Merge branch 'pm-tools'
[deliverable/linux.git] / drivers / tty / serial / sh-sci.c
1 /*
2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
3 *
4 * Copyright (C) 2002 - 2011 Paul Mundt
5 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6 *
7 * based off of the old drivers/char/sh-sci.c by:
8 *
9 * Copyright (C) 1999, 2000 Niibe Yutaka
10 * Copyright (C) 2000 Sugioka Toshinobu
11 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
12 * Modified to support SecureEdge. David McCullough (2002)
13 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14 * Removed SH7300 support (Jul 2007).
15 *
16 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file "COPYING" in the main directory of this archive
18 * for more details.
19 */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23
24 #undef DEBUG
25
26 #include <linux/clk.h>
27 #include <linux/console.h>
28 #include <linux/ctype.h>
29 #include <linux/cpufreq.h>
30 #include <linux/delay.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/ioport.h>
38 #include <linux/major.h>
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/notifier.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59
60 #include "sh-sci.h"
61
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 SCIx_ERI_IRQ,
65 SCIx_RXI_IRQ,
66 SCIx_TXI_IRQ,
67 SCIx_BRI_IRQ,
68 SCIx_NR_IRQS,
69
70 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
71 };
72
73 #define SCIx_IRQ_IS_MUXED(port) \
74 ((port)->irqs[SCIx_ERI_IRQ] == \
75 (port)->irqs[SCIx_RXI_IRQ]) || \
76 ((port)->irqs[SCIx_ERI_IRQ] && \
77 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78
79 struct sci_port {
80 struct uart_port port;
81
82 /* Platform configuration */
83 struct plat_sci_port *cfg;
84 unsigned int overrun_reg;
85 unsigned int overrun_mask;
86 unsigned int error_mask;
87 unsigned int error_clear;
88 unsigned int sampling_rate;
89 resource_size_t reg_size;
90
91 /* Break timer */
92 struct timer_list break_timer;
93 int break_flag;
94
95 /* Interface clock */
96 struct clk *iclk;
97 /* Function clock */
98 struct clk *fclk;
99
100 int irqs[SCIx_NR_IRQS];
101 char *irqstr[SCIx_NR_IRQS];
102
103 struct dma_chan *chan_tx;
104 struct dma_chan *chan_rx;
105
106 #ifdef CONFIG_SERIAL_SH_SCI_DMA
107 dma_cookie_t cookie_tx;
108 dma_cookie_t cookie_rx[2];
109 dma_cookie_t active_rx;
110 dma_addr_t tx_dma_addr;
111 unsigned int tx_dma_len;
112 struct scatterlist sg_rx[2];
113 void *rx_buf[2];
114 size_t buf_len_rx;
115 struct work_struct work_tx;
116 struct timer_list rx_timer;
117 unsigned int rx_timeout;
118 #endif
119
120 struct notifier_block freq_transition;
121 };
122
123 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
124
125 static struct sci_port sci_ports[SCI_NPORTS];
126 static struct uart_driver sci_uart_driver;
127
128 static inline struct sci_port *
129 to_sci_port(struct uart_port *uart)
130 {
131 return container_of(uart, struct sci_port, port);
132 }
133
134 struct plat_sci_reg {
135 u8 offset, size;
136 };
137
138 /* Helper for invalidating specific entries of an inherited map. */
139 #define sci_reg_invalid { .offset = 0, .size = 0 }
140
141 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
142 [SCIx_PROBE_REGTYPE] = {
143 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
144 },
145
146 /*
147 * Common SCI definitions, dependent on the port's regshift
148 * value.
149 */
150 [SCIx_SCI_REGTYPE] = {
151 [SCSMR] = { 0x00, 8 },
152 [SCBRR] = { 0x01, 8 },
153 [SCSCR] = { 0x02, 8 },
154 [SCxTDR] = { 0x03, 8 },
155 [SCxSR] = { 0x04, 8 },
156 [SCxRDR] = { 0x05, 8 },
157 [SCFCR] = sci_reg_invalid,
158 [SCFDR] = sci_reg_invalid,
159 [SCTFDR] = sci_reg_invalid,
160 [SCRFDR] = sci_reg_invalid,
161 [SCSPTR] = sci_reg_invalid,
162 [SCLSR] = sci_reg_invalid,
163 [HSSRR] = sci_reg_invalid,
164 [SCPCR] = sci_reg_invalid,
165 [SCPDR] = sci_reg_invalid,
166 },
167
168 /*
169 * Common definitions for legacy IrDA ports, dependent on
170 * regshift value.
171 */
172 [SCIx_IRDA_REGTYPE] = {
173 [SCSMR] = { 0x00, 8 },
174 [SCBRR] = { 0x01, 8 },
175 [SCSCR] = { 0x02, 8 },
176 [SCxTDR] = { 0x03, 8 },
177 [SCxSR] = { 0x04, 8 },
178 [SCxRDR] = { 0x05, 8 },
179 [SCFCR] = { 0x06, 8 },
180 [SCFDR] = { 0x07, 16 },
181 [SCTFDR] = sci_reg_invalid,
182 [SCRFDR] = sci_reg_invalid,
183 [SCSPTR] = sci_reg_invalid,
184 [SCLSR] = sci_reg_invalid,
185 [HSSRR] = sci_reg_invalid,
186 [SCPCR] = sci_reg_invalid,
187 [SCPDR] = sci_reg_invalid,
188 },
189
190 /*
191 * Common SCIFA definitions.
192 */
193 [SCIx_SCIFA_REGTYPE] = {
194 [SCSMR] = { 0x00, 16 },
195 [SCBRR] = { 0x04, 8 },
196 [SCSCR] = { 0x08, 16 },
197 [SCxTDR] = { 0x20, 8 },
198 [SCxSR] = { 0x14, 16 },
199 [SCxRDR] = { 0x24, 8 },
200 [SCFCR] = { 0x18, 16 },
201 [SCFDR] = { 0x1c, 16 },
202 [SCTFDR] = sci_reg_invalid,
203 [SCRFDR] = sci_reg_invalid,
204 [SCSPTR] = sci_reg_invalid,
205 [SCLSR] = sci_reg_invalid,
206 [HSSRR] = sci_reg_invalid,
207 [SCPCR] = { 0x30, 16 },
208 [SCPDR] = { 0x34, 16 },
209 },
210
211 /*
212 * Common SCIFB definitions.
213 */
214 [SCIx_SCIFB_REGTYPE] = {
215 [SCSMR] = { 0x00, 16 },
216 [SCBRR] = { 0x04, 8 },
217 [SCSCR] = { 0x08, 16 },
218 [SCxTDR] = { 0x40, 8 },
219 [SCxSR] = { 0x14, 16 },
220 [SCxRDR] = { 0x60, 8 },
221 [SCFCR] = { 0x18, 16 },
222 [SCFDR] = sci_reg_invalid,
223 [SCTFDR] = { 0x38, 16 },
224 [SCRFDR] = { 0x3c, 16 },
225 [SCSPTR] = sci_reg_invalid,
226 [SCLSR] = sci_reg_invalid,
227 [HSSRR] = sci_reg_invalid,
228 [SCPCR] = { 0x30, 16 },
229 [SCPDR] = { 0x34, 16 },
230 },
231
232 /*
233 * Common SH-2(A) SCIF definitions for ports with FIFO data
234 * count registers.
235 */
236 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
237 [SCSMR] = { 0x00, 16 },
238 [SCBRR] = { 0x04, 8 },
239 [SCSCR] = { 0x08, 16 },
240 [SCxTDR] = { 0x0c, 8 },
241 [SCxSR] = { 0x10, 16 },
242 [SCxRDR] = { 0x14, 8 },
243 [SCFCR] = { 0x18, 16 },
244 [SCFDR] = { 0x1c, 16 },
245 [SCTFDR] = sci_reg_invalid,
246 [SCRFDR] = sci_reg_invalid,
247 [SCSPTR] = { 0x20, 16 },
248 [SCLSR] = { 0x24, 16 },
249 [HSSRR] = sci_reg_invalid,
250 [SCPCR] = sci_reg_invalid,
251 [SCPDR] = sci_reg_invalid,
252 },
253
254 /*
255 * Common SH-3 SCIF definitions.
256 */
257 [SCIx_SH3_SCIF_REGTYPE] = {
258 [SCSMR] = { 0x00, 8 },
259 [SCBRR] = { 0x02, 8 },
260 [SCSCR] = { 0x04, 8 },
261 [SCxTDR] = { 0x06, 8 },
262 [SCxSR] = { 0x08, 16 },
263 [SCxRDR] = { 0x0a, 8 },
264 [SCFCR] = { 0x0c, 8 },
265 [SCFDR] = { 0x0e, 16 },
266 [SCTFDR] = sci_reg_invalid,
267 [SCRFDR] = sci_reg_invalid,
268 [SCSPTR] = sci_reg_invalid,
269 [SCLSR] = sci_reg_invalid,
270 [HSSRR] = sci_reg_invalid,
271 [SCPCR] = sci_reg_invalid,
272 [SCPDR] = sci_reg_invalid,
273 },
274
275 /*
276 * Common SH-4(A) SCIF(B) definitions.
277 */
278 [SCIx_SH4_SCIF_REGTYPE] = {
279 [SCSMR] = { 0x00, 16 },
280 [SCBRR] = { 0x04, 8 },
281 [SCSCR] = { 0x08, 16 },
282 [SCxTDR] = { 0x0c, 8 },
283 [SCxSR] = { 0x10, 16 },
284 [SCxRDR] = { 0x14, 8 },
285 [SCFCR] = { 0x18, 16 },
286 [SCFDR] = { 0x1c, 16 },
287 [SCTFDR] = sci_reg_invalid,
288 [SCRFDR] = sci_reg_invalid,
289 [SCSPTR] = { 0x20, 16 },
290 [SCLSR] = { 0x24, 16 },
291 [HSSRR] = sci_reg_invalid,
292 [SCPCR] = sci_reg_invalid,
293 [SCPDR] = sci_reg_invalid,
294 },
295
296 /*
297 * Common HSCIF definitions.
298 */
299 [SCIx_HSCIF_REGTYPE] = {
300 [SCSMR] = { 0x00, 16 },
301 [SCBRR] = { 0x04, 8 },
302 [SCSCR] = { 0x08, 16 },
303 [SCxTDR] = { 0x0c, 8 },
304 [SCxSR] = { 0x10, 16 },
305 [SCxRDR] = { 0x14, 8 },
306 [SCFCR] = { 0x18, 16 },
307 [SCFDR] = { 0x1c, 16 },
308 [SCTFDR] = sci_reg_invalid,
309 [SCRFDR] = sci_reg_invalid,
310 [SCSPTR] = { 0x20, 16 },
311 [SCLSR] = { 0x24, 16 },
312 [HSSRR] = { 0x40, 16 },
313 [SCPCR] = sci_reg_invalid,
314 [SCPDR] = sci_reg_invalid,
315 },
316
317 /*
318 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
319 * register.
320 */
321 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
322 [SCSMR] = { 0x00, 16 },
323 [SCBRR] = { 0x04, 8 },
324 [SCSCR] = { 0x08, 16 },
325 [SCxTDR] = { 0x0c, 8 },
326 [SCxSR] = { 0x10, 16 },
327 [SCxRDR] = { 0x14, 8 },
328 [SCFCR] = { 0x18, 16 },
329 [SCFDR] = { 0x1c, 16 },
330 [SCTFDR] = sci_reg_invalid,
331 [SCRFDR] = sci_reg_invalid,
332 [SCSPTR] = sci_reg_invalid,
333 [SCLSR] = { 0x24, 16 },
334 [HSSRR] = sci_reg_invalid,
335 [SCPCR] = sci_reg_invalid,
336 [SCPDR] = sci_reg_invalid,
337 },
338
339 /*
340 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
341 * count registers.
342 */
343 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
344 [SCSMR] = { 0x00, 16 },
345 [SCBRR] = { 0x04, 8 },
346 [SCSCR] = { 0x08, 16 },
347 [SCxTDR] = { 0x0c, 8 },
348 [SCxSR] = { 0x10, 16 },
349 [SCxRDR] = { 0x14, 8 },
350 [SCFCR] = { 0x18, 16 },
351 [SCFDR] = { 0x1c, 16 },
352 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
353 [SCRFDR] = { 0x20, 16 },
354 [SCSPTR] = { 0x24, 16 },
355 [SCLSR] = { 0x28, 16 },
356 [HSSRR] = sci_reg_invalid,
357 [SCPCR] = sci_reg_invalid,
358 [SCPDR] = sci_reg_invalid,
359 },
360
361 /*
362 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
363 * registers.
364 */
365 [SCIx_SH7705_SCIF_REGTYPE] = {
366 [SCSMR] = { 0x00, 16 },
367 [SCBRR] = { 0x04, 8 },
368 [SCSCR] = { 0x08, 16 },
369 [SCxTDR] = { 0x20, 8 },
370 [SCxSR] = { 0x14, 16 },
371 [SCxRDR] = { 0x24, 8 },
372 [SCFCR] = { 0x18, 16 },
373 [SCFDR] = { 0x1c, 16 },
374 [SCTFDR] = sci_reg_invalid,
375 [SCRFDR] = sci_reg_invalid,
376 [SCSPTR] = sci_reg_invalid,
377 [SCLSR] = sci_reg_invalid,
378 [HSSRR] = sci_reg_invalid,
379 [SCPCR] = sci_reg_invalid,
380 [SCPDR] = sci_reg_invalid,
381 },
382 };
383
384 #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
385
386 /*
387 * The "offset" here is rather misleading, in that it refers to an enum
388 * value relative to the port mapping rather than the fixed offset
389 * itself, which needs to be manually retrieved from the platform's
390 * register map for the given port.
391 */
392 static unsigned int sci_serial_in(struct uart_port *p, int offset)
393 {
394 const struct plat_sci_reg *reg = sci_getreg(p, offset);
395
396 if (reg->size == 8)
397 return ioread8(p->membase + (reg->offset << p->regshift));
398 else if (reg->size == 16)
399 return ioread16(p->membase + (reg->offset << p->regshift));
400 else
401 WARN(1, "Invalid register access\n");
402
403 return 0;
404 }
405
406 static void sci_serial_out(struct uart_port *p, int offset, int value)
407 {
408 const struct plat_sci_reg *reg = sci_getreg(p, offset);
409
410 if (reg->size == 8)
411 iowrite8(value, p->membase + (reg->offset << p->regshift));
412 else if (reg->size == 16)
413 iowrite16(value, p->membase + (reg->offset << p->regshift));
414 else
415 WARN(1, "Invalid register access\n");
416 }
417
418 static int sci_probe_regmap(struct plat_sci_port *cfg)
419 {
420 switch (cfg->type) {
421 case PORT_SCI:
422 cfg->regtype = SCIx_SCI_REGTYPE;
423 break;
424 case PORT_IRDA:
425 cfg->regtype = SCIx_IRDA_REGTYPE;
426 break;
427 case PORT_SCIFA:
428 cfg->regtype = SCIx_SCIFA_REGTYPE;
429 break;
430 case PORT_SCIFB:
431 cfg->regtype = SCIx_SCIFB_REGTYPE;
432 break;
433 case PORT_SCIF:
434 /*
435 * The SH-4 is a bit of a misnomer here, although that's
436 * where this particular port layout originated. This
437 * configuration (or some slight variation thereof)
438 * remains the dominant model for all SCIFs.
439 */
440 cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
441 break;
442 case PORT_HSCIF:
443 cfg->regtype = SCIx_HSCIF_REGTYPE;
444 break;
445 default:
446 pr_err("Can't probe register map for given port\n");
447 return -EINVAL;
448 }
449
450 return 0;
451 }
452
453 static void sci_port_enable(struct sci_port *sci_port)
454 {
455 if (!sci_port->port.dev)
456 return;
457
458 pm_runtime_get_sync(sci_port->port.dev);
459
460 clk_prepare_enable(sci_port->iclk);
461 sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
462 clk_prepare_enable(sci_port->fclk);
463 }
464
465 static void sci_port_disable(struct sci_port *sci_port)
466 {
467 if (!sci_port->port.dev)
468 return;
469
470 /* Cancel the break timer to ensure that the timer handler will not try
471 * to access the hardware with clocks and power disabled. Reset the
472 * break flag to make the break debouncing state machine ready for the
473 * next break.
474 */
475 del_timer_sync(&sci_port->break_timer);
476 sci_port->break_flag = 0;
477
478 clk_disable_unprepare(sci_port->fclk);
479 clk_disable_unprepare(sci_port->iclk);
480
481 pm_runtime_put_sync(sci_port->port.dev);
482 }
483
484 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
485 {
486 /*
487 * Not all ports (such as SCIFA) will support REIE. Rather than
488 * special-casing the port type, we check the port initialization
489 * IRQ enable mask to see whether the IRQ is desired at all. If
490 * it's unset, it's logically inferred that there's no point in
491 * testing for it.
492 */
493 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
494 }
495
496 static void sci_start_tx(struct uart_port *port)
497 {
498 struct sci_port *s = to_sci_port(port);
499 unsigned short ctrl;
500
501 #ifdef CONFIG_SERIAL_SH_SCI_DMA
502 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
503 u16 new, scr = serial_port_in(port, SCSCR);
504 if (s->chan_tx)
505 new = scr | SCSCR_TDRQE;
506 else
507 new = scr & ~SCSCR_TDRQE;
508 if (new != scr)
509 serial_port_out(port, SCSCR, new);
510 }
511
512 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
513 dma_submit_error(s->cookie_tx)) {
514 s->cookie_tx = 0;
515 schedule_work(&s->work_tx);
516 }
517 #endif
518
519 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
520 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
521 ctrl = serial_port_in(port, SCSCR);
522 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
523 }
524 }
525
526 static void sci_stop_tx(struct uart_port *port)
527 {
528 unsigned short ctrl;
529
530 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
531 ctrl = serial_port_in(port, SCSCR);
532
533 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
534 ctrl &= ~SCSCR_TDRQE;
535
536 ctrl &= ~SCSCR_TIE;
537
538 serial_port_out(port, SCSCR, ctrl);
539 }
540
541 static void sci_start_rx(struct uart_port *port)
542 {
543 unsigned short ctrl;
544
545 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
546
547 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
548 ctrl &= ~SCSCR_RDRQE;
549
550 serial_port_out(port, SCSCR, ctrl);
551 }
552
553 static void sci_stop_rx(struct uart_port *port)
554 {
555 unsigned short ctrl;
556
557 ctrl = serial_port_in(port, SCSCR);
558
559 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
560 ctrl &= ~SCSCR_RDRQE;
561
562 ctrl &= ~port_rx_irq_mask(port);
563
564 serial_port_out(port, SCSCR, ctrl);
565 }
566
567 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
568 {
569 if (port->type == PORT_SCI) {
570 /* Just store the mask */
571 serial_port_out(port, SCxSR, mask);
572 } else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
573 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
574 /* Only clear the status bits we want to clear */
575 serial_port_out(port, SCxSR,
576 serial_port_in(port, SCxSR) & mask);
577 } else {
578 /* Store the mask, clear parity/framing errors */
579 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
580 }
581 }
582
583 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
584
585 #ifdef CONFIG_CONSOLE_POLL
586 static int sci_poll_get_char(struct uart_port *port)
587 {
588 unsigned short status;
589 int c;
590
591 do {
592 status = serial_port_in(port, SCxSR);
593 if (status & SCxSR_ERRORS(port)) {
594 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
595 continue;
596 }
597 break;
598 } while (1);
599
600 if (!(status & SCxSR_RDxF(port)))
601 return NO_POLL_CHAR;
602
603 c = serial_port_in(port, SCxRDR);
604
605 /* Dummy read */
606 serial_port_in(port, SCxSR);
607 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
608
609 return c;
610 }
611 #endif
612
613 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
614 {
615 unsigned short status;
616
617 do {
618 status = serial_port_in(port, SCxSR);
619 } while (!(status & SCxSR_TDxE(port)));
620
621 serial_port_out(port, SCxTDR, c);
622 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
623 }
624 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
625
626 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
627 {
628 struct sci_port *s = to_sci_port(port);
629 const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
630
631 /*
632 * Use port-specific handler if provided.
633 */
634 if (s->cfg->ops && s->cfg->ops->init_pins) {
635 s->cfg->ops->init_pins(port, cflag);
636 return;
637 }
638
639 /*
640 * For the generic path SCSPTR is necessary. Bail out if that's
641 * unavailable, too.
642 */
643 if (!reg->size)
644 return;
645
646 if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
647 ((!(cflag & CRTSCTS)))) {
648 unsigned short status;
649
650 status = serial_port_in(port, SCSPTR);
651 status &= ~SCSPTR_CTSIO;
652 status |= SCSPTR_RTSIO;
653 serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
654 }
655 }
656
657 static int sci_txfill(struct uart_port *port)
658 {
659 const struct plat_sci_reg *reg;
660
661 reg = sci_getreg(port, SCTFDR);
662 if (reg->size)
663 return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
664
665 reg = sci_getreg(port, SCFDR);
666 if (reg->size)
667 return serial_port_in(port, SCFDR) >> 8;
668
669 return !(serial_port_in(port, SCxSR) & SCI_TDRE);
670 }
671
672 static int sci_txroom(struct uart_port *port)
673 {
674 return port->fifosize - sci_txfill(port);
675 }
676
677 static int sci_rxfill(struct uart_port *port)
678 {
679 const struct plat_sci_reg *reg;
680
681 reg = sci_getreg(port, SCRFDR);
682 if (reg->size)
683 return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
684
685 reg = sci_getreg(port, SCFDR);
686 if (reg->size)
687 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
688
689 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
690 }
691
692 /*
693 * SCI helper for checking the state of the muxed port/RXD pins.
694 */
695 static inline int sci_rxd_in(struct uart_port *port)
696 {
697 struct sci_port *s = to_sci_port(port);
698
699 if (s->cfg->port_reg <= 0)
700 return 1;
701
702 /* Cast for ARM damage */
703 return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
704 }
705
706 /* ********************************************************************** *
707 * the interrupt related routines *
708 * ********************************************************************** */
709
710 static void sci_transmit_chars(struct uart_port *port)
711 {
712 struct circ_buf *xmit = &port->state->xmit;
713 unsigned int stopped = uart_tx_stopped(port);
714 unsigned short status;
715 unsigned short ctrl;
716 int count;
717
718 status = serial_port_in(port, SCxSR);
719 if (!(status & SCxSR_TDxE(port))) {
720 ctrl = serial_port_in(port, SCSCR);
721 if (uart_circ_empty(xmit))
722 ctrl &= ~SCSCR_TIE;
723 else
724 ctrl |= SCSCR_TIE;
725 serial_port_out(port, SCSCR, ctrl);
726 return;
727 }
728
729 count = sci_txroom(port);
730
731 do {
732 unsigned char c;
733
734 if (port->x_char) {
735 c = port->x_char;
736 port->x_char = 0;
737 } else if (!uart_circ_empty(xmit) && !stopped) {
738 c = xmit->buf[xmit->tail];
739 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
740 } else {
741 break;
742 }
743
744 serial_port_out(port, SCxTDR, c);
745
746 port->icount.tx++;
747 } while (--count > 0);
748
749 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
750
751 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
752 uart_write_wakeup(port);
753 if (uart_circ_empty(xmit)) {
754 sci_stop_tx(port);
755 } else {
756 ctrl = serial_port_in(port, SCSCR);
757
758 if (port->type != PORT_SCI) {
759 serial_port_in(port, SCxSR); /* Dummy read */
760 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
761 }
762
763 ctrl |= SCSCR_TIE;
764 serial_port_out(port, SCSCR, ctrl);
765 }
766 }
767
768 /* On SH3, SCIF may read end-of-break as a space->mark char */
769 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
770
771 static void sci_receive_chars(struct uart_port *port)
772 {
773 struct sci_port *sci_port = to_sci_port(port);
774 struct tty_port *tport = &port->state->port;
775 int i, count, copied = 0;
776 unsigned short status;
777 unsigned char flag;
778
779 status = serial_port_in(port, SCxSR);
780 if (!(status & SCxSR_RDxF(port)))
781 return;
782
783 while (1) {
784 /* Don't copy more bytes than there is room for in the buffer */
785 count = tty_buffer_request_room(tport, sci_rxfill(port));
786
787 /* If for any reason we can't copy more data, we're done! */
788 if (count == 0)
789 break;
790
791 if (port->type == PORT_SCI) {
792 char c = serial_port_in(port, SCxRDR);
793 if (uart_handle_sysrq_char(port, c) ||
794 sci_port->break_flag)
795 count = 0;
796 else
797 tty_insert_flip_char(tport, c, TTY_NORMAL);
798 } else {
799 for (i = 0; i < count; i++) {
800 char c = serial_port_in(port, SCxRDR);
801
802 status = serial_port_in(port, SCxSR);
803 #if defined(CONFIG_CPU_SH3)
804 /* Skip "chars" during break */
805 if (sci_port->break_flag) {
806 if ((c == 0) &&
807 (status & SCxSR_FER(port))) {
808 count--; i--;
809 continue;
810 }
811
812 /* Nonzero => end-of-break */
813 dev_dbg(port->dev, "debounce<%02x>\n", c);
814 sci_port->break_flag = 0;
815
816 if (STEPFN(c)) {
817 count--; i--;
818 continue;
819 }
820 }
821 #endif /* CONFIG_CPU_SH3 */
822 if (uart_handle_sysrq_char(port, c)) {
823 count--; i--;
824 continue;
825 }
826
827 /* Store data and status */
828 if (status & SCxSR_FER(port)) {
829 flag = TTY_FRAME;
830 port->icount.frame++;
831 dev_notice(port->dev, "frame error\n");
832 } else if (status & SCxSR_PER(port)) {
833 flag = TTY_PARITY;
834 port->icount.parity++;
835 dev_notice(port->dev, "parity error\n");
836 } else
837 flag = TTY_NORMAL;
838
839 tty_insert_flip_char(tport, c, flag);
840 }
841 }
842
843 serial_port_in(port, SCxSR); /* dummy read */
844 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
845
846 copied += count;
847 port->icount.rx += count;
848 }
849
850 if (copied) {
851 /* Tell the rest of the system the news. New characters! */
852 tty_flip_buffer_push(tport);
853 } else {
854 serial_port_in(port, SCxSR); /* dummy read */
855 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
856 }
857 }
858
859 #define SCI_BREAK_JIFFIES (HZ/20)
860
861 /*
862 * The sci generates interrupts during the break,
863 * 1 per millisecond or so during the break period, for 9600 baud.
864 * So dont bother disabling interrupts.
865 * But dont want more than 1 break event.
866 * Use a kernel timer to periodically poll the rx line until
867 * the break is finished.
868 */
869 static inline void sci_schedule_break_timer(struct sci_port *port)
870 {
871 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
872 }
873
874 /* Ensure that two consecutive samples find the break over. */
875 static void sci_break_timer(unsigned long data)
876 {
877 struct sci_port *port = (struct sci_port *)data;
878
879 if (sci_rxd_in(&port->port) == 0) {
880 port->break_flag = 1;
881 sci_schedule_break_timer(port);
882 } else if (port->break_flag == 1) {
883 /* break is over. */
884 port->break_flag = 2;
885 sci_schedule_break_timer(port);
886 } else
887 port->break_flag = 0;
888 }
889
890 static int sci_handle_errors(struct uart_port *port)
891 {
892 int copied = 0;
893 unsigned short status = serial_port_in(port, SCxSR);
894 struct tty_port *tport = &port->state->port;
895 struct sci_port *s = to_sci_port(port);
896
897 /* Handle overruns */
898 if (status & s->overrun_mask) {
899 port->icount.overrun++;
900
901 /* overrun error */
902 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
903 copied++;
904
905 dev_notice(port->dev, "overrun error\n");
906 }
907
908 if (status & SCxSR_FER(port)) {
909 if (sci_rxd_in(port) == 0) {
910 /* Notify of BREAK */
911 struct sci_port *sci_port = to_sci_port(port);
912
913 if (!sci_port->break_flag) {
914 port->icount.brk++;
915
916 sci_port->break_flag = 1;
917 sci_schedule_break_timer(sci_port);
918
919 /* Do sysrq handling. */
920 if (uart_handle_break(port))
921 return 0;
922
923 dev_dbg(port->dev, "BREAK detected\n");
924
925 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
926 copied++;
927 }
928
929 } else {
930 /* frame error */
931 port->icount.frame++;
932
933 if (tty_insert_flip_char(tport, 0, TTY_FRAME))
934 copied++;
935
936 dev_notice(port->dev, "frame error\n");
937 }
938 }
939
940 if (status & SCxSR_PER(port)) {
941 /* parity error */
942 port->icount.parity++;
943
944 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
945 copied++;
946
947 dev_notice(port->dev, "parity error\n");
948 }
949
950 if (copied)
951 tty_flip_buffer_push(tport);
952
953 return copied;
954 }
955
956 static int sci_handle_fifo_overrun(struct uart_port *port)
957 {
958 struct tty_port *tport = &port->state->port;
959 struct sci_port *s = to_sci_port(port);
960 const struct plat_sci_reg *reg;
961 int copied = 0;
962 u16 status;
963
964 reg = sci_getreg(port, s->overrun_reg);
965 if (!reg->size)
966 return 0;
967
968 status = serial_port_in(port, s->overrun_reg);
969 if (status & s->overrun_mask) {
970 status &= ~s->overrun_mask;
971 serial_port_out(port, s->overrun_reg, status);
972
973 port->icount.overrun++;
974
975 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
976 tty_flip_buffer_push(tport);
977
978 dev_dbg(port->dev, "overrun error\n");
979 copied++;
980 }
981
982 return copied;
983 }
984
985 static int sci_handle_breaks(struct uart_port *port)
986 {
987 int copied = 0;
988 unsigned short status = serial_port_in(port, SCxSR);
989 struct tty_port *tport = &port->state->port;
990 struct sci_port *s = to_sci_port(port);
991
992 if (uart_handle_break(port))
993 return 0;
994
995 if (!s->break_flag && status & SCxSR_BRK(port)) {
996 #if defined(CONFIG_CPU_SH3)
997 /* Debounce break */
998 s->break_flag = 1;
999 #endif
1000
1001 port->icount.brk++;
1002
1003 /* Notify of BREAK */
1004 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1005 copied++;
1006
1007 dev_dbg(port->dev, "BREAK detected\n");
1008 }
1009
1010 if (copied)
1011 tty_flip_buffer_push(tport);
1012
1013 copied += sci_handle_fifo_overrun(port);
1014
1015 return copied;
1016 }
1017
1018 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1019 static void sci_dma_tx_complete(void *arg)
1020 {
1021 struct sci_port *s = arg;
1022 struct uart_port *port = &s->port;
1023 struct circ_buf *xmit = &port->state->xmit;
1024 unsigned long flags;
1025
1026 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1027
1028 spin_lock_irqsave(&port->lock, flags);
1029
1030 xmit->tail += s->tx_dma_len;
1031 xmit->tail &= UART_XMIT_SIZE - 1;
1032
1033 port->icount.tx += s->tx_dma_len;
1034
1035 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1036 uart_write_wakeup(port);
1037
1038 if (!uart_circ_empty(xmit)) {
1039 s->cookie_tx = 0;
1040 schedule_work(&s->work_tx);
1041 } else {
1042 s->cookie_tx = -EINVAL;
1043 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1044 u16 ctrl = serial_port_in(port, SCSCR);
1045 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1046 }
1047 }
1048
1049 spin_unlock_irqrestore(&port->lock, flags);
1050 }
1051
1052 /* Locking: called with port lock held */
1053 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1054 {
1055 struct uart_port *port = &s->port;
1056 struct tty_port *tport = &port->state->port;
1057 int copied;
1058
1059 copied = tty_insert_flip_string(tport, buf, count);
1060 if (copied < count) {
1061 dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1062 count - copied);
1063 port->icount.buf_overrun++;
1064 }
1065
1066 port->icount.rx += copied;
1067
1068 return copied;
1069 }
1070
1071 static int sci_dma_rx_find_active(struct sci_port *s)
1072 {
1073 unsigned int i;
1074
1075 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1076 if (s->active_rx == s->cookie_rx[i])
1077 return i;
1078
1079 dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__,
1080 s->active_rx);
1081 return -1;
1082 }
1083
1084 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1085 {
1086 struct dma_chan *chan = s->chan_rx;
1087 struct uart_port *port = &s->port;
1088 unsigned long flags;
1089
1090 spin_lock_irqsave(&port->lock, flags);
1091 s->chan_rx = NULL;
1092 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1093 spin_unlock_irqrestore(&port->lock, flags);
1094 dmaengine_terminate_all(chan);
1095 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1096 sg_dma_address(&s->sg_rx[0]));
1097 dma_release_channel(chan);
1098 if (enable_pio)
1099 sci_start_rx(port);
1100 }
1101
1102 static void sci_dma_rx_complete(void *arg)
1103 {
1104 struct sci_port *s = arg;
1105 struct dma_chan *chan = s->chan_rx;
1106 struct uart_port *port = &s->port;
1107 struct dma_async_tx_descriptor *desc;
1108 unsigned long flags;
1109 int active, count = 0;
1110
1111 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1112 s->active_rx);
1113
1114 spin_lock_irqsave(&port->lock, flags);
1115
1116 active = sci_dma_rx_find_active(s);
1117 if (active >= 0)
1118 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1119
1120 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1121
1122 if (count)
1123 tty_flip_buffer_push(&port->state->port);
1124
1125 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1126 DMA_DEV_TO_MEM,
1127 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1128 if (!desc)
1129 goto fail;
1130
1131 desc->callback = sci_dma_rx_complete;
1132 desc->callback_param = s;
1133 s->cookie_rx[active] = dmaengine_submit(desc);
1134 if (dma_submit_error(s->cookie_rx[active]))
1135 goto fail;
1136
1137 s->active_rx = s->cookie_rx[!active];
1138
1139 dma_async_issue_pending(chan);
1140
1141 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1142 __func__, s->cookie_rx[active], active, s->active_rx);
1143 spin_unlock_irqrestore(&port->lock, flags);
1144 return;
1145
1146 fail:
1147 spin_unlock_irqrestore(&port->lock, flags);
1148 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1149 sci_rx_dma_release(s, true);
1150 }
1151
1152 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1153 {
1154 struct dma_chan *chan = s->chan_tx;
1155 struct uart_port *port = &s->port;
1156 unsigned long flags;
1157
1158 spin_lock_irqsave(&port->lock, flags);
1159 s->chan_tx = NULL;
1160 s->cookie_tx = -EINVAL;
1161 spin_unlock_irqrestore(&port->lock, flags);
1162 dmaengine_terminate_all(chan);
1163 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1164 DMA_TO_DEVICE);
1165 dma_release_channel(chan);
1166 if (enable_pio)
1167 sci_start_tx(port);
1168 }
1169
1170 static void sci_submit_rx(struct sci_port *s)
1171 {
1172 struct dma_chan *chan = s->chan_rx;
1173 int i;
1174
1175 for (i = 0; i < 2; i++) {
1176 struct scatterlist *sg = &s->sg_rx[i];
1177 struct dma_async_tx_descriptor *desc;
1178
1179 desc = dmaengine_prep_slave_sg(chan,
1180 sg, 1, DMA_DEV_TO_MEM,
1181 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1182 if (!desc)
1183 goto fail;
1184
1185 desc->callback = sci_dma_rx_complete;
1186 desc->callback_param = s;
1187 s->cookie_rx[i] = dmaengine_submit(desc);
1188 if (dma_submit_error(s->cookie_rx[i]))
1189 goto fail;
1190
1191 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1192 s->cookie_rx[i], i);
1193 }
1194
1195 s->active_rx = s->cookie_rx[0];
1196
1197 dma_async_issue_pending(chan);
1198 return;
1199
1200 fail:
1201 if (i)
1202 dmaengine_terminate_all(chan);
1203 for (i = 0; i < 2; i++)
1204 s->cookie_rx[i] = -EINVAL;
1205 s->active_rx = -EINVAL;
1206 dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n");
1207 sci_rx_dma_release(s, true);
1208 }
1209
1210 static void work_fn_tx(struct work_struct *work)
1211 {
1212 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1213 struct dma_async_tx_descriptor *desc;
1214 struct dma_chan *chan = s->chan_tx;
1215 struct uart_port *port = &s->port;
1216 struct circ_buf *xmit = &port->state->xmit;
1217 dma_addr_t buf;
1218
1219 /*
1220 * DMA is idle now.
1221 * Port xmit buffer is already mapped, and it is one page... Just adjust
1222 * offsets and lengths. Since it is a circular buffer, we have to
1223 * transmit till the end, and then the rest. Take the port lock to get a
1224 * consistent xmit buffer state.
1225 */
1226 spin_lock_irq(&port->lock);
1227 buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1228 s->tx_dma_len = min_t(unsigned int,
1229 CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1230 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1231 spin_unlock_irq(&port->lock);
1232
1233 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1234 DMA_MEM_TO_DEV,
1235 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1236 if (!desc) {
1237 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1238 /* switch to PIO */
1239 sci_tx_dma_release(s, true);
1240 return;
1241 }
1242
1243 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1244 DMA_TO_DEVICE);
1245
1246 spin_lock_irq(&port->lock);
1247 desc->callback = sci_dma_tx_complete;
1248 desc->callback_param = s;
1249 spin_unlock_irq(&port->lock);
1250 s->cookie_tx = dmaengine_submit(desc);
1251 if (dma_submit_error(s->cookie_tx)) {
1252 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1253 /* switch to PIO */
1254 sci_tx_dma_release(s, true);
1255 return;
1256 }
1257
1258 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1259 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1260
1261 dma_async_issue_pending(chan);
1262 }
1263
1264 static void rx_timer_fn(unsigned long arg)
1265 {
1266 struct sci_port *s = (struct sci_port *)arg;
1267 struct dma_chan *chan = s->chan_rx;
1268 struct uart_port *port = &s->port;
1269 struct dma_tx_state state;
1270 enum dma_status status;
1271 unsigned long flags;
1272 unsigned int read;
1273 int active, count;
1274 u16 scr;
1275
1276 spin_lock_irqsave(&port->lock, flags);
1277
1278 dev_dbg(port->dev, "DMA Rx timed out\n");
1279
1280 active = sci_dma_rx_find_active(s);
1281 if (active < 0) {
1282 spin_unlock_irqrestore(&port->lock, flags);
1283 return;
1284 }
1285
1286 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1287 if (status == DMA_COMPLETE) {
1288 dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1289 s->active_rx, active);
1290 spin_unlock_irqrestore(&port->lock, flags);
1291
1292 /* Let packet complete handler take care of the packet */
1293 return;
1294 }
1295
1296 dmaengine_pause(chan);
1297
1298 /*
1299 * sometimes DMA transfer doesn't stop even if it is stopped and
1300 * data keeps on coming until transaction is complete so check
1301 * for DMA_COMPLETE again
1302 * Let packet complete handler take care of the packet
1303 */
1304 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1305 if (status == DMA_COMPLETE) {
1306 spin_unlock_irqrestore(&port->lock, flags);
1307 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1308 return;
1309 }
1310
1311 /* Handle incomplete DMA receive */
1312 dmaengine_terminate_all(s->chan_rx);
1313 read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1314 dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read,
1315 s->active_rx);
1316
1317 if (read) {
1318 count = sci_dma_rx_push(s, s->rx_buf[active], read);
1319 if (count)
1320 tty_flip_buffer_push(&port->state->port);
1321 }
1322
1323 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1324 sci_submit_rx(s);
1325
1326 /* Direct new serial port interrupts back to CPU */
1327 scr = serial_port_in(port, SCSCR);
1328 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1329 scr &= ~SCSCR_RDRQE;
1330 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1331 }
1332 serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1333
1334 spin_unlock_irqrestore(&port->lock, flags);
1335 }
1336
1337 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1338 enum dma_transfer_direction dir,
1339 unsigned int id)
1340 {
1341 dma_cap_mask_t mask;
1342 struct dma_chan *chan;
1343 struct dma_slave_config cfg;
1344 int ret;
1345
1346 dma_cap_zero(mask);
1347 dma_cap_set(DMA_SLAVE, mask);
1348
1349 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1350 (void *)(unsigned long)id, port->dev,
1351 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1352 if (!chan) {
1353 dev_warn(port->dev,
1354 "dma_request_slave_channel_compat failed\n");
1355 return NULL;
1356 }
1357
1358 memset(&cfg, 0, sizeof(cfg));
1359 cfg.direction = dir;
1360 if (dir == DMA_MEM_TO_DEV) {
1361 cfg.dst_addr = port->mapbase +
1362 (sci_getreg(port, SCxTDR)->offset << port->regshift);
1363 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1364 } else {
1365 cfg.src_addr = port->mapbase +
1366 (sci_getreg(port, SCxRDR)->offset << port->regshift);
1367 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1368 }
1369
1370 ret = dmaengine_slave_config(chan, &cfg);
1371 if (ret) {
1372 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1373 dma_release_channel(chan);
1374 return NULL;
1375 }
1376
1377 return chan;
1378 }
1379
1380 static void sci_request_dma(struct uart_port *port)
1381 {
1382 struct sci_port *s = to_sci_port(port);
1383 struct dma_chan *chan;
1384
1385 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1386
1387 if (!port->dev->of_node &&
1388 (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1389 return;
1390
1391 s->cookie_tx = -EINVAL;
1392 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
1393 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1394 if (chan) {
1395 s->chan_tx = chan;
1396 /* UART circular tx buffer is an aligned page. */
1397 s->tx_dma_addr = dma_map_single(chan->device->dev,
1398 port->state->xmit.buf,
1399 UART_XMIT_SIZE,
1400 DMA_TO_DEVICE);
1401 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1402 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1403 dma_release_channel(chan);
1404 s->chan_tx = NULL;
1405 } else {
1406 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1407 __func__, UART_XMIT_SIZE,
1408 port->state->xmit.buf, &s->tx_dma_addr);
1409 }
1410
1411 INIT_WORK(&s->work_tx, work_fn_tx);
1412 }
1413
1414 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1415 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1416 if (chan) {
1417 unsigned int i;
1418 dma_addr_t dma;
1419 void *buf;
1420
1421 s->chan_rx = chan;
1422
1423 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1424 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1425 &dma, GFP_KERNEL);
1426 if (!buf) {
1427 dev_warn(port->dev,
1428 "Failed to allocate Rx dma buffer, using PIO\n");
1429 dma_release_channel(chan);
1430 s->chan_rx = NULL;
1431 return;
1432 }
1433
1434 for (i = 0; i < 2; i++) {
1435 struct scatterlist *sg = &s->sg_rx[i];
1436
1437 sg_init_table(sg, 1);
1438 s->rx_buf[i] = buf;
1439 sg_dma_address(sg) = dma;
1440 sg_dma_len(sg) = s->buf_len_rx;
1441
1442 buf += s->buf_len_rx;
1443 dma += s->buf_len_rx;
1444 }
1445
1446 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1447
1448 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1449 sci_submit_rx(s);
1450 }
1451 }
1452
1453 static void sci_free_dma(struct uart_port *port)
1454 {
1455 struct sci_port *s = to_sci_port(port);
1456
1457 if (s->chan_tx)
1458 sci_tx_dma_release(s, false);
1459 if (s->chan_rx)
1460 sci_rx_dma_release(s, false);
1461 }
1462 #else
1463 static inline void sci_request_dma(struct uart_port *port)
1464 {
1465 }
1466
1467 static inline void sci_free_dma(struct uart_port *port)
1468 {
1469 }
1470 #endif
1471
1472 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1473 {
1474 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1475 struct uart_port *port = ptr;
1476 struct sci_port *s = to_sci_port(port);
1477
1478 if (s->chan_rx) {
1479 u16 scr = serial_port_in(port, SCSCR);
1480 u16 ssr = serial_port_in(port, SCxSR);
1481
1482 /* Disable future Rx interrupts */
1483 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1484 disable_irq_nosync(irq);
1485 scr |= SCSCR_RDRQE;
1486 } else {
1487 scr &= ~SCSCR_RIE;
1488 sci_submit_rx(s);
1489 }
1490 serial_port_out(port, SCSCR, scr);
1491 /* Clear current interrupt */
1492 serial_port_out(port, SCxSR,
1493 ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1494 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1495 jiffies, s->rx_timeout);
1496 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1497
1498 return IRQ_HANDLED;
1499 }
1500 #endif
1501
1502 /* I think sci_receive_chars has to be called irrespective
1503 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1504 * to be disabled?
1505 */
1506 sci_receive_chars(ptr);
1507
1508 return IRQ_HANDLED;
1509 }
1510
1511 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1512 {
1513 struct uart_port *port = ptr;
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(&port->lock, flags);
1517 sci_transmit_chars(port);
1518 spin_unlock_irqrestore(&port->lock, flags);
1519
1520 return IRQ_HANDLED;
1521 }
1522
1523 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1524 {
1525 struct uart_port *port = ptr;
1526 struct sci_port *s = to_sci_port(port);
1527
1528 /* Handle errors */
1529 if (port->type == PORT_SCI) {
1530 if (sci_handle_errors(port)) {
1531 /* discard character in rx buffer */
1532 serial_port_in(port, SCxSR);
1533 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1534 }
1535 } else {
1536 sci_handle_fifo_overrun(port);
1537 if (!s->chan_rx)
1538 sci_receive_chars(ptr);
1539 }
1540
1541 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1542
1543 /* Kick the transmission */
1544 if (!s->chan_tx)
1545 sci_tx_interrupt(irq, ptr);
1546
1547 return IRQ_HANDLED;
1548 }
1549
1550 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1551 {
1552 struct uart_port *port = ptr;
1553
1554 /* Handle BREAKs */
1555 sci_handle_breaks(port);
1556 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1557
1558 return IRQ_HANDLED;
1559 }
1560
1561 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1562 {
1563 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1564 struct uart_port *port = ptr;
1565 struct sci_port *s = to_sci_port(port);
1566 irqreturn_t ret = IRQ_NONE;
1567
1568 ssr_status = serial_port_in(port, SCxSR);
1569 scr_status = serial_port_in(port, SCSCR);
1570 if (s->overrun_reg == SCxSR)
1571 orer_status = ssr_status;
1572 else {
1573 if (sci_getreg(port, s->overrun_reg)->size)
1574 orer_status = serial_port_in(port, s->overrun_reg);
1575 }
1576
1577 err_enabled = scr_status & port_rx_irq_mask(port);
1578
1579 /* Tx Interrupt */
1580 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1581 !s->chan_tx)
1582 ret = sci_tx_interrupt(irq, ptr);
1583
1584 /*
1585 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1586 * DR flags
1587 */
1588 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1589 (scr_status & SCSCR_RIE))
1590 ret = sci_rx_interrupt(irq, ptr);
1591
1592 /* Error Interrupt */
1593 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1594 ret = sci_er_interrupt(irq, ptr);
1595
1596 /* Break Interrupt */
1597 if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1598 ret = sci_br_interrupt(irq, ptr);
1599
1600 /* Overrun Interrupt */
1601 if (orer_status & s->overrun_mask) {
1602 sci_handle_fifo_overrun(port);
1603 ret = IRQ_HANDLED;
1604 }
1605
1606 return ret;
1607 }
1608
1609 /*
1610 * Here we define a transition notifier so that we can update all of our
1611 * ports' baud rate when the peripheral clock changes.
1612 */
1613 static int sci_notifier(struct notifier_block *self,
1614 unsigned long phase, void *p)
1615 {
1616 struct sci_port *sci_port;
1617 unsigned long flags;
1618
1619 sci_port = container_of(self, struct sci_port, freq_transition);
1620
1621 if (phase == CPUFREQ_POSTCHANGE) {
1622 struct uart_port *port = &sci_port->port;
1623
1624 spin_lock_irqsave(&port->lock, flags);
1625 port->uartclk = clk_get_rate(sci_port->iclk);
1626 spin_unlock_irqrestore(&port->lock, flags);
1627 }
1628
1629 return NOTIFY_OK;
1630 }
1631
1632 static const struct sci_irq_desc {
1633 const char *desc;
1634 irq_handler_t handler;
1635 } sci_irq_desc[] = {
1636 /*
1637 * Split out handlers, the default case.
1638 */
1639 [SCIx_ERI_IRQ] = {
1640 .desc = "rx err",
1641 .handler = sci_er_interrupt,
1642 },
1643
1644 [SCIx_RXI_IRQ] = {
1645 .desc = "rx full",
1646 .handler = sci_rx_interrupt,
1647 },
1648
1649 [SCIx_TXI_IRQ] = {
1650 .desc = "tx empty",
1651 .handler = sci_tx_interrupt,
1652 },
1653
1654 [SCIx_BRI_IRQ] = {
1655 .desc = "break",
1656 .handler = sci_br_interrupt,
1657 },
1658
1659 /*
1660 * Special muxed handler.
1661 */
1662 [SCIx_MUX_IRQ] = {
1663 .desc = "mux",
1664 .handler = sci_mpxed_interrupt,
1665 },
1666 };
1667
1668 static int sci_request_irq(struct sci_port *port)
1669 {
1670 struct uart_port *up = &port->port;
1671 int i, j, ret = 0;
1672
1673 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1674 const struct sci_irq_desc *desc;
1675 int irq;
1676
1677 if (SCIx_IRQ_IS_MUXED(port)) {
1678 i = SCIx_MUX_IRQ;
1679 irq = up->irq;
1680 } else {
1681 irq = port->irqs[i];
1682
1683 /*
1684 * Certain port types won't support all of the
1685 * available interrupt sources.
1686 */
1687 if (unlikely(irq < 0))
1688 continue;
1689 }
1690
1691 desc = sci_irq_desc + i;
1692 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1693 dev_name(up->dev), desc->desc);
1694 if (!port->irqstr[j])
1695 goto out_nomem;
1696
1697 ret = request_irq(irq, desc->handler, up->irqflags,
1698 port->irqstr[j], port);
1699 if (unlikely(ret)) {
1700 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1701 goto out_noirq;
1702 }
1703 }
1704
1705 return 0;
1706
1707 out_noirq:
1708 while (--i >= 0)
1709 free_irq(port->irqs[i], port);
1710
1711 out_nomem:
1712 while (--j >= 0)
1713 kfree(port->irqstr[j]);
1714
1715 return ret;
1716 }
1717
1718 static void sci_free_irq(struct sci_port *port)
1719 {
1720 int i;
1721
1722 /*
1723 * Intentionally in reverse order so we iterate over the muxed
1724 * IRQ first.
1725 */
1726 for (i = 0; i < SCIx_NR_IRQS; i++) {
1727 int irq = port->irqs[i];
1728
1729 /*
1730 * Certain port types won't support all of the available
1731 * interrupt sources.
1732 */
1733 if (unlikely(irq < 0))
1734 continue;
1735
1736 free_irq(port->irqs[i], port);
1737 kfree(port->irqstr[i]);
1738
1739 if (SCIx_IRQ_IS_MUXED(port)) {
1740 /* If there's only one IRQ, we're done. */
1741 return;
1742 }
1743 }
1744 }
1745
1746 static unsigned int sci_tx_empty(struct uart_port *port)
1747 {
1748 unsigned short status = serial_port_in(port, SCxSR);
1749 unsigned short in_tx_fifo = sci_txfill(port);
1750
1751 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1752 }
1753
1754 /*
1755 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1756 * CTS/RTS is supported in hardware by at least one port and controlled
1757 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1758 * handled via the ->init_pins() op, which is a bit of a one-way street,
1759 * lacking any ability to defer pin control -- this will later be
1760 * converted over to the GPIO framework).
1761 *
1762 * Other modes (such as loopback) are supported generically on certain
1763 * port types, but not others. For these it's sufficient to test for the
1764 * existence of the support register and simply ignore the port type.
1765 */
1766 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1767 {
1768 if (mctrl & TIOCM_LOOP) {
1769 const struct plat_sci_reg *reg;
1770
1771 /*
1772 * Standard loopback mode for SCFCR ports.
1773 */
1774 reg = sci_getreg(port, SCFCR);
1775 if (reg->size)
1776 serial_port_out(port, SCFCR,
1777 serial_port_in(port, SCFCR) |
1778 SCFCR_LOOP);
1779 }
1780 }
1781
1782 static unsigned int sci_get_mctrl(struct uart_port *port)
1783 {
1784 /*
1785 * CTS/RTS is handled in hardware when supported, while nothing
1786 * else is wired up. Keep it simple and simply assert DSR/CAR.
1787 */
1788 return TIOCM_DSR | TIOCM_CAR;
1789 }
1790
1791 static void sci_break_ctl(struct uart_port *port, int break_state)
1792 {
1793 struct sci_port *s = to_sci_port(port);
1794 const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1795 unsigned short scscr, scsptr;
1796
1797 /* check wheter the port has SCSPTR */
1798 if (!reg->size) {
1799 /*
1800 * Not supported by hardware. Most parts couple break and rx
1801 * interrupts together, with break detection always enabled.
1802 */
1803 return;
1804 }
1805
1806 scsptr = serial_port_in(port, SCSPTR);
1807 scscr = serial_port_in(port, SCSCR);
1808
1809 if (break_state == -1) {
1810 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1811 scscr &= ~SCSCR_TE;
1812 } else {
1813 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1814 scscr |= SCSCR_TE;
1815 }
1816
1817 serial_port_out(port, SCSPTR, scsptr);
1818 serial_port_out(port, SCSCR, scscr);
1819 }
1820
1821 static int sci_startup(struct uart_port *port)
1822 {
1823 struct sci_port *s = to_sci_port(port);
1824 unsigned long flags;
1825 int ret;
1826
1827 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1828
1829 ret = sci_request_irq(s);
1830 if (unlikely(ret < 0))
1831 return ret;
1832
1833 sci_request_dma(port);
1834
1835 spin_lock_irqsave(&port->lock, flags);
1836 sci_start_tx(port);
1837 sci_start_rx(port);
1838 spin_unlock_irqrestore(&port->lock, flags);
1839
1840 return 0;
1841 }
1842
1843 static void sci_shutdown(struct uart_port *port)
1844 {
1845 struct sci_port *s = to_sci_port(port);
1846 unsigned long flags;
1847
1848 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1849
1850 spin_lock_irqsave(&port->lock, flags);
1851 sci_stop_rx(port);
1852 sci_stop_tx(port);
1853 spin_unlock_irqrestore(&port->lock, flags);
1854
1855 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1856 if (s->chan_rx) {
1857 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
1858 port->line);
1859 del_timer_sync(&s->rx_timer);
1860 }
1861 #endif
1862
1863 sci_free_dma(port);
1864 sci_free_irq(s);
1865 }
1866
1867 static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1868 unsigned long freq)
1869 {
1870 if (s->sampling_rate)
1871 return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
1872
1873 /* Warn, but use a safe default */
1874 WARN_ON(1);
1875
1876 return ((freq + 16 * bps) / (32 * bps) - 1);
1877 }
1878
1879 /* calculate frame length from SMR */
1880 static int sci_baud_calc_frame_len(unsigned int smr_val)
1881 {
1882 int len = 10;
1883
1884 if (smr_val & SCSMR_CHR)
1885 len--;
1886 if (smr_val & SCSMR_PE)
1887 len++;
1888 if (smr_val & SCSMR_STOP)
1889 len++;
1890
1891 return len;
1892 }
1893
1894
1895 /* calculate sample rate, BRR, and clock select for HSCIF */
1896 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1897 int *brr, unsigned int *srr,
1898 unsigned int *cks, int frame_len)
1899 {
1900 int sr, c, br, err, recv_margin;
1901 int min_err = 1000; /* 100% */
1902 int recv_max_margin = 0;
1903
1904 /* Find the combination of sample rate and clock select with the
1905 smallest deviation from the desired baud rate. */
1906 for (sr = 8; sr <= 32; sr++) {
1907 for (c = 0; c <= 3; c++) {
1908 /* integerized formulas from HSCIF documentation */
1909 br = DIV_ROUND_CLOSEST(freq, (sr *
1910 (1 << (2 * c + 1)) * bps)) - 1;
1911 br = clamp(br, 0, 255);
1912 err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr *
1913 (1 << (2 * c + 1)) / 1000)) -
1914 1000;
1915 /* Calc recv margin
1916 * M: Receive margin (%)
1917 * N: Ratio of bit rate to clock (N = sampling rate)
1918 * D: Clock duty (D = 0 to 1.0)
1919 * L: Frame length (L = 9 to 12)
1920 * F: Absolute value of clock frequency deviation
1921 *
1922 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
1923 * (|D - 0.5| / N * (1 + F))|
1924 * NOTE: Usually, treat D for 0.5, F is 0 by this
1925 * calculation.
1926 */
1927 recv_margin = abs((500 -
1928 DIV_ROUND_CLOSEST(1000, sr << 1)) / 10);
1929 if (abs(min_err) > abs(err)) {
1930 min_err = err;
1931 recv_max_margin = recv_margin;
1932 } else if ((min_err == err) &&
1933 (recv_margin > recv_max_margin))
1934 recv_max_margin = recv_margin;
1935 else
1936 continue;
1937
1938 *brr = br;
1939 *srr = sr - 1;
1940 *cks = c;
1941 }
1942 }
1943
1944 if (min_err == 1000) {
1945 WARN_ON(1);
1946 /* use defaults */
1947 *brr = 255;
1948 *srr = 15;
1949 *cks = 0;
1950 }
1951 }
1952
1953 static void sci_reset(struct uart_port *port)
1954 {
1955 const struct plat_sci_reg *reg;
1956 unsigned int status;
1957
1958 do {
1959 status = serial_port_in(port, SCxSR);
1960 } while (!(status & SCxSR_TEND(port)));
1961
1962 serial_port_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */
1963
1964 reg = sci_getreg(port, SCFCR);
1965 if (reg->size)
1966 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1967 }
1968
1969 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1970 struct ktermios *old)
1971 {
1972 struct sci_port *s = to_sci_port(port);
1973 const struct plat_sci_reg *reg;
1974 unsigned int baud, smr_val = 0, max_baud, cks = 0;
1975 int t = -1;
1976 unsigned int srr = 15;
1977
1978 if ((termios->c_cflag & CSIZE) == CS7)
1979 smr_val |= SCSMR_CHR;
1980 if (termios->c_cflag & PARENB)
1981 smr_val |= SCSMR_PE;
1982 if (termios->c_cflag & PARODD)
1983 smr_val |= SCSMR_PE | SCSMR_ODD;
1984 if (termios->c_cflag & CSTOPB)
1985 smr_val |= SCSMR_STOP;
1986
1987 /*
1988 * earlyprintk comes here early on with port->uartclk set to zero.
1989 * the clock framework is not up and running at this point so here
1990 * we assume that 115200 is the maximum baud rate. please note that
1991 * the baud rate is not programmed during earlyprintk - it is assumed
1992 * that the previous boot loader has enabled required clocks and
1993 * setup the baud rate generator hardware for us already.
1994 */
1995 max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1996
1997 baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1998 if (likely(baud && port->uartclk)) {
1999 if (s->cfg->type == PORT_HSCIF) {
2000 int frame_len = sci_baud_calc_frame_len(smr_val);
2001 sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
2002 &cks, frame_len);
2003 } else {
2004 t = sci_scbrr_calc(s, baud, port->uartclk);
2005 for (cks = 0; t >= 256 && cks <= 3; cks++)
2006 t >>= 2;
2007 }
2008 }
2009
2010 sci_port_enable(s);
2011
2012 sci_reset(port);
2013
2014 smr_val |= serial_port_in(port, SCSMR) & SCSMR_CKS;
2015
2016 uart_update_timeout(port, termios->c_cflag, baud);
2017
2018 dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
2019 __func__, smr_val, cks, t, s->cfg->scscr);
2020
2021 if (t >= 0) {
2022 serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks);
2023 serial_port_out(port, SCBRR, t);
2024 reg = sci_getreg(port, HSSRR);
2025 if (reg->size)
2026 serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2027 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
2028 } else
2029 serial_port_out(port, SCSMR, smr_val);
2030
2031 sci_init_pins(port, termios->c_cflag);
2032
2033 reg = sci_getreg(port, SCFCR);
2034 if (reg->size) {
2035 unsigned short ctrl = serial_port_in(port, SCFCR);
2036
2037 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
2038 if (termios->c_cflag & CRTSCTS)
2039 ctrl |= SCFCR_MCE;
2040 else
2041 ctrl &= ~SCFCR_MCE;
2042 }
2043
2044 /*
2045 * As we've done a sci_reset() above, ensure we don't
2046 * interfere with the FIFOs while toggling MCE. As the
2047 * reset values could still be set, simply mask them out.
2048 */
2049 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2050
2051 serial_port_out(port, SCFCR, ctrl);
2052 }
2053
2054 serial_port_out(port, SCSCR, s->cfg->scscr);
2055
2056 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2057 /*
2058 * Calculate delay for 2 DMA buffers (4 FIFO).
2059 * See serial_core.c::uart_update_timeout().
2060 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2061 * function calculates 1 jiffie for the data plus 5 jiffies for the
2062 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2063 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2064 * value obtained by this formula is too small. Therefore, if the value
2065 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2066 */
2067 if (s->chan_rx) {
2068 unsigned int bits;
2069
2070 /* byte size and parity */
2071 switch (termios->c_cflag & CSIZE) {
2072 case CS5:
2073 bits = 7;
2074 break;
2075 case CS6:
2076 bits = 8;
2077 break;
2078 case CS7:
2079 bits = 9;
2080 break;
2081 default:
2082 bits = 10;
2083 break;
2084 }
2085
2086 if (termios->c_cflag & CSTOPB)
2087 bits++;
2088 if (termios->c_cflag & PARENB)
2089 bits++;
2090 s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2091 (baud / 10), 10);
2092 dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2093 s->rx_timeout * 1000 / HZ, port->timeout);
2094 if (s->rx_timeout < msecs_to_jiffies(20))
2095 s->rx_timeout = msecs_to_jiffies(20);
2096 }
2097 #endif
2098
2099 if ((termios->c_cflag & CREAD) != 0)
2100 sci_start_rx(port);
2101
2102 sci_port_disable(s);
2103 }
2104
2105 static void sci_pm(struct uart_port *port, unsigned int state,
2106 unsigned int oldstate)
2107 {
2108 struct sci_port *sci_port = to_sci_port(port);
2109
2110 switch (state) {
2111 case UART_PM_STATE_OFF:
2112 sci_port_disable(sci_port);
2113 break;
2114 default:
2115 sci_port_enable(sci_port);
2116 break;
2117 }
2118 }
2119
2120 static const char *sci_type(struct uart_port *port)
2121 {
2122 switch (port->type) {
2123 case PORT_IRDA:
2124 return "irda";
2125 case PORT_SCI:
2126 return "sci";
2127 case PORT_SCIF:
2128 return "scif";
2129 case PORT_SCIFA:
2130 return "scifa";
2131 case PORT_SCIFB:
2132 return "scifb";
2133 case PORT_HSCIF:
2134 return "hscif";
2135 }
2136
2137 return NULL;
2138 }
2139
2140 static int sci_remap_port(struct uart_port *port)
2141 {
2142 struct sci_port *sport = to_sci_port(port);
2143
2144 /*
2145 * Nothing to do if there's already an established membase.
2146 */
2147 if (port->membase)
2148 return 0;
2149
2150 if (port->flags & UPF_IOREMAP) {
2151 port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2152 if (unlikely(!port->membase)) {
2153 dev_err(port->dev, "can't remap port#%d\n", port->line);
2154 return -ENXIO;
2155 }
2156 } else {
2157 /*
2158 * For the simple (and majority of) cases where we don't
2159 * need to do any remapping, just cast the cookie
2160 * directly.
2161 */
2162 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2163 }
2164
2165 return 0;
2166 }
2167
2168 static void sci_release_port(struct uart_port *port)
2169 {
2170 struct sci_port *sport = to_sci_port(port);
2171
2172 if (port->flags & UPF_IOREMAP) {
2173 iounmap(port->membase);
2174 port->membase = NULL;
2175 }
2176
2177 release_mem_region(port->mapbase, sport->reg_size);
2178 }
2179
2180 static int sci_request_port(struct uart_port *port)
2181 {
2182 struct resource *res;
2183 struct sci_port *sport = to_sci_port(port);
2184 int ret;
2185
2186 res = request_mem_region(port->mapbase, sport->reg_size,
2187 dev_name(port->dev));
2188 if (unlikely(res == NULL)) {
2189 dev_err(port->dev, "request_mem_region failed.");
2190 return -EBUSY;
2191 }
2192
2193 ret = sci_remap_port(port);
2194 if (unlikely(ret != 0)) {
2195 release_resource(res);
2196 return ret;
2197 }
2198
2199 return 0;
2200 }
2201
2202 static void sci_config_port(struct uart_port *port, int flags)
2203 {
2204 if (flags & UART_CONFIG_TYPE) {
2205 struct sci_port *sport = to_sci_port(port);
2206
2207 port->type = sport->cfg->type;
2208 sci_request_port(port);
2209 }
2210 }
2211
2212 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2213 {
2214 if (ser->baud_base < 2400)
2215 /* No paper tape reader for Mitch.. */
2216 return -EINVAL;
2217
2218 return 0;
2219 }
2220
2221 static struct uart_ops sci_uart_ops = {
2222 .tx_empty = sci_tx_empty,
2223 .set_mctrl = sci_set_mctrl,
2224 .get_mctrl = sci_get_mctrl,
2225 .start_tx = sci_start_tx,
2226 .stop_tx = sci_stop_tx,
2227 .stop_rx = sci_stop_rx,
2228 .break_ctl = sci_break_ctl,
2229 .startup = sci_startup,
2230 .shutdown = sci_shutdown,
2231 .set_termios = sci_set_termios,
2232 .pm = sci_pm,
2233 .type = sci_type,
2234 .release_port = sci_release_port,
2235 .request_port = sci_request_port,
2236 .config_port = sci_config_port,
2237 .verify_port = sci_verify_port,
2238 #ifdef CONFIG_CONSOLE_POLL
2239 .poll_get_char = sci_poll_get_char,
2240 .poll_put_char = sci_poll_put_char,
2241 #endif
2242 };
2243
2244 static int sci_init_single(struct platform_device *dev,
2245 struct sci_port *sci_port, unsigned int index,
2246 struct plat_sci_port *p, bool early)
2247 {
2248 struct uart_port *port = &sci_port->port;
2249 const struct resource *res;
2250 unsigned int i;
2251 int ret;
2252
2253 sci_port->cfg = p;
2254
2255 port->ops = &sci_uart_ops;
2256 port->iotype = UPIO_MEM;
2257 port->line = index;
2258
2259 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2260 if (res == NULL)
2261 return -ENOMEM;
2262
2263 port->mapbase = res->start;
2264 sci_port->reg_size = resource_size(res);
2265
2266 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2267 sci_port->irqs[i] = platform_get_irq(dev, i);
2268
2269 /* The SCI generates several interrupts. They can be muxed together or
2270 * connected to different interrupt lines. In the muxed case only one
2271 * interrupt resource is specified. In the non-muxed case three or four
2272 * interrupt resources are specified, as the BRI interrupt is optional.
2273 */
2274 if (sci_port->irqs[0] < 0)
2275 return -ENXIO;
2276
2277 if (sci_port->irqs[1] < 0) {
2278 sci_port->irqs[1] = sci_port->irqs[0];
2279 sci_port->irqs[2] = sci_port->irqs[0];
2280 sci_port->irqs[3] = sci_port->irqs[0];
2281 }
2282
2283 if (p->regtype == SCIx_PROBE_REGTYPE) {
2284 ret = sci_probe_regmap(p);
2285 if (unlikely(ret))
2286 return ret;
2287 }
2288
2289 switch (p->type) {
2290 case PORT_SCIFB:
2291 port->fifosize = 256;
2292 sci_port->overrun_reg = SCxSR;
2293 sci_port->overrun_mask = SCIFA_ORER;
2294 sci_port->sampling_rate = 16;
2295 break;
2296 case PORT_HSCIF:
2297 port->fifosize = 128;
2298 sci_port->overrun_reg = SCLSR;
2299 sci_port->overrun_mask = SCLSR_ORER;
2300 sci_port->sampling_rate = 0;
2301 break;
2302 case PORT_SCIFA:
2303 port->fifosize = 64;
2304 sci_port->overrun_reg = SCxSR;
2305 sci_port->overrun_mask = SCIFA_ORER;
2306 sci_port->sampling_rate = 16;
2307 break;
2308 case PORT_SCIF:
2309 port->fifosize = 16;
2310 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2311 sci_port->overrun_reg = SCxSR;
2312 sci_port->overrun_mask = SCIFA_ORER;
2313 sci_port->sampling_rate = 16;
2314 } else {
2315 sci_port->overrun_reg = SCLSR;
2316 sci_port->overrun_mask = SCLSR_ORER;
2317 sci_port->sampling_rate = 32;
2318 }
2319 break;
2320 default:
2321 port->fifosize = 1;
2322 sci_port->overrun_reg = SCxSR;
2323 sci_port->overrun_mask = SCI_ORER;
2324 sci_port->sampling_rate = 32;
2325 break;
2326 }
2327
2328 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2329 * match the SoC datasheet, this should be investigated. Let platform
2330 * data override the sampling rate for now.
2331 */
2332 if (p->sampling_rate)
2333 sci_port->sampling_rate = p->sampling_rate;
2334
2335 if (!early) {
2336 sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2337 if (IS_ERR(sci_port->iclk)) {
2338 sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2339 if (IS_ERR(sci_port->iclk)) {
2340 dev_err(&dev->dev, "can't get iclk\n");
2341 return PTR_ERR(sci_port->iclk);
2342 }
2343 }
2344
2345 /*
2346 * The function clock is optional, ignore it if we can't
2347 * find it.
2348 */
2349 sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2350 if (IS_ERR(sci_port->fclk))
2351 sci_port->fclk = NULL;
2352
2353 port->dev = &dev->dev;
2354
2355 pm_runtime_enable(&dev->dev);
2356 }
2357
2358 sci_port->break_timer.data = (unsigned long)sci_port;
2359 sci_port->break_timer.function = sci_break_timer;
2360 init_timer(&sci_port->break_timer);
2361
2362 /*
2363 * Establish some sensible defaults for the error detection.
2364 */
2365 if (p->type == PORT_SCI) {
2366 sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2367 sci_port->error_clear = SCI_ERROR_CLEAR;
2368 } else {
2369 sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2370 sci_port->error_clear = SCIF_ERROR_CLEAR;
2371 }
2372
2373 /*
2374 * Make the error mask inclusive of overrun detection, if
2375 * supported.
2376 */
2377 if (sci_port->overrun_reg == SCxSR) {
2378 sci_port->error_mask |= sci_port->overrun_mask;
2379 sci_port->error_clear &= ~sci_port->overrun_mask;
2380 }
2381
2382 port->type = p->type;
2383 port->flags = UPF_FIXED_PORT | p->flags;
2384 port->regshift = p->regshift;
2385
2386 /*
2387 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2388 * for the multi-IRQ ports, which is where we are primarily
2389 * concerned with the shutdown path synchronization.
2390 *
2391 * For the muxed case there's nothing more to do.
2392 */
2393 port->irq = sci_port->irqs[SCIx_RXI_IRQ];
2394 port->irqflags = 0;
2395
2396 port->serial_in = sci_serial_in;
2397 port->serial_out = sci_serial_out;
2398
2399 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2400 dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2401 p->dma_slave_tx, p->dma_slave_rx);
2402
2403 return 0;
2404 }
2405
2406 static void sci_cleanup_single(struct sci_port *port)
2407 {
2408 clk_put(port->iclk);
2409 clk_put(port->fclk);
2410
2411 pm_runtime_disable(port->port.dev);
2412 }
2413
2414 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2415 static void serial_console_putchar(struct uart_port *port, int ch)
2416 {
2417 sci_poll_put_char(port, ch);
2418 }
2419
2420 /*
2421 * Print a string to the serial port trying not to disturb
2422 * any possible real use of the port...
2423 */
2424 static void serial_console_write(struct console *co, const char *s,
2425 unsigned count)
2426 {
2427 struct sci_port *sci_port = &sci_ports[co->index];
2428 struct uart_port *port = &sci_port->port;
2429 unsigned short bits, ctrl;
2430 unsigned long flags;
2431 int locked = 1;
2432
2433 local_irq_save(flags);
2434 if (port->sysrq)
2435 locked = 0;
2436 else if (oops_in_progress)
2437 locked = spin_trylock(&port->lock);
2438 else
2439 spin_lock(&port->lock);
2440
2441 /* first save the SCSCR then disable the interrupts */
2442 ctrl = serial_port_in(port, SCSCR);
2443 serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2444
2445 uart_console_write(port, s, count, serial_console_putchar);
2446
2447 /* wait until fifo is empty and last bit has been transmitted */
2448 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2449 while ((serial_port_in(port, SCxSR) & bits) != bits)
2450 cpu_relax();
2451
2452 /* restore the SCSCR */
2453 serial_port_out(port, SCSCR, ctrl);
2454
2455 if (locked)
2456 spin_unlock(&port->lock);
2457 local_irq_restore(flags);
2458 }
2459
2460 static int serial_console_setup(struct console *co, char *options)
2461 {
2462 struct sci_port *sci_port;
2463 struct uart_port *port;
2464 int baud = 115200;
2465 int bits = 8;
2466 int parity = 'n';
2467 int flow = 'n';
2468 int ret;
2469
2470 /*
2471 * Refuse to handle any bogus ports.
2472 */
2473 if (co->index < 0 || co->index >= SCI_NPORTS)
2474 return -ENODEV;
2475
2476 sci_port = &sci_ports[co->index];
2477 port = &sci_port->port;
2478
2479 /*
2480 * Refuse to handle uninitialized ports.
2481 */
2482 if (!port->ops)
2483 return -ENODEV;
2484
2485 ret = sci_remap_port(port);
2486 if (unlikely(ret != 0))
2487 return ret;
2488
2489 if (options)
2490 uart_parse_options(options, &baud, &parity, &bits, &flow);
2491
2492 return uart_set_options(port, co, baud, parity, bits, flow);
2493 }
2494
2495 static struct console serial_console = {
2496 .name = "ttySC",
2497 .device = uart_console_device,
2498 .write = serial_console_write,
2499 .setup = serial_console_setup,
2500 .flags = CON_PRINTBUFFER,
2501 .index = -1,
2502 .data = &sci_uart_driver,
2503 };
2504
2505 static struct console early_serial_console = {
2506 .name = "early_ttySC",
2507 .write = serial_console_write,
2508 .flags = CON_PRINTBUFFER,
2509 .index = -1,
2510 };
2511
2512 static char early_serial_buf[32];
2513
2514 static int sci_probe_earlyprintk(struct platform_device *pdev)
2515 {
2516 struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2517
2518 if (early_serial_console.data)
2519 return -EEXIST;
2520
2521 early_serial_console.index = pdev->id;
2522
2523 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2524
2525 serial_console_setup(&early_serial_console, early_serial_buf);
2526
2527 if (!strstr(early_serial_buf, "keep"))
2528 early_serial_console.flags |= CON_BOOT;
2529
2530 register_console(&early_serial_console);
2531 return 0;
2532 }
2533
2534 #define SCI_CONSOLE (&serial_console)
2535
2536 #else
2537 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2538 {
2539 return -EINVAL;
2540 }
2541
2542 #define SCI_CONSOLE NULL
2543
2544 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2545
2546 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2547
2548 static struct uart_driver sci_uart_driver = {
2549 .owner = THIS_MODULE,
2550 .driver_name = "sci",
2551 .dev_name = "ttySC",
2552 .major = SCI_MAJOR,
2553 .minor = SCI_MINOR_START,
2554 .nr = SCI_NPORTS,
2555 .cons = SCI_CONSOLE,
2556 };
2557
2558 static int sci_remove(struct platform_device *dev)
2559 {
2560 struct sci_port *port = platform_get_drvdata(dev);
2561
2562 cpufreq_unregister_notifier(&port->freq_transition,
2563 CPUFREQ_TRANSITION_NOTIFIER);
2564
2565 uart_remove_one_port(&sci_uart_driver, &port->port);
2566
2567 sci_cleanup_single(port);
2568
2569 return 0;
2570 }
2571
2572 struct sci_port_info {
2573 unsigned int type;
2574 unsigned int regtype;
2575 };
2576
2577 static const struct of_device_id of_sci_match[] = {
2578 {
2579 .compatible = "renesas,scif",
2580 .data = &(const struct sci_port_info) {
2581 .type = PORT_SCIF,
2582 .regtype = SCIx_SH4_SCIF_REGTYPE,
2583 },
2584 }, {
2585 .compatible = "renesas,scifa",
2586 .data = &(const struct sci_port_info) {
2587 .type = PORT_SCIFA,
2588 .regtype = SCIx_SCIFA_REGTYPE,
2589 },
2590 }, {
2591 .compatible = "renesas,scifb",
2592 .data = &(const struct sci_port_info) {
2593 .type = PORT_SCIFB,
2594 .regtype = SCIx_SCIFB_REGTYPE,
2595 },
2596 }, {
2597 .compatible = "renesas,hscif",
2598 .data = &(const struct sci_port_info) {
2599 .type = PORT_HSCIF,
2600 .regtype = SCIx_HSCIF_REGTYPE,
2601 },
2602 }, {
2603 .compatible = "renesas,sci",
2604 .data = &(const struct sci_port_info) {
2605 .type = PORT_SCI,
2606 .regtype = SCIx_SCI_REGTYPE,
2607 },
2608 }, {
2609 /* Terminator */
2610 },
2611 };
2612 MODULE_DEVICE_TABLE(of, of_sci_match);
2613
2614 static struct plat_sci_port *
2615 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2616 {
2617 struct device_node *np = pdev->dev.of_node;
2618 const struct of_device_id *match;
2619 const struct sci_port_info *info;
2620 struct plat_sci_port *p;
2621 int id;
2622
2623 if (!IS_ENABLED(CONFIG_OF) || !np)
2624 return NULL;
2625
2626 match = of_match_node(of_sci_match, pdev->dev.of_node);
2627 if (!match)
2628 return NULL;
2629
2630 info = match->data;
2631
2632 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2633 if (!p)
2634 return NULL;
2635
2636 /* Get the line number for the aliases node. */
2637 id = of_alias_get_id(np, "serial");
2638 if (id < 0) {
2639 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2640 return NULL;
2641 }
2642
2643 *dev_id = id;
2644
2645 p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2646 p->type = info->type;
2647 p->regtype = info->regtype;
2648 p->scscr = SCSCR_RE | SCSCR_TE;
2649
2650 return p;
2651 }
2652
2653 static int sci_probe_single(struct platform_device *dev,
2654 unsigned int index,
2655 struct plat_sci_port *p,
2656 struct sci_port *sciport)
2657 {
2658 int ret;
2659
2660 /* Sanity check */
2661 if (unlikely(index >= SCI_NPORTS)) {
2662 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2663 index+1, SCI_NPORTS);
2664 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2665 return -EINVAL;
2666 }
2667
2668 ret = sci_init_single(dev, sciport, index, p, false);
2669 if (ret)
2670 return ret;
2671
2672 ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2673 if (ret) {
2674 sci_cleanup_single(sciport);
2675 return ret;
2676 }
2677
2678 return 0;
2679 }
2680
2681 static int sci_probe(struct platform_device *dev)
2682 {
2683 struct plat_sci_port *p;
2684 struct sci_port *sp;
2685 unsigned int dev_id;
2686 int ret;
2687
2688 /*
2689 * If we've come here via earlyprintk initialization, head off to
2690 * the special early probe. We don't have sufficient device state
2691 * to make it beyond this yet.
2692 */
2693 if (is_early_platform_device(dev))
2694 return sci_probe_earlyprintk(dev);
2695
2696 if (dev->dev.of_node) {
2697 p = sci_parse_dt(dev, &dev_id);
2698 if (p == NULL)
2699 return -EINVAL;
2700 } else {
2701 p = dev->dev.platform_data;
2702 if (p == NULL) {
2703 dev_err(&dev->dev, "no platform data supplied\n");
2704 return -EINVAL;
2705 }
2706
2707 dev_id = dev->id;
2708 }
2709
2710 sp = &sci_ports[dev_id];
2711 platform_set_drvdata(dev, sp);
2712
2713 ret = sci_probe_single(dev, dev_id, p, sp);
2714 if (ret)
2715 return ret;
2716
2717 sp->freq_transition.notifier_call = sci_notifier;
2718
2719 ret = cpufreq_register_notifier(&sp->freq_transition,
2720 CPUFREQ_TRANSITION_NOTIFIER);
2721 if (unlikely(ret < 0)) {
2722 uart_remove_one_port(&sci_uart_driver, &sp->port);
2723 sci_cleanup_single(sp);
2724 return ret;
2725 }
2726
2727 #ifdef CONFIG_SH_STANDARD_BIOS
2728 sh_bios_gdb_detach();
2729 #endif
2730
2731 return 0;
2732 }
2733
2734 static __maybe_unused int sci_suspend(struct device *dev)
2735 {
2736 struct sci_port *sport = dev_get_drvdata(dev);
2737
2738 if (sport)
2739 uart_suspend_port(&sci_uart_driver, &sport->port);
2740
2741 return 0;
2742 }
2743
2744 static __maybe_unused int sci_resume(struct device *dev)
2745 {
2746 struct sci_port *sport = dev_get_drvdata(dev);
2747
2748 if (sport)
2749 uart_resume_port(&sci_uart_driver, &sport->port);
2750
2751 return 0;
2752 }
2753
2754 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2755
2756 static struct platform_driver sci_driver = {
2757 .probe = sci_probe,
2758 .remove = sci_remove,
2759 .driver = {
2760 .name = "sh-sci",
2761 .pm = &sci_dev_pm_ops,
2762 .of_match_table = of_match_ptr(of_sci_match),
2763 },
2764 };
2765
2766 static int __init sci_init(void)
2767 {
2768 int ret;
2769
2770 pr_info("%s\n", banner);
2771
2772 ret = uart_register_driver(&sci_uart_driver);
2773 if (likely(ret == 0)) {
2774 ret = platform_driver_register(&sci_driver);
2775 if (unlikely(ret))
2776 uart_unregister_driver(&sci_uart_driver);
2777 }
2778
2779 return ret;
2780 }
2781
2782 static void __exit sci_exit(void)
2783 {
2784 platform_driver_unregister(&sci_driver);
2785 uart_unregister_driver(&sci_uart_driver);
2786 }
2787
2788 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2789 early_platform_init_buffer("earlyprintk", &sci_driver,
2790 early_serial_buf, ARRAY_SIZE(early_serial_buf));
2791 #endif
2792 module_init(sci_init);
2793 module_exit(sci_exit);
2794
2795 MODULE_LICENSE("GPL");
2796 MODULE_ALIAS("platform:sh-sci");
2797 MODULE_AUTHOR("Paul Mundt");
2798 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
This page took 0.085924 seconds and 6 git commands to generate.