *params = tz->governor_data;
484
485 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
486 if ((instance->trip != params->trip_max_desired_temperature) ||
487 (!cdev_is_power_actor(instance->cdev)))
488 continue;
489
490 instance->target = 0;
491 instance->cdev->updated = false;
492 thermal_cdev_update(instance->cdev);
493 }
494 }
495
496 /**
497 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
498 * @tz: thermal zone to bind it to
499 *
500 * Check that the thermal zone is valid for this governor, that is, it
501 * has two thermal trips. If so, initialize the PID controller
502 * parameters and bind it to the thermal zone.
503 *
504 * Return: 0 on success, -EINVAL if the trips were invalid or -ENOMEM
505 * if we ran out of memory.
506 */
507 static int power_allocator_bind(struct thermal_zone_device *tz)
508 {
509 int ret;
510 struct power_allocator_params *params;
511 int control_temp;
512
513 if (!tz->tzp)
514 return -EINVAL;
515
516 params = kzalloc(sizeof(*params), GFP_KERNEL);
517 if (!params)
518 return -ENOMEM;
519
520 if (!tz->tzp->sustainable_power)
521 dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
522
523 ret = get_governor_trips(tz, params);
524 if (ret) {
525 dev_err(&tz->device,
526 "thermal zone %s has wrong trip setup for power allocator\n",
527 tz->type);
528 goto free;
529 }
530
531 ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
532 &control_temp);
533 if (ret)
534 goto free;
535
536 estimate_pid_constants(tz, tz->tzp->sustainable_power,
537 params->trip_switch_on, control_temp, false);
538 reset_pid_controller(params);
539
540 tz->governor_data = params;
541
542 return 0;
543
544 free:
545 kfree(params);
546 return ret;
547 }
548
549 static void power_allocator_unbind(struct thermal_zone_device *tz)
550 {
551 dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
552 kfree(tz->governor_data);
553 tz->governor_data = NULL;
554 }
555
556 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
557 {
558 int ret;
559 int switch_on_temp, control_temp, current_temp;
560 struct power_allocator_params *params = tz->governor_data;
561
562 /*
563 * We get called for every trip point but we only need to do
564 * our calculations once
565 */
566 if (trip != params->trip_max_desired_temperature)
567 return 0;
568
569 ret = thermal_zone_get_temp(tz, &current_temp);
570 if (ret) {
571 dev_warn(&tz->device, "Failed to get temperature: %d\n", ret);
572 return ret;
573 }
574
575 ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
576 &switch_on_temp);
577 if (ret) {
578 dev_warn(&tz->device,
579 "Failed to get switch on temperature: %d\n", ret);
580 return ret;
581 }
582
583 if (current_temp < switch_on_temp) {
584 tz->passive = 0;
585 reset_pid_controller(params);
586 allow_maximum_power(tz);
587 return 0;
588 }
589
590 tz->passive = 1;
591
592 ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
593 &control_temp);
594 if (ret) {
595 dev_warn(&tz->device,
596 "Failed to get the maximum desired temperature: %d\n",
597 ret);
598 return ret;
599 }
600
601 return allocate_power(tz, current_temp, control_temp);
602 }
603
604 static struct thermal_governor thermal_gov_power_allocator = {
605 .name = "power_allocator",
606 .bind_to_tz = power_allocator_bind,
607 .unbind_from_tz = power_allocator_unbind,
608 .throttle = power_allocator_throttle,
609 };
610
611 int thermal_gov_power_allocator_register(void)
612 {
613 return thermal_register_governor(&thermal_gov_power_allocator);
614 }
615
616 void thermal_gov_power_allocator_unregister(void)
617 {
618 thermal_unregister_governor(&thermal_gov_power_allocator);
619 }
This page took 0.078847 seconds and 5 git commands to generate.