Merge branch 'next/gpio-samsung' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / tty / serial / amba-pl011.c
1 /*
2 * Driver for AMBA serial ports
3 *
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5 *
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
30 */
31
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
55 #include <linux/of.h>
56 #include <linux/of_device.h>
57 #include <linux/pinctrl/consumer.h>
58 #include <linux/sizes.h>
59
60 #include <asm/io.h>
61
62 #define UART_NR 14
63
64 #define SERIAL_AMBA_MAJOR 204
65 #define SERIAL_AMBA_MINOR 64
66 #define SERIAL_AMBA_NR UART_NR
67
68 #define AMBA_ISR_PASS_LIMIT 256
69
70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX (1 << 16)
72
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75 unsigned int ifls;
76 unsigned int fifosize;
77 unsigned int lcrh_tx;
78 unsigned int lcrh_rx;
79 bool oversampling;
80 bool dma_threshold;
81 bool cts_event_workaround;
82 };
83
84 static struct vendor_data vendor_arm = {
85 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
86 .fifosize = 16,
87 .lcrh_tx = UART011_LCRH,
88 .lcrh_rx = UART011_LCRH,
89 .oversampling = false,
90 .dma_threshold = false,
91 .cts_event_workaround = false,
92 };
93
94 static struct vendor_data vendor_st = {
95 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
96 .fifosize = 64,
97 .lcrh_tx = ST_UART011_LCRH_TX,
98 .lcrh_rx = ST_UART011_LCRH_RX,
99 .oversampling = true,
100 .dma_threshold = true,
101 .cts_event_workaround = true,
102 };
103
104 static struct uart_amba_port *amba_ports[UART_NR];
105
106 /* Deals with DMA transactions */
107
108 struct pl011_sgbuf {
109 struct scatterlist sg;
110 char *buf;
111 };
112
113 struct pl011_dmarx_data {
114 struct dma_chan *chan;
115 struct completion complete;
116 bool use_buf_b;
117 struct pl011_sgbuf sgbuf_a;
118 struct pl011_sgbuf sgbuf_b;
119 dma_cookie_t cookie;
120 bool running;
121 };
122
123 struct pl011_dmatx_data {
124 struct dma_chan *chan;
125 struct scatterlist sg;
126 char *buf;
127 bool queued;
128 };
129
130 /*
131 * We wrap our port structure around the generic uart_port.
132 */
133 struct uart_amba_port {
134 struct uart_port port;
135 struct clk *clk;
136 /* Two optional pin states - default & sleep */
137 struct pinctrl *pinctrl;
138 struct pinctrl_state *pins_default;
139 struct pinctrl_state *pins_sleep;
140 const struct vendor_data *vendor;
141 unsigned int dmacr; /* dma control reg */
142 unsigned int im; /* interrupt mask */
143 unsigned int old_status;
144 unsigned int fifosize; /* vendor-specific */
145 unsigned int lcrh_tx; /* vendor-specific */
146 unsigned int lcrh_rx; /* vendor-specific */
147 unsigned int old_cr; /* state during shutdown */
148 bool autorts;
149 char type[12];
150 #ifdef CONFIG_DMA_ENGINE
151 /* DMA stuff */
152 bool using_tx_dma;
153 bool using_rx_dma;
154 struct pl011_dmarx_data dmarx;
155 struct pl011_dmatx_data dmatx;
156 #endif
157 };
158
159 /*
160 * Reads up to 256 characters from the FIFO or until it's empty and
161 * inserts them into the TTY layer. Returns the number of characters
162 * read from the FIFO.
163 */
164 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
165 {
166 u16 status, ch;
167 unsigned int flag, max_count = 256;
168 int fifotaken = 0;
169
170 while (max_count--) {
171 status = readw(uap->port.membase + UART01x_FR);
172 if (status & UART01x_FR_RXFE)
173 break;
174
175 /* Take chars from the FIFO and update status */
176 ch = readw(uap->port.membase + UART01x_DR) |
177 UART_DUMMY_DR_RX;
178 flag = TTY_NORMAL;
179 uap->port.icount.rx++;
180 fifotaken++;
181
182 if (unlikely(ch & UART_DR_ERROR)) {
183 if (ch & UART011_DR_BE) {
184 ch &= ~(UART011_DR_FE | UART011_DR_PE);
185 uap->port.icount.brk++;
186 if (uart_handle_break(&uap->port))
187 continue;
188 } else if (ch & UART011_DR_PE)
189 uap->port.icount.parity++;
190 else if (ch & UART011_DR_FE)
191 uap->port.icount.frame++;
192 if (ch & UART011_DR_OE)
193 uap->port.icount.overrun++;
194
195 ch &= uap->port.read_status_mask;
196
197 if (ch & UART011_DR_BE)
198 flag = TTY_BREAK;
199 else if (ch & UART011_DR_PE)
200 flag = TTY_PARITY;
201 else if (ch & UART011_DR_FE)
202 flag = TTY_FRAME;
203 }
204
205 if (uart_handle_sysrq_char(&uap->port, ch & 255))
206 continue;
207
208 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
209 }
210
211 return fifotaken;
212 }
213
214
215 /*
216 * All the DMA operation mode stuff goes inside this ifdef.
217 * This assumes that you have a generic DMA device interface,
218 * no custom DMA interfaces are supported.
219 */
220 #ifdef CONFIG_DMA_ENGINE
221
222 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
223
224 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
225 enum dma_data_direction dir)
226 {
227 sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
228 if (!sg->buf)
229 return -ENOMEM;
230
231 sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
232
233 if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
234 kfree(sg->buf);
235 return -EINVAL;
236 }
237 return 0;
238 }
239
240 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
241 enum dma_data_direction dir)
242 {
243 if (sg->buf) {
244 dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
245 kfree(sg->buf);
246 }
247 }
248
249 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
250 {
251 /* DMA is the sole user of the platform data right now */
252 struct amba_pl011_data *plat = uap->port.dev->platform_data;
253 struct dma_slave_config tx_conf = {
254 .dst_addr = uap->port.mapbase + UART01x_DR,
255 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
256 .direction = DMA_MEM_TO_DEV,
257 .dst_maxburst = uap->fifosize >> 1,
258 .device_fc = false,
259 };
260 struct dma_chan *chan;
261 dma_cap_mask_t mask;
262
263 /* We need platform data */
264 if (!plat || !plat->dma_filter) {
265 dev_info(uap->port.dev, "no DMA platform data\n");
266 return;
267 }
268
269 /* Try to acquire a generic DMA engine slave TX channel */
270 dma_cap_zero(mask);
271 dma_cap_set(DMA_SLAVE, mask);
272
273 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
274 if (!chan) {
275 dev_err(uap->port.dev, "no TX DMA channel!\n");
276 return;
277 }
278
279 dmaengine_slave_config(chan, &tx_conf);
280 uap->dmatx.chan = chan;
281
282 dev_info(uap->port.dev, "DMA channel TX %s\n",
283 dma_chan_name(uap->dmatx.chan));
284
285 /* Optionally make use of an RX channel as well */
286 if (plat->dma_rx_param) {
287 struct dma_slave_config rx_conf = {
288 .src_addr = uap->port.mapbase + UART01x_DR,
289 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
290 .direction = DMA_DEV_TO_MEM,
291 .src_maxburst = uap->fifosize >> 1,
292 .device_fc = false,
293 };
294
295 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
296 if (!chan) {
297 dev_err(uap->port.dev, "no RX DMA channel!\n");
298 return;
299 }
300
301 dmaengine_slave_config(chan, &rx_conf);
302 uap->dmarx.chan = chan;
303
304 dev_info(uap->port.dev, "DMA channel RX %s\n",
305 dma_chan_name(uap->dmarx.chan));
306 }
307 }
308
309 #ifndef MODULE
310 /*
311 * Stack up the UARTs and let the above initcall be done at device
312 * initcall time, because the serial driver is called as an arch
313 * initcall, and at this time the DMA subsystem is not yet registered.
314 * At this point the driver will switch over to using DMA where desired.
315 */
316 struct dma_uap {
317 struct list_head node;
318 struct uart_amba_port *uap;
319 };
320
321 static LIST_HEAD(pl011_dma_uarts);
322
323 static int __init pl011_dma_initcall(void)
324 {
325 struct list_head *node, *tmp;
326
327 list_for_each_safe(node, tmp, &pl011_dma_uarts) {
328 struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
329 pl011_dma_probe_initcall(dmau->uap);
330 list_del(node);
331 kfree(dmau);
332 }
333 return 0;
334 }
335
336 device_initcall(pl011_dma_initcall);
337
338 static void pl011_dma_probe(struct uart_amba_port *uap)
339 {
340 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
341 if (dmau) {
342 dmau->uap = uap;
343 list_add_tail(&dmau->node, &pl011_dma_uarts);
344 }
345 }
346 #else
347 static void pl011_dma_probe(struct uart_amba_port *uap)
348 {
349 pl011_dma_probe_initcall(uap);
350 }
351 #endif
352
353 static void pl011_dma_remove(struct uart_amba_port *uap)
354 {
355 /* TODO: remove the initcall if it has not yet executed */
356 if (uap->dmatx.chan)
357 dma_release_channel(uap->dmatx.chan);
358 if (uap->dmarx.chan)
359 dma_release_channel(uap->dmarx.chan);
360 }
361
362 /* Forward declare this for the refill routine */
363 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
364
365 /*
366 * The current DMA TX buffer has been sent.
367 * Try to queue up another DMA buffer.
368 */
369 static void pl011_dma_tx_callback(void *data)
370 {
371 struct uart_amba_port *uap = data;
372 struct pl011_dmatx_data *dmatx = &uap->dmatx;
373 unsigned long flags;
374 u16 dmacr;
375
376 spin_lock_irqsave(&uap->port.lock, flags);
377 if (uap->dmatx.queued)
378 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
379 DMA_TO_DEVICE);
380
381 dmacr = uap->dmacr;
382 uap->dmacr = dmacr & ~UART011_TXDMAE;
383 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
384
385 /*
386 * If TX DMA was disabled, it means that we've stopped the DMA for
387 * some reason (eg, XOFF received, or we want to send an X-char.)
388 *
389 * Note: we need to be careful here of a potential race between DMA
390 * and the rest of the driver - if the driver disables TX DMA while
391 * a TX buffer completing, we must update the tx queued status to
392 * get further refills (hence we check dmacr).
393 */
394 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
395 uart_circ_empty(&uap->port.state->xmit)) {
396 uap->dmatx.queued = false;
397 spin_unlock_irqrestore(&uap->port.lock, flags);
398 return;
399 }
400
401 if (pl011_dma_tx_refill(uap) <= 0) {
402 /*
403 * We didn't queue a DMA buffer for some reason, but we
404 * have data pending to be sent. Re-enable the TX IRQ.
405 */
406 uap->im |= UART011_TXIM;
407 writew(uap->im, uap->port.membase + UART011_IMSC);
408 }
409 spin_unlock_irqrestore(&uap->port.lock, flags);
410 }
411
412 /*
413 * Try to refill the TX DMA buffer.
414 * Locking: called with port lock held and IRQs disabled.
415 * Returns:
416 * 1 if we queued up a TX DMA buffer.
417 * 0 if we didn't want to handle this by DMA
418 * <0 on error
419 */
420 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
421 {
422 struct pl011_dmatx_data *dmatx = &uap->dmatx;
423 struct dma_chan *chan = dmatx->chan;
424 struct dma_device *dma_dev = chan->device;
425 struct dma_async_tx_descriptor *desc;
426 struct circ_buf *xmit = &uap->port.state->xmit;
427 unsigned int count;
428
429 /*
430 * Try to avoid the overhead involved in using DMA if the
431 * transaction fits in the first half of the FIFO, by using
432 * the standard interrupt handling. This ensures that we
433 * issue a uart_write_wakeup() at the appropriate time.
434 */
435 count = uart_circ_chars_pending(xmit);
436 if (count < (uap->fifosize >> 1)) {
437 uap->dmatx.queued = false;
438 return 0;
439 }
440
441 /*
442 * Bodge: don't send the last character by DMA, as this
443 * will prevent XON from notifying us to restart DMA.
444 */
445 count -= 1;
446
447 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
448 if (count > PL011_DMA_BUFFER_SIZE)
449 count = PL011_DMA_BUFFER_SIZE;
450
451 if (xmit->tail < xmit->head)
452 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
453 else {
454 size_t first = UART_XMIT_SIZE - xmit->tail;
455 size_t second = xmit->head;
456
457 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
458 if (second)
459 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
460 }
461
462 dmatx->sg.length = count;
463
464 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
465 uap->dmatx.queued = false;
466 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
467 return -EBUSY;
468 }
469
470 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
471 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
472 if (!desc) {
473 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
474 uap->dmatx.queued = false;
475 /*
476 * If DMA cannot be used right now, we complete this
477 * transaction via IRQ and let the TTY layer retry.
478 */
479 dev_dbg(uap->port.dev, "TX DMA busy\n");
480 return -EBUSY;
481 }
482
483 /* Some data to go along to the callback */
484 desc->callback = pl011_dma_tx_callback;
485 desc->callback_param = uap;
486
487 /* All errors should happen at prepare time */
488 dmaengine_submit(desc);
489
490 /* Fire the DMA transaction */
491 dma_dev->device_issue_pending(chan);
492
493 uap->dmacr |= UART011_TXDMAE;
494 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
495 uap->dmatx.queued = true;
496
497 /*
498 * Now we know that DMA will fire, so advance the ring buffer
499 * with the stuff we just dispatched.
500 */
501 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
502 uap->port.icount.tx += count;
503
504 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
505 uart_write_wakeup(&uap->port);
506
507 return 1;
508 }
509
510 /*
511 * We received a transmit interrupt without a pending X-char but with
512 * pending characters.
513 * Locking: called with port lock held and IRQs disabled.
514 * Returns:
515 * false if we want to use PIO to transmit
516 * true if we queued a DMA buffer
517 */
518 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
519 {
520 if (!uap->using_tx_dma)
521 return false;
522
523 /*
524 * If we already have a TX buffer queued, but received a
525 * TX interrupt, it will be because we've just sent an X-char.
526 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
527 */
528 if (uap->dmatx.queued) {
529 uap->dmacr |= UART011_TXDMAE;
530 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
531 uap->im &= ~UART011_TXIM;
532 writew(uap->im, uap->port.membase + UART011_IMSC);
533 return true;
534 }
535
536 /*
537 * We don't have a TX buffer queued, so try to queue one.
538 * If we successfully queued a buffer, mask the TX IRQ.
539 */
540 if (pl011_dma_tx_refill(uap) > 0) {
541 uap->im &= ~UART011_TXIM;
542 writew(uap->im, uap->port.membase + UART011_IMSC);
543 return true;
544 }
545 return false;
546 }
547
548 /*
549 * Stop the DMA transmit (eg, due to received XOFF).
550 * Locking: called with port lock held and IRQs disabled.
551 */
552 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
553 {
554 if (uap->dmatx.queued) {
555 uap->dmacr &= ~UART011_TXDMAE;
556 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
557 }
558 }
559
560 /*
561 * Try to start a DMA transmit, or in the case of an XON/OFF
562 * character queued for send, try to get that character out ASAP.
563 * Locking: called with port lock held and IRQs disabled.
564 * Returns:
565 * false if we want the TX IRQ to be enabled
566 * true if we have a buffer queued
567 */
568 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
569 {
570 u16 dmacr;
571
572 if (!uap->using_tx_dma)
573 return false;
574
575 if (!uap->port.x_char) {
576 /* no X-char, try to push chars out in DMA mode */
577 bool ret = true;
578
579 if (!uap->dmatx.queued) {
580 if (pl011_dma_tx_refill(uap) > 0) {
581 uap->im &= ~UART011_TXIM;
582 ret = true;
583 } else {
584 uap->im |= UART011_TXIM;
585 ret = false;
586 }
587 writew(uap->im, uap->port.membase + UART011_IMSC);
588 } else if (!(uap->dmacr & UART011_TXDMAE)) {
589 uap->dmacr |= UART011_TXDMAE;
590 writew(uap->dmacr,
591 uap->port.membase + UART011_DMACR);
592 }
593 return ret;
594 }
595
596 /*
597 * We have an X-char to send. Disable DMA to prevent it loading
598 * the TX fifo, and then see if we can stuff it into the FIFO.
599 */
600 dmacr = uap->dmacr;
601 uap->dmacr &= ~UART011_TXDMAE;
602 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
603
604 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
605 /*
606 * No space in the FIFO, so enable the transmit interrupt
607 * so we know when there is space. Note that once we've
608 * loaded the character, we should just re-enable DMA.
609 */
610 return false;
611 }
612
613 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
614 uap->port.icount.tx++;
615 uap->port.x_char = 0;
616
617 /* Success - restore the DMA state */
618 uap->dmacr = dmacr;
619 writew(dmacr, uap->port.membase + UART011_DMACR);
620
621 return true;
622 }
623
624 /*
625 * Flush the transmit buffer.
626 * Locking: called with port lock held and IRQs disabled.
627 */
628 static void pl011_dma_flush_buffer(struct uart_port *port)
629 {
630 struct uart_amba_port *uap = (struct uart_amba_port *)port;
631
632 if (!uap->using_tx_dma)
633 return;
634
635 /* Avoid deadlock with the DMA engine callback */
636 spin_unlock(&uap->port.lock);
637 dmaengine_terminate_all(uap->dmatx.chan);
638 spin_lock(&uap->port.lock);
639 if (uap->dmatx.queued) {
640 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
641 DMA_TO_DEVICE);
642 uap->dmatx.queued = false;
643 uap->dmacr &= ~UART011_TXDMAE;
644 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
645 }
646 }
647
648 static void pl011_dma_rx_callback(void *data);
649
650 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
651 {
652 struct dma_chan *rxchan = uap->dmarx.chan;
653 struct pl011_dmarx_data *dmarx = &uap->dmarx;
654 struct dma_async_tx_descriptor *desc;
655 struct pl011_sgbuf *sgbuf;
656
657 if (!rxchan)
658 return -EIO;
659
660 /* Start the RX DMA job */
661 sgbuf = uap->dmarx.use_buf_b ?
662 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
663 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
664 DMA_DEV_TO_MEM,
665 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666 /*
667 * If the DMA engine is busy and cannot prepare a
668 * channel, no big deal, the driver will fall back
669 * to interrupt mode as a result of this error code.
670 */
671 if (!desc) {
672 uap->dmarx.running = false;
673 dmaengine_terminate_all(rxchan);
674 return -EBUSY;
675 }
676
677 /* Some data to go along to the callback */
678 desc->callback = pl011_dma_rx_callback;
679 desc->callback_param = uap;
680 dmarx->cookie = dmaengine_submit(desc);
681 dma_async_issue_pending(rxchan);
682
683 uap->dmacr |= UART011_RXDMAE;
684 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
685 uap->dmarx.running = true;
686
687 uap->im &= ~UART011_RXIM;
688 writew(uap->im, uap->port.membase + UART011_IMSC);
689
690 return 0;
691 }
692
693 /*
694 * This is called when either the DMA job is complete, or
695 * the FIFO timeout interrupt occurred. This must be called
696 * with the port spinlock uap->port.lock held.
697 */
698 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
699 u32 pending, bool use_buf_b,
700 bool readfifo)
701 {
702 struct tty_struct *tty = uap->port.state->port.tty;
703 struct pl011_sgbuf *sgbuf = use_buf_b ?
704 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
705 struct device *dev = uap->dmarx.chan->device->dev;
706 int dma_count = 0;
707 u32 fifotaken = 0; /* only used for vdbg() */
708
709 /* Pick everything from the DMA first */
710 if (pending) {
711 /* Sync in buffer */
712 dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
713
714 /*
715 * First take all chars in the DMA pipe, then look in the FIFO.
716 * Note that tty_insert_flip_buf() tries to take as many chars
717 * as it can.
718 */
719 dma_count = tty_insert_flip_string(uap->port.state->port.tty,
720 sgbuf->buf, pending);
721
722 /* Return buffer to device */
723 dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
724
725 uap->port.icount.rx += dma_count;
726 if (dma_count < pending)
727 dev_warn(uap->port.dev,
728 "couldn't insert all characters (TTY is full?)\n");
729 }
730
731 /*
732 * Only continue with trying to read the FIFO if all DMA chars have
733 * been taken first.
734 */
735 if (dma_count == pending && readfifo) {
736 /* Clear any error flags */
737 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
738 uap->port.membase + UART011_ICR);
739
740 /*
741 * If we read all the DMA'd characters, and we had an
742 * incomplete buffer, that could be due to an rx error, or
743 * maybe we just timed out. Read any pending chars and check
744 * the error status.
745 *
746 * Error conditions will only occur in the FIFO, these will
747 * trigger an immediate interrupt and stop the DMA job, so we
748 * will always find the error in the FIFO, never in the DMA
749 * buffer.
750 */
751 fifotaken = pl011_fifo_to_tty(uap);
752 }
753
754 spin_unlock(&uap->port.lock);
755 dev_vdbg(uap->port.dev,
756 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
757 dma_count, fifotaken);
758 tty_flip_buffer_push(tty);
759 spin_lock(&uap->port.lock);
760 }
761
762 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
763 {
764 struct pl011_dmarx_data *dmarx = &uap->dmarx;
765 struct dma_chan *rxchan = dmarx->chan;
766 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
767 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
768 size_t pending;
769 struct dma_tx_state state;
770 enum dma_status dmastat;
771
772 /*
773 * Pause the transfer so we can trust the current counter,
774 * do this before we pause the PL011 block, else we may
775 * overflow the FIFO.
776 */
777 if (dmaengine_pause(rxchan))
778 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
779 dmastat = rxchan->device->device_tx_status(rxchan,
780 dmarx->cookie, &state);
781 if (dmastat != DMA_PAUSED)
782 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
783
784 /* Disable RX DMA - incoming data will wait in the FIFO */
785 uap->dmacr &= ~UART011_RXDMAE;
786 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
787 uap->dmarx.running = false;
788
789 pending = sgbuf->sg.length - state.residue;
790 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
791 /* Then we terminate the transfer - we now know our residue */
792 dmaengine_terminate_all(rxchan);
793
794 /*
795 * This will take the chars we have so far and insert
796 * into the framework.
797 */
798 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
799
800 /* Switch buffer & re-trigger DMA job */
801 dmarx->use_buf_b = !dmarx->use_buf_b;
802 if (pl011_dma_rx_trigger_dma(uap)) {
803 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
804 "fall back to interrupt mode\n");
805 uap->im |= UART011_RXIM;
806 writew(uap->im, uap->port.membase + UART011_IMSC);
807 }
808 }
809
810 static void pl011_dma_rx_callback(void *data)
811 {
812 struct uart_amba_port *uap = data;
813 struct pl011_dmarx_data *dmarx = &uap->dmarx;
814 struct dma_chan *rxchan = dmarx->chan;
815 bool lastbuf = dmarx->use_buf_b;
816 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
817 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
818 size_t pending;
819 struct dma_tx_state state;
820 int ret;
821
822 /*
823 * This completion interrupt occurs typically when the
824 * RX buffer is totally stuffed but no timeout has yet
825 * occurred. When that happens, we just want the RX
826 * routine to flush out the secondary DMA buffer while
827 * we immediately trigger the next DMA job.
828 */
829 spin_lock_irq(&uap->port.lock);
830 /*
831 * Rx data can be taken by the UART interrupts during
832 * the DMA irq handler. So we check the residue here.
833 */
834 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
835 pending = sgbuf->sg.length - state.residue;
836 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
837 /* Then we terminate the transfer - we now know our residue */
838 dmaengine_terminate_all(rxchan);
839
840 uap->dmarx.running = false;
841 dmarx->use_buf_b = !lastbuf;
842 ret = pl011_dma_rx_trigger_dma(uap);
843
844 pl011_dma_rx_chars(uap, pending, lastbuf, false);
845 spin_unlock_irq(&uap->port.lock);
846 /*
847 * Do this check after we picked the DMA chars so we don't
848 * get some IRQ immediately from RX.
849 */
850 if (ret) {
851 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
852 "fall back to interrupt mode\n");
853 uap->im |= UART011_RXIM;
854 writew(uap->im, uap->port.membase + UART011_IMSC);
855 }
856 }
857
858 /*
859 * Stop accepting received characters, when we're shutting down or
860 * suspending this port.
861 * Locking: called with port lock held and IRQs disabled.
862 */
863 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
864 {
865 /* FIXME. Just disable the DMA enable */
866 uap->dmacr &= ~UART011_RXDMAE;
867 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
868 }
869
870 static void pl011_dma_startup(struct uart_amba_port *uap)
871 {
872 int ret;
873
874 if (!uap->dmatx.chan)
875 return;
876
877 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
878 if (!uap->dmatx.buf) {
879 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
880 uap->port.fifosize = uap->fifosize;
881 return;
882 }
883
884 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
885
886 /* The DMA buffer is now the FIFO the TTY subsystem can use */
887 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
888 uap->using_tx_dma = true;
889
890 if (!uap->dmarx.chan)
891 goto skip_rx;
892
893 /* Allocate and map DMA RX buffers */
894 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
895 DMA_FROM_DEVICE);
896 if (ret) {
897 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
898 "RX buffer A", ret);
899 goto skip_rx;
900 }
901
902 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
903 DMA_FROM_DEVICE);
904 if (ret) {
905 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
906 "RX buffer B", ret);
907 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
908 DMA_FROM_DEVICE);
909 goto skip_rx;
910 }
911
912 uap->using_rx_dma = true;
913
914 skip_rx:
915 /* Turn on DMA error (RX/TX will be enabled on demand) */
916 uap->dmacr |= UART011_DMAONERR;
917 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
918
919 /*
920 * ST Micro variants has some specific dma burst threshold
921 * compensation. Set this to 16 bytes, so burst will only
922 * be issued above/below 16 bytes.
923 */
924 if (uap->vendor->dma_threshold)
925 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
926 uap->port.membase + ST_UART011_DMAWM);
927
928 if (uap->using_rx_dma) {
929 if (pl011_dma_rx_trigger_dma(uap))
930 dev_dbg(uap->port.dev, "could not trigger initial "
931 "RX DMA job, fall back to interrupt mode\n");
932 }
933 }
934
935 static void pl011_dma_shutdown(struct uart_amba_port *uap)
936 {
937 if (!(uap->using_tx_dma || uap->using_rx_dma))
938 return;
939
940 /* Disable RX and TX DMA */
941 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
942 barrier();
943
944 spin_lock_irq(&uap->port.lock);
945 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
946 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
947 spin_unlock_irq(&uap->port.lock);
948
949 if (uap->using_tx_dma) {
950 /* In theory, this should already be done by pl011_dma_flush_buffer */
951 dmaengine_terminate_all(uap->dmatx.chan);
952 if (uap->dmatx.queued) {
953 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
954 DMA_TO_DEVICE);
955 uap->dmatx.queued = false;
956 }
957
958 kfree(uap->dmatx.buf);
959 uap->using_tx_dma = false;
960 }
961
962 if (uap->using_rx_dma) {
963 dmaengine_terminate_all(uap->dmarx.chan);
964 /* Clean up the RX DMA */
965 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
966 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
967 uap->using_rx_dma = false;
968 }
969 }
970
971 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
972 {
973 return uap->using_rx_dma;
974 }
975
976 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
977 {
978 return uap->using_rx_dma && uap->dmarx.running;
979 }
980
981
982 #else
983 /* Blank functions if the DMA engine is not available */
984 static inline void pl011_dma_probe(struct uart_amba_port *uap)
985 {
986 }
987
988 static inline void pl011_dma_remove(struct uart_amba_port *uap)
989 {
990 }
991
992 static inline void pl011_dma_startup(struct uart_amba_port *uap)
993 {
994 }
995
996 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
997 {
998 }
999
1000 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001 {
1002 return false;
1003 }
1004
1005 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006 {
1007 }
1008
1009 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010 {
1011 return false;
1012 }
1013
1014 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015 {
1016 }
1017
1018 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019 {
1020 }
1021
1022 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023 {
1024 return -EIO;
1025 }
1026
1027 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028 {
1029 return false;
1030 }
1031
1032 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033 {
1034 return false;
1035 }
1036
1037 #define pl011_dma_flush_buffer NULL
1038 #endif
1039
1040 static void pl011_stop_tx(struct uart_port *port)
1041 {
1042 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1043
1044 uap->im &= ~UART011_TXIM;
1045 writew(uap->im, uap->port.membase + UART011_IMSC);
1046 pl011_dma_tx_stop(uap);
1047 }
1048
1049 static void pl011_start_tx(struct uart_port *port)
1050 {
1051 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1052
1053 if (!pl011_dma_tx_start(uap)) {
1054 uap->im |= UART011_TXIM;
1055 writew(uap->im, uap->port.membase + UART011_IMSC);
1056 }
1057 }
1058
1059 static void pl011_stop_rx(struct uart_port *port)
1060 {
1061 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1062
1063 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1064 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1065 writew(uap->im, uap->port.membase + UART011_IMSC);
1066
1067 pl011_dma_rx_stop(uap);
1068 }
1069
1070 static void pl011_enable_ms(struct uart_port *port)
1071 {
1072 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1073
1074 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1075 writew(uap->im, uap->port.membase + UART011_IMSC);
1076 }
1077
1078 static void pl011_rx_chars(struct uart_amba_port *uap)
1079 {
1080 struct tty_struct *tty = uap->port.state->port.tty;
1081
1082 pl011_fifo_to_tty(uap);
1083
1084 spin_unlock(&uap->port.lock);
1085 tty_flip_buffer_push(tty);
1086 /*
1087 * If we were temporarily out of DMA mode for a while,
1088 * attempt to switch back to DMA mode again.
1089 */
1090 if (pl011_dma_rx_available(uap)) {
1091 if (pl011_dma_rx_trigger_dma(uap)) {
1092 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1093 "fall back to interrupt mode again\n");
1094 uap->im |= UART011_RXIM;
1095 } else
1096 uap->im &= ~UART011_RXIM;
1097 writew(uap->im, uap->port.membase + UART011_IMSC);
1098 }
1099 spin_lock(&uap->port.lock);
1100 }
1101
1102 static void pl011_tx_chars(struct uart_amba_port *uap)
1103 {
1104 struct circ_buf *xmit = &uap->port.state->xmit;
1105 int count;
1106
1107 if (uap->port.x_char) {
1108 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1109 uap->port.icount.tx++;
1110 uap->port.x_char = 0;
1111 return;
1112 }
1113 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1114 pl011_stop_tx(&uap->port);
1115 return;
1116 }
1117
1118 /* If we are using DMA mode, try to send some characters. */
1119 if (pl011_dma_tx_irq(uap))
1120 return;
1121
1122 count = uap->fifosize >> 1;
1123 do {
1124 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1125 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1126 uap->port.icount.tx++;
1127 if (uart_circ_empty(xmit))
1128 break;
1129 } while (--count > 0);
1130
1131 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1132 uart_write_wakeup(&uap->port);
1133
1134 if (uart_circ_empty(xmit))
1135 pl011_stop_tx(&uap->port);
1136 }
1137
1138 static void pl011_modem_status(struct uart_amba_port *uap)
1139 {
1140 unsigned int status, delta;
1141
1142 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1143
1144 delta = status ^ uap->old_status;
1145 uap->old_status = status;
1146
1147 if (!delta)
1148 return;
1149
1150 if (delta & UART01x_FR_DCD)
1151 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1152
1153 if (delta & UART01x_FR_DSR)
1154 uap->port.icount.dsr++;
1155
1156 if (delta & UART01x_FR_CTS)
1157 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1158
1159 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1160 }
1161
1162 static irqreturn_t pl011_int(int irq, void *dev_id)
1163 {
1164 struct uart_amba_port *uap = dev_id;
1165 unsigned long flags;
1166 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1167 int handled = 0;
1168 unsigned int dummy_read;
1169
1170 spin_lock_irqsave(&uap->port.lock, flags);
1171
1172 status = readw(uap->port.membase + UART011_MIS);
1173 if (status) {
1174 do {
1175 if (uap->vendor->cts_event_workaround) {
1176 /* workaround to make sure that all bits are unlocked.. */
1177 writew(0x00, uap->port.membase + UART011_ICR);
1178
1179 /*
1180 * WA: introduce 26ns(1 uart clk) delay before W1C;
1181 * single apb access will incur 2 pclk(133.12Mhz) delay,
1182 * so add 2 dummy reads
1183 */
1184 dummy_read = readw(uap->port.membase + UART011_ICR);
1185 dummy_read = readw(uap->port.membase + UART011_ICR);
1186 }
1187
1188 writew(status & ~(UART011_TXIS|UART011_RTIS|
1189 UART011_RXIS),
1190 uap->port.membase + UART011_ICR);
1191
1192 if (status & (UART011_RTIS|UART011_RXIS)) {
1193 if (pl011_dma_rx_running(uap))
1194 pl011_dma_rx_irq(uap);
1195 else
1196 pl011_rx_chars(uap);
1197 }
1198 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1199 UART011_CTSMIS|UART011_RIMIS))
1200 pl011_modem_status(uap);
1201 if (status & UART011_TXIS)
1202 pl011_tx_chars(uap);
1203
1204 if (pass_counter-- == 0)
1205 break;
1206
1207 status = readw(uap->port.membase + UART011_MIS);
1208 } while (status != 0);
1209 handled = 1;
1210 }
1211
1212 spin_unlock_irqrestore(&uap->port.lock, flags);
1213
1214 return IRQ_RETVAL(handled);
1215 }
1216
1217 static unsigned int pl011_tx_empty(struct uart_port *port)
1218 {
1219 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1220 unsigned int status = readw(uap->port.membase + UART01x_FR);
1221 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1222 }
1223
1224 static unsigned int pl011_get_mctrl(struct uart_port *port)
1225 {
1226 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1227 unsigned int result = 0;
1228 unsigned int status = readw(uap->port.membase + UART01x_FR);
1229
1230 #define TIOCMBIT(uartbit, tiocmbit) \
1231 if (status & uartbit) \
1232 result |= tiocmbit
1233
1234 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1235 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1236 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1237 TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1238 #undef TIOCMBIT
1239 return result;
1240 }
1241
1242 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1243 {
1244 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1245 unsigned int cr;
1246
1247 cr = readw(uap->port.membase + UART011_CR);
1248
1249 #define TIOCMBIT(tiocmbit, uartbit) \
1250 if (mctrl & tiocmbit) \
1251 cr |= uartbit; \
1252 else \
1253 cr &= ~uartbit
1254
1255 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1256 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1257 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1258 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1259 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1260
1261 if (uap->autorts) {
1262 /* We need to disable auto-RTS if we want to turn RTS off */
1263 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1264 }
1265 #undef TIOCMBIT
1266
1267 writew(cr, uap->port.membase + UART011_CR);
1268 }
1269
1270 static void pl011_break_ctl(struct uart_port *port, int break_state)
1271 {
1272 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1273 unsigned long flags;
1274 unsigned int lcr_h;
1275
1276 spin_lock_irqsave(&uap->port.lock, flags);
1277 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1278 if (break_state == -1)
1279 lcr_h |= UART01x_LCRH_BRK;
1280 else
1281 lcr_h &= ~UART01x_LCRH_BRK;
1282 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1283 spin_unlock_irqrestore(&uap->port.lock, flags);
1284 }
1285
1286 #ifdef CONFIG_CONSOLE_POLL
1287 static int pl011_get_poll_char(struct uart_port *port)
1288 {
1289 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1290 unsigned int status;
1291
1292 status = readw(uap->port.membase + UART01x_FR);
1293 if (status & UART01x_FR_RXFE)
1294 return NO_POLL_CHAR;
1295
1296 return readw(uap->port.membase + UART01x_DR);
1297 }
1298
1299 static void pl011_put_poll_char(struct uart_port *port,
1300 unsigned char ch)
1301 {
1302 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1303
1304 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1305 barrier();
1306
1307 writew(ch, uap->port.membase + UART01x_DR);
1308 }
1309
1310 #endif /* CONFIG_CONSOLE_POLL */
1311
1312 static int pl011_startup(struct uart_port *port)
1313 {
1314 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1315 unsigned int cr;
1316 int retval;
1317
1318 /* Optionaly enable pins to be muxed in and configured */
1319 if (!IS_ERR(uap->pins_default)) {
1320 retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1321 if (retval)
1322 dev_err(port->dev,
1323 "could not set default pins\n");
1324 }
1325
1326 /*
1327 * Try to enable the clock producer.
1328 */
1329 retval = clk_prepare_enable(uap->clk);
1330 if (retval)
1331 goto out;
1332
1333 uap->port.uartclk = clk_get_rate(uap->clk);
1334
1335 /* Clear pending error and receive interrupts */
1336 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1337 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1338
1339 /*
1340 * Allocate the IRQ
1341 */
1342 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1343 if (retval)
1344 goto clk_dis;
1345
1346 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1347
1348 /*
1349 * Provoke TX FIFO interrupt into asserting.
1350 */
1351 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1352 writew(cr, uap->port.membase + UART011_CR);
1353 writew(0, uap->port.membase + UART011_FBRD);
1354 writew(1, uap->port.membase + UART011_IBRD);
1355 writew(0, uap->port.membase + uap->lcrh_rx);
1356 if (uap->lcrh_tx != uap->lcrh_rx) {
1357 int i;
1358 /*
1359 * Wait 10 PCLKs before writing LCRH_TX register,
1360 * to get this delay write read only register 10 times
1361 */
1362 for (i = 0; i < 10; ++i)
1363 writew(0xff, uap->port.membase + UART011_MIS);
1364 writew(0, uap->port.membase + uap->lcrh_tx);
1365 }
1366 writew(0, uap->port.membase + UART01x_DR);
1367 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1368 barrier();
1369
1370 /* restore RTS and DTR */
1371 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1372 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1373 writew(cr, uap->port.membase + UART011_CR);
1374
1375 /*
1376 * initialise the old status of the modem signals
1377 */
1378 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1379
1380 /* Startup DMA */
1381 pl011_dma_startup(uap);
1382
1383 /*
1384 * Finally, enable interrupts, only timeouts when using DMA
1385 * if initial RX DMA job failed, start in interrupt mode
1386 * as well.
1387 */
1388 spin_lock_irq(&uap->port.lock);
1389 /* Clear out any spuriously appearing RX interrupts */
1390 writew(UART011_RTIS | UART011_RXIS,
1391 uap->port.membase + UART011_ICR);
1392 uap->im = UART011_RTIM;
1393 if (!pl011_dma_rx_running(uap))
1394 uap->im |= UART011_RXIM;
1395 writew(uap->im, uap->port.membase + UART011_IMSC);
1396 spin_unlock_irq(&uap->port.lock);
1397
1398 if (uap->port.dev->platform_data) {
1399 struct amba_pl011_data *plat;
1400
1401 plat = uap->port.dev->platform_data;
1402 if (plat->init)
1403 plat->init();
1404 }
1405
1406 return 0;
1407
1408 clk_dis:
1409 clk_disable_unprepare(uap->clk);
1410 out:
1411 return retval;
1412 }
1413
1414 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1415 unsigned int lcrh)
1416 {
1417 unsigned long val;
1418
1419 val = readw(uap->port.membase + lcrh);
1420 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1421 writew(val, uap->port.membase + lcrh);
1422 }
1423
1424 static void pl011_shutdown(struct uart_port *port)
1425 {
1426 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1427 unsigned int cr;
1428 int retval;
1429
1430 /*
1431 * disable all interrupts
1432 */
1433 spin_lock_irq(&uap->port.lock);
1434 uap->im = 0;
1435 writew(uap->im, uap->port.membase + UART011_IMSC);
1436 writew(0xffff, uap->port.membase + UART011_ICR);
1437 spin_unlock_irq(&uap->port.lock);
1438
1439 pl011_dma_shutdown(uap);
1440
1441 /*
1442 * Free the interrupt
1443 */
1444 free_irq(uap->port.irq, uap);
1445
1446 /*
1447 * disable the port
1448 * disable the port. It should not disable RTS and DTR.
1449 * Also RTS and DTR state should be preserved to restore
1450 * it during startup().
1451 */
1452 uap->autorts = false;
1453 cr = readw(uap->port.membase + UART011_CR);
1454 uap->old_cr = cr;
1455 cr &= UART011_CR_RTS | UART011_CR_DTR;
1456 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1457 writew(cr, uap->port.membase + UART011_CR);
1458
1459 /*
1460 * disable break condition and fifos
1461 */
1462 pl011_shutdown_channel(uap, uap->lcrh_rx);
1463 if (uap->lcrh_rx != uap->lcrh_tx)
1464 pl011_shutdown_channel(uap, uap->lcrh_tx);
1465
1466 /*
1467 * Shut down the clock producer
1468 */
1469 clk_disable_unprepare(uap->clk);
1470 /* Optionally let pins go into sleep states */
1471 if (!IS_ERR(uap->pins_sleep)) {
1472 retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1473 if (retval)
1474 dev_err(port->dev,
1475 "could not set pins to sleep state\n");
1476 }
1477
1478
1479 if (uap->port.dev->platform_data) {
1480 struct amba_pl011_data *plat;
1481
1482 plat = uap->port.dev->platform_data;
1483 if (plat->exit)
1484 plat->exit();
1485 }
1486
1487 }
1488
1489 static void
1490 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1491 struct ktermios *old)
1492 {
1493 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1494 unsigned int lcr_h, old_cr;
1495 unsigned long flags;
1496 unsigned int baud, quot, clkdiv;
1497
1498 if (uap->vendor->oversampling)
1499 clkdiv = 8;
1500 else
1501 clkdiv = 16;
1502
1503 /*
1504 * Ask the core to calculate the divisor for us.
1505 */
1506 baud = uart_get_baud_rate(port, termios, old, 0,
1507 port->uartclk / clkdiv);
1508
1509 if (baud > port->uartclk/16)
1510 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1511 else
1512 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1513
1514 switch (termios->c_cflag & CSIZE) {
1515 case CS5:
1516 lcr_h = UART01x_LCRH_WLEN_5;
1517 break;
1518 case CS6:
1519 lcr_h = UART01x_LCRH_WLEN_6;
1520 break;
1521 case CS7:
1522 lcr_h = UART01x_LCRH_WLEN_7;
1523 break;
1524 default: // CS8
1525 lcr_h = UART01x_LCRH_WLEN_8;
1526 break;
1527 }
1528 if (termios->c_cflag & CSTOPB)
1529 lcr_h |= UART01x_LCRH_STP2;
1530 if (termios->c_cflag & PARENB) {
1531 lcr_h |= UART01x_LCRH_PEN;
1532 if (!(termios->c_cflag & PARODD))
1533 lcr_h |= UART01x_LCRH_EPS;
1534 }
1535 if (uap->fifosize > 1)
1536 lcr_h |= UART01x_LCRH_FEN;
1537
1538 spin_lock_irqsave(&port->lock, flags);
1539
1540 /*
1541 * Update the per-port timeout.
1542 */
1543 uart_update_timeout(port, termios->c_cflag, baud);
1544
1545 port->read_status_mask = UART011_DR_OE | 255;
1546 if (termios->c_iflag & INPCK)
1547 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1548 if (termios->c_iflag & (BRKINT | PARMRK))
1549 port->read_status_mask |= UART011_DR_BE;
1550
1551 /*
1552 * Characters to ignore
1553 */
1554 port->ignore_status_mask = 0;
1555 if (termios->c_iflag & IGNPAR)
1556 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1557 if (termios->c_iflag & IGNBRK) {
1558 port->ignore_status_mask |= UART011_DR_BE;
1559 /*
1560 * If we're ignoring parity and break indicators,
1561 * ignore overruns too (for real raw support).
1562 */
1563 if (termios->c_iflag & IGNPAR)
1564 port->ignore_status_mask |= UART011_DR_OE;
1565 }
1566
1567 /*
1568 * Ignore all characters if CREAD is not set.
1569 */
1570 if ((termios->c_cflag & CREAD) == 0)
1571 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1572
1573 if (UART_ENABLE_MS(port, termios->c_cflag))
1574 pl011_enable_ms(port);
1575
1576 /* first, disable everything */
1577 old_cr = readw(port->membase + UART011_CR);
1578 writew(0, port->membase + UART011_CR);
1579
1580 if (termios->c_cflag & CRTSCTS) {
1581 if (old_cr & UART011_CR_RTS)
1582 old_cr |= UART011_CR_RTSEN;
1583
1584 old_cr |= UART011_CR_CTSEN;
1585 uap->autorts = true;
1586 } else {
1587 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1588 uap->autorts = false;
1589 }
1590
1591 if (uap->vendor->oversampling) {
1592 if (baud > port->uartclk / 16)
1593 old_cr |= ST_UART011_CR_OVSFACT;
1594 else
1595 old_cr &= ~ST_UART011_CR_OVSFACT;
1596 }
1597
1598 /* Set baud rate */
1599 writew(quot & 0x3f, port->membase + UART011_FBRD);
1600 writew(quot >> 6, port->membase + UART011_IBRD);
1601
1602 /*
1603 * ----------v----------v----------v----------v-----
1604 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
1605 * ----------^----------^----------^----------^-----
1606 */
1607 writew(lcr_h, port->membase + uap->lcrh_rx);
1608 if (uap->lcrh_rx != uap->lcrh_tx) {
1609 int i;
1610 /*
1611 * Wait 10 PCLKs before writing LCRH_TX register,
1612 * to get this delay write read only register 10 times
1613 */
1614 for (i = 0; i < 10; ++i)
1615 writew(0xff, uap->port.membase + UART011_MIS);
1616 writew(lcr_h, port->membase + uap->lcrh_tx);
1617 }
1618 writew(old_cr, port->membase + UART011_CR);
1619
1620 spin_unlock_irqrestore(&port->lock, flags);
1621 }
1622
1623 static const char *pl011_type(struct uart_port *port)
1624 {
1625 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1626 return uap->port.type == PORT_AMBA ? uap->type : NULL;
1627 }
1628
1629 /*
1630 * Release the memory region(s) being used by 'port'
1631 */
1632 static void pl011_release_port(struct uart_port *port)
1633 {
1634 release_mem_region(port->mapbase, SZ_4K);
1635 }
1636
1637 /*
1638 * Request the memory region(s) being used by 'port'
1639 */
1640 static int pl011_request_port(struct uart_port *port)
1641 {
1642 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1643 != NULL ? 0 : -EBUSY;
1644 }
1645
1646 /*
1647 * Configure/autoconfigure the port.
1648 */
1649 static void pl011_config_port(struct uart_port *port, int flags)
1650 {
1651 if (flags & UART_CONFIG_TYPE) {
1652 port->type = PORT_AMBA;
1653 pl011_request_port(port);
1654 }
1655 }
1656
1657 /*
1658 * verify the new serial_struct (for TIOCSSERIAL).
1659 */
1660 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1661 {
1662 int ret = 0;
1663 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1664 ret = -EINVAL;
1665 if (ser->irq < 0 || ser->irq >= nr_irqs)
1666 ret = -EINVAL;
1667 if (ser->baud_base < 9600)
1668 ret = -EINVAL;
1669 return ret;
1670 }
1671
1672 static struct uart_ops amba_pl011_pops = {
1673 .tx_empty = pl011_tx_empty,
1674 .set_mctrl = pl011_set_mctrl,
1675 .get_mctrl = pl011_get_mctrl,
1676 .stop_tx = pl011_stop_tx,
1677 .start_tx = pl011_start_tx,
1678 .stop_rx = pl011_stop_rx,
1679 .enable_ms = pl011_enable_ms,
1680 .break_ctl = pl011_break_ctl,
1681 .startup = pl011_startup,
1682 .shutdown = pl011_shutdown,
1683 .flush_buffer = pl011_dma_flush_buffer,
1684 .set_termios = pl011_set_termios,
1685 .type = pl011_type,
1686 .release_port = pl011_release_port,
1687 .request_port = pl011_request_port,
1688 .config_port = pl011_config_port,
1689 .verify_port = pl011_verify_port,
1690 #ifdef CONFIG_CONSOLE_POLL
1691 .poll_get_char = pl011_get_poll_char,
1692 .poll_put_char = pl011_put_poll_char,
1693 #endif
1694 };
1695
1696 static struct uart_amba_port *amba_ports[UART_NR];
1697
1698 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1699
1700 static void pl011_console_putchar(struct uart_port *port, int ch)
1701 {
1702 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1703
1704 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1705 barrier();
1706 writew(ch, uap->port.membase + UART01x_DR);
1707 }
1708
1709 static void
1710 pl011_console_write(struct console *co, const char *s, unsigned int count)
1711 {
1712 struct uart_amba_port *uap = amba_ports[co->index];
1713 unsigned int status, old_cr, new_cr;
1714 unsigned long flags;
1715 int locked = 1;
1716
1717 clk_enable(uap->clk);
1718
1719 local_irq_save(flags);
1720 if (uap->port.sysrq)
1721 locked = 0;
1722 else if (oops_in_progress)
1723 locked = spin_trylock(&uap->port.lock);
1724 else
1725 spin_lock(&uap->port.lock);
1726
1727 /*
1728 * First save the CR then disable the interrupts
1729 */
1730 old_cr = readw(uap->port.membase + UART011_CR);
1731 new_cr = old_cr & ~UART011_CR_CTSEN;
1732 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1733 writew(new_cr, uap->port.membase + UART011_CR);
1734
1735 uart_console_write(&uap->port, s, count, pl011_console_putchar);
1736
1737 /*
1738 * Finally, wait for transmitter to become empty
1739 * and restore the TCR
1740 */
1741 do {
1742 status = readw(uap->port.membase + UART01x_FR);
1743 } while (status & UART01x_FR_BUSY);
1744 writew(old_cr, uap->port.membase + UART011_CR);
1745
1746 if (locked)
1747 spin_unlock(&uap->port.lock);
1748 local_irq_restore(flags);
1749
1750 clk_disable(uap->clk);
1751 }
1752
1753 static void __init
1754 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1755 int *parity, int *bits)
1756 {
1757 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1758 unsigned int lcr_h, ibrd, fbrd;
1759
1760 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1761
1762 *parity = 'n';
1763 if (lcr_h & UART01x_LCRH_PEN) {
1764 if (lcr_h & UART01x_LCRH_EPS)
1765 *parity = 'e';
1766 else
1767 *parity = 'o';
1768 }
1769
1770 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1771 *bits = 7;
1772 else
1773 *bits = 8;
1774
1775 ibrd = readw(uap->port.membase + UART011_IBRD);
1776 fbrd = readw(uap->port.membase + UART011_FBRD);
1777
1778 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1779
1780 if (uap->vendor->oversampling) {
1781 if (readw(uap->port.membase + UART011_CR)
1782 & ST_UART011_CR_OVSFACT)
1783 *baud *= 2;
1784 }
1785 }
1786 }
1787
1788 static int __init pl011_console_setup(struct console *co, char *options)
1789 {
1790 struct uart_amba_port *uap;
1791 int baud = 38400;
1792 int bits = 8;
1793 int parity = 'n';
1794 int flow = 'n';
1795 int ret;
1796
1797 /*
1798 * Check whether an invalid uart number has been specified, and
1799 * if so, search for the first available port that does have
1800 * console support.
1801 */
1802 if (co->index >= UART_NR)
1803 co->index = 0;
1804 uap = amba_ports[co->index];
1805 if (!uap)
1806 return -ENODEV;
1807
1808 /* Allow pins to be muxed in and configured */
1809 if (!IS_ERR(uap->pins_default)) {
1810 ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1811 if (ret)
1812 dev_err(uap->port.dev,
1813 "could not set default pins\n");
1814 }
1815
1816 ret = clk_prepare(uap->clk);
1817 if (ret)
1818 return ret;
1819
1820 if (uap->port.dev->platform_data) {
1821 struct amba_pl011_data *plat;
1822
1823 plat = uap->port.dev->platform_data;
1824 if (plat->init)
1825 plat->init();
1826 }
1827
1828 uap->port.uartclk = clk_get_rate(uap->clk);
1829
1830 if (options)
1831 uart_parse_options(options, &baud, &parity, &bits, &flow);
1832 else
1833 pl011_console_get_options(uap, &baud, &parity, &bits);
1834
1835 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1836 }
1837
1838 static struct uart_driver amba_reg;
1839 static struct console amba_console = {
1840 .name = "ttyAMA",
1841 .write = pl011_console_write,
1842 .device = uart_console_device,
1843 .setup = pl011_console_setup,
1844 .flags = CON_PRINTBUFFER,
1845 .index = -1,
1846 .data = &amba_reg,
1847 };
1848
1849 #define AMBA_CONSOLE (&amba_console)
1850 #else
1851 #define AMBA_CONSOLE NULL
1852 #endif
1853
1854 static struct uart_driver amba_reg = {
1855 .owner = THIS_MODULE,
1856 .driver_name = "ttyAMA",
1857 .dev_name = "ttyAMA",
1858 .major = SERIAL_AMBA_MAJOR,
1859 .minor = SERIAL_AMBA_MINOR,
1860 .nr = UART_NR,
1861 .cons = AMBA_CONSOLE,
1862 };
1863
1864 static int pl011_probe_dt_alias(int index, struct device *dev)
1865 {
1866 struct device_node *np;
1867 static bool seen_dev_with_alias = false;
1868 static bool seen_dev_without_alias = false;
1869 int ret = index;
1870
1871 if (!IS_ENABLED(CONFIG_OF))
1872 return ret;
1873
1874 np = dev->of_node;
1875 if (!np)
1876 return ret;
1877
1878 ret = of_alias_get_id(np, "serial");
1879 if (IS_ERR_VALUE(ret)) {
1880 seen_dev_without_alias = true;
1881 ret = index;
1882 } else {
1883 seen_dev_with_alias = true;
1884 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
1885 dev_warn(dev, "requested serial port %d not available.\n", ret);
1886 ret = index;
1887 }
1888 }
1889
1890 if (seen_dev_with_alias && seen_dev_without_alias)
1891 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
1892
1893 return ret;
1894 }
1895
1896 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1897 {
1898 struct uart_amba_port *uap;
1899 struct vendor_data *vendor = id->data;
1900 void __iomem *base;
1901 int i, ret;
1902
1903 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1904 if (amba_ports[i] == NULL)
1905 break;
1906
1907 if (i == ARRAY_SIZE(amba_ports)) {
1908 ret = -EBUSY;
1909 goto out;
1910 }
1911
1912 uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1913 if (uap == NULL) {
1914 ret = -ENOMEM;
1915 goto out;
1916 }
1917
1918 i = pl011_probe_dt_alias(i, &dev->dev);
1919
1920 base = ioremap(dev->res.start, resource_size(&dev->res));
1921 if (!base) {
1922 ret = -ENOMEM;
1923 goto free;
1924 }
1925
1926 uap->pinctrl = devm_pinctrl_get(&dev->dev);
1927 if (IS_ERR(uap->pinctrl)) {
1928 ret = PTR_ERR(uap->pinctrl);
1929 goto unmap;
1930 }
1931 uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
1932 PINCTRL_STATE_DEFAULT);
1933 if (IS_ERR(uap->pins_default))
1934 dev_err(&dev->dev, "could not get default pinstate\n");
1935
1936 uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
1937 PINCTRL_STATE_SLEEP);
1938 if (IS_ERR(uap->pins_sleep))
1939 dev_dbg(&dev->dev, "could not get sleep pinstate\n");
1940
1941 uap->clk = clk_get(&dev->dev, NULL);
1942 if (IS_ERR(uap->clk)) {
1943 ret = PTR_ERR(uap->clk);
1944 goto unmap;
1945 }
1946
1947 uap->vendor = vendor;
1948 uap->lcrh_rx = vendor->lcrh_rx;
1949 uap->lcrh_tx = vendor->lcrh_tx;
1950 uap->old_cr = 0;
1951 uap->fifosize = vendor->fifosize;
1952 uap->port.dev = &dev->dev;
1953 uap->port.mapbase = dev->res.start;
1954 uap->port.membase = base;
1955 uap->port.iotype = UPIO_MEM;
1956 uap->port.irq = dev->irq[0];
1957 uap->port.fifosize = uap->fifosize;
1958 uap->port.ops = &amba_pl011_pops;
1959 uap->port.flags = UPF_BOOT_AUTOCONF;
1960 uap->port.line = i;
1961 pl011_dma_probe(uap);
1962
1963 /* Ensure interrupts from this UART are masked and cleared */
1964 writew(0, uap->port.membase + UART011_IMSC);
1965 writew(0xffff, uap->port.membase + UART011_ICR);
1966
1967 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1968
1969 amba_ports[i] = uap;
1970
1971 amba_set_drvdata(dev, uap);
1972 ret = uart_add_one_port(&amba_reg, &uap->port);
1973 if (ret) {
1974 amba_set_drvdata(dev, NULL);
1975 amba_ports[i] = NULL;
1976 pl011_dma_remove(uap);
1977 clk_put(uap->clk);
1978 unmap:
1979 iounmap(base);
1980 free:
1981 kfree(uap);
1982 }
1983 out:
1984 return ret;
1985 }
1986
1987 static int pl011_remove(struct amba_device *dev)
1988 {
1989 struct uart_amba_port *uap = amba_get_drvdata(dev);
1990 int i;
1991
1992 amba_set_drvdata(dev, NULL);
1993
1994 uart_remove_one_port(&amba_reg, &uap->port);
1995
1996 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1997 if (amba_ports[i] == uap)
1998 amba_ports[i] = NULL;
1999
2000 pl011_dma_remove(uap);
2001 iounmap(uap->port.membase);
2002 clk_put(uap->clk);
2003 kfree(uap);
2004 return 0;
2005 }
2006
2007 #ifdef CONFIG_PM
2008 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2009 {
2010 struct uart_amba_port *uap = amba_get_drvdata(dev);
2011
2012 if (!uap)
2013 return -EINVAL;
2014
2015 return uart_suspend_port(&amba_reg, &uap->port);
2016 }
2017
2018 static int pl011_resume(struct amba_device *dev)
2019 {
2020 struct uart_amba_port *uap = amba_get_drvdata(dev);
2021
2022 if (!uap)
2023 return -EINVAL;
2024
2025 return uart_resume_port(&amba_reg, &uap->port);
2026 }
2027 #endif
2028
2029 static struct amba_id pl011_ids[] = {
2030 {
2031 .id = 0x00041011,
2032 .mask = 0x000fffff,
2033 .data = &vendor_arm,
2034 },
2035 {
2036 .id = 0x00380802,
2037 .mask = 0x00ffffff,
2038 .data = &vendor_st,
2039 },
2040 { 0, 0 },
2041 };
2042
2043 MODULE_DEVICE_TABLE(amba, pl011_ids);
2044
2045 static struct amba_driver pl011_driver = {
2046 .drv = {
2047 .name = "uart-pl011",
2048 },
2049 .id_table = pl011_ids,
2050 .probe = pl011_probe,
2051 .remove = pl011_remove,
2052 #ifdef CONFIG_PM
2053 .suspend = pl011_suspend,
2054 .resume = pl011_resume,
2055 #endif
2056 };
2057
2058 static int __init pl011_init(void)
2059 {
2060 int ret;
2061 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2062
2063 ret = uart_register_driver(&amba_reg);
2064 if (ret == 0) {
2065 ret = amba_driver_register(&pl011_driver);
2066 if (ret)
2067 uart_unregister_driver(&amba_reg);
2068 }
2069 return ret;
2070 }
2071
2072 static void __exit pl011_exit(void)
2073 {
2074 amba_driver_unregister(&pl011_driver);
2075 uart_unregister_driver(&amba_reg);
2076 }
2077
2078 /*
2079 * While this can be a module, if builtin it's most likely the console
2080 * So let's leave module_exit but move module_init to an earlier place
2081 */
2082 arch_initcall(pl011_init);
2083 module_exit(pl011_exit);
2084
2085 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2086 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2087 MODULE_LICENSE("GPL");
This page took 0.071532 seconds and 6 git commands to generate.