drm/nouveau: add lockdep annotations
[deliverable/linux.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42
43 #include <linux/usb.h>
44 #include <linux/usb/hcd.h>
45
46 #include "usb.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52 * USB Host Controller Driver framework
53 *
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
56 *
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
61 *
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
67 *
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
72 *
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75 *
76 * HISTORY:
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
80 */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS 64
94 struct usb_busmap {
95 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117 return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123 * Sharable chunks of root hub code.
124 */
125
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
179
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
210 Bit 7: must be set,
211 6: Self-powered,
212 5: Remote wakeup,
213 4..0: resvd */
214 0x00, /* __u8 MaxPower; */
215
216 /* USB 1.1:
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
219 *
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
223 * sometimes settable
224 * NOT IMPLEMENTED
225 */
226
227 /* one interface */
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
237
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
257 Bit 7: must be set,
258 6: Self-powered,
259 5: Remote wakeup,
260 4..0: resvd */
261 0x00, /* __u8 MaxPower; */
262
263 /* USB 1.1:
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
266 *
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
270 * sometimes settable
271 * NOT IMPLEMENTED
272 */
273
274 /* one interface */
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
284
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x1f, 0x00, /* __le16 wTotalLength; */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
305 Bit 7: must be set,
306 6: Self-powered,
307 5: Remote wakeup,
308 4..0: resvd */
309 0x00, /* __u8 MaxPower; */
310
311 /* one interface */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
321
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
331
332 /* one SuperSpeed endpoint companion descriptor */
333 0x06, /* __u8 ss_bLength */
334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339
340 /* authorized_default behaviour:
341 * -1 is authorized for all devices except wireless (old behaviour)
342 * 0 is unauthorized for all devices
343 * 1 is authorized for all devices
344 */
345 static int authorized_default = -1;
346 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347 MODULE_PARM_DESC(authorized_default,
348 "Default USB device authorization: 0 is not authorized, 1 is "
349 "authorized, -1 is authorized except for wireless USB (default, "
350 "old behaviour");
351 /*-------------------------------------------------------------------------*/
352
353 /**
354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357 * @len: Length (in bytes; may be odd) of descriptor buffer.
358 *
359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360 * buflen, whichever is less.
361 *
362 * USB String descriptors can contain at most 126 characters; input
363 * strings longer than that are truncated.
364 */
365 static unsigned
366 ascii2desc(char const *s, u8 *buf, unsigned len)
367 {
368 unsigned n, t = 2 + 2*strlen(s);
369
370 if (t > 254)
371 t = 254; /* Longest possible UTF string descriptor */
372 if (len > t)
373 len = t;
374
375 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
376
377 n = len;
378 while (n--) {
379 *buf++ = t;
380 if (!n--)
381 break;
382 *buf++ = t >> 8;
383 t = (unsigned char)*s++;
384 }
385 return len;
386 }
387
388 /**
389 * rh_string() - provides string descriptors for root hub
390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391 * @hcd: the host controller for this root hub
392 * @data: buffer for output packet
393 * @len: length of the provided buffer
394 *
395 * Produces either a manufacturer, product or serial number string for the
396 * virtual root hub device.
397 * Returns the number of bytes filled in: the length of the descriptor or
398 * of the provided buffer, whichever is less.
399 */
400 static unsigned
401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402 {
403 char buf[100];
404 char const *s;
405 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407 // language ids
408 switch (id) {
409 case 0:
410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412 if (len > 4)
413 len = 4;
414 memcpy(data, langids, len);
415 return len;
416 case 1:
417 /* Serial number */
418 s = hcd->self.bus_name;
419 break;
420 case 2:
421 /* Product name */
422 s = hcd->product_desc;
423 break;
424 case 3:
425 /* Manufacturer */
426 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427 init_utsname()->release, hcd->driver->description);
428 s = buf;
429 break;
430 default:
431 /* Can't happen; caller guarantees it */
432 return 0;
433 }
434
435 return ascii2desc(s, data, len);
436 }
437
438
439 /* Root hub control transfers execute synchronously */
440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441 {
442 struct usb_ctrlrequest *cmd;
443 u16 typeReq, wValue, wIndex, wLength;
444 u8 *ubuf = urb->transfer_buffer;
445 /*
446 * tbuf should be as big as the BOS descriptor and
447 * the USB hub descriptor.
448 */
449 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
450 __attribute__((aligned(4)));
451 const u8 *bufp = tbuf;
452 unsigned len = 0;
453 int status;
454 u8 patch_wakeup = 0;
455 u8 patch_protocol = 0;
456
457 might_sleep();
458
459 spin_lock_irq(&hcd_root_hub_lock);
460 status = usb_hcd_link_urb_to_ep(hcd, urb);
461 spin_unlock_irq(&hcd_root_hub_lock);
462 if (status)
463 return status;
464 urb->hcpriv = hcd; /* Indicate it's queued */
465
466 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
467 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
468 wValue = le16_to_cpu (cmd->wValue);
469 wIndex = le16_to_cpu (cmd->wIndex);
470 wLength = le16_to_cpu (cmd->wLength);
471
472 if (wLength > urb->transfer_buffer_length)
473 goto error;
474
475 urb->actual_length = 0;
476 switch (typeReq) {
477
478 /* DEVICE REQUESTS */
479
480 /* The root hub's remote wakeup enable bit is implemented using
481 * driver model wakeup flags. If this system supports wakeup
482 * through USB, userspace may change the default "allow wakeup"
483 * policy through sysfs or these calls.
484 *
485 * Most root hubs support wakeup from downstream devices, for
486 * runtime power management (disabling USB clocks and reducing
487 * VBUS power usage). However, not all of them do so; silicon,
488 * board, and BIOS bugs here are not uncommon, so these can't
489 * be treated quite like external hubs.
490 *
491 * Likewise, not all root hubs will pass wakeup events upstream,
492 * to wake up the whole system. So don't assume root hub and
493 * controller capabilities are identical.
494 */
495
496 case DeviceRequest | USB_REQ_GET_STATUS:
497 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
498 << USB_DEVICE_REMOTE_WAKEUP)
499 | (1 << USB_DEVICE_SELF_POWERED);
500 tbuf [1] = 0;
501 len = 2;
502 break;
503 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
504 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
505 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
506 else
507 goto error;
508 break;
509 case DeviceOutRequest | USB_REQ_SET_FEATURE:
510 if (device_can_wakeup(&hcd->self.root_hub->dev)
511 && wValue == USB_DEVICE_REMOTE_WAKEUP)
512 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
513 else
514 goto error;
515 break;
516 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
517 tbuf [0] = 1;
518 len = 1;
519 /* FALLTHROUGH */
520 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
521 break;
522 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
523 switch (wValue & 0xff00) {
524 case USB_DT_DEVICE << 8:
525 switch (hcd->speed) {
526 case HCD_USB3:
527 bufp = usb3_rh_dev_descriptor;
528 break;
529 case HCD_USB2:
530 bufp = usb2_rh_dev_descriptor;
531 break;
532 case HCD_USB11:
533 bufp = usb11_rh_dev_descriptor;
534 break;
535 default:
536 goto error;
537 }
538 len = 18;
539 if (hcd->has_tt)
540 patch_protocol = 1;
541 break;
542 case USB_DT_CONFIG << 8:
543 switch (hcd->speed) {
544 case HCD_USB3:
545 bufp = ss_rh_config_descriptor;
546 len = sizeof ss_rh_config_descriptor;
547 break;
548 case HCD_USB2:
549 bufp = hs_rh_config_descriptor;
550 len = sizeof hs_rh_config_descriptor;
551 break;
552 case HCD_USB11:
553 bufp = fs_rh_config_descriptor;
554 len = sizeof fs_rh_config_descriptor;
555 break;
556 default:
557 goto error;
558 }
559 if (device_can_wakeup(&hcd->self.root_hub->dev))
560 patch_wakeup = 1;
561 break;
562 case USB_DT_STRING << 8:
563 if ((wValue & 0xff) < 4)
564 urb->actual_length = rh_string(wValue & 0xff,
565 hcd, ubuf, wLength);
566 else /* unsupported IDs --> "protocol stall" */
567 goto error;
568 break;
569 case USB_DT_BOS << 8:
570 goto nongeneric;
571 default:
572 goto error;
573 }
574 break;
575 case DeviceRequest | USB_REQ_GET_INTERFACE:
576 tbuf [0] = 0;
577 len = 1;
578 /* FALLTHROUGH */
579 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
580 break;
581 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
582 // wValue == urb->dev->devaddr
583 dev_dbg (hcd->self.controller, "root hub device address %d\n",
584 wValue);
585 break;
586
587 /* INTERFACE REQUESTS (no defined feature/status flags) */
588
589 /* ENDPOINT REQUESTS */
590
591 case EndpointRequest | USB_REQ_GET_STATUS:
592 // ENDPOINT_HALT flag
593 tbuf [0] = 0;
594 tbuf [1] = 0;
595 len = 2;
596 /* FALLTHROUGH */
597 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
598 case EndpointOutRequest | USB_REQ_SET_FEATURE:
599 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
600 break;
601
602 /* CLASS REQUESTS (and errors) */
603
604 default:
605 nongeneric:
606 /* non-generic request */
607 switch (typeReq) {
608 case GetHubStatus:
609 case GetPortStatus:
610 len = 4;
611 break;
612 case GetHubDescriptor:
613 len = sizeof (struct usb_hub_descriptor);
614 break;
615 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
616 /* len is returned by hub_control */
617 break;
618 }
619 status = hcd->driver->hub_control (hcd,
620 typeReq, wValue, wIndex,
621 tbuf, wLength);
622 break;
623 error:
624 /* "protocol stall" on error */
625 status = -EPIPE;
626 }
627
628 if (status < 0) {
629 len = 0;
630 if (status != -EPIPE) {
631 dev_dbg (hcd->self.controller,
632 "CTRL: TypeReq=0x%x val=0x%x "
633 "idx=0x%x len=%d ==> %d\n",
634 typeReq, wValue, wIndex,
635 wLength, status);
636 }
637 } else if (status > 0) {
638 /* hub_control may return the length of data copied. */
639 len = status;
640 status = 0;
641 }
642 if (len) {
643 if (urb->transfer_buffer_length < len)
644 len = urb->transfer_buffer_length;
645 urb->actual_length = len;
646 // always USB_DIR_IN, toward host
647 memcpy (ubuf, bufp, len);
648
649 /* report whether RH hardware supports remote wakeup */
650 if (patch_wakeup &&
651 len > offsetof (struct usb_config_descriptor,
652 bmAttributes))
653 ((struct usb_config_descriptor *)ubuf)->bmAttributes
654 |= USB_CONFIG_ATT_WAKEUP;
655
656 /* report whether RH hardware has an integrated TT */
657 if (patch_protocol &&
658 len > offsetof(struct usb_device_descriptor,
659 bDeviceProtocol))
660 ((struct usb_device_descriptor *) ubuf)->
661 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
662 }
663
664 /* any errors get returned through the urb completion */
665 spin_lock_irq(&hcd_root_hub_lock);
666 usb_hcd_unlink_urb_from_ep(hcd, urb);
667
668 /* This peculiar use of spinlocks echoes what real HC drivers do.
669 * Avoiding calls to local_irq_disable/enable makes the code
670 * RT-friendly.
671 */
672 spin_unlock(&hcd_root_hub_lock);
673 usb_hcd_giveback_urb(hcd, urb, status);
674 spin_lock(&hcd_root_hub_lock);
675
676 spin_unlock_irq(&hcd_root_hub_lock);
677 return 0;
678 }
679
680 /*-------------------------------------------------------------------------*/
681
682 /*
683 * Root Hub interrupt transfers are polled using a timer if the
684 * driver requests it; otherwise the driver is responsible for
685 * calling usb_hcd_poll_rh_status() when an event occurs.
686 *
687 * Completions are called in_interrupt(), but they may or may not
688 * be in_irq().
689 */
690 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
691 {
692 struct urb *urb;
693 int length;
694 unsigned long flags;
695 char buffer[6]; /* Any root hubs with > 31 ports? */
696
697 if (unlikely(!hcd->rh_pollable))
698 return;
699 if (!hcd->uses_new_polling && !hcd->status_urb)
700 return;
701
702 length = hcd->driver->hub_status_data(hcd, buffer);
703 if (length > 0) {
704
705 /* try to complete the status urb */
706 spin_lock_irqsave(&hcd_root_hub_lock, flags);
707 urb = hcd->status_urb;
708 if (urb) {
709 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
710 hcd->status_urb = NULL;
711 urb->actual_length = length;
712 memcpy(urb->transfer_buffer, buffer, length);
713
714 usb_hcd_unlink_urb_from_ep(hcd, urb);
715 spin_unlock(&hcd_root_hub_lock);
716 usb_hcd_giveback_urb(hcd, urb, 0);
717 spin_lock(&hcd_root_hub_lock);
718 } else {
719 length = 0;
720 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
721 }
722 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
723 }
724
725 /* The USB 2.0 spec says 256 ms. This is close enough and won't
726 * exceed that limit if HZ is 100. The math is more clunky than
727 * maybe expected, this is to make sure that all timers for USB devices
728 * fire at the same time to give the CPU a break in between */
729 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
730 (length == 0 && hcd->status_urb != NULL))
731 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
732 }
733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
734
735 /* timer callback */
736 static void rh_timer_func (unsigned long _hcd)
737 {
738 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
739 }
740
741 /*-------------------------------------------------------------------------*/
742
743 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
744 {
745 int retval;
746 unsigned long flags;
747 unsigned len = 1 + (urb->dev->maxchild / 8);
748
749 spin_lock_irqsave (&hcd_root_hub_lock, flags);
750 if (hcd->status_urb || urb->transfer_buffer_length < len) {
751 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
752 retval = -EINVAL;
753 goto done;
754 }
755
756 retval = usb_hcd_link_urb_to_ep(hcd, urb);
757 if (retval)
758 goto done;
759
760 hcd->status_urb = urb;
761 urb->hcpriv = hcd; /* indicate it's queued */
762 if (!hcd->uses_new_polling)
763 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764
765 /* If a status change has already occurred, report it ASAP */
766 else if (HCD_POLL_PENDING(hcd))
767 mod_timer(&hcd->rh_timer, jiffies);
768 retval = 0;
769 done:
770 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
771 return retval;
772 }
773
774 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
775 {
776 if (usb_endpoint_xfer_int(&urb->ep->desc))
777 return rh_queue_status (hcd, urb);
778 if (usb_endpoint_xfer_control(&urb->ep->desc))
779 return rh_call_control (hcd, urb);
780 return -EINVAL;
781 }
782
783 /*-------------------------------------------------------------------------*/
784
785 /* Unlinks of root-hub control URBs are legal, but they don't do anything
786 * since these URBs always execute synchronously.
787 */
788 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
789 {
790 unsigned long flags;
791 int rc;
792
793 spin_lock_irqsave(&hcd_root_hub_lock, flags);
794 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
795 if (rc)
796 goto done;
797
798 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
799 ; /* Do nothing */
800
801 } else { /* Status URB */
802 if (!hcd->uses_new_polling)
803 del_timer (&hcd->rh_timer);
804 if (urb == hcd->status_urb) {
805 hcd->status_urb = NULL;
806 usb_hcd_unlink_urb_from_ep(hcd, urb);
807
808 spin_unlock(&hcd_root_hub_lock);
809 usb_hcd_giveback_urb(hcd, urb, status);
810 spin_lock(&hcd_root_hub_lock);
811 }
812 }
813 done:
814 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
815 return rc;
816 }
817
818
819
820 /*
821 * Show & store the current value of authorized_default
822 */
823 static ssize_t usb_host_authorized_default_show(struct device *dev,
824 struct device_attribute *attr,
825 char *buf)
826 {
827 struct usb_device *rh_usb_dev = to_usb_device(dev);
828 struct usb_bus *usb_bus = rh_usb_dev->bus;
829 struct usb_hcd *usb_hcd;
830
831 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
832 return -ENODEV;
833 usb_hcd = bus_to_hcd(usb_bus);
834 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
835 }
836
837 static ssize_t usb_host_authorized_default_store(struct device *dev,
838 struct device_attribute *attr,
839 const char *buf, size_t size)
840 {
841 ssize_t result;
842 unsigned val;
843 struct usb_device *rh_usb_dev = to_usb_device(dev);
844 struct usb_bus *usb_bus = rh_usb_dev->bus;
845 struct usb_hcd *usb_hcd;
846
847 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
848 return -ENODEV;
849 usb_hcd = bus_to_hcd(usb_bus);
850 result = sscanf(buf, "%u\n", &val);
851 if (result == 1) {
852 usb_hcd->authorized_default = val? 1 : 0;
853 result = size;
854 }
855 else
856 result = -EINVAL;
857 return result;
858 }
859
860 static DEVICE_ATTR(authorized_default, 0644,
861 usb_host_authorized_default_show,
862 usb_host_authorized_default_store);
863
864
865 /* Group all the USB bus attributes */
866 static struct attribute *usb_bus_attrs[] = {
867 &dev_attr_authorized_default.attr,
868 NULL,
869 };
870
871 static struct attribute_group usb_bus_attr_group = {
872 .name = NULL, /* we want them in the same directory */
873 .attrs = usb_bus_attrs,
874 };
875
876
877
878 /*-------------------------------------------------------------------------*/
879
880 /**
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
883 *
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
886 */
887 static void usb_bus_init (struct usb_bus *bus)
888 {
889 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891 bus->devnum_next = 1;
892
893 bus->root_hub = NULL;
894 bus->busnum = -1;
895 bus->bandwidth_allocated = 0;
896 bus->bandwidth_int_reqs = 0;
897 bus->bandwidth_isoc_reqs = 0;
898
899 INIT_LIST_HEAD (&bus->bus_list);
900 }
901
902 /*-------------------------------------------------------------------------*/
903
904 /**
905 * usb_register_bus - registers the USB host controller with the usb core
906 * @bus: pointer to the bus to register
907 * Context: !in_interrupt()
908 *
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
911 */
912 static int usb_register_bus(struct usb_bus *bus)
913 {
914 int result = -E2BIG;
915 int busnum;
916
917 mutex_lock(&usb_bus_list_lock);
918 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
919 if (busnum >= USB_MAXBUS) {
920 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
921 goto error_find_busnum;
922 }
923 set_bit (busnum, busmap.busmap);
924 bus->busnum = busnum;
925
926 /* Add it to the local list of buses */
927 list_add (&bus->bus_list, &usb_bus_list);
928 mutex_unlock(&usb_bus_list_lock);
929
930 usb_notify_add_bus(bus);
931
932 dev_info (bus->controller, "new USB bus registered, assigned bus "
933 "number %d\n", bus->busnum);
934 return 0;
935
936 error_find_busnum:
937 mutex_unlock(&usb_bus_list_lock);
938 return result;
939 }
940
941 /**
942 * usb_deregister_bus - deregisters the USB host controller
943 * @bus: pointer to the bus to deregister
944 * Context: !in_interrupt()
945 *
946 * Recycles the bus number, and unlinks the controller from usbcore data
947 * structures so that it won't be seen by scanning the bus list.
948 */
949 static void usb_deregister_bus (struct usb_bus *bus)
950 {
951 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
952
953 /*
954 * NOTE: make sure that all the devices are removed by the
955 * controller code, as well as having it call this when cleaning
956 * itself up
957 */
958 mutex_lock(&usb_bus_list_lock);
959 list_del (&bus->bus_list);
960 mutex_unlock(&usb_bus_list_lock);
961
962 usb_notify_remove_bus(bus);
963
964 clear_bit (bus->busnum, busmap.busmap);
965 }
966
967 /**
968 * register_root_hub - called by usb_add_hcd() to register a root hub
969 * @hcd: host controller for this root hub
970 *
971 * This function registers the root hub with the USB subsystem. It sets up
972 * the device properly in the device tree and then calls usb_new_device()
973 * to register the usb device. It also assigns the root hub's USB address
974 * (always 1).
975 */
976 static int register_root_hub(struct usb_hcd *hcd)
977 {
978 struct device *parent_dev = hcd->self.controller;
979 struct usb_device *usb_dev = hcd->self.root_hub;
980 const int devnum = 1;
981 int retval;
982
983 usb_dev->devnum = devnum;
984 usb_dev->bus->devnum_next = devnum + 1;
985 memset (&usb_dev->bus->devmap.devicemap, 0,
986 sizeof usb_dev->bus->devmap.devicemap);
987 set_bit (devnum, usb_dev->bus->devmap.devicemap);
988 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
989
990 mutex_lock(&usb_bus_list_lock);
991
992 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
993 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
994 if (retval != sizeof usb_dev->descriptor) {
995 mutex_unlock(&usb_bus_list_lock);
996 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
997 dev_name(&usb_dev->dev), retval);
998 return (retval < 0) ? retval : -EMSGSIZE;
999 }
1000 if (usb_dev->speed == USB_SPEED_SUPER) {
1001 retval = usb_get_bos_descriptor(usb_dev);
1002 if (retval < 0) {
1003 mutex_unlock(&usb_bus_list_lock);
1004 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005 dev_name(&usb_dev->dev), retval);
1006 return retval;
1007 }
1008 }
1009
1010 retval = usb_new_device (usb_dev);
1011 if (retval) {
1012 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013 dev_name(&usb_dev->dev), retval);
1014 } else {
1015 spin_lock_irq (&hcd_root_hub_lock);
1016 hcd->rh_registered = 1;
1017 spin_unlock_irq (&hcd_root_hub_lock);
1018
1019 /* Did the HC die before the root hub was registered? */
1020 if (HCD_DEAD(hcd))
1021 usb_hc_died (hcd); /* This time clean up */
1022 }
1023 mutex_unlock(&usb_bus_list_lock);
1024
1025 return retval;
1026 }
1027
1028
1029 /*-------------------------------------------------------------------------*/
1030
1031 /**
1032 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1033 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1034 * @is_input: true iff the transaction sends data to the host
1035 * @isoc: true for isochronous transactions, false for interrupt ones
1036 * @bytecount: how many bytes in the transaction.
1037 *
1038 * Returns approximate bus time in nanoseconds for a periodic transaction.
1039 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1040 * scheduled in software, this function is only used for such scheduling.
1041 */
1042 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1043 {
1044 unsigned long tmp;
1045
1046 switch (speed) {
1047 case USB_SPEED_LOW: /* INTR only */
1048 if (is_input) {
1049 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1050 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1051 } else {
1052 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1053 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1054 }
1055 case USB_SPEED_FULL: /* ISOC or INTR */
1056 if (isoc) {
1057 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1058 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1059 } else {
1060 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1061 return (9107L + BW_HOST_DELAY + tmp);
1062 }
1063 case USB_SPEED_HIGH: /* ISOC or INTR */
1064 // FIXME adjust for input vs output
1065 if (isoc)
1066 tmp = HS_NSECS_ISO (bytecount);
1067 else
1068 tmp = HS_NSECS (bytecount);
1069 return tmp;
1070 default:
1071 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1072 return -1;
1073 }
1074 }
1075 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1076
1077
1078 /*-------------------------------------------------------------------------*/
1079
1080 /*
1081 * Generic HC operations.
1082 */
1083
1084 /*-------------------------------------------------------------------------*/
1085
1086 /**
1087 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1088 * @hcd: host controller to which @urb was submitted
1089 * @urb: URB being submitted
1090 *
1091 * Host controller drivers should call this routine in their enqueue()
1092 * method. The HCD's private spinlock must be held and interrupts must
1093 * be disabled. The actions carried out here are required for URB
1094 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1095 *
1096 * Returns 0 for no error, otherwise a negative error code (in which case
1097 * the enqueue() method must fail). If no error occurs but enqueue() fails
1098 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1099 * the private spinlock and returning.
1100 */
1101 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1102 {
1103 int rc = 0;
1104
1105 spin_lock(&hcd_urb_list_lock);
1106
1107 /* Check that the URB isn't being killed */
1108 if (unlikely(atomic_read(&urb->reject))) {
1109 rc = -EPERM;
1110 goto done;
1111 }
1112
1113 if (unlikely(!urb->ep->enabled)) {
1114 rc = -ENOENT;
1115 goto done;
1116 }
1117
1118 if (unlikely(!urb->dev->can_submit)) {
1119 rc = -EHOSTUNREACH;
1120 goto done;
1121 }
1122
1123 /*
1124 * Check the host controller's state and add the URB to the
1125 * endpoint's queue.
1126 */
1127 if (HCD_RH_RUNNING(hcd)) {
1128 urb->unlinked = 0;
1129 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1130 } else {
1131 rc = -ESHUTDOWN;
1132 goto done;
1133 }
1134 done:
1135 spin_unlock(&hcd_urb_list_lock);
1136 return rc;
1137 }
1138 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1139
1140 /**
1141 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1142 * @hcd: host controller to which @urb was submitted
1143 * @urb: URB being checked for unlinkability
1144 * @status: error code to store in @urb if the unlink succeeds
1145 *
1146 * Host controller drivers should call this routine in their dequeue()
1147 * method. The HCD's private spinlock must be held and interrupts must
1148 * be disabled. The actions carried out here are required for making
1149 * sure than an unlink is valid.
1150 *
1151 * Returns 0 for no error, otherwise a negative error code (in which case
1152 * the dequeue() method must fail). The possible error codes are:
1153 *
1154 * -EIDRM: @urb was not submitted or has already completed.
1155 * The completion function may not have been called yet.
1156 *
1157 * -EBUSY: @urb has already been unlinked.
1158 */
1159 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1160 int status)
1161 {
1162 struct list_head *tmp;
1163
1164 /* insist the urb is still queued */
1165 list_for_each(tmp, &urb->ep->urb_list) {
1166 if (tmp == &urb->urb_list)
1167 break;
1168 }
1169 if (tmp != &urb->urb_list)
1170 return -EIDRM;
1171
1172 /* Any status except -EINPROGRESS means something already started to
1173 * unlink this URB from the hardware. So there's no more work to do.
1174 */
1175 if (urb->unlinked)
1176 return -EBUSY;
1177 urb->unlinked = status;
1178 return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1181
1182 /**
1183 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1184 * @hcd: host controller to which @urb was submitted
1185 * @urb: URB being unlinked
1186 *
1187 * Host controller drivers should call this routine before calling
1188 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1189 * interrupts must be disabled. The actions carried out here are required
1190 * for URB completion.
1191 */
1192 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1193 {
1194 /* clear all state linking urb to this dev (and hcd) */
1195 spin_lock(&hcd_urb_list_lock);
1196 list_del_init(&urb->urb_list);
1197 spin_unlock(&hcd_urb_list_lock);
1198 }
1199 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1200
1201 /*
1202 * Some usb host controllers can only perform dma using a small SRAM area.
1203 * The usb core itself is however optimized for host controllers that can dma
1204 * using regular system memory - like pci devices doing bus mastering.
1205 *
1206 * To support host controllers with limited dma capabilites we provide dma
1207 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1208 * For this to work properly the host controller code must first use the
1209 * function dma_declare_coherent_memory() to point out which memory area
1210 * that should be used for dma allocations.
1211 *
1212 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1213 * dma using dma_alloc_coherent() which in turn allocates from the memory
1214 * area pointed out with dma_declare_coherent_memory().
1215 *
1216 * So, to summarize...
1217 *
1218 * - We need "local" memory, canonical example being
1219 * a small SRAM on a discrete controller being the
1220 * only memory that the controller can read ...
1221 * (a) "normal" kernel memory is no good, and
1222 * (b) there's not enough to share
1223 *
1224 * - The only *portable* hook for such stuff in the
1225 * DMA framework is dma_declare_coherent_memory()
1226 *
1227 * - So we use that, even though the primary requirement
1228 * is that the memory be "local" (hence addressible
1229 * by that device), not "coherent".
1230 *
1231 */
1232
1233 static int hcd_alloc_coherent(struct usb_bus *bus,
1234 gfp_t mem_flags, dma_addr_t *dma_handle,
1235 void **vaddr_handle, size_t size,
1236 enum dma_data_direction dir)
1237 {
1238 unsigned char *vaddr;
1239
1240 if (*vaddr_handle == NULL) {
1241 WARN_ON_ONCE(1);
1242 return -EFAULT;
1243 }
1244
1245 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1246 mem_flags, dma_handle);
1247 if (!vaddr)
1248 return -ENOMEM;
1249
1250 /*
1251 * Store the virtual address of the buffer at the end
1252 * of the allocated dma buffer. The size of the buffer
1253 * may be uneven so use unaligned functions instead
1254 * of just rounding up. It makes sense to optimize for
1255 * memory footprint over access speed since the amount
1256 * of memory available for dma may be limited.
1257 */
1258 put_unaligned((unsigned long)*vaddr_handle,
1259 (unsigned long *)(vaddr + size));
1260
1261 if (dir == DMA_TO_DEVICE)
1262 memcpy(vaddr, *vaddr_handle, size);
1263
1264 *vaddr_handle = vaddr;
1265 return 0;
1266 }
1267
1268 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1269 void **vaddr_handle, size_t size,
1270 enum dma_data_direction dir)
1271 {
1272 unsigned char *vaddr = *vaddr_handle;
1273
1274 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1275
1276 if (dir == DMA_FROM_DEVICE)
1277 memcpy(vaddr, *vaddr_handle, size);
1278
1279 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1280
1281 *vaddr_handle = vaddr;
1282 *dma_handle = 0;
1283 }
1284
1285 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1286 {
1287 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1288 dma_unmap_single(hcd->self.controller,
1289 urb->setup_dma,
1290 sizeof(struct usb_ctrlrequest),
1291 DMA_TO_DEVICE);
1292 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1293 hcd_free_coherent(urb->dev->bus,
1294 &urb->setup_dma,
1295 (void **) &urb->setup_packet,
1296 sizeof(struct usb_ctrlrequest),
1297 DMA_TO_DEVICE);
1298
1299 /* Make it safe to call this routine more than once */
1300 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1301 }
1302 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1303
1304 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1305 {
1306 if (hcd->driver->unmap_urb_for_dma)
1307 hcd->driver->unmap_urb_for_dma(hcd, urb);
1308 else
1309 usb_hcd_unmap_urb_for_dma(hcd, urb);
1310 }
1311
1312 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1313 {
1314 enum dma_data_direction dir;
1315
1316 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1317
1318 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1319 if (urb->transfer_flags & URB_DMA_MAP_SG)
1320 dma_unmap_sg(hcd->self.controller,
1321 urb->sg,
1322 urb->num_sgs,
1323 dir);
1324 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1325 dma_unmap_page(hcd->self.controller,
1326 urb->transfer_dma,
1327 urb->transfer_buffer_length,
1328 dir);
1329 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1330 dma_unmap_single(hcd->self.controller,
1331 urb->transfer_dma,
1332 urb->transfer_buffer_length,
1333 dir);
1334 else if (urb->transfer_flags & URB_MAP_LOCAL)
1335 hcd_free_coherent(urb->dev->bus,
1336 &urb->transfer_dma,
1337 &urb->transfer_buffer,
1338 urb->transfer_buffer_length,
1339 dir);
1340
1341 /* Make it safe to call this routine more than once */
1342 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1343 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1344 }
1345 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1346
1347 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1348 gfp_t mem_flags)
1349 {
1350 if (hcd->driver->map_urb_for_dma)
1351 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1352 else
1353 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1354 }
1355
1356 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1357 gfp_t mem_flags)
1358 {
1359 enum dma_data_direction dir;
1360 int ret = 0;
1361
1362 /* Map the URB's buffers for DMA access.
1363 * Lower level HCD code should use *_dma exclusively,
1364 * unless it uses pio or talks to another transport,
1365 * or uses the provided scatter gather list for bulk.
1366 */
1367
1368 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1369 if (hcd->self.uses_pio_for_control)
1370 return ret;
1371 if (hcd->self.uses_dma) {
1372 urb->setup_dma = dma_map_single(
1373 hcd->self.controller,
1374 urb->setup_packet,
1375 sizeof(struct usb_ctrlrequest),
1376 DMA_TO_DEVICE);
1377 if (dma_mapping_error(hcd->self.controller,
1378 urb->setup_dma))
1379 return -EAGAIN;
1380 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1381 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1382 ret = hcd_alloc_coherent(
1383 urb->dev->bus, mem_flags,
1384 &urb->setup_dma,
1385 (void **)&urb->setup_packet,
1386 sizeof(struct usb_ctrlrequest),
1387 DMA_TO_DEVICE);
1388 if (ret)
1389 return ret;
1390 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1391 }
1392 }
1393
1394 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1395 if (urb->transfer_buffer_length != 0
1396 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1397 if (hcd->self.uses_dma) {
1398 if (urb->num_sgs) {
1399 int n;
1400
1401 /* We don't support sg for isoc transfers ! */
1402 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1403 WARN_ON(1);
1404 return -EINVAL;
1405 }
1406
1407 n = dma_map_sg(
1408 hcd->self.controller,
1409 urb->sg,
1410 urb->num_sgs,
1411 dir);
1412 if (n <= 0)
1413 ret = -EAGAIN;
1414 else
1415 urb->transfer_flags |= URB_DMA_MAP_SG;
1416 urb->num_mapped_sgs = n;
1417 if (n != urb->num_sgs)
1418 urb->transfer_flags |=
1419 URB_DMA_SG_COMBINED;
1420 } else if (urb->sg) {
1421 struct scatterlist *sg = urb->sg;
1422 urb->transfer_dma = dma_map_page(
1423 hcd->self.controller,
1424 sg_page(sg),
1425 sg->offset,
1426 urb->transfer_buffer_length,
1427 dir);
1428 if (dma_mapping_error(hcd->self.controller,
1429 urb->transfer_dma))
1430 ret = -EAGAIN;
1431 else
1432 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1433 } else {
1434 urb->transfer_dma = dma_map_single(
1435 hcd->self.controller,
1436 urb->transfer_buffer,
1437 urb->transfer_buffer_length,
1438 dir);
1439 if (dma_mapping_error(hcd->self.controller,
1440 urb->transfer_dma))
1441 ret = -EAGAIN;
1442 else
1443 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1444 }
1445 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1446 ret = hcd_alloc_coherent(
1447 urb->dev->bus, mem_flags,
1448 &urb->transfer_dma,
1449 &urb->transfer_buffer,
1450 urb->transfer_buffer_length,
1451 dir);
1452 if (ret == 0)
1453 urb->transfer_flags |= URB_MAP_LOCAL;
1454 }
1455 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1456 URB_SETUP_MAP_LOCAL)))
1457 usb_hcd_unmap_urb_for_dma(hcd, urb);
1458 }
1459 return ret;
1460 }
1461 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1462
1463 /*-------------------------------------------------------------------------*/
1464
1465 /* may be called in any context with a valid urb->dev usecount
1466 * caller surrenders "ownership" of urb
1467 * expects usb_submit_urb() to have sanity checked and conditioned all
1468 * inputs in the urb
1469 */
1470 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1471 {
1472 int status;
1473 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1474
1475 /* increment urb's reference count as part of giving it to the HCD
1476 * (which will control it). HCD guarantees that it either returns
1477 * an error or calls giveback(), but not both.
1478 */
1479 usb_get_urb(urb);
1480 atomic_inc(&urb->use_count);
1481 atomic_inc(&urb->dev->urbnum);
1482 usbmon_urb_submit(&hcd->self, urb);
1483
1484 /* NOTE requirements on root-hub callers (usbfs and the hub
1485 * driver, for now): URBs' urb->transfer_buffer must be
1486 * valid and usb_buffer_{sync,unmap}() not be needed, since
1487 * they could clobber root hub response data. Also, control
1488 * URBs must be submitted in process context with interrupts
1489 * enabled.
1490 */
1491
1492 if (is_root_hub(urb->dev)) {
1493 status = rh_urb_enqueue(hcd, urb);
1494 } else {
1495 status = map_urb_for_dma(hcd, urb, mem_flags);
1496 if (likely(status == 0)) {
1497 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1498 if (unlikely(status))
1499 unmap_urb_for_dma(hcd, urb);
1500 }
1501 }
1502
1503 if (unlikely(status)) {
1504 usbmon_urb_submit_error(&hcd->self, urb, status);
1505 urb->hcpriv = NULL;
1506 INIT_LIST_HEAD(&urb->urb_list);
1507 atomic_dec(&urb->use_count);
1508 atomic_dec(&urb->dev->urbnum);
1509 if (atomic_read(&urb->reject))
1510 wake_up(&usb_kill_urb_queue);
1511 usb_put_urb(urb);
1512 }
1513 return status;
1514 }
1515
1516 /*-------------------------------------------------------------------------*/
1517
1518 /* this makes the hcd giveback() the urb more quickly, by kicking it
1519 * off hardware queues (which may take a while) and returning it as
1520 * soon as practical. we've already set up the urb's return status,
1521 * but we can't know if the callback completed already.
1522 */
1523 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1524 {
1525 int value;
1526
1527 if (is_root_hub(urb->dev))
1528 value = usb_rh_urb_dequeue(hcd, urb, status);
1529 else {
1530
1531 /* The only reason an HCD might fail this call is if
1532 * it has not yet fully queued the urb to begin with.
1533 * Such failures should be harmless. */
1534 value = hcd->driver->urb_dequeue(hcd, urb, status);
1535 }
1536 return value;
1537 }
1538
1539 /*
1540 * called in any context
1541 *
1542 * caller guarantees urb won't be recycled till both unlink()
1543 * and the urb's completion function return
1544 */
1545 int usb_hcd_unlink_urb (struct urb *urb, int status)
1546 {
1547 struct usb_hcd *hcd;
1548 int retval = -EIDRM;
1549 unsigned long flags;
1550
1551 /* Prevent the device and bus from going away while
1552 * the unlink is carried out. If they are already gone
1553 * then urb->use_count must be 0, since disconnected
1554 * devices can't have any active URBs.
1555 */
1556 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1557 if (atomic_read(&urb->use_count) > 0) {
1558 retval = 0;
1559 usb_get_dev(urb->dev);
1560 }
1561 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1562 if (retval == 0) {
1563 hcd = bus_to_hcd(urb->dev->bus);
1564 retval = unlink1(hcd, urb, status);
1565 usb_put_dev(urb->dev);
1566 }
1567
1568 if (retval == 0)
1569 retval = -EINPROGRESS;
1570 else if (retval != -EIDRM && retval != -EBUSY)
1571 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1572 urb, retval);
1573 return retval;
1574 }
1575
1576 /*-------------------------------------------------------------------------*/
1577
1578 /**
1579 * usb_hcd_giveback_urb - return URB from HCD to device driver
1580 * @hcd: host controller returning the URB
1581 * @urb: urb being returned to the USB device driver.
1582 * @status: completion status code for the URB.
1583 * Context: in_interrupt()
1584 *
1585 * This hands the URB from HCD to its USB device driver, using its
1586 * completion function. The HCD has freed all per-urb resources
1587 * (and is done using urb->hcpriv). It also released all HCD locks;
1588 * the device driver won't cause problems if it frees, modifies,
1589 * or resubmits this URB.
1590 *
1591 * If @urb was unlinked, the value of @status will be overridden by
1592 * @urb->unlinked. Erroneous short transfers are detected in case
1593 * the HCD hasn't checked for them.
1594 */
1595 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1596 {
1597 urb->hcpriv = NULL;
1598 if (unlikely(urb->unlinked))
1599 status = urb->unlinked;
1600 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1601 urb->actual_length < urb->transfer_buffer_length &&
1602 !status))
1603 status = -EREMOTEIO;
1604
1605 unmap_urb_for_dma(hcd, urb);
1606 usbmon_urb_complete(&hcd->self, urb, status);
1607 usb_unanchor_urb(urb);
1608
1609 /* pass ownership to the completion handler */
1610 urb->status = status;
1611 urb->complete (urb);
1612 atomic_dec (&urb->use_count);
1613 if (unlikely(atomic_read(&urb->reject)))
1614 wake_up (&usb_kill_urb_queue);
1615 usb_put_urb (urb);
1616 }
1617 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1618
1619 /*-------------------------------------------------------------------------*/
1620
1621 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1622 * queue to drain completely. The caller must first insure that no more
1623 * URBs can be submitted for this endpoint.
1624 */
1625 void usb_hcd_flush_endpoint(struct usb_device *udev,
1626 struct usb_host_endpoint *ep)
1627 {
1628 struct usb_hcd *hcd;
1629 struct urb *urb;
1630
1631 if (!ep)
1632 return;
1633 might_sleep();
1634 hcd = bus_to_hcd(udev->bus);
1635
1636 /* No more submits can occur */
1637 spin_lock_irq(&hcd_urb_list_lock);
1638 rescan:
1639 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1640 int is_in;
1641
1642 if (urb->unlinked)
1643 continue;
1644 usb_get_urb (urb);
1645 is_in = usb_urb_dir_in(urb);
1646 spin_unlock(&hcd_urb_list_lock);
1647
1648 /* kick hcd */
1649 unlink1(hcd, urb, -ESHUTDOWN);
1650 dev_dbg (hcd->self.controller,
1651 "shutdown urb %p ep%d%s%s\n",
1652 urb, usb_endpoint_num(&ep->desc),
1653 is_in ? "in" : "out",
1654 ({ char *s;
1655
1656 switch (usb_endpoint_type(&ep->desc)) {
1657 case USB_ENDPOINT_XFER_CONTROL:
1658 s = ""; break;
1659 case USB_ENDPOINT_XFER_BULK:
1660 s = "-bulk"; break;
1661 case USB_ENDPOINT_XFER_INT:
1662 s = "-intr"; break;
1663 default:
1664 s = "-iso"; break;
1665 };
1666 s;
1667 }));
1668 usb_put_urb (urb);
1669
1670 /* list contents may have changed */
1671 spin_lock(&hcd_urb_list_lock);
1672 goto rescan;
1673 }
1674 spin_unlock_irq(&hcd_urb_list_lock);
1675
1676 /* Wait until the endpoint queue is completely empty */
1677 while (!list_empty (&ep->urb_list)) {
1678 spin_lock_irq(&hcd_urb_list_lock);
1679
1680 /* The list may have changed while we acquired the spinlock */
1681 urb = NULL;
1682 if (!list_empty (&ep->urb_list)) {
1683 urb = list_entry (ep->urb_list.prev, struct urb,
1684 urb_list);
1685 usb_get_urb (urb);
1686 }
1687 spin_unlock_irq(&hcd_urb_list_lock);
1688
1689 if (urb) {
1690 usb_kill_urb (urb);
1691 usb_put_urb (urb);
1692 }
1693 }
1694 }
1695
1696 /**
1697 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1698 * the bus bandwidth
1699 * @udev: target &usb_device
1700 * @new_config: new configuration to install
1701 * @cur_alt: the current alternate interface setting
1702 * @new_alt: alternate interface setting that is being installed
1703 *
1704 * To change configurations, pass in the new configuration in new_config,
1705 * and pass NULL for cur_alt and new_alt.
1706 *
1707 * To reset a device's configuration (put the device in the ADDRESSED state),
1708 * pass in NULL for new_config, cur_alt, and new_alt.
1709 *
1710 * To change alternate interface settings, pass in NULL for new_config,
1711 * pass in the current alternate interface setting in cur_alt,
1712 * and pass in the new alternate interface setting in new_alt.
1713 *
1714 * Returns an error if the requested bandwidth change exceeds the
1715 * bus bandwidth or host controller internal resources.
1716 */
1717 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1718 struct usb_host_config *new_config,
1719 struct usb_host_interface *cur_alt,
1720 struct usb_host_interface *new_alt)
1721 {
1722 int num_intfs, i, j;
1723 struct usb_host_interface *alt = NULL;
1724 int ret = 0;
1725 struct usb_hcd *hcd;
1726 struct usb_host_endpoint *ep;
1727
1728 hcd = bus_to_hcd(udev->bus);
1729 if (!hcd->driver->check_bandwidth)
1730 return 0;
1731
1732 /* Configuration is being removed - set configuration 0 */
1733 if (!new_config && !cur_alt) {
1734 for (i = 1; i < 16; ++i) {
1735 ep = udev->ep_out[i];
1736 if (ep)
1737 hcd->driver->drop_endpoint(hcd, udev, ep);
1738 ep = udev->ep_in[i];
1739 if (ep)
1740 hcd->driver->drop_endpoint(hcd, udev, ep);
1741 }
1742 hcd->driver->check_bandwidth(hcd, udev);
1743 return 0;
1744 }
1745 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1746 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1747 * of the bus. There will always be bandwidth for endpoint 0, so it's
1748 * ok to exclude it.
1749 */
1750 if (new_config) {
1751 num_intfs = new_config->desc.bNumInterfaces;
1752 /* Remove endpoints (except endpoint 0, which is always on the
1753 * schedule) from the old config from the schedule
1754 */
1755 for (i = 1; i < 16; ++i) {
1756 ep = udev->ep_out[i];
1757 if (ep) {
1758 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1759 if (ret < 0)
1760 goto reset;
1761 }
1762 ep = udev->ep_in[i];
1763 if (ep) {
1764 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1765 if (ret < 0)
1766 goto reset;
1767 }
1768 }
1769 for (i = 0; i < num_intfs; ++i) {
1770 struct usb_host_interface *first_alt;
1771 int iface_num;
1772
1773 first_alt = &new_config->intf_cache[i]->altsetting[0];
1774 iface_num = first_alt->desc.bInterfaceNumber;
1775 /* Set up endpoints for alternate interface setting 0 */
1776 alt = usb_find_alt_setting(new_config, iface_num, 0);
1777 if (!alt)
1778 /* No alt setting 0? Pick the first setting. */
1779 alt = first_alt;
1780
1781 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1782 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1783 if (ret < 0)
1784 goto reset;
1785 }
1786 }
1787 }
1788 if (cur_alt && new_alt) {
1789 struct usb_interface *iface = usb_ifnum_to_if(udev,
1790 cur_alt->desc.bInterfaceNumber);
1791
1792 if (!iface)
1793 return -EINVAL;
1794 if (iface->resetting_device) {
1795 /*
1796 * The USB core just reset the device, so the xHCI host
1797 * and the device will think alt setting 0 is installed.
1798 * However, the USB core will pass in the alternate
1799 * setting installed before the reset as cur_alt. Dig
1800 * out the alternate setting 0 structure, or the first
1801 * alternate setting if a broken device doesn't have alt
1802 * setting 0.
1803 */
1804 cur_alt = usb_altnum_to_altsetting(iface, 0);
1805 if (!cur_alt)
1806 cur_alt = &iface->altsetting[0];
1807 }
1808
1809 /* Drop all the endpoints in the current alt setting */
1810 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1811 ret = hcd->driver->drop_endpoint(hcd, udev,
1812 &cur_alt->endpoint[i]);
1813 if (ret < 0)
1814 goto reset;
1815 }
1816 /* Add all the endpoints in the new alt setting */
1817 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1818 ret = hcd->driver->add_endpoint(hcd, udev,
1819 &new_alt->endpoint[i]);
1820 if (ret < 0)
1821 goto reset;
1822 }
1823 }
1824 ret = hcd->driver->check_bandwidth(hcd, udev);
1825 reset:
1826 if (ret < 0)
1827 hcd->driver->reset_bandwidth(hcd, udev);
1828 return ret;
1829 }
1830
1831 /* Disables the endpoint: synchronizes with the hcd to make sure all
1832 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1833 * have been called previously. Use for set_configuration, set_interface,
1834 * driver removal, physical disconnect.
1835 *
1836 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1837 * type, maxpacket size, toggle, halt status, and scheduling.
1838 */
1839 void usb_hcd_disable_endpoint(struct usb_device *udev,
1840 struct usb_host_endpoint *ep)
1841 {
1842 struct usb_hcd *hcd;
1843
1844 might_sleep();
1845 hcd = bus_to_hcd(udev->bus);
1846 if (hcd->driver->endpoint_disable)
1847 hcd->driver->endpoint_disable(hcd, ep);
1848 }
1849
1850 /**
1851 * usb_hcd_reset_endpoint - reset host endpoint state
1852 * @udev: USB device.
1853 * @ep: the endpoint to reset.
1854 *
1855 * Resets any host endpoint state such as the toggle bit, sequence
1856 * number and current window.
1857 */
1858 void usb_hcd_reset_endpoint(struct usb_device *udev,
1859 struct usb_host_endpoint *ep)
1860 {
1861 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1862
1863 if (hcd->driver->endpoint_reset)
1864 hcd->driver->endpoint_reset(hcd, ep);
1865 else {
1866 int epnum = usb_endpoint_num(&ep->desc);
1867 int is_out = usb_endpoint_dir_out(&ep->desc);
1868 int is_control = usb_endpoint_xfer_control(&ep->desc);
1869
1870 usb_settoggle(udev, epnum, is_out, 0);
1871 if (is_control)
1872 usb_settoggle(udev, epnum, !is_out, 0);
1873 }
1874 }
1875
1876 /**
1877 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1878 * @interface: alternate setting that includes all endpoints.
1879 * @eps: array of endpoints that need streams.
1880 * @num_eps: number of endpoints in the array.
1881 * @num_streams: number of streams to allocate.
1882 * @mem_flags: flags hcd should use to allocate memory.
1883 *
1884 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1885 * Drivers may queue multiple transfers to different stream IDs, which may
1886 * complete in a different order than they were queued.
1887 */
1888 int usb_alloc_streams(struct usb_interface *interface,
1889 struct usb_host_endpoint **eps, unsigned int num_eps,
1890 unsigned int num_streams, gfp_t mem_flags)
1891 {
1892 struct usb_hcd *hcd;
1893 struct usb_device *dev;
1894 int i;
1895
1896 dev = interface_to_usbdev(interface);
1897 hcd = bus_to_hcd(dev->bus);
1898 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1899 return -EINVAL;
1900 if (dev->speed != USB_SPEED_SUPER)
1901 return -EINVAL;
1902
1903 /* Streams only apply to bulk endpoints. */
1904 for (i = 0; i < num_eps; i++)
1905 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1906 return -EINVAL;
1907
1908 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1909 num_streams, mem_flags);
1910 }
1911 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1912
1913 /**
1914 * usb_free_streams - free bulk endpoint stream IDs.
1915 * @interface: alternate setting that includes all endpoints.
1916 * @eps: array of endpoints to remove streams from.
1917 * @num_eps: number of endpoints in the array.
1918 * @mem_flags: flags hcd should use to allocate memory.
1919 *
1920 * Reverts a group of bulk endpoints back to not using stream IDs.
1921 * Can fail if we are given bad arguments, or HCD is broken.
1922 */
1923 void usb_free_streams(struct usb_interface *interface,
1924 struct usb_host_endpoint **eps, unsigned int num_eps,
1925 gfp_t mem_flags)
1926 {
1927 struct usb_hcd *hcd;
1928 struct usb_device *dev;
1929 int i;
1930
1931 dev = interface_to_usbdev(interface);
1932 hcd = bus_to_hcd(dev->bus);
1933 if (dev->speed != USB_SPEED_SUPER)
1934 return;
1935
1936 /* Streams only apply to bulk endpoints. */
1937 for (i = 0; i < num_eps; i++)
1938 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1939 return;
1940
1941 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1942 }
1943 EXPORT_SYMBOL_GPL(usb_free_streams);
1944
1945 /* Protect against drivers that try to unlink URBs after the device
1946 * is gone, by waiting until all unlinks for @udev are finished.
1947 * Since we don't currently track URBs by device, simply wait until
1948 * nothing is running in the locked region of usb_hcd_unlink_urb().
1949 */
1950 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1951 {
1952 spin_lock_irq(&hcd_urb_unlink_lock);
1953 spin_unlock_irq(&hcd_urb_unlink_lock);
1954 }
1955
1956 /*-------------------------------------------------------------------------*/
1957
1958 /* called in any context */
1959 int usb_hcd_get_frame_number (struct usb_device *udev)
1960 {
1961 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1962
1963 if (!HCD_RH_RUNNING(hcd))
1964 return -ESHUTDOWN;
1965 return hcd->driver->get_frame_number (hcd);
1966 }
1967
1968 /*-------------------------------------------------------------------------*/
1969
1970 #ifdef CONFIG_PM
1971
1972 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1973 {
1974 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1975 int status;
1976 int old_state = hcd->state;
1977
1978 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1979 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
1980 rhdev->do_remote_wakeup);
1981 if (HCD_DEAD(hcd)) {
1982 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1983 return 0;
1984 }
1985
1986 if (!hcd->driver->bus_suspend) {
1987 status = -ENOENT;
1988 } else {
1989 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1990 hcd->state = HC_STATE_QUIESCING;
1991 status = hcd->driver->bus_suspend(hcd);
1992 }
1993 if (status == 0) {
1994 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1995 hcd->state = HC_STATE_SUSPENDED;
1996
1997 /* Did we race with a root-hub wakeup event? */
1998 if (rhdev->do_remote_wakeup) {
1999 char buffer[6];
2000
2001 status = hcd->driver->hub_status_data(hcd, buffer);
2002 if (status != 0) {
2003 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2004 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2005 status = -EBUSY;
2006 }
2007 }
2008 } else {
2009 spin_lock_irq(&hcd_root_hub_lock);
2010 if (!HCD_DEAD(hcd)) {
2011 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2012 hcd->state = old_state;
2013 }
2014 spin_unlock_irq(&hcd_root_hub_lock);
2015 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2016 "suspend", status);
2017 }
2018 return status;
2019 }
2020
2021 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2022 {
2023 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2024 int status;
2025 int old_state = hcd->state;
2026
2027 dev_dbg(&rhdev->dev, "usb %sresume\n",
2028 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2029 if (HCD_DEAD(hcd)) {
2030 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2031 return 0;
2032 }
2033 if (!hcd->driver->bus_resume)
2034 return -ENOENT;
2035 if (HCD_RH_RUNNING(hcd))
2036 return 0;
2037
2038 hcd->state = HC_STATE_RESUMING;
2039 status = hcd->driver->bus_resume(hcd);
2040 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2041 if (status == 0) {
2042 struct usb_device *udev;
2043 int port1;
2044
2045 spin_lock_irq(&hcd_root_hub_lock);
2046 if (!HCD_DEAD(hcd)) {
2047 usb_set_device_state(rhdev, rhdev->actconfig
2048 ? USB_STATE_CONFIGURED
2049 : USB_STATE_ADDRESS);
2050 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2051 hcd->state = HC_STATE_RUNNING;
2052 }
2053 spin_unlock_irq(&hcd_root_hub_lock);
2054
2055 /*
2056 * Check whether any of the enabled ports on the root hub are
2057 * unsuspended. If they are then a TRSMRCY delay is needed
2058 * (this is what the USB-2 spec calls a "global resume").
2059 * Otherwise we can skip the delay.
2060 */
2061 usb_hub_for_each_child(rhdev, port1, udev) {
2062 if (udev->state != USB_STATE_NOTATTACHED &&
2063 !udev->port_is_suspended) {
2064 usleep_range(10000, 11000); /* TRSMRCY */
2065 break;
2066 }
2067 }
2068 } else {
2069 hcd->state = old_state;
2070 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2071 "resume", status);
2072 if (status != -ESHUTDOWN)
2073 usb_hc_died(hcd);
2074 }
2075 return status;
2076 }
2077
2078 #endif /* CONFIG_PM */
2079
2080 #ifdef CONFIG_USB_SUSPEND
2081
2082 /* Workqueue routine for root-hub remote wakeup */
2083 static void hcd_resume_work(struct work_struct *work)
2084 {
2085 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2086 struct usb_device *udev = hcd->self.root_hub;
2087
2088 usb_lock_device(udev);
2089 usb_remote_wakeup(udev);
2090 usb_unlock_device(udev);
2091 }
2092
2093 /**
2094 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2095 * @hcd: host controller for this root hub
2096 *
2097 * The USB host controller calls this function when its root hub is
2098 * suspended (with the remote wakeup feature enabled) and a remote
2099 * wakeup request is received. The routine submits a workqueue request
2100 * to resume the root hub (that is, manage its downstream ports again).
2101 */
2102 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2103 {
2104 unsigned long flags;
2105
2106 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2107 if (hcd->rh_registered) {
2108 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2109 queue_work(pm_wq, &hcd->wakeup_work);
2110 }
2111 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2112 }
2113 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2114
2115 #endif /* CONFIG_USB_SUSPEND */
2116
2117 /*-------------------------------------------------------------------------*/
2118
2119 #ifdef CONFIG_USB_OTG
2120
2121 /**
2122 * usb_bus_start_enum - start immediate enumeration (for OTG)
2123 * @bus: the bus (must use hcd framework)
2124 * @port_num: 1-based number of port; usually bus->otg_port
2125 * Context: in_interrupt()
2126 *
2127 * Starts enumeration, with an immediate reset followed later by
2128 * khubd identifying and possibly configuring the device.
2129 * This is needed by OTG controller drivers, where it helps meet
2130 * HNP protocol timing requirements for starting a port reset.
2131 */
2132 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2133 {
2134 struct usb_hcd *hcd;
2135 int status = -EOPNOTSUPP;
2136
2137 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2138 * boards with root hubs hooked up to internal devices (instead of
2139 * just the OTG port) may need more attention to resetting...
2140 */
2141 hcd = container_of (bus, struct usb_hcd, self);
2142 if (port_num && hcd->driver->start_port_reset)
2143 status = hcd->driver->start_port_reset(hcd, port_num);
2144
2145 /* run khubd shortly after (first) root port reset finishes;
2146 * it may issue others, until at least 50 msecs have passed.
2147 */
2148 if (status == 0)
2149 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2150 return status;
2151 }
2152 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2153
2154 #endif
2155
2156 /*-------------------------------------------------------------------------*/
2157
2158 /**
2159 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2160 * @irq: the IRQ being raised
2161 * @__hcd: pointer to the HCD whose IRQ is being signaled
2162 *
2163 * If the controller isn't HALTed, calls the driver's irq handler.
2164 * Checks whether the controller is now dead.
2165 */
2166 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2167 {
2168 struct usb_hcd *hcd = __hcd;
2169 unsigned long flags;
2170 irqreturn_t rc;
2171
2172 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2173 * when the first handler doesn't use it. So let's just
2174 * assume it's never used.
2175 */
2176 local_irq_save(flags);
2177
2178 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2179 rc = IRQ_NONE;
2180 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2181 rc = IRQ_NONE;
2182 else
2183 rc = IRQ_HANDLED;
2184
2185 local_irq_restore(flags);
2186 return rc;
2187 }
2188 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2189
2190 /*-------------------------------------------------------------------------*/
2191
2192 /**
2193 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2194 * @hcd: pointer to the HCD representing the controller
2195 *
2196 * This is called by bus glue to report a USB host controller that died
2197 * while operations may still have been pending. It's called automatically
2198 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2199 *
2200 * Only call this function with the primary HCD.
2201 */
2202 void usb_hc_died (struct usb_hcd *hcd)
2203 {
2204 unsigned long flags;
2205
2206 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2207
2208 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2209 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2210 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2211 if (hcd->rh_registered) {
2212 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2213
2214 /* make khubd clean up old urbs and devices */
2215 usb_set_device_state (hcd->self.root_hub,
2216 USB_STATE_NOTATTACHED);
2217 usb_kick_khubd (hcd->self.root_hub);
2218 }
2219 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2220 hcd = hcd->shared_hcd;
2221 if (hcd->rh_registered) {
2222 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2223
2224 /* make khubd clean up old urbs and devices */
2225 usb_set_device_state(hcd->self.root_hub,
2226 USB_STATE_NOTATTACHED);
2227 usb_kick_khubd(hcd->self.root_hub);
2228 }
2229 }
2230 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2231 /* Make sure that the other roothub is also deallocated. */
2232 }
2233 EXPORT_SYMBOL_GPL (usb_hc_died);
2234
2235 /*-------------------------------------------------------------------------*/
2236
2237 /**
2238 * usb_create_shared_hcd - create and initialize an HCD structure
2239 * @driver: HC driver that will use this hcd
2240 * @dev: device for this HC, stored in hcd->self.controller
2241 * @bus_name: value to store in hcd->self.bus_name
2242 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2243 * PCI device. Only allocate certain resources for the primary HCD
2244 * Context: !in_interrupt()
2245 *
2246 * Allocate a struct usb_hcd, with extra space at the end for the
2247 * HC driver's private data. Initialize the generic members of the
2248 * hcd structure.
2249 *
2250 * If memory is unavailable, returns NULL.
2251 */
2252 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2253 struct device *dev, const char *bus_name,
2254 struct usb_hcd *primary_hcd)
2255 {
2256 struct usb_hcd *hcd;
2257
2258 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2259 if (!hcd) {
2260 dev_dbg (dev, "hcd alloc failed\n");
2261 return NULL;
2262 }
2263 if (primary_hcd == NULL) {
2264 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2265 GFP_KERNEL);
2266 if (!hcd->bandwidth_mutex) {
2267 kfree(hcd);
2268 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2269 return NULL;
2270 }
2271 mutex_init(hcd->bandwidth_mutex);
2272 dev_set_drvdata(dev, hcd);
2273 } else {
2274 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2275 hcd->primary_hcd = primary_hcd;
2276 primary_hcd->primary_hcd = primary_hcd;
2277 hcd->shared_hcd = primary_hcd;
2278 primary_hcd->shared_hcd = hcd;
2279 }
2280
2281 kref_init(&hcd->kref);
2282
2283 usb_bus_init(&hcd->self);
2284 hcd->self.controller = dev;
2285 hcd->self.bus_name = bus_name;
2286 hcd->self.uses_dma = (dev->dma_mask != NULL);
2287
2288 init_timer(&hcd->rh_timer);
2289 hcd->rh_timer.function = rh_timer_func;
2290 hcd->rh_timer.data = (unsigned long) hcd;
2291 #ifdef CONFIG_USB_SUSPEND
2292 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2293 #endif
2294
2295 hcd->driver = driver;
2296 hcd->speed = driver->flags & HCD_MASK;
2297 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2298 "USB Host Controller";
2299 return hcd;
2300 }
2301 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2302
2303 /**
2304 * usb_create_hcd - create and initialize an HCD structure
2305 * @driver: HC driver that will use this hcd
2306 * @dev: device for this HC, stored in hcd->self.controller
2307 * @bus_name: value to store in hcd->self.bus_name
2308 * Context: !in_interrupt()
2309 *
2310 * Allocate a struct usb_hcd, with extra space at the end for the
2311 * HC driver's private data. Initialize the generic members of the
2312 * hcd structure.
2313 *
2314 * If memory is unavailable, returns NULL.
2315 */
2316 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2317 struct device *dev, const char *bus_name)
2318 {
2319 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2320 }
2321 EXPORT_SYMBOL_GPL(usb_create_hcd);
2322
2323 /*
2324 * Roothubs that share one PCI device must also share the bandwidth mutex.
2325 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2326 * deallocated.
2327 *
2328 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2329 * freed. When hcd_release() is called for the non-primary HCD, set the
2330 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2331 * freed shortly).
2332 */
2333 static void hcd_release (struct kref *kref)
2334 {
2335 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2336
2337 if (usb_hcd_is_primary_hcd(hcd))
2338 kfree(hcd->bandwidth_mutex);
2339 else
2340 hcd->shared_hcd->shared_hcd = NULL;
2341 kfree(hcd);
2342 }
2343
2344 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2345 {
2346 if (hcd)
2347 kref_get (&hcd->kref);
2348 return hcd;
2349 }
2350 EXPORT_SYMBOL_GPL(usb_get_hcd);
2351
2352 void usb_put_hcd (struct usb_hcd *hcd)
2353 {
2354 if (hcd)
2355 kref_put (&hcd->kref, hcd_release);
2356 }
2357 EXPORT_SYMBOL_GPL(usb_put_hcd);
2358
2359 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2360 {
2361 if (!hcd->primary_hcd)
2362 return 1;
2363 return hcd == hcd->primary_hcd;
2364 }
2365 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2366
2367 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2368 unsigned int irqnum, unsigned long irqflags)
2369 {
2370 int retval;
2371
2372 if (hcd->driver->irq) {
2373
2374 /* IRQF_DISABLED doesn't work as advertised when used together
2375 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2376 * interrupts we can remove it here.
2377 */
2378 if (irqflags & IRQF_SHARED)
2379 irqflags &= ~IRQF_DISABLED;
2380
2381 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2382 hcd->driver->description, hcd->self.busnum);
2383 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2384 hcd->irq_descr, hcd);
2385 if (retval != 0) {
2386 dev_err(hcd->self.controller,
2387 "request interrupt %d failed\n",
2388 irqnum);
2389 return retval;
2390 }
2391 hcd->irq = irqnum;
2392 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2393 (hcd->driver->flags & HCD_MEMORY) ?
2394 "io mem" : "io base",
2395 (unsigned long long)hcd->rsrc_start);
2396 } else {
2397 hcd->irq = 0;
2398 if (hcd->rsrc_start)
2399 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2400 (hcd->driver->flags & HCD_MEMORY) ?
2401 "io mem" : "io base",
2402 (unsigned long long)hcd->rsrc_start);
2403 }
2404 return 0;
2405 }
2406
2407 /**
2408 * usb_add_hcd - finish generic HCD structure initialization and register
2409 * @hcd: the usb_hcd structure to initialize
2410 * @irqnum: Interrupt line to allocate
2411 * @irqflags: Interrupt type flags
2412 *
2413 * Finish the remaining parts of generic HCD initialization: allocate the
2414 * buffers of consistent memory, register the bus, request the IRQ line,
2415 * and call the driver's reset() and start() routines.
2416 */
2417 int usb_add_hcd(struct usb_hcd *hcd,
2418 unsigned int irqnum, unsigned long irqflags)
2419 {
2420 int retval;
2421 struct usb_device *rhdev;
2422
2423 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2424
2425 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2426 if (authorized_default < 0 || authorized_default > 1)
2427 hcd->authorized_default = hcd->wireless? 0 : 1;
2428 else
2429 hcd->authorized_default = authorized_default;
2430 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2431
2432 /* HC is in reset state, but accessible. Now do the one-time init,
2433 * bottom up so that hcds can customize the root hubs before khubd
2434 * starts talking to them. (Note, bus id is assigned early too.)
2435 */
2436 if ((retval = hcd_buffer_create(hcd)) != 0) {
2437 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2438 return retval;
2439 }
2440
2441 if ((retval = usb_register_bus(&hcd->self)) < 0)
2442 goto err_register_bus;
2443
2444 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2445 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2446 retval = -ENOMEM;
2447 goto err_allocate_root_hub;
2448 }
2449 hcd->self.root_hub = rhdev;
2450
2451 switch (hcd->speed) {
2452 case HCD_USB11:
2453 rhdev->speed = USB_SPEED_FULL;
2454 break;
2455 case HCD_USB2:
2456 rhdev->speed = USB_SPEED_HIGH;
2457 break;
2458 case HCD_USB3:
2459 rhdev->speed = USB_SPEED_SUPER;
2460 break;
2461 default:
2462 retval = -EINVAL;
2463 goto err_set_rh_speed;
2464 }
2465
2466 /* wakeup flag init defaults to "everything works" for root hubs,
2467 * but drivers can override it in reset() if needed, along with
2468 * recording the overall controller's system wakeup capability.
2469 */
2470 device_set_wakeup_capable(&rhdev->dev, 1);
2471
2472 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2473 * registered. But since the controller can die at any time,
2474 * let's initialize the flag before touching the hardware.
2475 */
2476 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2477
2478 /* "reset" is misnamed; its role is now one-time init. the controller
2479 * should already have been reset (and boot firmware kicked off etc).
2480 */
2481 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2482 dev_err(hcd->self.controller, "can't setup\n");
2483 goto err_hcd_driver_setup;
2484 }
2485 hcd->rh_pollable = 1;
2486
2487 /* NOTE: root hub and controller capabilities may not be the same */
2488 if (device_can_wakeup(hcd->self.controller)
2489 && device_can_wakeup(&hcd->self.root_hub->dev))
2490 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2491
2492 /* enable irqs just before we start the controller,
2493 * if the BIOS provides legacy PCI irqs.
2494 */
2495 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2496 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2497 if (retval)
2498 goto err_request_irq;
2499 }
2500
2501 hcd->state = HC_STATE_RUNNING;
2502 retval = hcd->driver->start(hcd);
2503 if (retval < 0) {
2504 dev_err(hcd->self.controller, "startup error %d\n", retval);
2505 goto err_hcd_driver_start;
2506 }
2507
2508 /* starting here, usbcore will pay attention to this root hub */
2509 rhdev->bus_mA = min(500u, hcd->power_budget);
2510 if ((retval = register_root_hub(hcd)) != 0)
2511 goto err_register_root_hub;
2512
2513 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2514 if (retval < 0) {
2515 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2516 retval);
2517 goto error_create_attr_group;
2518 }
2519 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2520 usb_hcd_poll_rh_status(hcd);
2521
2522 /*
2523 * Host controllers don't generate their own wakeup requests;
2524 * they only forward requests from the root hub. Therefore
2525 * controllers should always be enabled for remote wakeup.
2526 */
2527 device_wakeup_enable(hcd->self.controller);
2528 return retval;
2529
2530 error_create_attr_group:
2531 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2532 if (HC_IS_RUNNING(hcd->state))
2533 hcd->state = HC_STATE_QUIESCING;
2534 spin_lock_irq(&hcd_root_hub_lock);
2535 hcd->rh_registered = 0;
2536 spin_unlock_irq(&hcd_root_hub_lock);
2537
2538 #ifdef CONFIG_USB_SUSPEND
2539 cancel_work_sync(&hcd->wakeup_work);
2540 #endif
2541 mutex_lock(&usb_bus_list_lock);
2542 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2543 mutex_unlock(&usb_bus_list_lock);
2544 err_register_root_hub:
2545 hcd->rh_pollable = 0;
2546 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2547 del_timer_sync(&hcd->rh_timer);
2548 hcd->driver->stop(hcd);
2549 hcd->state = HC_STATE_HALT;
2550 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2551 del_timer_sync(&hcd->rh_timer);
2552 err_hcd_driver_start:
2553 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2554 free_irq(irqnum, hcd);
2555 err_request_irq:
2556 err_hcd_driver_setup:
2557 err_set_rh_speed:
2558 usb_put_dev(hcd->self.root_hub);
2559 err_allocate_root_hub:
2560 usb_deregister_bus(&hcd->self);
2561 err_register_bus:
2562 hcd_buffer_destroy(hcd);
2563 return retval;
2564 }
2565 EXPORT_SYMBOL_GPL(usb_add_hcd);
2566
2567 /**
2568 * usb_remove_hcd - shutdown processing for generic HCDs
2569 * @hcd: the usb_hcd structure to remove
2570 * Context: !in_interrupt()
2571 *
2572 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2573 * invoking the HCD's stop() method.
2574 */
2575 void usb_remove_hcd(struct usb_hcd *hcd)
2576 {
2577 struct usb_device *rhdev = hcd->self.root_hub;
2578
2579 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2580
2581 usb_get_dev(rhdev);
2582 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2583
2584 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2585 if (HC_IS_RUNNING (hcd->state))
2586 hcd->state = HC_STATE_QUIESCING;
2587
2588 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2589 spin_lock_irq (&hcd_root_hub_lock);
2590 hcd->rh_registered = 0;
2591 spin_unlock_irq (&hcd_root_hub_lock);
2592
2593 #ifdef CONFIG_USB_SUSPEND
2594 cancel_work_sync(&hcd->wakeup_work);
2595 #endif
2596
2597 mutex_lock(&usb_bus_list_lock);
2598 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2599 mutex_unlock(&usb_bus_list_lock);
2600
2601 /* Prevent any more root-hub status calls from the timer.
2602 * The HCD might still restart the timer (if a port status change
2603 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2604 * the hub_status_data() callback.
2605 */
2606 hcd->rh_pollable = 0;
2607 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2608 del_timer_sync(&hcd->rh_timer);
2609
2610 hcd->driver->stop(hcd);
2611 hcd->state = HC_STATE_HALT;
2612
2613 /* In case the HCD restarted the timer, stop it again. */
2614 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2615 del_timer_sync(&hcd->rh_timer);
2616
2617 if (usb_hcd_is_primary_hcd(hcd)) {
2618 if (hcd->irq > 0)
2619 free_irq(hcd->irq, hcd);
2620 }
2621
2622 usb_put_dev(hcd->self.root_hub);
2623 usb_deregister_bus(&hcd->self);
2624 hcd_buffer_destroy(hcd);
2625 }
2626 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2627
2628 void
2629 usb_hcd_platform_shutdown(struct platform_device* dev)
2630 {
2631 struct usb_hcd *hcd = platform_get_drvdata(dev);
2632
2633 if (hcd->driver->shutdown)
2634 hcd->driver->shutdown(hcd);
2635 }
2636 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2637
2638 /*-------------------------------------------------------------------------*/
2639
2640 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2641
2642 struct usb_mon_operations *mon_ops;
2643
2644 /*
2645 * The registration is unlocked.
2646 * We do it this way because we do not want to lock in hot paths.
2647 *
2648 * Notice that the code is minimally error-proof. Because usbmon needs
2649 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2650 */
2651
2652 int usb_mon_register (struct usb_mon_operations *ops)
2653 {
2654
2655 if (mon_ops)
2656 return -EBUSY;
2657
2658 mon_ops = ops;
2659 mb();
2660 return 0;
2661 }
2662 EXPORT_SYMBOL_GPL (usb_mon_register);
2663
2664 void usb_mon_deregister (void)
2665 {
2666
2667 if (mon_ops == NULL) {
2668 printk(KERN_ERR "USB: monitor was not registered\n");
2669 return;
2670 }
2671 mon_ops = NULL;
2672 mb();
2673 }
2674 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2675
2676 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.109169 seconds and 5 git commands to generate.