Merge tag 'platform-drivers-x86-v4.2-1' of git://git.infradead.org/users/dvhart/linux...
[deliverable/linux.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158 * free_tty_struct - free a disused tty
159 * @tty: tty struct to free
160 *
161 * Free the write buffers, tty queue and tty memory itself.
162 *
163 * Locking: none. Must be called after tty is definitely unused
164 */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168 if (!tty)
169 return;
170 put_device(tty->dev);
171 kfree(tty->write_buf);
172 tty->magic = 0xDEADDEAD;
173 kfree(tty);
174 }
175
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 return ((struct tty_file_private *)file->private_data)->tty;
179 }
180
181 int tty_alloc_file(struct file *file)
182 {
183 struct tty_file_private *priv;
184
185 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 if (!priv)
187 return -ENOMEM;
188
189 file->private_data = priv;
190
191 return 0;
192 }
193
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 struct tty_file_private *priv = file->private_data;
198
199 priv->tty = tty;
200 priv->file = file;
201
202 spin_lock(&tty_files_lock);
203 list_add(&priv->list, &tty->tty_files);
204 spin_unlock(&tty_files_lock);
205 }
206
207 /**
208 * tty_free_file - free file->private_data
209 *
210 * This shall be used only for fail path handling when tty_add_file was not
211 * called yet.
212 */
213 void tty_free_file(struct file *file)
214 {
215 struct tty_file_private *priv = file->private_data;
216
217 file->private_data = NULL;
218 kfree(priv);
219 }
220
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224 struct tty_file_private *priv = file->private_data;
225
226 spin_lock(&tty_files_lock);
227 list_del(&priv->list);
228 spin_unlock(&tty_files_lock);
229 tty_free_file(file);
230 }
231
232
233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234
235 /**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel
240 * naming policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244
245 const char *tty_name(const struct tty_struct *tty)
246 {
247 if (!tty) /* Hmm. NULL pointer. That's fun. */
248 return "NULL tty";
249 return tty->name;
250 }
251
252 EXPORT_SYMBOL(tty_name);
253
254 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
255 const char *routine)
256 {
257 #ifdef TTY_PARANOIA_CHECK
258 if (!tty) {
259 printk(KERN_WARNING
260 "null TTY for (%d:%d) in %s\n",
261 imajor(inode), iminor(inode), routine);
262 return 1;
263 }
264 if (tty->magic != TTY_MAGIC) {
265 printk(KERN_WARNING
266 "bad magic number for tty struct (%d:%d) in %s\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 #endif
271 return 0;
272 }
273
274 /* Caller must hold tty_lock */
275 static int check_tty_count(struct tty_struct *tty, const char *routine)
276 {
277 #ifdef CHECK_TTY_COUNT
278 struct list_head *p;
279 int count = 0;
280
281 spin_lock(&tty_files_lock);
282 list_for_each(p, &tty->tty_files) {
283 count++;
284 }
285 spin_unlock(&tty_files_lock);
286 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
287 tty->driver->subtype == PTY_TYPE_SLAVE &&
288 tty->link && tty->link->count)
289 count++;
290 if (tty->count != count) {
291 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
292 "!= #fd's(%d) in %s\n",
293 tty->name, tty->count, count, routine);
294 return count;
295 }
296 #endif
297 return 0;
298 }
299
300 /**
301 * get_tty_driver - find device of a tty
302 * @dev_t: device identifier
303 * @index: returns the index of the tty
304 *
305 * This routine returns a tty driver structure, given a device number
306 * and also passes back the index number.
307 *
308 * Locking: caller must hold tty_mutex
309 */
310
311 static struct tty_driver *get_tty_driver(dev_t device, int *index)
312 {
313 struct tty_driver *p;
314
315 list_for_each_entry(p, &tty_drivers, tty_drivers) {
316 dev_t base = MKDEV(p->major, p->minor_start);
317 if (device < base || device >= base + p->num)
318 continue;
319 *index = device - base;
320 return tty_driver_kref_get(p);
321 }
322 return NULL;
323 }
324
325 #ifdef CONFIG_CONSOLE_POLL
326
327 /**
328 * tty_find_polling_driver - find device of a polled tty
329 * @name: name string to match
330 * @line: pointer to resulting tty line nr
331 *
332 * This routine returns a tty driver structure, given a name
333 * and the condition that the tty driver is capable of polled
334 * operation.
335 */
336 struct tty_driver *tty_find_polling_driver(char *name, int *line)
337 {
338 struct tty_driver *p, *res = NULL;
339 int tty_line = 0;
340 int len;
341 char *str, *stp;
342
343 for (str = name; *str; str++)
344 if ((*str >= '0' && *str <= '9') || *str == ',')
345 break;
346 if (!*str)
347 return NULL;
348
349 len = str - name;
350 tty_line = simple_strtoul(str, &str, 10);
351
352 mutex_lock(&tty_mutex);
353 /* Search through the tty devices to look for a match */
354 list_for_each_entry(p, &tty_drivers, tty_drivers) {
355 if (strncmp(name, p->name, len) != 0)
356 continue;
357 stp = str;
358 if (*stp == ',')
359 stp++;
360 if (*stp == '\0')
361 stp = NULL;
362
363 if (tty_line >= 0 && tty_line < p->num && p->ops &&
364 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
365 res = tty_driver_kref_get(p);
366 *line = tty_line;
367 break;
368 }
369 }
370 mutex_unlock(&tty_mutex);
371
372 return res;
373 }
374 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
375 #endif
376
377 /**
378 * tty_check_change - check for POSIX terminal changes
379 * @tty: tty to check
380 *
381 * If we try to write to, or set the state of, a terminal and we're
382 * not in the foreground, send a SIGTTOU. If the signal is blocked or
383 * ignored, go ahead and perform the operation. (POSIX 7.2)
384 *
385 * Locking: ctrl_lock
386 */
387
388 int tty_check_change(struct tty_struct *tty)
389 {
390 unsigned long flags;
391 int ret = 0;
392
393 if (current->signal->tty != tty)
394 return 0;
395
396 spin_lock_irqsave(&tty->ctrl_lock, flags);
397
398 if (!tty->pgrp) {
399 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
400 goto out_unlock;
401 }
402 if (task_pgrp(current) == tty->pgrp)
403 goto out_unlock;
404 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
405 if (is_ignored(SIGTTOU))
406 goto out;
407 if (is_current_pgrp_orphaned()) {
408 ret = -EIO;
409 goto out;
410 }
411 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
412 set_thread_flag(TIF_SIGPENDING);
413 ret = -ERESTARTSYS;
414 out:
415 return ret;
416 out_unlock:
417 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
418 return ret;
419 }
420
421 EXPORT_SYMBOL(tty_check_change);
422
423 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
424 size_t count, loff_t *ppos)
425 {
426 return 0;
427 }
428
429 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
430 size_t count, loff_t *ppos)
431 {
432 return -EIO;
433 }
434
435 /* No kernel lock held - none needed ;) */
436 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
437 {
438 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
439 }
440
441 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
442 unsigned long arg)
443 {
444 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
445 }
446
447 static long hung_up_tty_compat_ioctl(struct file *file,
448 unsigned int cmd, unsigned long arg)
449 {
450 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
451 }
452
453 static const struct file_operations tty_fops = {
454 .llseek = no_llseek,
455 .read = tty_read,
456 .write = tty_write,
457 .poll = tty_poll,
458 .unlocked_ioctl = tty_ioctl,
459 .compat_ioctl = tty_compat_ioctl,
460 .open = tty_open,
461 .release = tty_release,
462 .fasync = tty_fasync,
463 };
464
465 static const struct file_operations console_fops = {
466 .llseek = no_llseek,
467 .read = tty_read,
468 .write = redirected_tty_write,
469 .poll = tty_poll,
470 .unlocked_ioctl = tty_ioctl,
471 .compat_ioctl = tty_compat_ioctl,
472 .open = tty_open,
473 .release = tty_release,
474 .fasync = tty_fasync,
475 };
476
477 static const struct file_operations hung_up_tty_fops = {
478 .llseek = no_llseek,
479 .read = hung_up_tty_read,
480 .write = hung_up_tty_write,
481 .poll = hung_up_tty_poll,
482 .unlocked_ioctl = hung_up_tty_ioctl,
483 .compat_ioctl = hung_up_tty_compat_ioctl,
484 .release = tty_release,
485 };
486
487 static DEFINE_SPINLOCK(redirect_lock);
488 static struct file *redirect;
489
490
491 void proc_clear_tty(struct task_struct *p)
492 {
493 unsigned long flags;
494 struct tty_struct *tty;
495 spin_lock_irqsave(&p->sighand->siglock, flags);
496 tty = p->signal->tty;
497 p->signal->tty = NULL;
498 spin_unlock_irqrestore(&p->sighand->siglock, flags);
499 tty_kref_put(tty);
500 }
501
502 /**
503 * proc_set_tty - set the controlling terminal
504 *
505 * Only callable by the session leader and only if it does not already have
506 * a controlling terminal.
507 *
508 * Caller must hold: tty_lock()
509 * a readlock on tasklist_lock
510 * sighand lock
511 */
512 static void __proc_set_tty(struct tty_struct *tty)
513 {
514 unsigned long flags;
515
516 spin_lock_irqsave(&tty->ctrl_lock, flags);
517 /*
518 * The session and fg pgrp references will be non-NULL if
519 * tiocsctty() is stealing the controlling tty
520 */
521 put_pid(tty->session);
522 put_pid(tty->pgrp);
523 tty->pgrp = get_pid(task_pgrp(current));
524 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
525 tty->session = get_pid(task_session(current));
526 if (current->signal->tty) {
527 printk(KERN_DEBUG "tty not NULL!!\n");
528 tty_kref_put(current->signal->tty);
529 }
530 put_pid(current->signal->tty_old_pgrp);
531 current->signal->tty = tty_kref_get(tty);
532 current->signal->tty_old_pgrp = NULL;
533 }
534
535 static void proc_set_tty(struct tty_struct *tty)
536 {
537 spin_lock_irq(&current->sighand->siglock);
538 __proc_set_tty(tty);
539 spin_unlock_irq(&current->sighand->siglock);
540 }
541
542 struct tty_struct *get_current_tty(void)
543 {
544 struct tty_struct *tty;
545 unsigned long flags;
546
547 spin_lock_irqsave(&current->sighand->siglock, flags);
548 tty = tty_kref_get(current->signal->tty);
549 spin_unlock_irqrestore(&current->sighand->siglock, flags);
550 return tty;
551 }
552 EXPORT_SYMBOL_GPL(get_current_tty);
553
554 static void session_clear_tty(struct pid *session)
555 {
556 struct task_struct *p;
557 do_each_pid_task(session, PIDTYPE_SID, p) {
558 proc_clear_tty(p);
559 } while_each_pid_task(session, PIDTYPE_SID, p);
560 }
561
562 /**
563 * tty_wakeup - request more data
564 * @tty: terminal
565 *
566 * Internal and external helper for wakeups of tty. This function
567 * informs the line discipline if present that the driver is ready
568 * to receive more output data.
569 */
570
571 void tty_wakeup(struct tty_struct *tty)
572 {
573 struct tty_ldisc *ld;
574
575 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
576 ld = tty_ldisc_ref(tty);
577 if (ld) {
578 if (ld->ops->write_wakeup)
579 ld->ops->write_wakeup(tty);
580 tty_ldisc_deref(ld);
581 }
582 }
583 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
584 }
585
586 EXPORT_SYMBOL_GPL(tty_wakeup);
587
588 /**
589 * tty_signal_session_leader - sends SIGHUP to session leader
590 * @tty controlling tty
591 * @exit_session if non-zero, signal all foreground group processes
592 *
593 * Send SIGHUP and SIGCONT to the session leader and its process group.
594 * Optionally, signal all processes in the foreground process group.
595 *
596 * Returns the number of processes in the session with this tty
597 * as their controlling terminal. This value is used to drop
598 * tty references for those processes.
599 */
600 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
601 {
602 struct task_struct *p;
603 int refs = 0;
604 struct pid *tty_pgrp = NULL;
605
606 read_lock(&tasklist_lock);
607 if (tty->session) {
608 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609 spin_lock_irq(&p->sighand->siglock);
610 if (p->signal->tty == tty) {
611 p->signal->tty = NULL;
612 /* We defer the dereferences outside fo
613 the tasklist lock */
614 refs++;
615 }
616 if (!p->signal->leader) {
617 spin_unlock_irq(&p->sighand->siglock);
618 continue;
619 }
620 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622 put_pid(p->signal->tty_old_pgrp); /* A noop */
623 spin_lock(&tty->ctrl_lock);
624 tty_pgrp = get_pid(tty->pgrp);
625 if (tty->pgrp)
626 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627 spin_unlock(&tty->ctrl_lock);
628 spin_unlock_irq(&p->sighand->siglock);
629 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630 }
631 read_unlock(&tasklist_lock);
632
633 if (tty_pgrp) {
634 if (exit_session)
635 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
636 put_pid(tty_pgrp);
637 }
638
639 return refs;
640 }
641
642 /**
643 * __tty_hangup - actual handler for hangup events
644 * @work: tty device
645 *
646 * This can be called by a "kworker" kernel thread. That is process
647 * synchronous but doesn't hold any locks, so we need to make sure we
648 * have the appropriate locks for what we're doing.
649 *
650 * The hangup event clears any pending redirections onto the hung up
651 * device. It ensures future writes will error and it does the needed
652 * line discipline hangup and signal delivery. The tty object itself
653 * remains intact.
654 *
655 * Locking:
656 * BTM
657 * redirect lock for undoing redirection
658 * file list lock for manipulating list of ttys
659 * tty_ldiscs_lock from called functions
660 * termios_rwsem resetting termios data
661 * tasklist_lock to walk task list for hangup event
662 * ->siglock to protect ->signal/->sighand
663 */
664 static void __tty_hangup(struct tty_struct *tty, int exit_session)
665 {
666 struct file *cons_filp = NULL;
667 struct file *filp, *f = NULL;
668 struct tty_file_private *priv;
669 int closecount = 0, n;
670 int refs;
671
672 if (!tty)
673 return;
674
675
676 spin_lock(&redirect_lock);
677 if (redirect && file_tty(redirect) == tty) {
678 f = redirect;
679 redirect = NULL;
680 }
681 spin_unlock(&redirect_lock);
682
683 tty_lock(tty);
684
685 if (test_bit(TTY_HUPPED, &tty->flags)) {
686 tty_unlock(tty);
687 return;
688 }
689
690 /* inuse_filps is protected by the single tty lock,
691 this really needs to change if we want to flush the
692 workqueue with the lock held */
693 check_tty_count(tty, "tty_hangup");
694
695 spin_lock(&tty_files_lock);
696 /* This breaks for file handles being sent over AF_UNIX sockets ? */
697 list_for_each_entry(priv, &tty->tty_files, list) {
698 filp = priv->file;
699 if (filp->f_op->write == redirected_tty_write)
700 cons_filp = filp;
701 if (filp->f_op->write != tty_write)
702 continue;
703 closecount++;
704 __tty_fasync(-1, filp, 0); /* can't block */
705 filp->f_op = &hung_up_tty_fops;
706 }
707 spin_unlock(&tty_files_lock);
708
709 refs = tty_signal_session_leader(tty, exit_session);
710 /* Account for the p->signal references we killed */
711 while (refs--)
712 tty_kref_put(tty);
713
714 tty_ldisc_hangup(tty);
715
716 spin_lock_irq(&tty->ctrl_lock);
717 clear_bit(TTY_THROTTLED, &tty->flags);
718 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
719 put_pid(tty->session);
720 put_pid(tty->pgrp);
721 tty->session = NULL;
722 tty->pgrp = NULL;
723 tty->ctrl_status = 0;
724 spin_unlock_irq(&tty->ctrl_lock);
725
726 /*
727 * If one of the devices matches a console pointer, we
728 * cannot just call hangup() because that will cause
729 * tty->count and state->count to go out of sync.
730 * So we just call close() the right number of times.
731 */
732 if (cons_filp) {
733 if (tty->ops->close)
734 for (n = 0; n < closecount; n++)
735 tty->ops->close(tty, cons_filp);
736 } else if (tty->ops->hangup)
737 tty->ops->hangup(tty);
738 /*
739 * We don't want to have driver/ldisc interactions beyond
740 * the ones we did here. The driver layer expects no
741 * calls after ->hangup() from the ldisc side. However we
742 * can't yet guarantee all that.
743 */
744 set_bit(TTY_HUPPED, &tty->flags);
745 tty_unlock(tty);
746
747 if (f)
748 fput(f);
749 }
750
751 static void do_tty_hangup(struct work_struct *work)
752 {
753 struct tty_struct *tty =
754 container_of(work, struct tty_struct, hangup_work);
755
756 __tty_hangup(tty, 0);
757 }
758
759 /**
760 * tty_hangup - trigger a hangup event
761 * @tty: tty to hangup
762 *
763 * A carrier loss (virtual or otherwise) has occurred on this like
764 * schedule a hangup sequence to run after this event.
765 */
766
767 void tty_hangup(struct tty_struct *tty)
768 {
769 #ifdef TTY_DEBUG_HANGUP
770 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty));
771 #endif
772 schedule_work(&tty->hangup_work);
773 }
774
775 EXPORT_SYMBOL(tty_hangup);
776
777 /**
778 * tty_vhangup - process vhangup
779 * @tty: tty to hangup
780 *
781 * The user has asked via system call for the terminal to be hung up.
782 * We do this synchronously so that when the syscall returns the process
783 * is complete. That guarantee is necessary for security reasons.
784 */
785
786 void tty_vhangup(struct tty_struct *tty)
787 {
788 #ifdef TTY_DEBUG_HANGUP
789 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty));
790 #endif
791 __tty_hangup(tty, 0);
792 }
793
794 EXPORT_SYMBOL(tty_vhangup);
795
796
797 /**
798 * tty_vhangup_self - process vhangup for own ctty
799 *
800 * Perform a vhangup on the current controlling tty
801 */
802
803 void tty_vhangup_self(void)
804 {
805 struct tty_struct *tty;
806
807 tty = get_current_tty();
808 if (tty) {
809 tty_vhangup(tty);
810 tty_kref_put(tty);
811 }
812 }
813
814 /**
815 * tty_vhangup_session - hangup session leader exit
816 * @tty: tty to hangup
817 *
818 * The session leader is exiting and hanging up its controlling terminal.
819 * Every process in the foreground process group is signalled SIGHUP.
820 *
821 * We do this synchronously so that when the syscall returns the process
822 * is complete. That guarantee is necessary for security reasons.
823 */
824
825 static void tty_vhangup_session(struct tty_struct *tty)
826 {
827 #ifdef TTY_DEBUG_HANGUP
828 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty));
829 #endif
830 __tty_hangup(tty, 1);
831 }
832
833 /**
834 * tty_hung_up_p - was tty hung up
835 * @filp: file pointer of tty
836 *
837 * Return true if the tty has been subject to a vhangup or a carrier
838 * loss
839 */
840
841 int tty_hung_up_p(struct file *filp)
842 {
843 return (filp->f_op == &hung_up_tty_fops);
844 }
845
846 EXPORT_SYMBOL(tty_hung_up_p);
847
848 /**
849 * disassociate_ctty - disconnect controlling tty
850 * @on_exit: true if exiting so need to "hang up" the session
851 *
852 * This function is typically called only by the session leader, when
853 * it wants to disassociate itself from its controlling tty.
854 *
855 * It performs the following functions:
856 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
857 * (2) Clears the tty from being controlling the session
858 * (3) Clears the controlling tty for all processes in the
859 * session group.
860 *
861 * The argument on_exit is set to 1 if called when a process is
862 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
863 *
864 * Locking:
865 * BTM is taken for hysterical raisins, and held when
866 * called from no_tty().
867 * tty_mutex is taken to protect tty
868 * ->siglock is taken to protect ->signal/->sighand
869 * tasklist_lock is taken to walk process list for sessions
870 * ->siglock is taken to protect ->signal/->sighand
871 */
872
873 void disassociate_ctty(int on_exit)
874 {
875 struct tty_struct *tty;
876
877 if (!current->signal->leader)
878 return;
879
880 tty = get_current_tty();
881 if (tty) {
882 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
883 tty_vhangup_session(tty);
884 } else {
885 struct pid *tty_pgrp = tty_get_pgrp(tty);
886 if (tty_pgrp) {
887 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
888 if (!on_exit)
889 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
890 put_pid(tty_pgrp);
891 }
892 }
893 tty_kref_put(tty);
894
895 } else if (on_exit) {
896 struct pid *old_pgrp;
897 spin_lock_irq(&current->sighand->siglock);
898 old_pgrp = current->signal->tty_old_pgrp;
899 current->signal->tty_old_pgrp = NULL;
900 spin_unlock_irq(&current->sighand->siglock);
901 if (old_pgrp) {
902 kill_pgrp(old_pgrp, SIGHUP, on_exit);
903 kill_pgrp(old_pgrp, SIGCONT, on_exit);
904 put_pid(old_pgrp);
905 }
906 return;
907 }
908
909 spin_lock_irq(&current->sighand->siglock);
910 put_pid(current->signal->tty_old_pgrp);
911 current->signal->tty_old_pgrp = NULL;
912
913 tty = tty_kref_get(current->signal->tty);
914 if (tty) {
915 unsigned long flags;
916 spin_lock_irqsave(&tty->ctrl_lock, flags);
917 put_pid(tty->session);
918 put_pid(tty->pgrp);
919 tty->session = NULL;
920 tty->pgrp = NULL;
921 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
922 tty_kref_put(tty);
923 } else {
924 #ifdef TTY_DEBUG_HANGUP
925 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
926 " = NULL", tty);
927 #endif
928 }
929
930 spin_unlock_irq(&current->sighand->siglock);
931 /* Now clear signal->tty under the lock */
932 read_lock(&tasklist_lock);
933 session_clear_tty(task_session(current));
934 read_unlock(&tasklist_lock);
935 }
936
937 /**
938 *
939 * no_tty - Ensure the current process does not have a controlling tty
940 */
941 void no_tty(void)
942 {
943 /* FIXME: Review locking here. The tty_lock never covered any race
944 between a new association and proc_clear_tty but possible we need
945 to protect against this anyway */
946 struct task_struct *tsk = current;
947 disassociate_ctty(0);
948 proc_clear_tty(tsk);
949 }
950
951
952 /**
953 * stop_tty - propagate flow control
954 * @tty: tty to stop
955 *
956 * Perform flow control to the driver. May be called
957 * on an already stopped device and will not re-call the driver
958 * method.
959 *
960 * This functionality is used by both the line disciplines for
961 * halting incoming flow and by the driver. It may therefore be
962 * called from any context, may be under the tty atomic_write_lock
963 * but not always.
964 *
965 * Locking:
966 * flow_lock
967 */
968
969 void __stop_tty(struct tty_struct *tty)
970 {
971 if (tty->stopped)
972 return;
973 tty->stopped = 1;
974 if (tty->ops->stop)
975 tty->ops->stop(tty);
976 }
977
978 void stop_tty(struct tty_struct *tty)
979 {
980 unsigned long flags;
981
982 spin_lock_irqsave(&tty->flow_lock, flags);
983 __stop_tty(tty);
984 spin_unlock_irqrestore(&tty->flow_lock, flags);
985 }
986 EXPORT_SYMBOL(stop_tty);
987
988 /**
989 * start_tty - propagate flow control
990 * @tty: tty to start
991 *
992 * Start a tty that has been stopped if at all possible. If this
993 * tty was previous stopped and is now being started, the driver
994 * start method is invoked and the line discipline woken.
995 *
996 * Locking:
997 * flow_lock
998 */
999
1000 void __start_tty(struct tty_struct *tty)
1001 {
1002 if (!tty->stopped || tty->flow_stopped)
1003 return;
1004 tty->stopped = 0;
1005 if (tty->ops->start)
1006 tty->ops->start(tty);
1007 tty_wakeup(tty);
1008 }
1009
1010 void start_tty(struct tty_struct *tty)
1011 {
1012 unsigned long flags;
1013
1014 spin_lock_irqsave(&tty->flow_lock, flags);
1015 __start_tty(tty);
1016 spin_unlock_irqrestore(&tty->flow_lock, flags);
1017 }
1018 EXPORT_SYMBOL(start_tty);
1019
1020 static void tty_update_time(struct timespec *time)
1021 {
1022 unsigned long sec = get_seconds();
1023
1024 /*
1025 * We only care if the two values differ in anything other than the
1026 * lower three bits (i.e every 8 seconds). If so, then we can update
1027 * the time of the tty device, otherwise it could be construded as a
1028 * security leak to let userspace know the exact timing of the tty.
1029 */
1030 if ((sec ^ time->tv_sec) & ~7)
1031 time->tv_sec = sec;
1032 }
1033
1034 /**
1035 * tty_read - read method for tty device files
1036 * @file: pointer to tty file
1037 * @buf: user buffer
1038 * @count: size of user buffer
1039 * @ppos: unused
1040 *
1041 * Perform the read system call function on this terminal device. Checks
1042 * for hung up devices before calling the line discipline method.
1043 *
1044 * Locking:
1045 * Locks the line discipline internally while needed. Multiple
1046 * read calls may be outstanding in parallel.
1047 */
1048
1049 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1050 loff_t *ppos)
1051 {
1052 int i;
1053 struct inode *inode = file_inode(file);
1054 struct tty_struct *tty = file_tty(file);
1055 struct tty_ldisc *ld;
1056
1057 if (tty_paranoia_check(tty, inode, "tty_read"))
1058 return -EIO;
1059 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1060 return -EIO;
1061
1062 /* We want to wait for the line discipline to sort out in this
1063 situation */
1064 ld = tty_ldisc_ref_wait(tty);
1065 if (ld->ops->read)
1066 i = ld->ops->read(tty, file, buf, count);
1067 else
1068 i = -EIO;
1069 tty_ldisc_deref(ld);
1070
1071 if (i > 0)
1072 tty_update_time(&inode->i_atime);
1073
1074 return i;
1075 }
1076
1077 static void tty_write_unlock(struct tty_struct *tty)
1078 {
1079 mutex_unlock(&tty->atomic_write_lock);
1080 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1081 }
1082
1083 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1084 {
1085 if (!mutex_trylock(&tty->atomic_write_lock)) {
1086 if (ndelay)
1087 return -EAGAIN;
1088 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1089 return -ERESTARTSYS;
1090 }
1091 return 0;
1092 }
1093
1094 /*
1095 * Split writes up in sane blocksizes to avoid
1096 * denial-of-service type attacks
1097 */
1098 static inline ssize_t do_tty_write(
1099 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1100 struct tty_struct *tty,
1101 struct file *file,
1102 const char __user *buf,
1103 size_t count)
1104 {
1105 ssize_t ret, written = 0;
1106 unsigned int chunk;
1107
1108 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1109 if (ret < 0)
1110 return ret;
1111
1112 /*
1113 * We chunk up writes into a temporary buffer. This
1114 * simplifies low-level drivers immensely, since they
1115 * don't have locking issues and user mode accesses.
1116 *
1117 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1118 * big chunk-size..
1119 *
1120 * The default chunk-size is 2kB, because the NTTY
1121 * layer has problems with bigger chunks. It will
1122 * claim to be able to handle more characters than
1123 * it actually does.
1124 *
1125 * FIXME: This can probably go away now except that 64K chunks
1126 * are too likely to fail unless switched to vmalloc...
1127 */
1128 chunk = 2048;
1129 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1130 chunk = 65536;
1131 if (count < chunk)
1132 chunk = count;
1133
1134 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1135 if (tty->write_cnt < chunk) {
1136 unsigned char *buf_chunk;
1137
1138 if (chunk < 1024)
1139 chunk = 1024;
1140
1141 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1142 if (!buf_chunk) {
1143 ret = -ENOMEM;
1144 goto out;
1145 }
1146 kfree(tty->write_buf);
1147 tty->write_cnt = chunk;
1148 tty->write_buf = buf_chunk;
1149 }
1150
1151 /* Do the write .. */
1152 for (;;) {
1153 size_t size = count;
1154 if (size > chunk)
1155 size = chunk;
1156 ret = -EFAULT;
1157 if (copy_from_user(tty->write_buf, buf, size))
1158 break;
1159 ret = write(tty, file, tty->write_buf, size);
1160 if (ret <= 0)
1161 break;
1162 written += ret;
1163 buf += ret;
1164 count -= ret;
1165 if (!count)
1166 break;
1167 ret = -ERESTARTSYS;
1168 if (signal_pending(current))
1169 break;
1170 cond_resched();
1171 }
1172 if (written) {
1173 tty_update_time(&file_inode(file)->i_mtime);
1174 ret = written;
1175 }
1176 out:
1177 tty_write_unlock(tty);
1178 return ret;
1179 }
1180
1181 /**
1182 * tty_write_message - write a message to a certain tty, not just the console.
1183 * @tty: the destination tty_struct
1184 * @msg: the message to write
1185 *
1186 * This is used for messages that need to be redirected to a specific tty.
1187 * We don't put it into the syslog queue right now maybe in the future if
1188 * really needed.
1189 *
1190 * We must still hold the BTM and test the CLOSING flag for the moment.
1191 */
1192
1193 void tty_write_message(struct tty_struct *tty, char *msg)
1194 {
1195 if (tty) {
1196 mutex_lock(&tty->atomic_write_lock);
1197 tty_lock(tty);
1198 if (tty->ops->write && tty->count > 0) {
1199 tty_unlock(tty);
1200 tty->ops->write(tty, msg, strlen(msg));
1201 } else
1202 tty_unlock(tty);
1203 tty_write_unlock(tty);
1204 }
1205 return;
1206 }
1207
1208
1209 /**
1210 * tty_write - write method for tty device file
1211 * @file: tty file pointer
1212 * @buf: user data to write
1213 * @count: bytes to write
1214 * @ppos: unused
1215 *
1216 * Write data to a tty device via the line discipline.
1217 *
1218 * Locking:
1219 * Locks the line discipline as required
1220 * Writes to the tty driver are serialized by the atomic_write_lock
1221 * and are then processed in chunks to the device. The line discipline
1222 * write method will not be invoked in parallel for each device.
1223 */
1224
1225 static ssize_t tty_write(struct file *file, const char __user *buf,
1226 size_t count, loff_t *ppos)
1227 {
1228 struct tty_struct *tty = file_tty(file);
1229 struct tty_ldisc *ld;
1230 ssize_t ret;
1231
1232 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1233 return -EIO;
1234 if (!tty || !tty->ops->write ||
1235 (test_bit(TTY_IO_ERROR, &tty->flags)))
1236 return -EIO;
1237 /* Short term debug to catch buggy drivers */
1238 if (tty->ops->write_room == NULL)
1239 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1240 tty->driver->name);
1241 ld = tty_ldisc_ref_wait(tty);
1242 if (!ld->ops->write)
1243 ret = -EIO;
1244 else
1245 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1246 tty_ldisc_deref(ld);
1247 return ret;
1248 }
1249
1250 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1251 size_t count, loff_t *ppos)
1252 {
1253 struct file *p = NULL;
1254
1255 spin_lock(&redirect_lock);
1256 if (redirect)
1257 p = get_file(redirect);
1258 spin_unlock(&redirect_lock);
1259
1260 if (p) {
1261 ssize_t res;
1262 res = vfs_write(p, buf, count, &p->f_pos);
1263 fput(p);
1264 return res;
1265 }
1266 return tty_write(file, buf, count, ppos);
1267 }
1268
1269 /**
1270 * tty_send_xchar - send priority character
1271 *
1272 * Send a high priority character to the tty even if stopped
1273 *
1274 * Locking: none for xchar method, write ordering for write method.
1275 */
1276
1277 int tty_send_xchar(struct tty_struct *tty, char ch)
1278 {
1279 int was_stopped = tty->stopped;
1280
1281 if (tty->ops->send_xchar) {
1282 tty->ops->send_xchar(tty, ch);
1283 return 0;
1284 }
1285
1286 if (tty_write_lock(tty, 0) < 0)
1287 return -ERESTARTSYS;
1288
1289 if (was_stopped)
1290 start_tty(tty);
1291 tty->ops->write(tty, &ch, 1);
1292 if (was_stopped)
1293 stop_tty(tty);
1294 tty_write_unlock(tty);
1295 return 0;
1296 }
1297
1298 static char ptychar[] = "pqrstuvwxyzabcde";
1299
1300 /**
1301 * pty_line_name - generate name for a pty
1302 * @driver: the tty driver in use
1303 * @index: the minor number
1304 * @p: output buffer of at least 6 bytes
1305 *
1306 * Generate a name from a driver reference and write it to the output
1307 * buffer.
1308 *
1309 * Locking: None
1310 */
1311 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1312 {
1313 int i = index + driver->name_base;
1314 /* ->name is initialized to "ttyp", but "tty" is expected */
1315 sprintf(p, "%s%c%x",
1316 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1317 ptychar[i >> 4 & 0xf], i & 0xf);
1318 }
1319
1320 /**
1321 * tty_line_name - generate name for a tty
1322 * @driver: the tty driver in use
1323 * @index: the minor number
1324 * @p: output buffer of at least 7 bytes
1325 *
1326 * Generate a name from a driver reference and write it to the output
1327 * buffer.
1328 *
1329 * Locking: None
1330 */
1331 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1332 {
1333 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1334 return sprintf(p, "%s", driver->name);
1335 else
1336 return sprintf(p, "%s%d", driver->name,
1337 index + driver->name_base);
1338 }
1339
1340 /**
1341 * tty_driver_lookup_tty() - find an existing tty, if any
1342 * @driver: the driver for the tty
1343 * @idx: the minor number
1344 *
1345 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1346 * driver lookup() method returns an error.
1347 *
1348 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1349 */
1350 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1351 struct inode *inode, int idx)
1352 {
1353 struct tty_struct *tty;
1354
1355 if (driver->ops->lookup)
1356 tty = driver->ops->lookup(driver, inode, idx);
1357 else
1358 tty = driver->ttys[idx];
1359
1360 if (!IS_ERR(tty))
1361 tty_kref_get(tty);
1362 return tty;
1363 }
1364
1365 /**
1366 * tty_init_termios - helper for termios setup
1367 * @tty: the tty to set up
1368 *
1369 * Initialise the termios structures for this tty. Thus runs under
1370 * the tty_mutex currently so we can be relaxed about ordering.
1371 */
1372
1373 int tty_init_termios(struct tty_struct *tty)
1374 {
1375 struct ktermios *tp;
1376 int idx = tty->index;
1377
1378 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1379 tty->termios = tty->driver->init_termios;
1380 else {
1381 /* Check for lazy saved data */
1382 tp = tty->driver->termios[idx];
1383 if (tp != NULL)
1384 tty->termios = *tp;
1385 else
1386 tty->termios = tty->driver->init_termios;
1387 }
1388 /* Compatibility until drivers always set this */
1389 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1390 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1391 return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(tty_init_termios);
1394
1395 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1396 {
1397 int ret = tty_init_termios(tty);
1398 if (ret)
1399 return ret;
1400
1401 tty_driver_kref_get(driver);
1402 tty->count++;
1403 driver->ttys[tty->index] = tty;
1404 return 0;
1405 }
1406 EXPORT_SYMBOL_GPL(tty_standard_install);
1407
1408 /**
1409 * tty_driver_install_tty() - install a tty entry in the driver
1410 * @driver: the driver for the tty
1411 * @tty: the tty
1412 *
1413 * Install a tty object into the driver tables. The tty->index field
1414 * will be set by the time this is called. This method is responsible
1415 * for ensuring any need additional structures are allocated and
1416 * configured.
1417 *
1418 * Locking: tty_mutex for now
1419 */
1420 static int tty_driver_install_tty(struct tty_driver *driver,
1421 struct tty_struct *tty)
1422 {
1423 return driver->ops->install ? driver->ops->install(driver, tty) :
1424 tty_standard_install(driver, tty);
1425 }
1426
1427 /**
1428 * tty_driver_remove_tty() - remove a tty from the driver tables
1429 * @driver: the driver for the tty
1430 * @idx: the minor number
1431 *
1432 * Remvoe a tty object from the driver tables. The tty->index field
1433 * will be set by the time this is called.
1434 *
1435 * Locking: tty_mutex for now
1436 */
1437 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1438 {
1439 if (driver->ops->remove)
1440 driver->ops->remove(driver, tty);
1441 else
1442 driver->ttys[tty->index] = NULL;
1443 }
1444
1445 /*
1446 * tty_reopen() - fast re-open of an open tty
1447 * @tty - the tty to open
1448 *
1449 * Return 0 on success, -errno on error.
1450 * Re-opens on master ptys are not allowed and return -EIO.
1451 *
1452 * Locking: Caller must hold tty_lock
1453 */
1454 static int tty_reopen(struct tty_struct *tty)
1455 {
1456 struct tty_driver *driver = tty->driver;
1457
1458 if (!tty->count)
1459 return -EIO;
1460
1461 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1462 driver->subtype == PTY_TYPE_MASTER)
1463 return -EIO;
1464
1465 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1466 return -EBUSY;
1467
1468 tty->count++;
1469
1470 WARN_ON(!tty->ldisc);
1471
1472 return 0;
1473 }
1474
1475 /**
1476 * tty_init_dev - initialise a tty device
1477 * @driver: tty driver we are opening a device on
1478 * @idx: device index
1479 * @ret_tty: returned tty structure
1480 *
1481 * Prepare a tty device. This may not be a "new" clean device but
1482 * could also be an active device. The pty drivers require special
1483 * handling because of this.
1484 *
1485 * Locking:
1486 * The function is called under the tty_mutex, which
1487 * protects us from the tty struct or driver itself going away.
1488 *
1489 * On exit the tty device has the line discipline attached and
1490 * a reference count of 1. If a pair was created for pty/tty use
1491 * and the other was a pty master then it too has a reference count of 1.
1492 *
1493 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1494 * failed open. The new code protects the open with a mutex, so it's
1495 * really quite straightforward. The mutex locking can probably be
1496 * relaxed for the (most common) case of reopening a tty.
1497 */
1498
1499 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1500 {
1501 struct tty_struct *tty;
1502 int retval;
1503
1504 /*
1505 * First time open is complex, especially for PTY devices.
1506 * This code guarantees that either everything succeeds and the
1507 * TTY is ready for operation, or else the table slots are vacated
1508 * and the allocated memory released. (Except that the termios
1509 * and locked termios may be retained.)
1510 */
1511
1512 if (!try_module_get(driver->owner))
1513 return ERR_PTR(-ENODEV);
1514
1515 tty = alloc_tty_struct(driver, idx);
1516 if (!tty) {
1517 retval = -ENOMEM;
1518 goto err_module_put;
1519 }
1520
1521 tty_lock(tty);
1522 retval = tty_driver_install_tty(driver, tty);
1523 if (retval < 0)
1524 goto err_deinit_tty;
1525
1526 if (!tty->port)
1527 tty->port = driver->ports[idx];
1528
1529 WARN_RATELIMIT(!tty->port,
1530 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1531 __func__, tty->driver->name);
1532
1533 tty->port->itty = tty;
1534
1535 /*
1536 * Structures all installed ... call the ldisc open routines.
1537 * If we fail here just call release_tty to clean up. No need
1538 * to decrement the use counts, as release_tty doesn't care.
1539 */
1540 retval = tty_ldisc_setup(tty, tty->link);
1541 if (retval)
1542 goto err_release_tty;
1543 /* Return the tty locked so that it cannot vanish under the caller */
1544 return tty;
1545
1546 err_deinit_tty:
1547 tty_unlock(tty);
1548 deinitialize_tty_struct(tty);
1549 free_tty_struct(tty);
1550 err_module_put:
1551 module_put(driver->owner);
1552 return ERR_PTR(retval);
1553
1554 /* call the tty release_tty routine to clean out this slot */
1555 err_release_tty:
1556 tty_unlock(tty);
1557 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1558 "clearing slot %d\n", idx);
1559 release_tty(tty, idx);
1560 return ERR_PTR(retval);
1561 }
1562
1563 void tty_free_termios(struct tty_struct *tty)
1564 {
1565 struct ktermios *tp;
1566 int idx = tty->index;
1567
1568 /* If the port is going to reset then it has no termios to save */
1569 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1570 return;
1571
1572 /* Stash the termios data */
1573 tp = tty->driver->termios[idx];
1574 if (tp == NULL) {
1575 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1576 if (tp == NULL) {
1577 pr_warn("tty: no memory to save termios state.\n");
1578 return;
1579 }
1580 tty->driver->termios[idx] = tp;
1581 }
1582 *tp = tty->termios;
1583 }
1584 EXPORT_SYMBOL(tty_free_termios);
1585
1586 /**
1587 * tty_flush_works - flush all works of a tty/pty pair
1588 * @tty: tty device to flush works for (or either end of a pty pair)
1589 *
1590 * Sync flush all works belonging to @tty (and the 'other' tty).
1591 */
1592 static void tty_flush_works(struct tty_struct *tty)
1593 {
1594 flush_work(&tty->SAK_work);
1595 flush_work(&tty->hangup_work);
1596 if (tty->link) {
1597 flush_work(&tty->link->SAK_work);
1598 flush_work(&tty->link->hangup_work);
1599 }
1600 }
1601
1602 /**
1603 * release_one_tty - release tty structure memory
1604 * @kref: kref of tty we are obliterating
1605 *
1606 * Releases memory associated with a tty structure, and clears out the
1607 * driver table slots. This function is called when a device is no longer
1608 * in use. It also gets called when setup of a device fails.
1609 *
1610 * Locking:
1611 * takes the file list lock internally when working on the list
1612 * of ttys that the driver keeps.
1613 *
1614 * This method gets called from a work queue so that the driver private
1615 * cleanup ops can sleep (needed for USB at least)
1616 */
1617 static void release_one_tty(struct work_struct *work)
1618 {
1619 struct tty_struct *tty =
1620 container_of(work, struct tty_struct, hangup_work);
1621 struct tty_driver *driver = tty->driver;
1622 struct module *owner = driver->owner;
1623
1624 if (tty->ops->cleanup)
1625 tty->ops->cleanup(tty);
1626
1627 tty->magic = 0;
1628 tty_driver_kref_put(driver);
1629 module_put(owner);
1630
1631 spin_lock(&tty_files_lock);
1632 list_del_init(&tty->tty_files);
1633 spin_unlock(&tty_files_lock);
1634
1635 put_pid(tty->pgrp);
1636 put_pid(tty->session);
1637 free_tty_struct(tty);
1638 }
1639
1640 static void queue_release_one_tty(struct kref *kref)
1641 {
1642 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1643
1644 /* The hangup queue is now free so we can reuse it rather than
1645 waste a chunk of memory for each port */
1646 INIT_WORK(&tty->hangup_work, release_one_tty);
1647 schedule_work(&tty->hangup_work);
1648 }
1649
1650 /**
1651 * tty_kref_put - release a tty kref
1652 * @tty: tty device
1653 *
1654 * Release a reference to a tty device and if need be let the kref
1655 * layer destruct the object for us
1656 */
1657
1658 void tty_kref_put(struct tty_struct *tty)
1659 {
1660 if (tty)
1661 kref_put(&tty->kref, queue_release_one_tty);
1662 }
1663 EXPORT_SYMBOL(tty_kref_put);
1664
1665 /**
1666 * release_tty - release tty structure memory
1667 *
1668 * Release both @tty and a possible linked partner (think pty pair),
1669 * and decrement the refcount of the backing module.
1670 *
1671 * Locking:
1672 * tty_mutex
1673 * takes the file list lock internally when working on the list
1674 * of ttys that the driver keeps.
1675 *
1676 */
1677 static void release_tty(struct tty_struct *tty, int idx)
1678 {
1679 /* This should always be true but check for the moment */
1680 WARN_ON(tty->index != idx);
1681 WARN_ON(!mutex_is_locked(&tty_mutex));
1682 if (tty->ops->shutdown)
1683 tty->ops->shutdown(tty);
1684 tty_free_termios(tty);
1685 tty_driver_remove_tty(tty->driver, tty);
1686 tty->port->itty = NULL;
1687 if (tty->link)
1688 tty->link->port->itty = NULL;
1689 cancel_work_sync(&tty->port->buf.work);
1690
1691 tty_kref_put(tty->link);
1692 tty_kref_put(tty);
1693 }
1694
1695 /**
1696 * tty_release_checks - check a tty before real release
1697 * @tty: tty to check
1698 * @o_tty: link of @tty (if any)
1699 * @idx: index of the tty
1700 *
1701 * Performs some paranoid checking before true release of the @tty.
1702 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1703 */
1704 static int tty_release_checks(struct tty_struct *tty, int idx)
1705 {
1706 #ifdef TTY_PARANOIA_CHECK
1707 if (idx < 0 || idx >= tty->driver->num) {
1708 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1709 __func__, tty->name);
1710 return -1;
1711 }
1712
1713 /* not much to check for devpts */
1714 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1715 return 0;
1716
1717 if (tty != tty->driver->ttys[idx]) {
1718 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1719 __func__, idx, tty->name);
1720 return -1;
1721 }
1722 if (tty->driver->other) {
1723 struct tty_struct *o_tty = tty->link;
1724
1725 if (o_tty != tty->driver->other->ttys[idx]) {
1726 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1727 __func__, idx, tty->name);
1728 return -1;
1729 }
1730 if (o_tty->link != tty) {
1731 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1732 return -1;
1733 }
1734 }
1735 #endif
1736 return 0;
1737 }
1738
1739 /**
1740 * tty_release - vfs callback for close
1741 * @inode: inode of tty
1742 * @filp: file pointer for handle to tty
1743 *
1744 * Called the last time each file handle is closed that references
1745 * this tty. There may however be several such references.
1746 *
1747 * Locking:
1748 * Takes bkl. See tty_release_dev
1749 *
1750 * Even releasing the tty structures is a tricky business.. We have
1751 * to be very careful that the structures are all released at the
1752 * same time, as interrupts might otherwise get the wrong pointers.
1753 *
1754 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1755 * lead to double frees or releasing memory still in use.
1756 */
1757
1758 int tty_release(struct inode *inode, struct file *filp)
1759 {
1760 struct tty_struct *tty = file_tty(filp);
1761 struct tty_struct *o_tty = NULL;
1762 int do_sleep, final;
1763 int idx;
1764 long timeout = 0;
1765 int once = 1;
1766
1767 if (tty_paranoia_check(tty, inode, __func__))
1768 return 0;
1769
1770 tty_lock(tty);
1771 check_tty_count(tty, __func__);
1772
1773 __tty_fasync(-1, filp, 0);
1774
1775 idx = tty->index;
1776 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1777 tty->driver->subtype == PTY_TYPE_MASTER)
1778 o_tty = tty->link;
1779
1780 if (tty_release_checks(tty, idx)) {
1781 tty_unlock(tty);
1782 return 0;
1783 }
1784
1785 #ifdef TTY_DEBUG_HANGUP
1786 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1787 tty_name(tty), tty->count);
1788 #endif
1789
1790 if (tty->ops->close)
1791 tty->ops->close(tty, filp);
1792
1793 /* If tty is pty master, lock the slave pty (stable lock order) */
1794 tty_lock_slave(o_tty);
1795
1796 /*
1797 * Sanity check: if tty->count is going to zero, there shouldn't be
1798 * any waiters on tty->read_wait or tty->write_wait. We test the
1799 * wait queues and kick everyone out _before_ actually starting to
1800 * close. This ensures that we won't block while releasing the tty
1801 * structure.
1802 *
1803 * The test for the o_tty closing is necessary, since the master and
1804 * slave sides may close in any order. If the slave side closes out
1805 * first, its count will be one, since the master side holds an open.
1806 * Thus this test wouldn't be triggered at the time the slave closed,
1807 * so we do it now.
1808 */
1809 while (1) {
1810 do_sleep = 0;
1811
1812 if (tty->count <= 1) {
1813 if (waitqueue_active(&tty->read_wait)) {
1814 wake_up_poll(&tty->read_wait, POLLIN);
1815 do_sleep++;
1816 }
1817 if (waitqueue_active(&tty->write_wait)) {
1818 wake_up_poll(&tty->write_wait, POLLOUT);
1819 do_sleep++;
1820 }
1821 }
1822 if (o_tty && o_tty->count <= 1) {
1823 if (waitqueue_active(&o_tty->read_wait)) {
1824 wake_up_poll(&o_tty->read_wait, POLLIN);
1825 do_sleep++;
1826 }
1827 if (waitqueue_active(&o_tty->write_wait)) {
1828 wake_up_poll(&o_tty->write_wait, POLLOUT);
1829 do_sleep++;
1830 }
1831 }
1832 if (!do_sleep)
1833 break;
1834
1835 if (once) {
1836 once = 0;
1837 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1838 __func__, tty_name(tty));
1839 }
1840 schedule_timeout_killable(timeout);
1841 if (timeout < 120 * HZ)
1842 timeout = 2 * timeout + 1;
1843 else
1844 timeout = MAX_SCHEDULE_TIMEOUT;
1845 }
1846
1847 if (o_tty) {
1848 if (--o_tty->count < 0) {
1849 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1850 __func__, o_tty->count, tty_name(o_tty));
1851 o_tty->count = 0;
1852 }
1853 }
1854 if (--tty->count < 0) {
1855 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1856 __func__, tty->count, tty_name(tty));
1857 tty->count = 0;
1858 }
1859
1860 /*
1861 * We've decremented tty->count, so we need to remove this file
1862 * descriptor off the tty->tty_files list; this serves two
1863 * purposes:
1864 * - check_tty_count sees the correct number of file descriptors
1865 * associated with this tty.
1866 * - do_tty_hangup no longer sees this file descriptor as
1867 * something that needs to be handled for hangups.
1868 */
1869 tty_del_file(filp);
1870
1871 /*
1872 * Perform some housekeeping before deciding whether to return.
1873 *
1874 * If _either_ side is closing, make sure there aren't any
1875 * processes that still think tty or o_tty is their controlling
1876 * tty.
1877 */
1878 if (!tty->count) {
1879 read_lock(&tasklist_lock);
1880 session_clear_tty(tty->session);
1881 if (o_tty)
1882 session_clear_tty(o_tty->session);
1883 read_unlock(&tasklist_lock);
1884 }
1885
1886 /* check whether both sides are closing ... */
1887 final = !tty->count && !(o_tty && o_tty->count);
1888
1889 tty_unlock_slave(o_tty);
1890 tty_unlock(tty);
1891
1892 /* At this point, the tty->count == 0 should ensure a dead tty
1893 cannot be re-opened by a racing opener */
1894
1895 if (!final)
1896 return 0;
1897
1898 #ifdef TTY_DEBUG_HANGUP
1899 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty));
1900 #endif
1901 /*
1902 * Ask the line discipline code to release its structures
1903 */
1904 tty_ldisc_release(tty);
1905
1906 /* Wait for pending work before tty destruction commmences */
1907 tty_flush_works(tty);
1908
1909 #ifdef TTY_DEBUG_HANGUP
1910 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__,
1911 tty_name(tty));
1912 #endif
1913 /*
1914 * The release_tty function takes care of the details of clearing
1915 * the slots and preserving the termios structure. The tty_unlock_pair
1916 * should be safe as we keep a kref while the tty is locked (so the
1917 * unlock never unlocks a freed tty).
1918 */
1919 mutex_lock(&tty_mutex);
1920 release_tty(tty, idx);
1921 mutex_unlock(&tty_mutex);
1922
1923 return 0;
1924 }
1925
1926 /**
1927 * tty_open_current_tty - get locked tty of current task
1928 * @device: device number
1929 * @filp: file pointer to tty
1930 * @return: locked tty of the current task iff @device is /dev/tty
1931 *
1932 * Performs a re-open of the current task's controlling tty.
1933 *
1934 * We cannot return driver and index like for the other nodes because
1935 * devpts will not work then. It expects inodes to be from devpts FS.
1936 */
1937 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1938 {
1939 struct tty_struct *tty;
1940 int retval;
1941
1942 if (device != MKDEV(TTYAUX_MAJOR, 0))
1943 return NULL;
1944
1945 tty = get_current_tty();
1946 if (!tty)
1947 return ERR_PTR(-ENXIO);
1948
1949 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1950 /* noctty = 1; */
1951 tty_lock(tty);
1952 tty_kref_put(tty); /* safe to drop the kref now */
1953
1954 retval = tty_reopen(tty);
1955 if (retval < 0) {
1956 tty_unlock(tty);
1957 tty = ERR_PTR(retval);
1958 }
1959 return tty;
1960 }
1961
1962 /**
1963 * tty_lookup_driver - lookup a tty driver for a given device file
1964 * @device: device number
1965 * @filp: file pointer to tty
1966 * @noctty: set if the device should not become a controlling tty
1967 * @index: index for the device in the @return driver
1968 * @return: driver for this inode (with increased refcount)
1969 *
1970 * If @return is not erroneous, the caller is responsible to decrement the
1971 * refcount by tty_driver_kref_put.
1972 *
1973 * Locking: tty_mutex protects get_tty_driver
1974 */
1975 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1976 int *noctty, int *index)
1977 {
1978 struct tty_driver *driver;
1979
1980 switch (device) {
1981 #ifdef CONFIG_VT
1982 case MKDEV(TTY_MAJOR, 0): {
1983 extern struct tty_driver *console_driver;
1984 driver = tty_driver_kref_get(console_driver);
1985 *index = fg_console;
1986 *noctty = 1;
1987 break;
1988 }
1989 #endif
1990 case MKDEV(TTYAUX_MAJOR, 1): {
1991 struct tty_driver *console_driver = console_device(index);
1992 if (console_driver) {
1993 driver = tty_driver_kref_get(console_driver);
1994 if (driver) {
1995 /* Don't let /dev/console block */
1996 filp->f_flags |= O_NONBLOCK;
1997 *noctty = 1;
1998 break;
1999 }
2000 }
2001 return ERR_PTR(-ENODEV);
2002 }
2003 default:
2004 driver = get_tty_driver(device, index);
2005 if (!driver)
2006 return ERR_PTR(-ENODEV);
2007 break;
2008 }
2009 return driver;
2010 }
2011
2012 /**
2013 * tty_open - open a tty device
2014 * @inode: inode of device file
2015 * @filp: file pointer to tty
2016 *
2017 * tty_open and tty_release keep up the tty count that contains the
2018 * number of opens done on a tty. We cannot use the inode-count, as
2019 * different inodes might point to the same tty.
2020 *
2021 * Open-counting is needed for pty masters, as well as for keeping
2022 * track of serial lines: DTR is dropped when the last close happens.
2023 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2024 *
2025 * The termios state of a pty is reset on first open so that
2026 * settings don't persist across reuse.
2027 *
2028 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2029 * tty->count should protect the rest.
2030 * ->siglock protects ->signal/->sighand
2031 *
2032 * Note: the tty_unlock/lock cases without a ref are only safe due to
2033 * tty_mutex
2034 */
2035
2036 static int tty_open(struct inode *inode, struct file *filp)
2037 {
2038 struct tty_struct *tty;
2039 int noctty, retval;
2040 struct tty_driver *driver = NULL;
2041 int index;
2042 dev_t device = inode->i_rdev;
2043 unsigned saved_flags = filp->f_flags;
2044
2045 nonseekable_open(inode, filp);
2046
2047 retry_open:
2048 retval = tty_alloc_file(filp);
2049 if (retval)
2050 return -ENOMEM;
2051
2052 noctty = filp->f_flags & O_NOCTTY;
2053 index = -1;
2054 retval = 0;
2055
2056 tty = tty_open_current_tty(device, filp);
2057 if (!tty) {
2058 mutex_lock(&tty_mutex);
2059 driver = tty_lookup_driver(device, filp, &noctty, &index);
2060 if (IS_ERR(driver)) {
2061 retval = PTR_ERR(driver);
2062 goto err_unlock;
2063 }
2064
2065 /* check whether we're reopening an existing tty */
2066 tty = tty_driver_lookup_tty(driver, inode, index);
2067 if (IS_ERR(tty)) {
2068 retval = PTR_ERR(tty);
2069 goto err_unlock;
2070 }
2071
2072 if (tty) {
2073 mutex_unlock(&tty_mutex);
2074 tty_lock(tty);
2075 /* safe to drop the kref from tty_driver_lookup_tty() */
2076 tty_kref_put(tty);
2077 retval = tty_reopen(tty);
2078 if (retval < 0) {
2079 tty_unlock(tty);
2080 tty = ERR_PTR(retval);
2081 }
2082 } else { /* Returns with the tty_lock held for now */
2083 tty = tty_init_dev(driver, index);
2084 mutex_unlock(&tty_mutex);
2085 }
2086
2087 tty_driver_kref_put(driver);
2088 }
2089
2090 if (IS_ERR(tty)) {
2091 retval = PTR_ERR(tty);
2092 goto err_file;
2093 }
2094
2095 tty_add_file(tty, filp);
2096
2097 check_tty_count(tty, __func__);
2098 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2099 tty->driver->subtype == PTY_TYPE_MASTER)
2100 noctty = 1;
2101 #ifdef TTY_DEBUG_HANGUP
2102 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2103 #endif
2104 if (tty->ops->open)
2105 retval = tty->ops->open(tty, filp);
2106 else
2107 retval = -ENODEV;
2108 filp->f_flags = saved_flags;
2109
2110 if (retval) {
2111 #ifdef TTY_DEBUG_HANGUP
2112 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2113 retval, tty->name);
2114 #endif
2115 tty_unlock(tty); /* need to call tty_release without BTM */
2116 tty_release(inode, filp);
2117 if (retval != -ERESTARTSYS)
2118 return retval;
2119
2120 if (signal_pending(current))
2121 return retval;
2122
2123 schedule();
2124 /*
2125 * Need to reset f_op in case a hangup happened.
2126 */
2127 if (tty_hung_up_p(filp))
2128 filp->f_op = &tty_fops;
2129 goto retry_open;
2130 }
2131 clear_bit(TTY_HUPPED, &tty->flags);
2132
2133
2134 read_lock(&tasklist_lock);
2135 spin_lock_irq(&current->sighand->siglock);
2136 if (!noctty &&
2137 current->signal->leader &&
2138 !current->signal->tty &&
2139 tty->session == NULL)
2140 __proc_set_tty(tty);
2141 spin_unlock_irq(&current->sighand->siglock);
2142 read_unlock(&tasklist_lock);
2143 tty_unlock(tty);
2144 return 0;
2145 err_unlock:
2146 mutex_unlock(&tty_mutex);
2147 /* after locks to avoid deadlock */
2148 if (!IS_ERR_OR_NULL(driver))
2149 tty_driver_kref_put(driver);
2150 err_file:
2151 tty_free_file(filp);
2152 return retval;
2153 }
2154
2155
2156
2157 /**
2158 * tty_poll - check tty status
2159 * @filp: file being polled
2160 * @wait: poll wait structures to update
2161 *
2162 * Call the line discipline polling method to obtain the poll
2163 * status of the device.
2164 *
2165 * Locking: locks called line discipline but ldisc poll method
2166 * may be re-entered freely by other callers.
2167 */
2168
2169 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2170 {
2171 struct tty_struct *tty = file_tty(filp);
2172 struct tty_ldisc *ld;
2173 int ret = 0;
2174
2175 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2176 return 0;
2177
2178 ld = tty_ldisc_ref_wait(tty);
2179 if (ld->ops->poll)
2180 ret = ld->ops->poll(tty, filp, wait);
2181 tty_ldisc_deref(ld);
2182 return ret;
2183 }
2184
2185 static int __tty_fasync(int fd, struct file *filp, int on)
2186 {
2187 struct tty_struct *tty = file_tty(filp);
2188 struct tty_ldisc *ldisc;
2189 unsigned long flags;
2190 int retval = 0;
2191
2192 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2193 goto out;
2194
2195 retval = fasync_helper(fd, filp, on, &tty->fasync);
2196 if (retval <= 0)
2197 goto out;
2198
2199 ldisc = tty_ldisc_ref(tty);
2200 if (ldisc) {
2201 if (ldisc->ops->fasync)
2202 ldisc->ops->fasync(tty, on);
2203 tty_ldisc_deref(ldisc);
2204 }
2205
2206 if (on) {
2207 enum pid_type type;
2208 struct pid *pid;
2209
2210 spin_lock_irqsave(&tty->ctrl_lock, flags);
2211 if (tty->pgrp) {
2212 pid = tty->pgrp;
2213 type = PIDTYPE_PGID;
2214 } else {
2215 pid = task_pid(current);
2216 type = PIDTYPE_PID;
2217 }
2218 get_pid(pid);
2219 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2220 __f_setown(filp, pid, type, 0);
2221 put_pid(pid);
2222 retval = 0;
2223 }
2224 out:
2225 return retval;
2226 }
2227
2228 static int tty_fasync(int fd, struct file *filp, int on)
2229 {
2230 struct tty_struct *tty = file_tty(filp);
2231 int retval;
2232
2233 tty_lock(tty);
2234 retval = __tty_fasync(fd, filp, on);
2235 tty_unlock(tty);
2236
2237 return retval;
2238 }
2239
2240 /**
2241 * tiocsti - fake input character
2242 * @tty: tty to fake input into
2243 * @p: pointer to character
2244 *
2245 * Fake input to a tty device. Does the necessary locking and
2246 * input management.
2247 *
2248 * FIXME: does not honour flow control ??
2249 *
2250 * Locking:
2251 * Called functions take tty_ldiscs_lock
2252 * current->signal->tty check is safe without locks
2253 *
2254 * FIXME: may race normal receive processing
2255 */
2256
2257 static int tiocsti(struct tty_struct *tty, char __user *p)
2258 {
2259 char ch, mbz = 0;
2260 struct tty_ldisc *ld;
2261
2262 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2263 return -EPERM;
2264 if (get_user(ch, p))
2265 return -EFAULT;
2266 tty_audit_tiocsti(tty, ch);
2267 ld = tty_ldisc_ref_wait(tty);
2268 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2269 tty_ldisc_deref(ld);
2270 return 0;
2271 }
2272
2273 /**
2274 * tiocgwinsz - implement window query ioctl
2275 * @tty; tty
2276 * @arg: user buffer for result
2277 *
2278 * Copies the kernel idea of the window size into the user buffer.
2279 *
2280 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2281 * is consistent.
2282 */
2283
2284 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2285 {
2286 int err;
2287
2288 mutex_lock(&tty->winsize_mutex);
2289 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2290 mutex_unlock(&tty->winsize_mutex);
2291
2292 return err ? -EFAULT: 0;
2293 }
2294
2295 /**
2296 * tty_do_resize - resize event
2297 * @tty: tty being resized
2298 * @rows: rows (character)
2299 * @cols: cols (character)
2300 *
2301 * Update the termios variables and send the necessary signals to
2302 * peform a terminal resize correctly
2303 */
2304
2305 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2306 {
2307 struct pid *pgrp;
2308
2309 /* Lock the tty */
2310 mutex_lock(&tty->winsize_mutex);
2311 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2312 goto done;
2313
2314 /* Signal the foreground process group */
2315 pgrp = tty_get_pgrp(tty);
2316 if (pgrp)
2317 kill_pgrp(pgrp, SIGWINCH, 1);
2318 put_pid(pgrp);
2319
2320 tty->winsize = *ws;
2321 done:
2322 mutex_unlock(&tty->winsize_mutex);
2323 return 0;
2324 }
2325 EXPORT_SYMBOL(tty_do_resize);
2326
2327 /**
2328 * tiocswinsz - implement window size set ioctl
2329 * @tty; tty side of tty
2330 * @arg: user buffer for result
2331 *
2332 * Copies the user idea of the window size to the kernel. Traditionally
2333 * this is just advisory information but for the Linux console it
2334 * actually has driver level meaning and triggers a VC resize.
2335 *
2336 * Locking:
2337 * Driver dependent. The default do_resize method takes the
2338 * tty termios mutex and ctrl_lock. The console takes its own lock
2339 * then calls into the default method.
2340 */
2341
2342 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2343 {
2344 struct winsize tmp_ws;
2345 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2346 return -EFAULT;
2347
2348 if (tty->ops->resize)
2349 return tty->ops->resize(tty, &tmp_ws);
2350 else
2351 return tty_do_resize(tty, &tmp_ws);
2352 }
2353
2354 /**
2355 * tioccons - allow admin to move logical console
2356 * @file: the file to become console
2357 *
2358 * Allow the administrator to move the redirected console device
2359 *
2360 * Locking: uses redirect_lock to guard the redirect information
2361 */
2362
2363 static int tioccons(struct file *file)
2364 {
2365 if (!capable(CAP_SYS_ADMIN))
2366 return -EPERM;
2367 if (file->f_op->write == redirected_tty_write) {
2368 struct file *f;
2369 spin_lock(&redirect_lock);
2370 f = redirect;
2371 redirect = NULL;
2372 spin_unlock(&redirect_lock);
2373 if (f)
2374 fput(f);
2375 return 0;
2376 }
2377 spin_lock(&redirect_lock);
2378 if (redirect) {
2379 spin_unlock(&redirect_lock);
2380 return -EBUSY;
2381 }
2382 redirect = get_file(file);
2383 spin_unlock(&redirect_lock);
2384 return 0;
2385 }
2386
2387 /**
2388 * fionbio - non blocking ioctl
2389 * @file: file to set blocking value
2390 * @p: user parameter
2391 *
2392 * Historical tty interfaces had a blocking control ioctl before
2393 * the generic functionality existed. This piece of history is preserved
2394 * in the expected tty API of posix OS's.
2395 *
2396 * Locking: none, the open file handle ensures it won't go away.
2397 */
2398
2399 static int fionbio(struct file *file, int __user *p)
2400 {
2401 int nonblock;
2402
2403 if (get_user(nonblock, p))
2404 return -EFAULT;
2405
2406 spin_lock(&file->f_lock);
2407 if (nonblock)
2408 file->f_flags |= O_NONBLOCK;
2409 else
2410 file->f_flags &= ~O_NONBLOCK;
2411 spin_unlock(&file->f_lock);
2412 return 0;
2413 }
2414
2415 /**
2416 * tiocsctty - set controlling tty
2417 * @tty: tty structure
2418 * @arg: user argument
2419 *
2420 * This ioctl is used to manage job control. It permits a session
2421 * leader to set this tty as the controlling tty for the session.
2422 *
2423 * Locking:
2424 * Takes tty_lock() to serialize proc_set_tty() for this tty
2425 * Takes tasklist_lock internally to walk sessions
2426 * Takes ->siglock() when updating signal->tty
2427 */
2428
2429 static int tiocsctty(struct tty_struct *tty, int arg)
2430 {
2431 int ret = 0;
2432
2433 tty_lock(tty);
2434 read_lock(&tasklist_lock);
2435
2436 if (current->signal->leader && (task_session(current) == tty->session))
2437 goto unlock;
2438
2439 /*
2440 * The process must be a session leader and
2441 * not have a controlling tty already.
2442 */
2443 if (!current->signal->leader || current->signal->tty) {
2444 ret = -EPERM;
2445 goto unlock;
2446 }
2447
2448 if (tty->session) {
2449 /*
2450 * This tty is already the controlling
2451 * tty for another session group!
2452 */
2453 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2454 /*
2455 * Steal it away
2456 */
2457 session_clear_tty(tty->session);
2458 } else {
2459 ret = -EPERM;
2460 goto unlock;
2461 }
2462 }
2463 proc_set_tty(tty);
2464 unlock:
2465 read_unlock(&tasklist_lock);
2466 tty_unlock(tty);
2467 return ret;
2468 }
2469
2470 /**
2471 * tty_get_pgrp - return a ref counted pgrp pid
2472 * @tty: tty to read
2473 *
2474 * Returns a refcounted instance of the pid struct for the process
2475 * group controlling the tty.
2476 */
2477
2478 struct pid *tty_get_pgrp(struct tty_struct *tty)
2479 {
2480 unsigned long flags;
2481 struct pid *pgrp;
2482
2483 spin_lock_irqsave(&tty->ctrl_lock, flags);
2484 pgrp = get_pid(tty->pgrp);
2485 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2486
2487 return pgrp;
2488 }
2489 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2490
2491 /*
2492 * This checks not only the pgrp, but falls back on the pid if no
2493 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2494 * without this...
2495 *
2496 * The caller must hold rcu lock or the tasklist lock.
2497 */
2498 static struct pid *session_of_pgrp(struct pid *pgrp)
2499 {
2500 struct task_struct *p;
2501 struct pid *sid = NULL;
2502
2503 p = pid_task(pgrp, PIDTYPE_PGID);
2504 if (p == NULL)
2505 p = pid_task(pgrp, PIDTYPE_PID);
2506 if (p != NULL)
2507 sid = task_session(p);
2508
2509 return sid;
2510 }
2511
2512 /**
2513 * tiocgpgrp - get process group
2514 * @tty: tty passed by user
2515 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2516 * @p: returned pid
2517 *
2518 * Obtain the process group of the tty. If there is no process group
2519 * return an error.
2520 *
2521 * Locking: none. Reference to current->signal->tty is safe.
2522 */
2523
2524 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2525 {
2526 struct pid *pid;
2527 int ret;
2528 /*
2529 * (tty == real_tty) is a cheap way of
2530 * testing if the tty is NOT a master pty.
2531 */
2532 if (tty == real_tty && current->signal->tty != real_tty)
2533 return -ENOTTY;
2534 pid = tty_get_pgrp(real_tty);
2535 ret = put_user(pid_vnr(pid), p);
2536 put_pid(pid);
2537 return ret;
2538 }
2539
2540 /**
2541 * tiocspgrp - attempt to set process group
2542 * @tty: tty passed by user
2543 * @real_tty: tty side device matching tty passed by user
2544 * @p: pid pointer
2545 *
2546 * Set the process group of the tty to the session passed. Only
2547 * permitted where the tty session is our session.
2548 *
2549 * Locking: RCU, ctrl lock
2550 */
2551
2552 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2553 {
2554 struct pid *pgrp;
2555 pid_t pgrp_nr;
2556 int retval = tty_check_change(real_tty);
2557 unsigned long flags;
2558
2559 if (retval == -EIO)
2560 return -ENOTTY;
2561 if (retval)
2562 return retval;
2563 if (!current->signal->tty ||
2564 (current->signal->tty != real_tty) ||
2565 (real_tty->session != task_session(current)))
2566 return -ENOTTY;
2567 if (get_user(pgrp_nr, p))
2568 return -EFAULT;
2569 if (pgrp_nr < 0)
2570 return -EINVAL;
2571 rcu_read_lock();
2572 pgrp = find_vpid(pgrp_nr);
2573 retval = -ESRCH;
2574 if (!pgrp)
2575 goto out_unlock;
2576 retval = -EPERM;
2577 if (session_of_pgrp(pgrp) != task_session(current))
2578 goto out_unlock;
2579 retval = 0;
2580 spin_lock_irqsave(&tty->ctrl_lock, flags);
2581 put_pid(real_tty->pgrp);
2582 real_tty->pgrp = get_pid(pgrp);
2583 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2584 out_unlock:
2585 rcu_read_unlock();
2586 return retval;
2587 }
2588
2589 /**
2590 * tiocgsid - get session id
2591 * @tty: tty passed by user
2592 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2593 * @p: pointer to returned session id
2594 *
2595 * Obtain the session id of the tty. If there is no session
2596 * return an error.
2597 *
2598 * Locking: none. Reference to current->signal->tty is safe.
2599 */
2600
2601 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2602 {
2603 /*
2604 * (tty == real_tty) is a cheap way of
2605 * testing if the tty is NOT a master pty.
2606 */
2607 if (tty == real_tty && current->signal->tty != real_tty)
2608 return -ENOTTY;
2609 if (!real_tty->session)
2610 return -ENOTTY;
2611 return put_user(pid_vnr(real_tty->session), p);
2612 }
2613
2614 /**
2615 * tiocsetd - set line discipline
2616 * @tty: tty device
2617 * @p: pointer to user data
2618 *
2619 * Set the line discipline according to user request.
2620 *
2621 * Locking: see tty_set_ldisc, this function is just a helper
2622 */
2623
2624 static int tiocsetd(struct tty_struct *tty, int __user *p)
2625 {
2626 int ldisc;
2627 int ret;
2628
2629 if (get_user(ldisc, p))
2630 return -EFAULT;
2631
2632 ret = tty_set_ldisc(tty, ldisc);
2633
2634 return ret;
2635 }
2636
2637 /**
2638 * send_break - performed time break
2639 * @tty: device to break on
2640 * @duration: timeout in mS
2641 *
2642 * Perform a timed break on hardware that lacks its own driver level
2643 * timed break functionality.
2644 *
2645 * Locking:
2646 * atomic_write_lock serializes
2647 *
2648 */
2649
2650 static int send_break(struct tty_struct *tty, unsigned int duration)
2651 {
2652 int retval;
2653
2654 if (tty->ops->break_ctl == NULL)
2655 return 0;
2656
2657 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2658 retval = tty->ops->break_ctl(tty, duration);
2659 else {
2660 /* Do the work ourselves */
2661 if (tty_write_lock(tty, 0) < 0)
2662 return -EINTR;
2663 retval = tty->ops->break_ctl(tty, -1);
2664 if (retval)
2665 goto out;
2666 if (!signal_pending(current))
2667 msleep_interruptible(duration);
2668 retval = tty->ops->break_ctl(tty, 0);
2669 out:
2670 tty_write_unlock(tty);
2671 if (signal_pending(current))
2672 retval = -EINTR;
2673 }
2674 return retval;
2675 }
2676
2677 /**
2678 * tty_tiocmget - get modem status
2679 * @tty: tty device
2680 * @file: user file pointer
2681 * @p: pointer to result
2682 *
2683 * Obtain the modem status bits from the tty driver if the feature
2684 * is supported. Return -EINVAL if it is not available.
2685 *
2686 * Locking: none (up to the driver)
2687 */
2688
2689 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2690 {
2691 int retval = -EINVAL;
2692
2693 if (tty->ops->tiocmget) {
2694 retval = tty->ops->tiocmget(tty);
2695
2696 if (retval >= 0)
2697 retval = put_user(retval, p);
2698 }
2699 return retval;
2700 }
2701
2702 /**
2703 * tty_tiocmset - set modem status
2704 * @tty: tty device
2705 * @cmd: command - clear bits, set bits or set all
2706 * @p: pointer to desired bits
2707 *
2708 * Set the modem status bits from the tty driver if the feature
2709 * is supported. Return -EINVAL if it is not available.
2710 *
2711 * Locking: none (up to the driver)
2712 */
2713
2714 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2715 unsigned __user *p)
2716 {
2717 int retval;
2718 unsigned int set, clear, val;
2719
2720 if (tty->ops->tiocmset == NULL)
2721 return -EINVAL;
2722
2723 retval = get_user(val, p);
2724 if (retval)
2725 return retval;
2726 set = clear = 0;
2727 switch (cmd) {
2728 case TIOCMBIS:
2729 set = val;
2730 break;
2731 case TIOCMBIC:
2732 clear = val;
2733 break;
2734 case TIOCMSET:
2735 set = val;
2736 clear = ~val;
2737 break;
2738 }
2739 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2740 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2741 return tty->ops->tiocmset(tty, set, clear);
2742 }
2743
2744 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2745 {
2746 int retval = -EINVAL;
2747 struct serial_icounter_struct icount;
2748 memset(&icount, 0, sizeof(icount));
2749 if (tty->ops->get_icount)
2750 retval = tty->ops->get_icount(tty, &icount);
2751 if (retval != 0)
2752 return retval;
2753 if (copy_to_user(arg, &icount, sizeof(icount)))
2754 return -EFAULT;
2755 return 0;
2756 }
2757
2758 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2759 {
2760 static DEFINE_RATELIMIT_STATE(depr_flags,
2761 DEFAULT_RATELIMIT_INTERVAL,
2762 DEFAULT_RATELIMIT_BURST);
2763 char comm[TASK_COMM_LEN];
2764 int flags;
2765
2766 if (get_user(flags, &ss->flags))
2767 return;
2768
2769 flags &= ASYNC_DEPRECATED;
2770
2771 if (flags && __ratelimit(&depr_flags))
2772 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2773 __func__, get_task_comm(comm, current), flags);
2774 }
2775
2776 /*
2777 * if pty, return the slave side (real_tty)
2778 * otherwise, return self
2779 */
2780 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2781 {
2782 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2783 tty->driver->subtype == PTY_TYPE_MASTER)
2784 tty = tty->link;
2785 return tty;
2786 }
2787
2788 /*
2789 * Split this up, as gcc can choke on it otherwise..
2790 */
2791 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2792 {
2793 struct tty_struct *tty = file_tty(file);
2794 struct tty_struct *real_tty;
2795 void __user *p = (void __user *)arg;
2796 int retval;
2797 struct tty_ldisc *ld;
2798
2799 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2800 return -EINVAL;
2801
2802 real_tty = tty_pair_get_tty(tty);
2803
2804 /*
2805 * Factor out some common prep work
2806 */
2807 switch (cmd) {
2808 case TIOCSETD:
2809 case TIOCSBRK:
2810 case TIOCCBRK:
2811 case TCSBRK:
2812 case TCSBRKP:
2813 retval = tty_check_change(tty);
2814 if (retval)
2815 return retval;
2816 if (cmd != TIOCCBRK) {
2817 tty_wait_until_sent(tty, 0);
2818 if (signal_pending(current))
2819 return -EINTR;
2820 }
2821 break;
2822 }
2823
2824 /*
2825 * Now do the stuff.
2826 */
2827 switch (cmd) {
2828 case TIOCSTI:
2829 return tiocsti(tty, p);
2830 case TIOCGWINSZ:
2831 return tiocgwinsz(real_tty, p);
2832 case TIOCSWINSZ:
2833 return tiocswinsz(real_tty, p);
2834 case TIOCCONS:
2835 return real_tty != tty ? -EINVAL : tioccons(file);
2836 case FIONBIO:
2837 return fionbio(file, p);
2838 case TIOCEXCL:
2839 set_bit(TTY_EXCLUSIVE, &tty->flags);
2840 return 0;
2841 case TIOCNXCL:
2842 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2843 return 0;
2844 case TIOCGEXCL:
2845 {
2846 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2847 return put_user(excl, (int __user *)p);
2848 }
2849 case TIOCNOTTY:
2850 if (current->signal->tty != tty)
2851 return -ENOTTY;
2852 no_tty();
2853 return 0;
2854 case TIOCSCTTY:
2855 return tiocsctty(tty, arg);
2856 case TIOCGPGRP:
2857 return tiocgpgrp(tty, real_tty, p);
2858 case TIOCSPGRP:
2859 return tiocspgrp(tty, real_tty, p);
2860 case TIOCGSID:
2861 return tiocgsid(tty, real_tty, p);
2862 case TIOCGETD:
2863 return put_user(tty->ldisc->ops->num, (int __user *)p);
2864 case TIOCSETD:
2865 return tiocsetd(tty, p);
2866 case TIOCVHANGUP:
2867 if (!capable(CAP_SYS_ADMIN))
2868 return -EPERM;
2869 tty_vhangup(tty);
2870 return 0;
2871 case TIOCGDEV:
2872 {
2873 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2874 return put_user(ret, (unsigned int __user *)p);
2875 }
2876 /*
2877 * Break handling
2878 */
2879 case TIOCSBRK: /* Turn break on, unconditionally */
2880 if (tty->ops->break_ctl)
2881 return tty->ops->break_ctl(tty, -1);
2882 return 0;
2883 case TIOCCBRK: /* Turn break off, unconditionally */
2884 if (tty->ops->break_ctl)
2885 return tty->ops->break_ctl(tty, 0);
2886 return 0;
2887 case TCSBRK: /* SVID version: non-zero arg --> no break */
2888 /* non-zero arg means wait for all output data
2889 * to be sent (performed above) but don't send break.
2890 * This is used by the tcdrain() termios function.
2891 */
2892 if (!arg)
2893 return send_break(tty, 250);
2894 return 0;
2895 case TCSBRKP: /* support for POSIX tcsendbreak() */
2896 return send_break(tty, arg ? arg*100 : 250);
2897
2898 case TIOCMGET:
2899 return tty_tiocmget(tty, p);
2900 case TIOCMSET:
2901 case TIOCMBIC:
2902 case TIOCMBIS:
2903 return tty_tiocmset(tty, cmd, p);
2904 case TIOCGICOUNT:
2905 retval = tty_tiocgicount(tty, p);
2906 /* For the moment allow fall through to the old method */
2907 if (retval != -EINVAL)
2908 return retval;
2909 break;
2910 case TCFLSH:
2911 switch (arg) {
2912 case TCIFLUSH:
2913 case TCIOFLUSH:
2914 /* flush tty buffer and allow ldisc to process ioctl */
2915 tty_buffer_flush(tty, NULL);
2916 break;
2917 }
2918 break;
2919 case TIOCSSERIAL:
2920 tty_warn_deprecated_flags(p);
2921 break;
2922 }
2923 if (tty->ops->ioctl) {
2924 retval = tty->ops->ioctl(tty, cmd, arg);
2925 if (retval != -ENOIOCTLCMD)
2926 return retval;
2927 }
2928 ld = tty_ldisc_ref_wait(tty);
2929 retval = -EINVAL;
2930 if (ld->ops->ioctl) {
2931 retval = ld->ops->ioctl(tty, file, cmd, arg);
2932 if (retval == -ENOIOCTLCMD)
2933 retval = -ENOTTY;
2934 }
2935 tty_ldisc_deref(ld);
2936 return retval;
2937 }
2938
2939 #ifdef CONFIG_COMPAT
2940 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2941 unsigned long arg)
2942 {
2943 struct tty_struct *tty = file_tty(file);
2944 struct tty_ldisc *ld;
2945 int retval = -ENOIOCTLCMD;
2946
2947 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2948 return -EINVAL;
2949
2950 if (tty->ops->compat_ioctl) {
2951 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2952 if (retval != -ENOIOCTLCMD)
2953 return retval;
2954 }
2955
2956 ld = tty_ldisc_ref_wait(tty);
2957 if (ld->ops->compat_ioctl)
2958 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2959 else
2960 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2961 tty_ldisc_deref(ld);
2962
2963 return retval;
2964 }
2965 #endif
2966
2967 static int this_tty(const void *t, struct file *file, unsigned fd)
2968 {
2969 if (likely(file->f_op->read != tty_read))
2970 return 0;
2971 return file_tty(file) != t ? 0 : fd + 1;
2972 }
2973
2974 /*
2975 * This implements the "Secure Attention Key" --- the idea is to
2976 * prevent trojan horses by killing all processes associated with this
2977 * tty when the user hits the "Secure Attention Key". Required for
2978 * super-paranoid applications --- see the Orange Book for more details.
2979 *
2980 * This code could be nicer; ideally it should send a HUP, wait a few
2981 * seconds, then send a INT, and then a KILL signal. But you then
2982 * have to coordinate with the init process, since all processes associated
2983 * with the current tty must be dead before the new getty is allowed
2984 * to spawn.
2985 *
2986 * Now, if it would be correct ;-/ The current code has a nasty hole -
2987 * it doesn't catch files in flight. We may send the descriptor to ourselves
2988 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2989 *
2990 * Nasty bug: do_SAK is being called in interrupt context. This can
2991 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2992 */
2993 void __do_SAK(struct tty_struct *tty)
2994 {
2995 #ifdef TTY_SOFT_SAK
2996 tty_hangup(tty);
2997 #else
2998 struct task_struct *g, *p;
2999 struct pid *session;
3000 int i;
3001
3002 if (!tty)
3003 return;
3004 session = tty->session;
3005
3006 tty_ldisc_flush(tty);
3007
3008 tty_driver_flush_buffer(tty);
3009
3010 read_lock(&tasklist_lock);
3011 /* Kill the entire session */
3012 do_each_pid_task(session, PIDTYPE_SID, p) {
3013 printk(KERN_NOTICE "SAK: killed process %d"
3014 " (%s): task_session(p)==tty->session\n",
3015 task_pid_nr(p), p->comm);
3016 send_sig(SIGKILL, p, 1);
3017 } while_each_pid_task(session, PIDTYPE_SID, p);
3018 /* Now kill any processes that happen to have the
3019 * tty open.
3020 */
3021 do_each_thread(g, p) {
3022 if (p->signal->tty == tty) {
3023 printk(KERN_NOTICE "SAK: killed process %d"
3024 " (%s): task_session(p)==tty->session\n",
3025 task_pid_nr(p), p->comm);
3026 send_sig(SIGKILL, p, 1);
3027 continue;
3028 }
3029 task_lock(p);
3030 i = iterate_fd(p->files, 0, this_tty, tty);
3031 if (i != 0) {
3032 printk(KERN_NOTICE "SAK: killed process %d"
3033 " (%s): fd#%d opened to the tty\n",
3034 task_pid_nr(p), p->comm, i - 1);
3035 force_sig(SIGKILL, p);
3036 }
3037 task_unlock(p);
3038 } while_each_thread(g, p);
3039 read_unlock(&tasklist_lock);
3040 #endif
3041 }
3042
3043 static void do_SAK_work(struct work_struct *work)
3044 {
3045 struct tty_struct *tty =
3046 container_of(work, struct tty_struct, SAK_work);
3047 __do_SAK(tty);
3048 }
3049
3050 /*
3051 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3052 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3053 * the values which we write to it will be identical to the values which it
3054 * already has. --akpm
3055 */
3056 void do_SAK(struct tty_struct *tty)
3057 {
3058 if (!tty)
3059 return;
3060 schedule_work(&tty->SAK_work);
3061 }
3062
3063 EXPORT_SYMBOL(do_SAK);
3064
3065 static int dev_match_devt(struct device *dev, const void *data)
3066 {
3067 const dev_t *devt = data;
3068 return dev->devt == *devt;
3069 }
3070
3071 /* Must put_device() after it's unused! */
3072 static struct device *tty_get_device(struct tty_struct *tty)
3073 {
3074 dev_t devt = tty_devnum(tty);
3075 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3076 }
3077
3078
3079 /**
3080 * alloc_tty_struct
3081 *
3082 * This subroutine allocates and initializes a tty structure.
3083 *
3084 * Locking: none - tty in question is not exposed at this point
3085 */
3086
3087 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3088 {
3089 struct tty_struct *tty;
3090
3091 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3092 if (!tty)
3093 return NULL;
3094
3095 kref_init(&tty->kref);
3096 tty->magic = TTY_MAGIC;
3097 tty_ldisc_init(tty);
3098 tty->session = NULL;
3099 tty->pgrp = NULL;
3100 mutex_init(&tty->legacy_mutex);
3101 mutex_init(&tty->throttle_mutex);
3102 init_rwsem(&tty->termios_rwsem);
3103 mutex_init(&tty->winsize_mutex);
3104 init_ldsem(&tty->ldisc_sem);
3105 init_waitqueue_head(&tty->write_wait);
3106 init_waitqueue_head(&tty->read_wait);
3107 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3108 mutex_init(&tty->atomic_write_lock);
3109 spin_lock_init(&tty->ctrl_lock);
3110 spin_lock_init(&tty->flow_lock);
3111 INIT_LIST_HEAD(&tty->tty_files);
3112 INIT_WORK(&tty->SAK_work, do_SAK_work);
3113
3114 tty->driver = driver;
3115 tty->ops = driver->ops;
3116 tty->index = idx;
3117 tty_line_name(driver, idx, tty->name);
3118 tty->dev = tty_get_device(tty);
3119
3120 return tty;
3121 }
3122
3123 /**
3124 * deinitialize_tty_struct
3125 * @tty: tty to deinitialize
3126 *
3127 * This subroutine deinitializes a tty structure that has been newly
3128 * allocated but tty_release cannot be called on that yet.
3129 *
3130 * Locking: none - tty in question must not be exposed at this point
3131 */
3132 void deinitialize_tty_struct(struct tty_struct *tty)
3133 {
3134 tty_ldisc_deinit(tty);
3135 }
3136
3137 /**
3138 * tty_put_char - write one character to a tty
3139 * @tty: tty
3140 * @ch: character
3141 *
3142 * Write one byte to the tty using the provided put_char method
3143 * if present. Returns the number of characters successfully output.
3144 *
3145 * Note: the specific put_char operation in the driver layer may go
3146 * away soon. Don't call it directly, use this method
3147 */
3148
3149 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3150 {
3151 if (tty->ops->put_char)
3152 return tty->ops->put_char(tty, ch);
3153 return tty->ops->write(tty, &ch, 1);
3154 }
3155 EXPORT_SYMBOL_GPL(tty_put_char);
3156
3157 struct class *tty_class;
3158
3159 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3160 unsigned int index, unsigned int count)
3161 {
3162 /* init here, since reused cdevs cause crashes */
3163 cdev_init(&driver->cdevs[index], &tty_fops);
3164 driver->cdevs[index].owner = driver->owner;
3165 return cdev_add(&driver->cdevs[index], dev, count);
3166 }
3167
3168 /**
3169 * tty_register_device - register a tty device
3170 * @driver: the tty driver that describes the tty device
3171 * @index: the index in the tty driver for this tty device
3172 * @device: a struct device that is associated with this tty device.
3173 * This field is optional, if there is no known struct device
3174 * for this tty device it can be set to NULL safely.
3175 *
3176 * Returns a pointer to the struct device for this tty device
3177 * (or ERR_PTR(-EFOO) on error).
3178 *
3179 * This call is required to be made to register an individual tty device
3180 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3181 * that bit is not set, this function should not be called by a tty
3182 * driver.
3183 *
3184 * Locking: ??
3185 */
3186
3187 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3188 struct device *device)
3189 {
3190 return tty_register_device_attr(driver, index, device, NULL, NULL);
3191 }
3192 EXPORT_SYMBOL(tty_register_device);
3193
3194 static void tty_device_create_release(struct device *dev)
3195 {
3196 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3197 kfree(dev);
3198 }
3199
3200 /**
3201 * tty_register_device_attr - register a tty device
3202 * @driver: the tty driver that describes the tty device
3203 * @index: the index in the tty driver for this tty device
3204 * @device: a struct device that is associated with this tty device.
3205 * This field is optional, if there is no known struct device
3206 * for this tty device it can be set to NULL safely.
3207 * @drvdata: Driver data to be set to device.
3208 * @attr_grp: Attribute group to be set on device.
3209 *
3210 * Returns a pointer to the struct device for this tty device
3211 * (or ERR_PTR(-EFOO) on error).
3212 *
3213 * This call is required to be made to register an individual tty device
3214 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3215 * that bit is not set, this function should not be called by a tty
3216 * driver.
3217 *
3218 * Locking: ??
3219 */
3220 struct device *tty_register_device_attr(struct tty_driver *driver,
3221 unsigned index, struct device *device,
3222 void *drvdata,
3223 const struct attribute_group **attr_grp)
3224 {
3225 char name[64];
3226 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3227 struct device *dev = NULL;
3228 int retval = -ENODEV;
3229 bool cdev = false;
3230
3231 if (index >= driver->num) {
3232 printk(KERN_ERR "Attempt to register invalid tty line number "
3233 " (%d).\n", index);
3234 return ERR_PTR(-EINVAL);
3235 }
3236
3237 if (driver->type == TTY_DRIVER_TYPE_PTY)
3238 pty_line_name(driver, index, name);
3239 else
3240 tty_line_name(driver, index, name);
3241
3242 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3243 retval = tty_cdev_add(driver, devt, index, 1);
3244 if (retval)
3245 goto error;
3246 cdev = true;
3247 }
3248
3249 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3250 if (!dev) {
3251 retval = -ENOMEM;
3252 goto error;
3253 }
3254
3255 dev->devt = devt;
3256 dev->class = tty_class;
3257 dev->parent = device;
3258 dev->release = tty_device_create_release;
3259 dev_set_name(dev, "%s", name);
3260 dev->groups = attr_grp;
3261 dev_set_drvdata(dev, drvdata);
3262
3263 retval = device_register(dev);
3264 if (retval)
3265 goto error;
3266
3267 return dev;
3268
3269 error:
3270 put_device(dev);
3271 if (cdev)
3272 cdev_del(&driver->cdevs[index]);
3273 return ERR_PTR(retval);
3274 }
3275 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3276
3277 /**
3278 * tty_unregister_device - unregister a tty device
3279 * @driver: the tty driver that describes the tty device
3280 * @index: the index in the tty driver for this tty device
3281 *
3282 * If a tty device is registered with a call to tty_register_device() then
3283 * this function must be called when the tty device is gone.
3284 *
3285 * Locking: ??
3286 */
3287
3288 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3289 {
3290 device_destroy(tty_class,
3291 MKDEV(driver->major, driver->minor_start) + index);
3292 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3293 cdev_del(&driver->cdevs[index]);
3294 }
3295 EXPORT_SYMBOL(tty_unregister_device);
3296
3297 /**
3298 * __tty_alloc_driver -- allocate tty driver
3299 * @lines: count of lines this driver can handle at most
3300 * @owner: module which is repsonsible for this driver
3301 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3302 *
3303 * This should not be called directly, some of the provided macros should be
3304 * used instead. Use IS_ERR and friends on @retval.
3305 */
3306 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3307 unsigned long flags)
3308 {
3309 struct tty_driver *driver;
3310 unsigned int cdevs = 1;
3311 int err;
3312
3313 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3314 return ERR_PTR(-EINVAL);
3315
3316 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3317 if (!driver)
3318 return ERR_PTR(-ENOMEM);
3319
3320 kref_init(&driver->kref);
3321 driver->magic = TTY_DRIVER_MAGIC;
3322 driver->num = lines;
3323 driver->owner = owner;
3324 driver->flags = flags;
3325
3326 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3327 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3328 GFP_KERNEL);
3329 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3330 GFP_KERNEL);
3331 if (!driver->ttys || !driver->termios) {
3332 err = -ENOMEM;
3333 goto err_free_all;
3334 }
3335 }
3336
3337 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3338 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3339 GFP_KERNEL);
3340 if (!driver->ports) {
3341 err = -ENOMEM;
3342 goto err_free_all;
3343 }
3344 cdevs = lines;
3345 }
3346
3347 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3348 if (!driver->cdevs) {
3349 err = -ENOMEM;
3350 goto err_free_all;
3351 }
3352
3353 return driver;
3354 err_free_all:
3355 kfree(driver->ports);
3356 kfree(driver->ttys);
3357 kfree(driver->termios);
3358 kfree(driver);
3359 return ERR_PTR(err);
3360 }
3361 EXPORT_SYMBOL(__tty_alloc_driver);
3362
3363 static void destruct_tty_driver(struct kref *kref)
3364 {
3365 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3366 int i;
3367 struct ktermios *tp;
3368
3369 if (driver->flags & TTY_DRIVER_INSTALLED) {
3370 /*
3371 * Free the termios and termios_locked structures because
3372 * we don't want to get memory leaks when modular tty
3373 * drivers are removed from the kernel.
3374 */
3375 for (i = 0; i < driver->num; i++) {
3376 tp = driver->termios[i];
3377 if (tp) {
3378 driver->termios[i] = NULL;
3379 kfree(tp);
3380 }
3381 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3382 tty_unregister_device(driver, i);
3383 }
3384 proc_tty_unregister_driver(driver);
3385 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3386 cdev_del(&driver->cdevs[0]);
3387 }
3388 kfree(driver->cdevs);
3389 kfree(driver->ports);
3390 kfree(driver->termios);
3391 kfree(driver->ttys);
3392 kfree(driver);
3393 }
3394
3395 void tty_driver_kref_put(struct tty_driver *driver)
3396 {
3397 kref_put(&driver->kref, destruct_tty_driver);
3398 }
3399 EXPORT_SYMBOL(tty_driver_kref_put);
3400
3401 void tty_set_operations(struct tty_driver *driver,
3402 const struct tty_operations *op)
3403 {
3404 driver->ops = op;
3405 };
3406 EXPORT_SYMBOL(tty_set_operations);
3407
3408 void put_tty_driver(struct tty_driver *d)
3409 {
3410 tty_driver_kref_put(d);
3411 }
3412 EXPORT_SYMBOL(put_tty_driver);
3413
3414 /*
3415 * Called by a tty driver to register itself.
3416 */
3417 int tty_register_driver(struct tty_driver *driver)
3418 {
3419 int error;
3420 int i;
3421 dev_t dev;
3422 struct device *d;
3423
3424 if (!driver->major) {
3425 error = alloc_chrdev_region(&dev, driver->minor_start,
3426 driver->num, driver->name);
3427 if (!error) {
3428 driver->major = MAJOR(dev);
3429 driver->minor_start = MINOR(dev);
3430 }
3431 } else {
3432 dev = MKDEV(driver->major, driver->minor_start);
3433 error = register_chrdev_region(dev, driver->num, driver->name);
3434 }
3435 if (error < 0)
3436 goto err;
3437
3438 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3439 error = tty_cdev_add(driver, dev, 0, driver->num);
3440 if (error)
3441 goto err_unreg_char;
3442 }
3443
3444 mutex_lock(&tty_mutex);
3445 list_add(&driver->tty_drivers, &tty_drivers);
3446 mutex_unlock(&tty_mutex);
3447
3448 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3449 for (i = 0; i < driver->num; i++) {
3450 d = tty_register_device(driver, i, NULL);
3451 if (IS_ERR(d)) {
3452 error = PTR_ERR(d);
3453 goto err_unreg_devs;
3454 }
3455 }
3456 }
3457 proc_tty_register_driver(driver);
3458 driver->flags |= TTY_DRIVER_INSTALLED;
3459 return 0;
3460
3461 err_unreg_devs:
3462 for (i--; i >= 0; i--)
3463 tty_unregister_device(driver, i);
3464
3465 mutex_lock(&tty_mutex);
3466 list_del(&driver->tty_drivers);
3467 mutex_unlock(&tty_mutex);
3468
3469 err_unreg_char:
3470 unregister_chrdev_region(dev, driver->num);
3471 err:
3472 return error;
3473 }
3474 EXPORT_SYMBOL(tty_register_driver);
3475
3476 /*
3477 * Called by a tty driver to unregister itself.
3478 */
3479 int tty_unregister_driver(struct tty_driver *driver)
3480 {
3481 #if 0
3482 /* FIXME */
3483 if (driver->refcount)
3484 return -EBUSY;
3485 #endif
3486 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3487 driver->num);
3488 mutex_lock(&tty_mutex);
3489 list_del(&driver->tty_drivers);
3490 mutex_unlock(&tty_mutex);
3491 return 0;
3492 }
3493
3494 EXPORT_SYMBOL(tty_unregister_driver);
3495
3496 dev_t tty_devnum(struct tty_struct *tty)
3497 {
3498 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3499 }
3500 EXPORT_SYMBOL(tty_devnum);
3501
3502 void tty_default_fops(struct file_operations *fops)
3503 {
3504 *fops = tty_fops;
3505 }
3506
3507 /*
3508 * Initialize the console device. This is called *early*, so
3509 * we can't necessarily depend on lots of kernel help here.
3510 * Just do some early initializations, and do the complex setup
3511 * later.
3512 */
3513 void __init console_init(void)
3514 {
3515 initcall_t *call;
3516
3517 /* Setup the default TTY line discipline. */
3518 tty_ldisc_begin();
3519
3520 /*
3521 * set up the console device so that later boot sequences can
3522 * inform about problems etc..
3523 */
3524 call = __con_initcall_start;
3525 while (call < __con_initcall_end) {
3526 (*call)();
3527 call++;
3528 }
3529 }
3530
3531 static char *tty_devnode(struct device *dev, umode_t *mode)
3532 {
3533 if (!mode)
3534 return NULL;
3535 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3536 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3537 *mode = 0666;
3538 return NULL;
3539 }
3540
3541 static int __init tty_class_init(void)
3542 {
3543 tty_class = class_create(THIS_MODULE, "tty");
3544 if (IS_ERR(tty_class))
3545 return PTR_ERR(tty_class);
3546 tty_class->devnode = tty_devnode;
3547 return 0;
3548 }
3549
3550 postcore_initcall(tty_class_init);
3551
3552 /* 3/2004 jmc: why do these devices exist? */
3553 static struct cdev tty_cdev, console_cdev;
3554
3555 static ssize_t show_cons_active(struct device *dev,
3556 struct device_attribute *attr, char *buf)
3557 {
3558 struct console *cs[16];
3559 int i = 0;
3560 struct console *c;
3561 ssize_t count = 0;
3562
3563 console_lock();
3564 for_each_console(c) {
3565 if (!c->device)
3566 continue;
3567 if (!c->write)
3568 continue;
3569 if ((c->flags & CON_ENABLED) == 0)
3570 continue;
3571 cs[i++] = c;
3572 if (i >= ARRAY_SIZE(cs))
3573 break;
3574 }
3575 while (i--) {
3576 int index = cs[i]->index;
3577 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3578
3579 /* don't resolve tty0 as some programs depend on it */
3580 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3581 count += tty_line_name(drv, index, buf + count);
3582 else
3583 count += sprintf(buf + count, "%s%d",
3584 cs[i]->name, cs[i]->index);
3585
3586 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3587 }
3588 console_unlock();
3589
3590 return count;
3591 }
3592 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3593
3594 static struct attribute *cons_dev_attrs[] = {
3595 &dev_attr_active.attr,
3596 NULL
3597 };
3598
3599 ATTRIBUTE_GROUPS(cons_dev);
3600
3601 static struct device *consdev;
3602
3603 void console_sysfs_notify(void)
3604 {
3605 if (consdev)
3606 sysfs_notify(&consdev->kobj, NULL, "active");
3607 }
3608
3609 /*
3610 * Ok, now we can initialize the rest of the tty devices and can count
3611 * on memory allocations, interrupts etc..
3612 */
3613 int __init tty_init(void)
3614 {
3615 cdev_init(&tty_cdev, &tty_fops);
3616 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3617 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3618 panic("Couldn't register /dev/tty driver\n");
3619 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3620
3621 cdev_init(&console_cdev, &console_fops);
3622 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3623 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3624 panic("Couldn't register /dev/console driver\n");
3625 consdev = device_create_with_groups(tty_class, NULL,
3626 MKDEV(TTYAUX_MAJOR, 1), NULL,
3627 cons_dev_groups, "console");
3628 if (IS_ERR(consdev))
3629 consdev = NULL;
3630
3631 #ifdef CONFIG_VT
3632 vty_init(&console_fops);
3633 #endif
3634 return 0;
3635 }
3636
This page took 0.126168 seconds and 5 git commands to generate.