Merge tag 'nios2-v4.2' of git://git.rocketboards.org/linux-socfpga-next
[deliverable/linux.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49
50 #include "usb.h"
51
52
53 /*-------------------------------------------------------------------------*/
54
55 /*
56 * USB Host Controller Driver framework
57 *
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
60 *
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences. That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
65 *
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead. The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
71 *
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
76 *
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79 *
80 * HISTORY:
81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
82 * associated cleanup. "usb_hcd" still != "usb_bus".
83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
84 */
85
86 /*-------------------------------------------------------------------------*/
87
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92 /* host controllers we manage */
93 LIST_HEAD (usb_bus_list);
94 EXPORT_SYMBOL_GPL (usb_bus_list);
95
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS 64
98 static DECLARE_BITMAP(busmap, USB_MAXBUS);
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124 * Sharable chunks of root hub code.
125 */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 0x01, /* __u8 bDescriptorType; Device */
135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150 };
151
152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153 static const u8 usb25_rh_dev_descriptor[18] = {
154 0x12, /* __u8 bLength; */
155 0x01, /* __u8 bDescriptorType; Device */
156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171 };
172
173 /* usb 2.0 root hub device descriptor */
174 static const u8 usb2_rh_dev_descriptor[18] = {
175 0x12, /* __u8 bLength; */
176 0x01, /* __u8 bDescriptorType; Device */
177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
178
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
183
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
192 };
193
194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195
196 /* usb 1.1 root hub device descriptor */
197 static const u8 usb11_rh_dev_descriptor[18] = {
198 0x12, /* __u8 bLength; */
199 0x01, /* __u8 bDescriptorType; Device */
200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
201
202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
203 0x00, /* __u8 bDeviceSubClass; */
204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
206
207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
209 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
210
211 0x03, /* __u8 iManufacturer; */
212 0x02, /* __u8 iProduct; */
213 0x01, /* __u8 iSerialNumber; */
214 0x01 /* __u8 bNumConfigurations; */
215 };
216
217
218 /*-------------------------------------------------------------------------*/
219
220 /* Configuration descriptors for our root hubs */
221
222 static const u8 fs_rh_config_descriptor[] = {
223
224 /* one configuration */
225 0x09, /* __u8 bLength; */
226 0x02, /* __u8 bDescriptorType; Configuration */
227 0x19, 0x00, /* __le16 wTotalLength; */
228 0x01, /* __u8 bNumInterfaces; (1) */
229 0x01, /* __u8 bConfigurationValue; */
230 0x00, /* __u8 iConfiguration; */
231 0xc0, /* __u8 bmAttributes;
232 Bit 7: must be set,
233 6: Self-powered,
234 5: Remote wakeup,
235 4..0: resvd */
236 0x00, /* __u8 MaxPower; */
237
238 /* USB 1.1:
239 * USB 2.0, single TT organization (mandatory):
240 * one interface, protocol 0
241 *
242 * USB 2.0, multiple TT organization (optional):
243 * two interfaces, protocols 1 (like single TT)
244 * and 2 (multiple TT mode) ... config is
245 * sometimes settable
246 * NOT IMPLEMENTED
247 */
248
249 /* one interface */
250 0x09, /* __u8 if_bLength; */
251 0x04, /* __u8 if_bDescriptorType; Interface */
252 0x00, /* __u8 if_bInterfaceNumber; */
253 0x00, /* __u8 if_bAlternateSetting; */
254 0x01, /* __u8 if_bNumEndpoints; */
255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
256 0x00, /* __u8 if_bInterfaceSubClass; */
257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
258 0x00, /* __u8 if_iInterface; */
259
260 /* one endpoint (status change endpoint) */
261 0x07, /* __u8 ep_bLength; */
262 0x05, /* __u8 ep_bDescriptorType; Endpoint */
263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
264 0x03, /* __u8 ep_bmAttributes; Interrupt */
265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
267 };
268
269 static const u8 hs_rh_config_descriptor[] = {
270
271 /* one configuration */
272 0x09, /* __u8 bLength; */
273 0x02, /* __u8 bDescriptorType; Configuration */
274 0x19, 0x00, /* __le16 wTotalLength; */
275 0x01, /* __u8 bNumInterfaces; (1) */
276 0x01, /* __u8 bConfigurationValue; */
277 0x00, /* __u8 iConfiguration; */
278 0xc0, /* __u8 bmAttributes;
279 Bit 7: must be set,
280 6: Self-powered,
281 5: Remote wakeup,
282 4..0: resvd */
283 0x00, /* __u8 MaxPower; */
284
285 /* USB 1.1:
286 * USB 2.0, single TT organization (mandatory):
287 * one interface, protocol 0
288 *
289 * USB 2.0, multiple TT organization (optional):
290 * two interfaces, protocols 1 (like single TT)
291 * and 2 (multiple TT mode) ... config is
292 * sometimes settable
293 * NOT IMPLEMENTED
294 */
295
296 /* one interface */
297 0x09, /* __u8 if_bLength; */
298 0x04, /* __u8 if_bDescriptorType; Interface */
299 0x00, /* __u8 if_bInterfaceNumber; */
300 0x00, /* __u8 if_bAlternateSetting; */
301 0x01, /* __u8 if_bNumEndpoints; */
302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
303 0x00, /* __u8 if_bInterfaceSubClass; */
304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
305 0x00, /* __u8 if_iInterface; */
306
307 /* one endpoint (status change endpoint) */
308 0x07, /* __u8 ep_bLength; */
309 0x05, /* __u8 ep_bDescriptorType; Endpoint */
310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
311 0x03, /* __u8 ep_bmAttributes; Interrupt */
312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313 * see hub.c:hub_configure() for details. */
314 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
316 };
317
318 static const u8 ss_rh_config_descriptor[] = {
319 /* one configuration */
320 0x09, /* __u8 bLength; */
321 0x02, /* __u8 bDescriptorType; Configuration */
322 0x1f, 0x00, /* __le16 wTotalLength; */
323 0x01, /* __u8 bNumInterfaces; (1) */
324 0x01, /* __u8 bConfigurationValue; */
325 0x00, /* __u8 iConfiguration; */
326 0xc0, /* __u8 bmAttributes;
327 Bit 7: must be set,
328 6: Self-powered,
329 5: Remote wakeup,
330 4..0: resvd */
331 0x00, /* __u8 MaxPower; */
332
333 /* one interface */
334 0x09, /* __u8 if_bLength; */
335 0x04, /* __u8 if_bDescriptorType; Interface */
336 0x00, /* __u8 if_bInterfaceNumber; */
337 0x00, /* __u8 if_bAlternateSetting; */
338 0x01, /* __u8 if_bNumEndpoints; */
339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
340 0x00, /* __u8 if_bInterfaceSubClass; */
341 0x00, /* __u8 if_bInterfaceProtocol; */
342 0x00, /* __u8 if_iInterface; */
343
344 /* one endpoint (status change endpoint) */
345 0x07, /* __u8 ep_bLength; */
346 0x05, /* __u8 ep_bDescriptorType; Endpoint */
347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
348 0x03, /* __u8 ep_bmAttributes; Interrupt */
349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350 * see hub.c:hub_configure() for details. */
351 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
353
354 /* one SuperSpeed endpoint companion descriptor */
355 0x06, /* __u8 ss_bLength */
356 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
357 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
358 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
359 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
360 };
361
362 /* authorized_default behaviour:
363 * -1 is authorized for all devices except wireless (old behaviour)
364 * 0 is unauthorized for all devices
365 * 1 is authorized for all devices
366 */
367 static int authorized_default = -1;
368 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
369 MODULE_PARM_DESC(authorized_default,
370 "Default USB device authorization: 0 is not authorized, 1 is "
371 "authorized, -1 is authorized except for wireless USB (default, "
372 "old behaviour");
373 /*-------------------------------------------------------------------------*/
374
375 /**
376 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
377 * @s: Null-terminated ASCII (actually ISO-8859-1) string
378 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
379 * @len: Length (in bytes; may be odd) of descriptor buffer.
380 *
381 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
382 * whichever is less.
383 *
384 * Note:
385 * USB String descriptors can contain at most 126 characters; input
386 * strings longer than that are truncated.
387 */
388 static unsigned
389 ascii2desc(char const *s, u8 *buf, unsigned len)
390 {
391 unsigned n, t = 2 + 2*strlen(s);
392
393 if (t > 254)
394 t = 254; /* Longest possible UTF string descriptor */
395 if (len > t)
396 len = t;
397
398 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
399
400 n = len;
401 while (n--) {
402 *buf++ = t;
403 if (!n--)
404 break;
405 *buf++ = t >> 8;
406 t = (unsigned char)*s++;
407 }
408 return len;
409 }
410
411 /**
412 * rh_string() - provides string descriptors for root hub
413 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
414 * @hcd: the host controller for this root hub
415 * @data: buffer for output packet
416 * @len: length of the provided buffer
417 *
418 * Produces either a manufacturer, product or serial number string for the
419 * virtual root hub device.
420 *
421 * Return: The number of bytes filled in: the length of the descriptor or
422 * of the provided buffer, whichever is less.
423 */
424 static unsigned
425 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
426 {
427 char buf[100];
428 char const *s;
429 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
430
431 /* language ids */
432 switch (id) {
433 case 0:
434 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
435 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
436 if (len > 4)
437 len = 4;
438 memcpy(data, langids, len);
439 return len;
440 case 1:
441 /* Serial number */
442 s = hcd->self.bus_name;
443 break;
444 case 2:
445 /* Product name */
446 s = hcd->product_desc;
447 break;
448 case 3:
449 /* Manufacturer */
450 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
451 init_utsname()->release, hcd->driver->description);
452 s = buf;
453 break;
454 default:
455 /* Can't happen; caller guarantees it */
456 return 0;
457 }
458
459 return ascii2desc(s, data, len);
460 }
461
462
463 /* Root hub control transfers execute synchronously */
464 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
465 {
466 struct usb_ctrlrequest *cmd;
467 u16 typeReq, wValue, wIndex, wLength;
468 u8 *ubuf = urb->transfer_buffer;
469 unsigned len = 0;
470 int status;
471 u8 patch_wakeup = 0;
472 u8 patch_protocol = 0;
473 u16 tbuf_size;
474 u8 *tbuf = NULL;
475 const u8 *bufp;
476
477 might_sleep();
478
479 spin_lock_irq(&hcd_root_hub_lock);
480 status = usb_hcd_link_urb_to_ep(hcd, urb);
481 spin_unlock_irq(&hcd_root_hub_lock);
482 if (status)
483 return status;
484 urb->hcpriv = hcd; /* Indicate it's queued */
485
486 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
487 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
488 wValue = le16_to_cpu (cmd->wValue);
489 wIndex = le16_to_cpu (cmd->wIndex);
490 wLength = le16_to_cpu (cmd->wLength);
491
492 if (wLength > urb->transfer_buffer_length)
493 goto error;
494
495 /*
496 * tbuf should be at least as big as the
497 * USB hub descriptor.
498 */
499 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
500 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
501 if (!tbuf)
502 return -ENOMEM;
503
504 bufp = tbuf;
505
506
507 urb->actual_length = 0;
508 switch (typeReq) {
509
510 /* DEVICE REQUESTS */
511
512 /* The root hub's remote wakeup enable bit is implemented using
513 * driver model wakeup flags. If this system supports wakeup
514 * through USB, userspace may change the default "allow wakeup"
515 * policy through sysfs or these calls.
516 *
517 * Most root hubs support wakeup from downstream devices, for
518 * runtime power management (disabling USB clocks and reducing
519 * VBUS power usage). However, not all of them do so; silicon,
520 * board, and BIOS bugs here are not uncommon, so these can't
521 * be treated quite like external hubs.
522 *
523 * Likewise, not all root hubs will pass wakeup events upstream,
524 * to wake up the whole system. So don't assume root hub and
525 * controller capabilities are identical.
526 */
527
528 case DeviceRequest | USB_REQ_GET_STATUS:
529 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
530 << USB_DEVICE_REMOTE_WAKEUP)
531 | (1 << USB_DEVICE_SELF_POWERED);
532 tbuf[1] = 0;
533 len = 2;
534 break;
535 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
536 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
537 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
538 else
539 goto error;
540 break;
541 case DeviceOutRequest | USB_REQ_SET_FEATURE:
542 if (device_can_wakeup(&hcd->self.root_hub->dev)
543 && wValue == USB_DEVICE_REMOTE_WAKEUP)
544 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
545 else
546 goto error;
547 break;
548 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
549 tbuf[0] = 1;
550 len = 1;
551 /* FALLTHROUGH */
552 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
553 break;
554 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
555 switch (wValue & 0xff00) {
556 case USB_DT_DEVICE << 8:
557 switch (hcd->speed) {
558 case HCD_USB3:
559 bufp = usb3_rh_dev_descriptor;
560 break;
561 case HCD_USB25:
562 bufp = usb25_rh_dev_descriptor;
563 break;
564 case HCD_USB2:
565 bufp = usb2_rh_dev_descriptor;
566 break;
567 case HCD_USB11:
568 bufp = usb11_rh_dev_descriptor;
569 break;
570 default:
571 goto error;
572 }
573 len = 18;
574 if (hcd->has_tt)
575 patch_protocol = 1;
576 break;
577 case USB_DT_CONFIG << 8:
578 switch (hcd->speed) {
579 case HCD_USB3:
580 bufp = ss_rh_config_descriptor;
581 len = sizeof ss_rh_config_descriptor;
582 break;
583 case HCD_USB25:
584 case HCD_USB2:
585 bufp = hs_rh_config_descriptor;
586 len = sizeof hs_rh_config_descriptor;
587 break;
588 case HCD_USB11:
589 bufp = fs_rh_config_descriptor;
590 len = sizeof fs_rh_config_descriptor;
591 break;
592 default:
593 goto error;
594 }
595 if (device_can_wakeup(&hcd->self.root_hub->dev))
596 patch_wakeup = 1;
597 break;
598 case USB_DT_STRING << 8:
599 if ((wValue & 0xff) < 4)
600 urb->actual_length = rh_string(wValue & 0xff,
601 hcd, ubuf, wLength);
602 else /* unsupported IDs --> "protocol stall" */
603 goto error;
604 break;
605 case USB_DT_BOS << 8:
606 goto nongeneric;
607 default:
608 goto error;
609 }
610 break;
611 case DeviceRequest | USB_REQ_GET_INTERFACE:
612 tbuf[0] = 0;
613 len = 1;
614 /* FALLTHROUGH */
615 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
616 break;
617 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
618 /* wValue == urb->dev->devaddr */
619 dev_dbg (hcd->self.controller, "root hub device address %d\n",
620 wValue);
621 break;
622
623 /* INTERFACE REQUESTS (no defined feature/status flags) */
624
625 /* ENDPOINT REQUESTS */
626
627 case EndpointRequest | USB_REQ_GET_STATUS:
628 /* ENDPOINT_HALT flag */
629 tbuf[0] = 0;
630 tbuf[1] = 0;
631 len = 2;
632 /* FALLTHROUGH */
633 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
634 case EndpointOutRequest | USB_REQ_SET_FEATURE:
635 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
636 break;
637
638 /* CLASS REQUESTS (and errors) */
639
640 default:
641 nongeneric:
642 /* non-generic request */
643 switch (typeReq) {
644 case GetHubStatus:
645 case GetPortStatus:
646 len = 4;
647 break;
648 case GetHubDescriptor:
649 len = sizeof (struct usb_hub_descriptor);
650 break;
651 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
652 /* len is returned by hub_control */
653 break;
654 }
655 status = hcd->driver->hub_control (hcd,
656 typeReq, wValue, wIndex,
657 tbuf, wLength);
658
659 if (typeReq == GetHubDescriptor)
660 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
661 (struct usb_hub_descriptor *)tbuf);
662 break;
663 error:
664 /* "protocol stall" on error */
665 status = -EPIPE;
666 }
667
668 if (status < 0) {
669 len = 0;
670 if (status != -EPIPE) {
671 dev_dbg (hcd->self.controller,
672 "CTRL: TypeReq=0x%x val=0x%x "
673 "idx=0x%x len=%d ==> %d\n",
674 typeReq, wValue, wIndex,
675 wLength, status);
676 }
677 } else if (status > 0) {
678 /* hub_control may return the length of data copied. */
679 len = status;
680 status = 0;
681 }
682 if (len) {
683 if (urb->transfer_buffer_length < len)
684 len = urb->transfer_buffer_length;
685 urb->actual_length = len;
686 /* always USB_DIR_IN, toward host */
687 memcpy (ubuf, bufp, len);
688
689 /* report whether RH hardware supports remote wakeup */
690 if (patch_wakeup &&
691 len > offsetof (struct usb_config_descriptor,
692 bmAttributes))
693 ((struct usb_config_descriptor *)ubuf)->bmAttributes
694 |= USB_CONFIG_ATT_WAKEUP;
695
696 /* report whether RH hardware has an integrated TT */
697 if (patch_protocol &&
698 len > offsetof(struct usb_device_descriptor,
699 bDeviceProtocol))
700 ((struct usb_device_descriptor *) ubuf)->
701 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
702 }
703
704 kfree(tbuf);
705
706 /* any errors get returned through the urb completion */
707 spin_lock_irq(&hcd_root_hub_lock);
708 usb_hcd_unlink_urb_from_ep(hcd, urb);
709 usb_hcd_giveback_urb(hcd, urb, status);
710 spin_unlock_irq(&hcd_root_hub_lock);
711 return 0;
712 }
713
714 /*-------------------------------------------------------------------------*/
715
716 /*
717 * Root Hub interrupt transfers are polled using a timer if the
718 * driver requests it; otherwise the driver is responsible for
719 * calling usb_hcd_poll_rh_status() when an event occurs.
720 *
721 * Completions are called in_interrupt(), but they may or may not
722 * be in_irq().
723 */
724 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
725 {
726 struct urb *urb;
727 int length;
728 unsigned long flags;
729 char buffer[6]; /* Any root hubs with > 31 ports? */
730
731 if (unlikely(!hcd->rh_pollable))
732 return;
733 if (!hcd->uses_new_polling && !hcd->status_urb)
734 return;
735
736 length = hcd->driver->hub_status_data(hcd, buffer);
737 if (length > 0) {
738
739 /* try to complete the status urb */
740 spin_lock_irqsave(&hcd_root_hub_lock, flags);
741 urb = hcd->status_urb;
742 if (urb) {
743 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
744 hcd->status_urb = NULL;
745 urb->actual_length = length;
746 memcpy(urb->transfer_buffer, buffer, length);
747
748 usb_hcd_unlink_urb_from_ep(hcd, urb);
749 usb_hcd_giveback_urb(hcd, urb, 0);
750 } else {
751 length = 0;
752 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
753 }
754 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
755 }
756
757 /* The USB 2.0 spec says 256 ms. This is close enough and won't
758 * exceed that limit if HZ is 100. The math is more clunky than
759 * maybe expected, this is to make sure that all timers for USB devices
760 * fire at the same time to give the CPU a break in between */
761 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
762 (length == 0 && hcd->status_urb != NULL))
763 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764 }
765 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
766
767 /* timer callback */
768 static void rh_timer_func (unsigned long _hcd)
769 {
770 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
771 }
772
773 /*-------------------------------------------------------------------------*/
774
775 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
776 {
777 int retval;
778 unsigned long flags;
779 unsigned len = 1 + (urb->dev->maxchild / 8);
780
781 spin_lock_irqsave (&hcd_root_hub_lock, flags);
782 if (hcd->status_urb || urb->transfer_buffer_length < len) {
783 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
784 retval = -EINVAL;
785 goto done;
786 }
787
788 retval = usb_hcd_link_urb_to_ep(hcd, urb);
789 if (retval)
790 goto done;
791
792 hcd->status_urb = urb;
793 urb->hcpriv = hcd; /* indicate it's queued */
794 if (!hcd->uses_new_polling)
795 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796
797 /* If a status change has already occurred, report it ASAP */
798 else if (HCD_POLL_PENDING(hcd))
799 mod_timer(&hcd->rh_timer, jiffies);
800 retval = 0;
801 done:
802 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
803 return retval;
804 }
805
806 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
807 {
808 if (usb_endpoint_xfer_int(&urb->ep->desc))
809 return rh_queue_status (hcd, urb);
810 if (usb_endpoint_xfer_control(&urb->ep->desc))
811 return rh_call_control (hcd, urb);
812 return -EINVAL;
813 }
814
815 /*-------------------------------------------------------------------------*/
816
817 /* Unlinks of root-hub control URBs are legal, but they don't do anything
818 * since these URBs always execute synchronously.
819 */
820 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
821 {
822 unsigned long flags;
823 int rc;
824
825 spin_lock_irqsave(&hcd_root_hub_lock, flags);
826 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
827 if (rc)
828 goto done;
829
830 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
831 ; /* Do nothing */
832
833 } else { /* Status URB */
834 if (!hcd->uses_new_polling)
835 del_timer (&hcd->rh_timer);
836 if (urb == hcd->status_urb) {
837 hcd->status_urb = NULL;
838 usb_hcd_unlink_urb_from_ep(hcd, urb);
839 usb_hcd_giveback_urb(hcd, urb, status);
840 }
841 }
842 done:
843 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
844 return rc;
845 }
846
847
848
849 /*
850 * Show & store the current value of authorized_default
851 */
852 static ssize_t authorized_default_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
854 {
855 struct usb_device *rh_usb_dev = to_usb_device(dev);
856 struct usb_bus *usb_bus = rh_usb_dev->bus;
857 struct usb_hcd *usb_hcd;
858
859 usb_hcd = bus_to_hcd(usb_bus);
860 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
861 }
862
863 static ssize_t authorized_default_store(struct device *dev,
864 struct device_attribute *attr,
865 const char *buf, size_t size)
866 {
867 ssize_t result;
868 unsigned val;
869 struct usb_device *rh_usb_dev = to_usb_device(dev);
870 struct usb_bus *usb_bus = rh_usb_dev->bus;
871 struct usb_hcd *usb_hcd;
872
873 usb_hcd = bus_to_hcd(usb_bus);
874 result = sscanf(buf, "%u\n", &val);
875 if (result == 1) {
876 usb_hcd->authorized_default = val ? 1 : 0;
877 result = size;
878 } else {
879 result = -EINVAL;
880 }
881 return result;
882 }
883 static DEVICE_ATTR_RW(authorized_default);
884
885 /* Group all the USB bus attributes */
886 static struct attribute *usb_bus_attrs[] = {
887 &dev_attr_authorized_default.attr,
888 NULL,
889 };
890
891 static struct attribute_group usb_bus_attr_group = {
892 .name = NULL, /* we want them in the same directory */
893 .attrs = usb_bus_attrs,
894 };
895
896
897
898 /*-------------------------------------------------------------------------*/
899
900 /**
901 * usb_bus_init - shared initialization code
902 * @bus: the bus structure being initialized
903 *
904 * This code is used to initialize a usb_bus structure, memory for which is
905 * separately managed.
906 */
907 static void usb_bus_init (struct usb_bus *bus)
908 {
909 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
910
911 bus->devnum_next = 1;
912
913 bus->root_hub = NULL;
914 bus->busnum = -1;
915 bus->bandwidth_allocated = 0;
916 bus->bandwidth_int_reqs = 0;
917 bus->bandwidth_isoc_reqs = 0;
918 mutex_init(&bus->usb_address0_mutex);
919
920 INIT_LIST_HEAD (&bus->bus_list);
921 }
922
923 /*-------------------------------------------------------------------------*/
924
925 /**
926 * usb_register_bus - registers the USB host controller with the usb core
927 * @bus: pointer to the bus to register
928 * Context: !in_interrupt()
929 *
930 * Assigns a bus number, and links the controller into usbcore data
931 * structures so that it can be seen by scanning the bus list.
932 *
933 * Return: 0 if successful. A negative error code otherwise.
934 */
935 static int usb_register_bus(struct usb_bus *bus)
936 {
937 int result = -E2BIG;
938 int busnum;
939
940 mutex_lock(&usb_bus_list_lock);
941 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
942 if (busnum >= USB_MAXBUS) {
943 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
944 goto error_find_busnum;
945 }
946 set_bit(busnum, busmap);
947 bus->busnum = busnum;
948
949 /* Add it to the local list of buses */
950 list_add (&bus->bus_list, &usb_bus_list);
951 mutex_unlock(&usb_bus_list_lock);
952
953 usb_notify_add_bus(bus);
954
955 dev_info (bus->controller, "new USB bus registered, assigned bus "
956 "number %d\n", bus->busnum);
957 return 0;
958
959 error_find_busnum:
960 mutex_unlock(&usb_bus_list_lock);
961 return result;
962 }
963
964 /**
965 * usb_deregister_bus - deregisters the USB host controller
966 * @bus: pointer to the bus to deregister
967 * Context: !in_interrupt()
968 *
969 * Recycles the bus number, and unlinks the controller from usbcore data
970 * structures so that it won't be seen by scanning the bus list.
971 */
972 static void usb_deregister_bus (struct usb_bus *bus)
973 {
974 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
975
976 /*
977 * NOTE: make sure that all the devices are removed by the
978 * controller code, as well as having it call this when cleaning
979 * itself up
980 */
981 mutex_lock(&usb_bus_list_lock);
982 list_del (&bus->bus_list);
983 mutex_unlock(&usb_bus_list_lock);
984
985 usb_notify_remove_bus(bus);
986
987 clear_bit(bus->busnum, busmap);
988 }
989
990 /**
991 * register_root_hub - called by usb_add_hcd() to register a root hub
992 * @hcd: host controller for this root hub
993 *
994 * This function registers the root hub with the USB subsystem. It sets up
995 * the device properly in the device tree and then calls usb_new_device()
996 * to register the usb device. It also assigns the root hub's USB address
997 * (always 1).
998 *
999 * Return: 0 if successful. A negative error code otherwise.
1000 */
1001 static int register_root_hub(struct usb_hcd *hcd)
1002 {
1003 struct device *parent_dev = hcd->self.controller;
1004 struct usb_device *usb_dev = hcd->self.root_hub;
1005 const int devnum = 1;
1006 int retval;
1007
1008 usb_dev->devnum = devnum;
1009 usb_dev->bus->devnum_next = devnum + 1;
1010 memset (&usb_dev->bus->devmap.devicemap, 0,
1011 sizeof usb_dev->bus->devmap.devicemap);
1012 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1013 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1014
1015 mutex_lock(&usb_bus_list_lock);
1016
1017 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1018 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1019 if (retval != sizeof usb_dev->descriptor) {
1020 mutex_unlock(&usb_bus_list_lock);
1021 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1022 dev_name(&usb_dev->dev), retval);
1023 return (retval < 0) ? retval : -EMSGSIZE;
1024 }
1025 if (usb_dev->speed == USB_SPEED_SUPER) {
1026 retval = usb_get_bos_descriptor(usb_dev);
1027 if (retval < 0) {
1028 mutex_unlock(&usb_bus_list_lock);
1029 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1030 dev_name(&usb_dev->dev), retval);
1031 return retval;
1032 }
1033 }
1034
1035 retval = usb_new_device (usb_dev);
1036 if (retval) {
1037 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1038 dev_name(&usb_dev->dev), retval);
1039 } else {
1040 spin_lock_irq (&hcd_root_hub_lock);
1041 hcd->rh_registered = 1;
1042 spin_unlock_irq (&hcd_root_hub_lock);
1043
1044 /* Did the HC die before the root hub was registered? */
1045 if (HCD_DEAD(hcd))
1046 usb_hc_died (hcd); /* This time clean up */
1047 }
1048 mutex_unlock(&usb_bus_list_lock);
1049
1050 return retval;
1051 }
1052
1053 /*
1054 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1055 * @bus: the bus which the root hub belongs to
1056 * @portnum: the port which is being resumed
1057 *
1058 * HCDs should call this function when they know that a resume signal is
1059 * being sent to a root-hub port. The root hub will be prevented from
1060 * going into autosuspend until usb_hcd_end_port_resume() is called.
1061 *
1062 * The bus's private lock must be held by the caller.
1063 */
1064 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1065 {
1066 unsigned bit = 1 << portnum;
1067
1068 if (!(bus->resuming_ports & bit)) {
1069 bus->resuming_ports |= bit;
1070 pm_runtime_get_noresume(&bus->root_hub->dev);
1071 }
1072 }
1073 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1074
1075 /*
1076 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1077 * @bus: the bus which the root hub belongs to
1078 * @portnum: the port which is being resumed
1079 *
1080 * HCDs should call this function when they know that a resume signal has
1081 * stopped being sent to a root-hub port. The root hub will be allowed to
1082 * autosuspend again.
1083 *
1084 * The bus's private lock must be held by the caller.
1085 */
1086 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1087 {
1088 unsigned bit = 1 << portnum;
1089
1090 if (bus->resuming_ports & bit) {
1091 bus->resuming_ports &= ~bit;
1092 pm_runtime_put_noidle(&bus->root_hub->dev);
1093 }
1094 }
1095 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1096
1097 /*-------------------------------------------------------------------------*/
1098
1099 /**
1100 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1101 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1102 * @is_input: true iff the transaction sends data to the host
1103 * @isoc: true for isochronous transactions, false for interrupt ones
1104 * @bytecount: how many bytes in the transaction.
1105 *
1106 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1107 *
1108 * Note:
1109 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1110 * scheduled in software, this function is only used for such scheduling.
1111 */
1112 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1113 {
1114 unsigned long tmp;
1115
1116 switch (speed) {
1117 case USB_SPEED_LOW: /* INTR only */
1118 if (is_input) {
1119 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1120 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1121 } else {
1122 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1123 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1124 }
1125 case USB_SPEED_FULL: /* ISOC or INTR */
1126 if (isoc) {
1127 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1128 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1129 } else {
1130 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1131 return 9107L + BW_HOST_DELAY + tmp;
1132 }
1133 case USB_SPEED_HIGH: /* ISOC or INTR */
1134 /* FIXME adjust for input vs output */
1135 if (isoc)
1136 tmp = HS_NSECS_ISO (bytecount);
1137 else
1138 tmp = HS_NSECS (bytecount);
1139 return tmp;
1140 default:
1141 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1142 return -1;
1143 }
1144 }
1145 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1146
1147
1148 /*-------------------------------------------------------------------------*/
1149
1150 /*
1151 * Generic HC operations.
1152 */
1153
1154 /*-------------------------------------------------------------------------*/
1155
1156 /**
1157 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1158 * @hcd: host controller to which @urb was submitted
1159 * @urb: URB being submitted
1160 *
1161 * Host controller drivers should call this routine in their enqueue()
1162 * method. The HCD's private spinlock must be held and interrupts must
1163 * be disabled. The actions carried out here are required for URB
1164 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1165 *
1166 * Return: 0 for no error, otherwise a negative error code (in which case
1167 * the enqueue() method must fail). If no error occurs but enqueue() fails
1168 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1169 * the private spinlock and returning.
1170 */
1171 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1172 {
1173 int rc = 0;
1174
1175 spin_lock(&hcd_urb_list_lock);
1176
1177 /* Check that the URB isn't being killed */
1178 if (unlikely(atomic_read(&urb->reject))) {
1179 rc = -EPERM;
1180 goto done;
1181 }
1182
1183 if (unlikely(!urb->ep->enabled)) {
1184 rc = -ENOENT;
1185 goto done;
1186 }
1187
1188 if (unlikely(!urb->dev->can_submit)) {
1189 rc = -EHOSTUNREACH;
1190 goto done;
1191 }
1192
1193 /*
1194 * Check the host controller's state and add the URB to the
1195 * endpoint's queue.
1196 */
1197 if (HCD_RH_RUNNING(hcd)) {
1198 urb->unlinked = 0;
1199 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1200 } else {
1201 rc = -ESHUTDOWN;
1202 goto done;
1203 }
1204 done:
1205 spin_unlock(&hcd_urb_list_lock);
1206 return rc;
1207 }
1208 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1209
1210 /**
1211 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1212 * @hcd: host controller to which @urb was submitted
1213 * @urb: URB being checked for unlinkability
1214 * @status: error code to store in @urb if the unlink succeeds
1215 *
1216 * Host controller drivers should call this routine in their dequeue()
1217 * method. The HCD's private spinlock must be held and interrupts must
1218 * be disabled. The actions carried out here are required for making
1219 * sure than an unlink is valid.
1220 *
1221 * Return: 0 for no error, otherwise a negative error code (in which case
1222 * the dequeue() method must fail). The possible error codes are:
1223 *
1224 * -EIDRM: @urb was not submitted or has already completed.
1225 * The completion function may not have been called yet.
1226 *
1227 * -EBUSY: @urb has already been unlinked.
1228 */
1229 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1230 int status)
1231 {
1232 struct list_head *tmp;
1233
1234 /* insist the urb is still queued */
1235 list_for_each(tmp, &urb->ep->urb_list) {
1236 if (tmp == &urb->urb_list)
1237 break;
1238 }
1239 if (tmp != &urb->urb_list)
1240 return -EIDRM;
1241
1242 /* Any status except -EINPROGRESS means something already started to
1243 * unlink this URB from the hardware. So there's no more work to do.
1244 */
1245 if (urb->unlinked)
1246 return -EBUSY;
1247 urb->unlinked = status;
1248 return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1251
1252 /**
1253 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1254 * @hcd: host controller to which @urb was submitted
1255 * @urb: URB being unlinked
1256 *
1257 * Host controller drivers should call this routine before calling
1258 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1259 * interrupts must be disabled. The actions carried out here are required
1260 * for URB completion.
1261 */
1262 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1263 {
1264 /* clear all state linking urb to this dev (and hcd) */
1265 spin_lock(&hcd_urb_list_lock);
1266 list_del_init(&urb->urb_list);
1267 spin_unlock(&hcd_urb_list_lock);
1268 }
1269 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1270
1271 /*
1272 * Some usb host controllers can only perform dma using a small SRAM area.
1273 * The usb core itself is however optimized for host controllers that can dma
1274 * using regular system memory - like pci devices doing bus mastering.
1275 *
1276 * To support host controllers with limited dma capabilities we provide dma
1277 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1278 * For this to work properly the host controller code must first use the
1279 * function dma_declare_coherent_memory() to point out which memory area
1280 * that should be used for dma allocations.
1281 *
1282 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1283 * dma using dma_alloc_coherent() which in turn allocates from the memory
1284 * area pointed out with dma_declare_coherent_memory().
1285 *
1286 * So, to summarize...
1287 *
1288 * - We need "local" memory, canonical example being
1289 * a small SRAM on a discrete controller being the
1290 * only memory that the controller can read ...
1291 * (a) "normal" kernel memory is no good, and
1292 * (b) there's not enough to share
1293 *
1294 * - The only *portable* hook for such stuff in the
1295 * DMA framework is dma_declare_coherent_memory()
1296 *
1297 * - So we use that, even though the primary requirement
1298 * is that the memory be "local" (hence addressable
1299 * by that device), not "coherent".
1300 *
1301 */
1302
1303 static int hcd_alloc_coherent(struct usb_bus *bus,
1304 gfp_t mem_flags, dma_addr_t *dma_handle,
1305 void **vaddr_handle, size_t size,
1306 enum dma_data_direction dir)
1307 {
1308 unsigned char *vaddr;
1309
1310 if (*vaddr_handle == NULL) {
1311 WARN_ON_ONCE(1);
1312 return -EFAULT;
1313 }
1314
1315 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1316 mem_flags, dma_handle);
1317 if (!vaddr)
1318 return -ENOMEM;
1319
1320 /*
1321 * Store the virtual address of the buffer at the end
1322 * of the allocated dma buffer. The size of the buffer
1323 * may be uneven so use unaligned functions instead
1324 * of just rounding up. It makes sense to optimize for
1325 * memory footprint over access speed since the amount
1326 * of memory available for dma may be limited.
1327 */
1328 put_unaligned((unsigned long)*vaddr_handle,
1329 (unsigned long *)(vaddr + size));
1330
1331 if (dir == DMA_TO_DEVICE)
1332 memcpy(vaddr, *vaddr_handle, size);
1333
1334 *vaddr_handle = vaddr;
1335 return 0;
1336 }
1337
1338 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1339 void **vaddr_handle, size_t size,
1340 enum dma_data_direction dir)
1341 {
1342 unsigned char *vaddr = *vaddr_handle;
1343
1344 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1345
1346 if (dir == DMA_FROM_DEVICE)
1347 memcpy(vaddr, *vaddr_handle, size);
1348
1349 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1350
1351 *vaddr_handle = vaddr;
1352 *dma_handle = 0;
1353 }
1354
1355 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1356 {
1357 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1358 dma_unmap_single(hcd->self.controller,
1359 urb->setup_dma,
1360 sizeof(struct usb_ctrlrequest),
1361 DMA_TO_DEVICE);
1362 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1363 hcd_free_coherent(urb->dev->bus,
1364 &urb->setup_dma,
1365 (void **) &urb->setup_packet,
1366 sizeof(struct usb_ctrlrequest),
1367 DMA_TO_DEVICE);
1368
1369 /* Make it safe to call this routine more than once */
1370 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1371 }
1372 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1373
1374 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1375 {
1376 if (hcd->driver->unmap_urb_for_dma)
1377 hcd->driver->unmap_urb_for_dma(hcd, urb);
1378 else
1379 usb_hcd_unmap_urb_for_dma(hcd, urb);
1380 }
1381
1382 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1383 {
1384 enum dma_data_direction dir;
1385
1386 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1387
1388 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1389 if (urb->transfer_flags & URB_DMA_MAP_SG)
1390 dma_unmap_sg(hcd->self.controller,
1391 urb->sg,
1392 urb->num_sgs,
1393 dir);
1394 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1395 dma_unmap_page(hcd->self.controller,
1396 urb->transfer_dma,
1397 urb->transfer_buffer_length,
1398 dir);
1399 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1400 dma_unmap_single(hcd->self.controller,
1401 urb->transfer_dma,
1402 urb->transfer_buffer_length,
1403 dir);
1404 else if (urb->transfer_flags & URB_MAP_LOCAL)
1405 hcd_free_coherent(urb->dev->bus,
1406 &urb->transfer_dma,
1407 &urb->transfer_buffer,
1408 urb->transfer_buffer_length,
1409 dir);
1410
1411 /* Make it safe to call this routine more than once */
1412 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1413 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1414 }
1415 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1416
1417 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1418 gfp_t mem_flags)
1419 {
1420 if (hcd->driver->map_urb_for_dma)
1421 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1422 else
1423 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1424 }
1425
1426 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1427 gfp_t mem_flags)
1428 {
1429 enum dma_data_direction dir;
1430 int ret = 0;
1431
1432 /* Map the URB's buffers for DMA access.
1433 * Lower level HCD code should use *_dma exclusively,
1434 * unless it uses pio or talks to another transport,
1435 * or uses the provided scatter gather list for bulk.
1436 */
1437
1438 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1439 if (hcd->self.uses_pio_for_control)
1440 return ret;
1441 if (hcd->self.uses_dma) {
1442 urb->setup_dma = dma_map_single(
1443 hcd->self.controller,
1444 urb->setup_packet,
1445 sizeof(struct usb_ctrlrequest),
1446 DMA_TO_DEVICE);
1447 if (dma_mapping_error(hcd->self.controller,
1448 urb->setup_dma))
1449 return -EAGAIN;
1450 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1451 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1452 ret = hcd_alloc_coherent(
1453 urb->dev->bus, mem_flags,
1454 &urb->setup_dma,
1455 (void **)&urb->setup_packet,
1456 sizeof(struct usb_ctrlrequest),
1457 DMA_TO_DEVICE);
1458 if (ret)
1459 return ret;
1460 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1461 }
1462 }
1463
1464 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1465 if (urb->transfer_buffer_length != 0
1466 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1467 if (hcd->self.uses_dma) {
1468 if (urb->num_sgs) {
1469 int n;
1470
1471 /* We don't support sg for isoc transfers ! */
1472 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1473 WARN_ON(1);
1474 return -EINVAL;
1475 }
1476
1477 n = dma_map_sg(
1478 hcd->self.controller,
1479 urb->sg,
1480 urb->num_sgs,
1481 dir);
1482 if (n <= 0)
1483 ret = -EAGAIN;
1484 else
1485 urb->transfer_flags |= URB_DMA_MAP_SG;
1486 urb->num_mapped_sgs = n;
1487 if (n != urb->num_sgs)
1488 urb->transfer_flags |=
1489 URB_DMA_SG_COMBINED;
1490 } else if (urb->sg) {
1491 struct scatterlist *sg = urb->sg;
1492 urb->transfer_dma = dma_map_page(
1493 hcd->self.controller,
1494 sg_page(sg),
1495 sg->offset,
1496 urb->transfer_buffer_length,
1497 dir);
1498 if (dma_mapping_error(hcd->self.controller,
1499 urb->transfer_dma))
1500 ret = -EAGAIN;
1501 else
1502 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1503 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1504 WARN_ONCE(1, "transfer buffer not dma capable\n");
1505 ret = -EAGAIN;
1506 } else {
1507 urb->transfer_dma = dma_map_single(
1508 hcd->self.controller,
1509 urb->transfer_buffer,
1510 urb->transfer_buffer_length,
1511 dir);
1512 if (dma_mapping_error(hcd->self.controller,
1513 urb->transfer_dma))
1514 ret = -EAGAIN;
1515 else
1516 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1517 }
1518 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1519 ret = hcd_alloc_coherent(
1520 urb->dev->bus, mem_flags,
1521 &urb->transfer_dma,
1522 &urb->transfer_buffer,
1523 urb->transfer_buffer_length,
1524 dir);
1525 if (ret == 0)
1526 urb->transfer_flags |= URB_MAP_LOCAL;
1527 }
1528 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1529 URB_SETUP_MAP_LOCAL)))
1530 usb_hcd_unmap_urb_for_dma(hcd, urb);
1531 }
1532 return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1535
1536 /*-------------------------------------------------------------------------*/
1537
1538 /* may be called in any context with a valid urb->dev usecount
1539 * caller surrenders "ownership" of urb
1540 * expects usb_submit_urb() to have sanity checked and conditioned all
1541 * inputs in the urb
1542 */
1543 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1544 {
1545 int status;
1546 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1547
1548 /* increment urb's reference count as part of giving it to the HCD
1549 * (which will control it). HCD guarantees that it either returns
1550 * an error or calls giveback(), but not both.
1551 */
1552 usb_get_urb(urb);
1553 atomic_inc(&urb->use_count);
1554 atomic_inc(&urb->dev->urbnum);
1555 usbmon_urb_submit(&hcd->self, urb);
1556
1557 /* NOTE requirements on root-hub callers (usbfs and the hub
1558 * driver, for now): URBs' urb->transfer_buffer must be
1559 * valid and usb_buffer_{sync,unmap}() not be needed, since
1560 * they could clobber root hub response data. Also, control
1561 * URBs must be submitted in process context with interrupts
1562 * enabled.
1563 */
1564
1565 if (is_root_hub(urb->dev)) {
1566 status = rh_urb_enqueue(hcd, urb);
1567 } else {
1568 status = map_urb_for_dma(hcd, urb, mem_flags);
1569 if (likely(status == 0)) {
1570 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1571 if (unlikely(status))
1572 unmap_urb_for_dma(hcd, urb);
1573 }
1574 }
1575
1576 if (unlikely(status)) {
1577 usbmon_urb_submit_error(&hcd->self, urb, status);
1578 urb->hcpriv = NULL;
1579 INIT_LIST_HEAD(&urb->urb_list);
1580 atomic_dec(&urb->use_count);
1581 atomic_dec(&urb->dev->urbnum);
1582 if (atomic_read(&urb->reject))
1583 wake_up(&usb_kill_urb_queue);
1584 usb_put_urb(urb);
1585 }
1586 return status;
1587 }
1588
1589 /*-------------------------------------------------------------------------*/
1590
1591 /* this makes the hcd giveback() the urb more quickly, by kicking it
1592 * off hardware queues (which may take a while) and returning it as
1593 * soon as practical. we've already set up the urb's return status,
1594 * but we can't know if the callback completed already.
1595 */
1596 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1597 {
1598 int value;
1599
1600 if (is_root_hub(urb->dev))
1601 value = usb_rh_urb_dequeue(hcd, urb, status);
1602 else {
1603
1604 /* The only reason an HCD might fail this call is if
1605 * it has not yet fully queued the urb to begin with.
1606 * Such failures should be harmless. */
1607 value = hcd->driver->urb_dequeue(hcd, urb, status);
1608 }
1609 return value;
1610 }
1611
1612 /*
1613 * called in any context
1614 *
1615 * caller guarantees urb won't be recycled till both unlink()
1616 * and the urb's completion function return
1617 */
1618 int usb_hcd_unlink_urb (struct urb *urb, int status)
1619 {
1620 struct usb_hcd *hcd;
1621 struct usb_device *udev = urb->dev;
1622 int retval = -EIDRM;
1623 unsigned long flags;
1624
1625 /* Prevent the device and bus from going away while
1626 * the unlink is carried out. If they are already gone
1627 * then urb->use_count must be 0, since disconnected
1628 * devices can't have any active URBs.
1629 */
1630 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1631 if (atomic_read(&urb->use_count) > 0) {
1632 retval = 0;
1633 usb_get_dev(udev);
1634 }
1635 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1636 if (retval == 0) {
1637 hcd = bus_to_hcd(urb->dev->bus);
1638 retval = unlink1(hcd, urb, status);
1639 if (retval == 0)
1640 retval = -EINPROGRESS;
1641 else if (retval != -EIDRM && retval != -EBUSY)
1642 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1643 urb, retval);
1644 usb_put_dev(udev);
1645 }
1646 return retval;
1647 }
1648
1649 /*-------------------------------------------------------------------------*/
1650
1651 static void __usb_hcd_giveback_urb(struct urb *urb)
1652 {
1653 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1654 struct usb_anchor *anchor = urb->anchor;
1655 int status = urb->unlinked;
1656 unsigned long flags;
1657
1658 urb->hcpriv = NULL;
1659 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1660 urb->actual_length < urb->transfer_buffer_length &&
1661 !status))
1662 status = -EREMOTEIO;
1663
1664 unmap_urb_for_dma(hcd, urb);
1665 usbmon_urb_complete(&hcd->self, urb, status);
1666 usb_anchor_suspend_wakeups(anchor);
1667 usb_unanchor_urb(urb);
1668 if (likely(status == 0))
1669 usb_led_activity(USB_LED_EVENT_HOST);
1670
1671 /* pass ownership to the completion handler */
1672 urb->status = status;
1673
1674 /*
1675 * We disable local IRQs here avoid possible deadlock because
1676 * drivers may call spin_lock() to hold lock which might be
1677 * acquired in one hard interrupt handler.
1678 *
1679 * The local_irq_save()/local_irq_restore() around complete()
1680 * will be removed if current USB drivers have been cleaned up
1681 * and no one may trigger the above deadlock situation when
1682 * running complete() in tasklet.
1683 */
1684 local_irq_save(flags);
1685 urb->complete(urb);
1686 local_irq_restore(flags);
1687
1688 usb_anchor_resume_wakeups(anchor);
1689 atomic_dec(&urb->use_count);
1690 if (unlikely(atomic_read(&urb->reject)))
1691 wake_up(&usb_kill_urb_queue);
1692 usb_put_urb(urb);
1693 }
1694
1695 static void usb_giveback_urb_bh(unsigned long param)
1696 {
1697 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1698 struct list_head local_list;
1699
1700 spin_lock_irq(&bh->lock);
1701 bh->running = true;
1702 restart:
1703 list_replace_init(&bh->head, &local_list);
1704 spin_unlock_irq(&bh->lock);
1705
1706 while (!list_empty(&local_list)) {
1707 struct urb *urb;
1708
1709 urb = list_entry(local_list.next, struct urb, urb_list);
1710 list_del_init(&urb->urb_list);
1711 bh->completing_ep = urb->ep;
1712 __usb_hcd_giveback_urb(urb);
1713 bh->completing_ep = NULL;
1714 }
1715
1716 /* check if there are new URBs to giveback */
1717 spin_lock_irq(&bh->lock);
1718 if (!list_empty(&bh->head))
1719 goto restart;
1720 bh->running = false;
1721 spin_unlock_irq(&bh->lock);
1722 }
1723
1724 /**
1725 * usb_hcd_giveback_urb - return URB from HCD to device driver
1726 * @hcd: host controller returning the URB
1727 * @urb: urb being returned to the USB device driver.
1728 * @status: completion status code for the URB.
1729 * Context: in_interrupt()
1730 *
1731 * This hands the URB from HCD to its USB device driver, using its
1732 * completion function. The HCD has freed all per-urb resources
1733 * (and is done using urb->hcpriv). It also released all HCD locks;
1734 * the device driver won't cause problems if it frees, modifies,
1735 * or resubmits this URB.
1736 *
1737 * If @urb was unlinked, the value of @status will be overridden by
1738 * @urb->unlinked. Erroneous short transfers are detected in case
1739 * the HCD hasn't checked for them.
1740 */
1741 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1742 {
1743 struct giveback_urb_bh *bh;
1744 bool running, high_prio_bh;
1745
1746 /* pass status to tasklet via unlinked */
1747 if (likely(!urb->unlinked))
1748 urb->unlinked = status;
1749
1750 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1751 __usb_hcd_giveback_urb(urb);
1752 return;
1753 }
1754
1755 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1756 bh = &hcd->high_prio_bh;
1757 high_prio_bh = true;
1758 } else {
1759 bh = &hcd->low_prio_bh;
1760 high_prio_bh = false;
1761 }
1762
1763 spin_lock(&bh->lock);
1764 list_add_tail(&urb->urb_list, &bh->head);
1765 running = bh->running;
1766 spin_unlock(&bh->lock);
1767
1768 if (running)
1769 ;
1770 else if (high_prio_bh)
1771 tasklet_hi_schedule(&bh->bh);
1772 else
1773 tasklet_schedule(&bh->bh);
1774 }
1775 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1776
1777 /*-------------------------------------------------------------------------*/
1778
1779 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1780 * queue to drain completely. The caller must first insure that no more
1781 * URBs can be submitted for this endpoint.
1782 */
1783 void usb_hcd_flush_endpoint(struct usb_device *udev,
1784 struct usb_host_endpoint *ep)
1785 {
1786 struct usb_hcd *hcd;
1787 struct urb *urb;
1788
1789 if (!ep)
1790 return;
1791 might_sleep();
1792 hcd = bus_to_hcd(udev->bus);
1793
1794 /* No more submits can occur */
1795 spin_lock_irq(&hcd_urb_list_lock);
1796 rescan:
1797 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1798 int is_in;
1799
1800 if (urb->unlinked)
1801 continue;
1802 usb_get_urb (urb);
1803 is_in = usb_urb_dir_in(urb);
1804 spin_unlock(&hcd_urb_list_lock);
1805
1806 /* kick hcd */
1807 unlink1(hcd, urb, -ESHUTDOWN);
1808 dev_dbg (hcd->self.controller,
1809 "shutdown urb %p ep%d%s%s\n",
1810 urb, usb_endpoint_num(&ep->desc),
1811 is_in ? "in" : "out",
1812 ({ char *s;
1813
1814 switch (usb_endpoint_type(&ep->desc)) {
1815 case USB_ENDPOINT_XFER_CONTROL:
1816 s = ""; break;
1817 case USB_ENDPOINT_XFER_BULK:
1818 s = "-bulk"; break;
1819 case USB_ENDPOINT_XFER_INT:
1820 s = "-intr"; break;
1821 default:
1822 s = "-iso"; break;
1823 };
1824 s;
1825 }));
1826 usb_put_urb (urb);
1827
1828 /* list contents may have changed */
1829 spin_lock(&hcd_urb_list_lock);
1830 goto rescan;
1831 }
1832 spin_unlock_irq(&hcd_urb_list_lock);
1833
1834 /* Wait until the endpoint queue is completely empty */
1835 while (!list_empty (&ep->urb_list)) {
1836 spin_lock_irq(&hcd_urb_list_lock);
1837
1838 /* The list may have changed while we acquired the spinlock */
1839 urb = NULL;
1840 if (!list_empty (&ep->urb_list)) {
1841 urb = list_entry (ep->urb_list.prev, struct urb,
1842 urb_list);
1843 usb_get_urb (urb);
1844 }
1845 spin_unlock_irq(&hcd_urb_list_lock);
1846
1847 if (urb) {
1848 usb_kill_urb (urb);
1849 usb_put_urb (urb);
1850 }
1851 }
1852 }
1853
1854 /**
1855 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1856 * the bus bandwidth
1857 * @udev: target &usb_device
1858 * @new_config: new configuration to install
1859 * @cur_alt: the current alternate interface setting
1860 * @new_alt: alternate interface setting that is being installed
1861 *
1862 * To change configurations, pass in the new configuration in new_config,
1863 * and pass NULL for cur_alt and new_alt.
1864 *
1865 * To reset a device's configuration (put the device in the ADDRESSED state),
1866 * pass in NULL for new_config, cur_alt, and new_alt.
1867 *
1868 * To change alternate interface settings, pass in NULL for new_config,
1869 * pass in the current alternate interface setting in cur_alt,
1870 * and pass in the new alternate interface setting in new_alt.
1871 *
1872 * Return: An error if the requested bandwidth change exceeds the
1873 * bus bandwidth or host controller internal resources.
1874 */
1875 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1876 struct usb_host_config *new_config,
1877 struct usb_host_interface *cur_alt,
1878 struct usb_host_interface *new_alt)
1879 {
1880 int num_intfs, i, j;
1881 struct usb_host_interface *alt = NULL;
1882 int ret = 0;
1883 struct usb_hcd *hcd;
1884 struct usb_host_endpoint *ep;
1885
1886 hcd = bus_to_hcd(udev->bus);
1887 if (!hcd->driver->check_bandwidth)
1888 return 0;
1889
1890 /* Configuration is being removed - set configuration 0 */
1891 if (!new_config && !cur_alt) {
1892 for (i = 1; i < 16; ++i) {
1893 ep = udev->ep_out[i];
1894 if (ep)
1895 hcd->driver->drop_endpoint(hcd, udev, ep);
1896 ep = udev->ep_in[i];
1897 if (ep)
1898 hcd->driver->drop_endpoint(hcd, udev, ep);
1899 }
1900 hcd->driver->check_bandwidth(hcd, udev);
1901 return 0;
1902 }
1903 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1904 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1905 * of the bus. There will always be bandwidth for endpoint 0, so it's
1906 * ok to exclude it.
1907 */
1908 if (new_config) {
1909 num_intfs = new_config->desc.bNumInterfaces;
1910 /* Remove endpoints (except endpoint 0, which is always on the
1911 * schedule) from the old config from the schedule
1912 */
1913 for (i = 1; i < 16; ++i) {
1914 ep = udev->ep_out[i];
1915 if (ep) {
1916 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1917 if (ret < 0)
1918 goto reset;
1919 }
1920 ep = udev->ep_in[i];
1921 if (ep) {
1922 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1923 if (ret < 0)
1924 goto reset;
1925 }
1926 }
1927 for (i = 0; i < num_intfs; ++i) {
1928 struct usb_host_interface *first_alt;
1929 int iface_num;
1930
1931 first_alt = &new_config->intf_cache[i]->altsetting[0];
1932 iface_num = first_alt->desc.bInterfaceNumber;
1933 /* Set up endpoints for alternate interface setting 0 */
1934 alt = usb_find_alt_setting(new_config, iface_num, 0);
1935 if (!alt)
1936 /* No alt setting 0? Pick the first setting. */
1937 alt = first_alt;
1938
1939 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1940 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1941 if (ret < 0)
1942 goto reset;
1943 }
1944 }
1945 }
1946 if (cur_alt && new_alt) {
1947 struct usb_interface *iface = usb_ifnum_to_if(udev,
1948 cur_alt->desc.bInterfaceNumber);
1949
1950 if (!iface)
1951 return -EINVAL;
1952 if (iface->resetting_device) {
1953 /*
1954 * The USB core just reset the device, so the xHCI host
1955 * and the device will think alt setting 0 is installed.
1956 * However, the USB core will pass in the alternate
1957 * setting installed before the reset as cur_alt. Dig
1958 * out the alternate setting 0 structure, or the first
1959 * alternate setting if a broken device doesn't have alt
1960 * setting 0.
1961 */
1962 cur_alt = usb_altnum_to_altsetting(iface, 0);
1963 if (!cur_alt)
1964 cur_alt = &iface->altsetting[0];
1965 }
1966
1967 /* Drop all the endpoints in the current alt setting */
1968 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1969 ret = hcd->driver->drop_endpoint(hcd, udev,
1970 &cur_alt->endpoint[i]);
1971 if (ret < 0)
1972 goto reset;
1973 }
1974 /* Add all the endpoints in the new alt setting */
1975 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1976 ret = hcd->driver->add_endpoint(hcd, udev,
1977 &new_alt->endpoint[i]);
1978 if (ret < 0)
1979 goto reset;
1980 }
1981 }
1982 ret = hcd->driver->check_bandwidth(hcd, udev);
1983 reset:
1984 if (ret < 0)
1985 hcd->driver->reset_bandwidth(hcd, udev);
1986 return ret;
1987 }
1988
1989 /* Disables the endpoint: synchronizes with the hcd to make sure all
1990 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1991 * have been called previously. Use for set_configuration, set_interface,
1992 * driver removal, physical disconnect.
1993 *
1994 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1995 * type, maxpacket size, toggle, halt status, and scheduling.
1996 */
1997 void usb_hcd_disable_endpoint(struct usb_device *udev,
1998 struct usb_host_endpoint *ep)
1999 {
2000 struct usb_hcd *hcd;
2001
2002 might_sleep();
2003 hcd = bus_to_hcd(udev->bus);
2004 if (hcd->driver->endpoint_disable)
2005 hcd->driver->endpoint_disable(hcd, ep);
2006 }
2007
2008 /**
2009 * usb_hcd_reset_endpoint - reset host endpoint state
2010 * @udev: USB device.
2011 * @ep: the endpoint to reset.
2012 *
2013 * Resets any host endpoint state such as the toggle bit, sequence
2014 * number and current window.
2015 */
2016 void usb_hcd_reset_endpoint(struct usb_device *udev,
2017 struct usb_host_endpoint *ep)
2018 {
2019 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2020
2021 if (hcd->driver->endpoint_reset)
2022 hcd->driver->endpoint_reset(hcd, ep);
2023 else {
2024 int epnum = usb_endpoint_num(&ep->desc);
2025 int is_out = usb_endpoint_dir_out(&ep->desc);
2026 int is_control = usb_endpoint_xfer_control(&ep->desc);
2027
2028 usb_settoggle(udev, epnum, is_out, 0);
2029 if (is_control)
2030 usb_settoggle(udev, epnum, !is_out, 0);
2031 }
2032 }
2033
2034 /**
2035 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2036 * @interface: alternate setting that includes all endpoints.
2037 * @eps: array of endpoints that need streams.
2038 * @num_eps: number of endpoints in the array.
2039 * @num_streams: number of streams to allocate.
2040 * @mem_flags: flags hcd should use to allocate memory.
2041 *
2042 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2043 * Drivers may queue multiple transfers to different stream IDs, which may
2044 * complete in a different order than they were queued.
2045 *
2046 * Return: On success, the number of allocated streams. On failure, a negative
2047 * error code.
2048 */
2049 int usb_alloc_streams(struct usb_interface *interface,
2050 struct usb_host_endpoint **eps, unsigned int num_eps,
2051 unsigned int num_streams, gfp_t mem_flags)
2052 {
2053 struct usb_hcd *hcd;
2054 struct usb_device *dev;
2055 int i, ret;
2056
2057 dev = interface_to_usbdev(interface);
2058 hcd = bus_to_hcd(dev->bus);
2059 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2060 return -EINVAL;
2061 if (dev->speed != USB_SPEED_SUPER)
2062 return -EINVAL;
2063 if (dev->state < USB_STATE_CONFIGURED)
2064 return -ENODEV;
2065
2066 for (i = 0; i < num_eps; i++) {
2067 /* Streams only apply to bulk endpoints. */
2068 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2069 return -EINVAL;
2070 /* Re-alloc is not allowed */
2071 if (eps[i]->streams)
2072 return -EINVAL;
2073 }
2074
2075 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2076 num_streams, mem_flags);
2077 if (ret < 0)
2078 return ret;
2079
2080 for (i = 0; i < num_eps; i++)
2081 eps[i]->streams = ret;
2082
2083 return ret;
2084 }
2085 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2086
2087 /**
2088 * usb_free_streams - free bulk endpoint stream IDs.
2089 * @interface: alternate setting that includes all endpoints.
2090 * @eps: array of endpoints to remove streams from.
2091 * @num_eps: number of endpoints in the array.
2092 * @mem_flags: flags hcd should use to allocate memory.
2093 *
2094 * Reverts a group of bulk endpoints back to not using stream IDs.
2095 * Can fail if we are given bad arguments, or HCD is broken.
2096 *
2097 * Return: 0 on success. On failure, a negative error code.
2098 */
2099 int usb_free_streams(struct usb_interface *interface,
2100 struct usb_host_endpoint **eps, unsigned int num_eps,
2101 gfp_t mem_flags)
2102 {
2103 struct usb_hcd *hcd;
2104 struct usb_device *dev;
2105 int i, ret;
2106
2107 dev = interface_to_usbdev(interface);
2108 hcd = bus_to_hcd(dev->bus);
2109 if (dev->speed != USB_SPEED_SUPER)
2110 return -EINVAL;
2111
2112 /* Double-free is not allowed */
2113 for (i = 0; i < num_eps; i++)
2114 if (!eps[i] || !eps[i]->streams)
2115 return -EINVAL;
2116
2117 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2118 if (ret < 0)
2119 return ret;
2120
2121 for (i = 0; i < num_eps; i++)
2122 eps[i]->streams = 0;
2123
2124 return ret;
2125 }
2126 EXPORT_SYMBOL_GPL(usb_free_streams);
2127
2128 /* Protect against drivers that try to unlink URBs after the device
2129 * is gone, by waiting until all unlinks for @udev are finished.
2130 * Since we don't currently track URBs by device, simply wait until
2131 * nothing is running in the locked region of usb_hcd_unlink_urb().
2132 */
2133 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2134 {
2135 spin_lock_irq(&hcd_urb_unlink_lock);
2136 spin_unlock_irq(&hcd_urb_unlink_lock);
2137 }
2138
2139 /*-------------------------------------------------------------------------*/
2140
2141 /* called in any context */
2142 int usb_hcd_get_frame_number (struct usb_device *udev)
2143 {
2144 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2145
2146 if (!HCD_RH_RUNNING(hcd))
2147 return -ESHUTDOWN;
2148 return hcd->driver->get_frame_number (hcd);
2149 }
2150
2151 /*-------------------------------------------------------------------------*/
2152
2153 #ifdef CONFIG_PM
2154
2155 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2156 {
2157 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2158 int status;
2159 int old_state = hcd->state;
2160
2161 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2162 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2163 rhdev->do_remote_wakeup);
2164 if (HCD_DEAD(hcd)) {
2165 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2166 return 0;
2167 }
2168
2169 if (!hcd->driver->bus_suspend) {
2170 status = -ENOENT;
2171 } else {
2172 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2173 hcd->state = HC_STATE_QUIESCING;
2174 status = hcd->driver->bus_suspend(hcd);
2175 }
2176 if (status == 0) {
2177 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2178 hcd->state = HC_STATE_SUSPENDED;
2179
2180 /* Did we race with a root-hub wakeup event? */
2181 if (rhdev->do_remote_wakeup) {
2182 char buffer[6];
2183
2184 status = hcd->driver->hub_status_data(hcd, buffer);
2185 if (status != 0) {
2186 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2187 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2188 status = -EBUSY;
2189 }
2190 }
2191 } else {
2192 spin_lock_irq(&hcd_root_hub_lock);
2193 if (!HCD_DEAD(hcd)) {
2194 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2195 hcd->state = old_state;
2196 }
2197 spin_unlock_irq(&hcd_root_hub_lock);
2198 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2199 "suspend", status);
2200 }
2201 return status;
2202 }
2203
2204 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2205 {
2206 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2207 int status;
2208 int old_state = hcd->state;
2209
2210 dev_dbg(&rhdev->dev, "usb %sresume\n",
2211 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2212 if (HCD_DEAD(hcd)) {
2213 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2214 return 0;
2215 }
2216 if (!hcd->driver->bus_resume)
2217 return -ENOENT;
2218 if (HCD_RH_RUNNING(hcd))
2219 return 0;
2220
2221 hcd->state = HC_STATE_RESUMING;
2222 status = hcd->driver->bus_resume(hcd);
2223 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2224 if (status == 0) {
2225 struct usb_device *udev;
2226 int port1;
2227
2228 spin_lock_irq(&hcd_root_hub_lock);
2229 if (!HCD_DEAD(hcd)) {
2230 usb_set_device_state(rhdev, rhdev->actconfig
2231 ? USB_STATE_CONFIGURED
2232 : USB_STATE_ADDRESS);
2233 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2234 hcd->state = HC_STATE_RUNNING;
2235 }
2236 spin_unlock_irq(&hcd_root_hub_lock);
2237
2238 /*
2239 * Check whether any of the enabled ports on the root hub are
2240 * unsuspended. If they are then a TRSMRCY delay is needed
2241 * (this is what the USB-2 spec calls a "global resume").
2242 * Otherwise we can skip the delay.
2243 */
2244 usb_hub_for_each_child(rhdev, port1, udev) {
2245 if (udev->state != USB_STATE_NOTATTACHED &&
2246 !udev->port_is_suspended) {
2247 usleep_range(10000, 11000); /* TRSMRCY */
2248 break;
2249 }
2250 }
2251 } else {
2252 hcd->state = old_state;
2253 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2254 "resume", status);
2255 if (status != -ESHUTDOWN)
2256 usb_hc_died(hcd);
2257 }
2258 return status;
2259 }
2260
2261 /* Workqueue routine for root-hub remote wakeup */
2262 static void hcd_resume_work(struct work_struct *work)
2263 {
2264 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2265 struct usb_device *udev = hcd->self.root_hub;
2266
2267 usb_remote_wakeup(udev);
2268 }
2269
2270 /**
2271 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2272 * @hcd: host controller for this root hub
2273 *
2274 * The USB host controller calls this function when its root hub is
2275 * suspended (with the remote wakeup feature enabled) and a remote
2276 * wakeup request is received. The routine submits a workqueue request
2277 * to resume the root hub (that is, manage its downstream ports again).
2278 */
2279 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2280 {
2281 unsigned long flags;
2282
2283 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2284 if (hcd->rh_registered) {
2285 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2286 queue_work(pm_wq, &hcd->wakeup_work);
2287 }
2288 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2289 }
2290 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2291
2292 #endif /* CONFIG_PM */
2293
2294 /*-------------------------------------------------------------------------*/
2295
2296 #ifdef CONFIG_USB_OTG
2297
2298 /**
2299 * usb_bus_start_enum - start immediate enumeration (for OTG)
2300 * @bus: the bus (must use hcd framework)
2301 * @port_num: 1-based number of port; usually bus->otg_port
2302 * Context: in_interrupt()
2303 *
2304 * Starts enumeration, with an immediate reset followed later by
2305 * hub_wq identifying and possibly configuring the device.
2306 * This is needed by OTG controller drivers, where it helps meet
2307 * HNP protocol timing requirements for starting a port reset.
2308 *
2309 * Return: 0 if successful.
2310 */
2311 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2312 {
2313 struct usb_hcd *hcd;
2314 int status = -EOPNOTSUPP;
2315
2316 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2317 * boards with root hubs hooked up to internal devices (instead of
2318 * just the OTG port) may need more attention to resetting...
2319 */
2320 hcd = container_of (bus, struct usb_hcd, self);
2321 if (port_num && hcd->driver->start_port_reset)
2322 status = hcd->driver->start_port_reset(hcd, port_num);
2323
2324 /* allocate hub_wq shortly after (first) root port reset finishes;
2325 * it may issue others, until at least 50 msecs have passed.
2326 */
2327 if (status == 0)
2328 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2329 return status;
2330 }
2331 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2332
2333 #endif
2334
2335 /*-------------------------------------------------------------------------*/
2336
2337 /**
2338 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2339 * @irq: the IRQ being raised
2340 * @__hcd: pointer to the HCD whose IRQ is being signaled
2341 *
2342 * If the controller isn't HALTed, calls the driver's irq handler.
2343 * Checks whether the controller is now dead.
2344 *
2345 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2346 */
2347 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2348 {
2349 struct usb_hcd *hcd = __hcd;
2350 irqreturn_t rc;
2351
2352 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2353 rc = IRQ_NONE;
2354 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2355 rc = IRQ_NONE;
2356 else
2357 rc = IRQ_HANDLED;
2358
2359 return rc;
2360 }
2361 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2362
2363 /*-------------------------------------------------------------------------*/
2364
2365 /**
2366 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2367 * @hcd: pointer to the HCD representing the controller
2368 *
2369 * This is called by bus glue to report a USB host controller that died
2370 * while operations may still have been pending. It's called automatically
2371 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2372 *
2373 * Only call this function with the primary HCD.
2374 */
2375 void usb_hc_died (struct usb_hcd *hcd)
2376 {
2377 unsigned long flags;
2378
2379 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2380
2381 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2382 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2383 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2384 if (hcd->rh_registered) {
2385 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2386
2387 /* make hub_wq clean up old urbs and devices */
2388 usb_set_device_state (hcd->self.root_hub,
2389 USB_STATE_NOTATTACHED);
2390 usb_kick_hub_wq(hcd->self.root_hub);
2391 }
2392 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2393 hcd = hcd->shared_hcd;
2394 if (hcd->rh_registered) {
2395 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2396
2397 /* make hub_wq clean up old urbs and devices */
2398 usb_set_device_state(hcd->self.root_hub,
2399 USB_STATE_NOTATTACHED);
2400 usb_kick_hub_wq(hcd->self.root_hub);
2401 }
2402 }
2403 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2404 /* Make sure that the other roothub is also deallocated. */
2405 }
2406 EXPORT_SYMBOL_GPL (usb_hc_died);
2407
2408 /*-------------------------------------------------------------------------*/
2409
2410 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2411 {
2412
2413 spin_lock_init(&bh->lock);
2414 INIT_LIST_HEAD(&bh->head);
2415 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2416 }
2417
2418 /**
2419 * usb_create_shared_hcd - create and initialize an HCD structure
2420 * @driver: HC driver that will use this hcd
2421 * @dev: device for this HC, stored in hcd->self.controller
2422 * @bus_name: value to store in hcd->self.bus_name
2423 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2424 * PCI device. Only allocate certain resources for the primary HCD
2425 * Context: !in_interrupt()
2426 *
2427 * Allocate a struct usb_hcd, with extra space at the end for the
2428 * HC driver's private data. Initialize the generic members of the
2429 * hcd structure.
2430 *
2431 * Return: On success, a pointer to the created and initialized HCD structure.
2432 * On failure (e.g. if memory is unavailable), %NULL.
2433 */
2434 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2435 struct device *dev, const char *bus_name,
2436 struct usb_hcd *primary_hcd)
2437 {
2438 struct usb_hcd *hcd;
2439
2440 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2441 if (!hcd) {
2442 dev_dbg (dev, "hcd alloc failed\n");
2443 return NULL;
2444 }
2445 if (primary_hcd == NULL) {
2446 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2447 GFP_KERNEL);
2448 if (!hcd->bandwidth_mutex) {
2449 kfree(hcd);
2450 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2451 return NULL;
2452 }
2453 mutex_init(hcd->bandwidth_mutex);
2454 dev_set_drvdata(dev, hcd);
2455 } else {
2456 mutex_lock(&usb_port_peer_mutex);
2457 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2458 hcd->primary_hcd = primary_hcd;
2459 primary_hcd->primary_hcd = primary_hcd;
2460 hcd->shared_hcd = primary_hcd;
2461 primary_hcd->shared_hcd = hcd;
2462 mutex_unlock(&usb_port_peer_mutex);
2463 }
2464
2465 kref_init(&hcd->kref);
2466
2467 usb_bus_init(&hcd->self);
2468 hcd->self.controller = dev;
2469 hcd->self.bus_name = bus_name;
2470 hcd->self.uses_dma = (dev->dma_mask != NULL);
2471
2472 init_timer(&hcd->rh_timer);
2473 hcd->rh_timer.function = rh_timer_func;
2474 hcd->rh_timer.data = (unsigned long) hcd;
2475 #ifdef CONFIG_PM
2476 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2477 #endif
2478
2479 hcd->driver = driver;
2480 hcd->speed = driver->flags & HCD_MASK;
2481 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2482 "USB Host Controller";
2483 return hcd;
2484 }
2485 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2486
2487 /**
2488 * usb_create_hcd - create and initialize an HCD structure
2489 * @driver: HC driver that will use this hcd
2490 * @dev: device for this HC, stored in hcd->self.controller
2491 * @bus_name: value to store in hcd->self.bus_name
2492 * Context: !in_interrupt()
2493 *
2494 * Allocate a struct usb_hcd, with extra space at the end for the
2495 * HC driver's private data. Initialize the generic members of the
2496 * hcd structure.
2497 *
2498 * Return: On success, a pointer to the created and initialized HCD
2499 * structure. On failure (e.g. if memory is unavailable), %NULL.
2500 */
2501 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2502 struct device *dev, const char *bus_name)
2503 {
2504 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2505 }
2506 EXPORT_SYMBOL_GPL(usb_create_hcd);
2507
2508 /*
2509 * Roothubs that share one PCI device must also share the bandwidth mutex.
2510 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2511 * deallocated.
2512 *
2513 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2514 * freed. When hcd_release() is called for either hcd in a peer set
2515 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2516 * block new peering attempts
2517 */
2518 static void hcd_release(struct kref *kref)
2519 {
2520 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2521
2522 mutex_lock(&usb_port_peer_mutex);
2523 if (usb_hcd_is_primary_hcd(hcd))
2524 kfree(hcd->bandwidth_mutex);
2525 if (hcd->shared_hcd) {
2526 struct usb_hcd *peer = hcd->shared_hcd;
2527
2528 peer->shared_hcd = NULL;
2529 if (peer->primary_hcd == hcd)
2530 peer->primary_hcd = NULL;
2531 }
2532 mutex_unlock(&usb_port_peer_mutex);
2533 kfree(hcd);
2534 }
2535
2536 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2537 {
2538 if (hcd)
2539 kref_get (&hcd->kref);
2540 return hcd;
2541 }
2542 EXPORT_SYMBOL_GPL(usb_get_hcd);
2543
2544 void usb_put_hcd (struct usb_hcd *hcd)
2545 {
2546 if (hcd)
2547 kref_put (&hcd->kref, hcd_release);
2548 }
2549 EXPORT_SYMBOL_GPL(usb_put_hcd);
2550
2551 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2552 {
2553 if (!hcd->primary_hcd)
2554 return 1;
2555 return hcd == hcd->primary_hcd;
2556 }
2557 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2558
2559 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2560 {
2561 if (!hcd->driver->find_raw_port_number)
2562 return port1;
2563
2564 return hcd->driver->find_raw_port_number(hcd, port1);
2565 }
2566
2567 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2568 unsigned int irqnum, unsigned long irqflags)
2569 {
2570 int retval;
2571
2572 if (hcd->driver->irq) {
2573
2574 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2575 hcd->driver->description, hcd->self.busnum);
2576 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2577 hcd->irq_descr, hcd);
2578 if (retval != 0) {
2579 dev_err(hcd->self.controller,
2580 "request interrupt %d failed\n",
2581 irqnum);
2582 return retval;
2583 }
2584 hcd->irq = irqnum;
2585 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2586 (hcd->driver->flags & HCD_MEMORY) ?
2587 "io mem" : "io base",
2588 (unsigned long long)hcd->rsrc_start);
2589 } else {
2590 hcd->irq = 0;
2591 if (hcd->rsrc_start)
2592 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2593 (hcd->driver->flags & HCD_MEMORY) ?
2594 "io mem" : "io base",
2595 (unsigned long long)hcd->rsrc_start);
2596 }
2597 return 0;
2598 }
2599
2600 /*
2601 * Before we free this root hub, flush in-flight peering attempts
2602 * and disable peer lookups
2603 */
2604 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2605 {
2606 struct usb_device *rhdev;
2607
2608 mutex_lock(&usb_port_peer_mutex);
2609 rhdev = hcd->self.root_hub;
2610 hcd->self.root_hub = NULL;
2611 mutex_unlock(&usb_port_peer_mutex);
2612 usb_put_dev(rhdev);
2613 }
2614
2615 /**
2616 * usb_add_hcd - finish generic HCD structure initialization and register
2617 * @hcd: the usb_hcd structure to initialize
2618 * @irqnum: Interrupt line to allocate
2619 * @irqflags: Interrupt type flags
2620 *
2621 * Finish the remaining parts of generic HCD initialization: allocate the
2622 * buffers of consistent memory, register the bus, request the IRQ line,
2623 * and call the driver's reset() and start() routines.
2624 */
2625 int usb_add_hcd(struct usb_hcd *hcd,
2626 unsigned int irqnum, unsigned long irqflags)
2627 {
2628 int retval;
2629 struct usb_device *rhdev;
2630
2631 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2632 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2633
2634 if (IS_ERR(phy)) {
2635 retval = PTR_ERR(phy);
2636 if (retval == -EPROBE_DEFER)
2637 return retval;
2638 } else {
2639 retval = usb_phy_init(phy);
2640 if (retval) {
2641 usb_put_phy(phy);
2642 return retval;
2643 }
2644 hcd->usb_phy = phy;
2645 hcd->remove_phy = 1;
2646 }
2647 }
2648
2649 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2650 struct phy *phy = phy_get(hcd->self.controller, "usb");
2651
2652 if (IS_ERR(phy)) {
2653 retval = PTR_ERR(phy);
2654 if (retval == -EPROBE_DEFER)
2655 goto err_phy;
2656 } else {
2657 retval = phy_init(phy);
2658 if (retval) {
2659 phy_put(phy);
2660 goto err_phy;
2661 }
2662 retval = phy_power_on(phy);
2663 if (retval) {
2664 phy_exit(phy);
2665 phy_put(phy);
2666 goto err_phy;
2667 }
2668 hcd->phy = phy;
2669 hcd->remove_phy = 1;
2670 }
2671 }
2672
2673 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2674
2675 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2676 if (authorized_default < 0 || authorized_default > 1)
2677 hcd->authorized_default = hcd->wireless ? 0 : 1;
2678 else
2679 hcd->authorized_default = authorized_default;
2680 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2681
2682 /* HC is in reset state, but accessible. Now do the one-time init,
2683 * bottom up so that hcds can customize the root hubs before hub_wq
2684 * starts talking to them. (Note, bus id is assigned early too.)
2685 */
2686 if ((retval = hcd_buffer_create(hcd)) != 0) {
2687 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2688 goto err_create_buf;
2689 }
2690
2691 if ((retval = usb_register_bus(&hcd->self)) < 0)
2692 goto err_register_bus;
2693
2694 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2695 if (rhdev == NULL) {
2696 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2697 retval = -ENOMEM;
2698 goto err_allocate_root_hub;
2699 }
2700 mutex_lock(&usb_port_peer_mutex);
2701 hcd->self.root_hub = rhdev;
2702 mutex_unlock(&usb_port_peer_mutex);
2703
2704 switch (hcd->speed) {
2705 case HCD_USB11:
2706 rhdev->speed = USB_SPEED_FULL;
2707 break;
2708 case HCD_USB2:
2709 rhdev->speed = USB_SPEED_HIGH;
2710 break;
2711 case HCD_USB25:
2712 rhdev->speed = USB_SPEED_WIRELESS;
2713 break;
2714 case HCD_USB3:
2715 rhdev->speed = USB_SPEED_SUPER;
2716 break;
2717 default:
2718 retval = -EINVAL;
2719 goto err_set_rh_speed;
2720 }
2721
2722 /* wakeup flag init defaults to "everything works" for root hubs,
2723 * but drivers can override it in reset() if needed, along with
2724 * recording the overall controller's system wakeup capability.
2725 */
2726 device_set_wakeup_capable(&rhdev->dev, 1);
2727
2728 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2729 * registered. But since the controller can die at any time,
2730 * let's initialize the flag before touching the hardware.
2731 */
2732 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2733
2734 /* "reset" is misnamed; its role is now one-time init. the controller
2735 * should already have been reset (and boot firmware kicked off etc).
2736 */
2737 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2738 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2739 goto err_hcd_driver_setup;
2740 }
2741 hcd->rh_pollable = 1;
2742
2743 /* NOTE: root hub and controller capabilities may not be the same */
2744 if (device_can_wakeup(hcd->self.controller)
2745 && device_can_wakeup(&hcd->self.root_hub->dev))
2746 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2747
2748 /* initialize tasklets */
2749 init_giveback_urb_bh(&hcd->high_prio_bh);
2750 init_giveback_urb_bh(&hcd->low_prio_bh);
2751
2752 /* enable irqs just before we start the controller,
2753 * if the BIOS provides legacy PCI irqs.
2754 */
2755 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2756 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2757 if (retval)
2758 goto err_request_irq;
2759 }
2760
2761 hcd->state = HC_STATE_RUNNING;
2762 retval = hcd->driver->start(hcd);
2763 if (retval < 0) {
2764 dev_err(hcd->self.controller, "startup error %d\n", retval);
2765 goto err_hcd_driver_start;
2766 }
2767
2768 /* starting here, usbcore will pay attention to this root hub */
2769 if ((retval = register_root_hub(hcd)) != 0)
2770 goto err_register_root_hub;
2771
2772 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2773 if (retval < 0) {
2774 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2775 retval);
2776 goto error_create_attr_group;
2777 }
2778 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2779 usb_hcd_poll_rh_status(hcd);
2780
2781 return retval;
2782
2783 error_create_attr_group:
2784 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2785 if (HC_IS_RUNNING(hcd->state))
2786 hcd->state = HC_STATE_QUIESCING;
2787 spin_lock_irq(&hcd_root_hub_lock);
2788 hcd->rh_registered = 0;
2789 spin_unlock_irq(&hcd_root_hub_lock);
2790
2791 #ifdef CONFIG_PM
2792 cancel_work_sync(&hcd->wakeup_work);
2793 #endif
2794 mutex_lock(&usb_bus_list_lock);
2795 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2796 mutex_unlock(&usb_bus_list_lock);
2797 err_register_root_hub:
2798 hcd->rh_pollable = 0;
2799 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2800 del_timer_sync(&hcd->rh_timer);
2801 hcd->driver->stop(hcd);
2802 hcd->state = HC_STATE_HALT;
2803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2804 del_timer_sync(&hcd->rh_timer);
2805 err_hcd_driver_start:
2806 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2807 free_irq(irqnum, hcd);
2808 err_request_irq:
2809 err_hcd_driver_setup:
2810 err_set_rh_speed:
2811 usb_put_invalidate_rhdev(hcd);
2812 err_allocate_root_hub:
2813 usb_deregister_bus(&hcd->self);
2814 err_register_bus:
2815 hcd_buffer_destroy(hcd);
2816 err_create_buf:
2817 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2818 phy_power_off(hcd->phy);
2819 phy_exit(hcd->phy);
2820 phy_put(hcd->phy);
2821 hcd->phy = NULL;
2822 }
2823 err_phy:
2824 if (hcd->remove_phy && hcd->usb_phy) {
2825 usb_phy_shutdown(hcd->usb_phy);
2826 usb_put_phy(hcd->usb_phy);
2827 hcd->usb_phy = NULL;
2828 }
2829 return retval;
2830 }
2831 EXPORT_SYMBOL_GPL(usb_add_hcd);
2832
2833 /**
2834 * usb_remove_hcd - shutdown processing for generic HCDs
2835 * @hcd: the usb_hcd structure to remove
2836 * Context: !in_interrupt()
2837 *
2838 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2839 * invoking the HCD's stop() method.
2840 */
2841 void usb_remove_hcd(struct usb_hcd *hcd)
2842 {
2843 struct usb_device *rhdev = hcd->self.root_hub;
2844
2845 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2846
2847 usb_get_dev(rhdev);
2848 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2849
2850 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2851 if (HC_IS_RUNNING (hcd->state))
2852 hcd->state = HC_STATE_QUIESCING;
2853
2854 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2855 spin_lock_irq (&hcd_root_hub_lock);
2856 hcd->rh_registered = 0;
2857 spin_unlock_irq (&hcd_root_hub_lock);
2858
2859 #ifdef CONFIG_PM
2860 cancel_work_sync(&hcd->wakeup_work);
2861 #endif
2862
2863 mutex_lock(&usb_bus_list_lock);
2864 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2865 mutex_unlock(&usb_bus_list_lock);
2866
2867 /*
2868 * tasklet_kill() isn't needed here because:
2869 * - driver's disconnect() called from usb_disconnect() should
2870 * make sure its URBs are completed during the disconnect()
2871 * callback
2872 *
2873 * - it is too late to run complete() here since driver may have
2874 * been removed already now
2875 */
2876
2877 /* Prevent any more root-hub status calls from the timer.
2878 * The HCD might still restart the timer (if a port status change
2879 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2880 * the hub_status_data() callback.
2881 */
2882 hcd->rh_pollable = 0;
2883 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2884 del_timer_sync(&hcd->rh_timer);
2885
2886 hcd->driver->stop(hcd);
2887 hcd->state = HC_STATE_HALT;
2888
2889 /* In case the HCD restarted the timer, stop it again. */
2890 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2891 del_timer_sync(&hcd->rh_timer);
2892
2893 if (usb_hcd_is_primary_hcd(hcd)) {
2894 if (hcd->irq > 0)
2895 free_irq(hcd->irq, hcd);
2896 }
2897
2898 usb_deregister_bus(&hcd->self);
2899 hcd_buffer_destroy(hcd);
2900
2901 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2902 phy_power_off(hcd->phy);
2903 phy_exit(hcd->phy);
2904 phy_put(hcd->phy);
2905 hcd->phy = NULL;
2906 }
2907 if (hcd->remove_phy && hcd->usb_phy) {
2908 usb_phy_shutdown(hcd->usb_phy);
2909 usb_put_phy(hcd->usb_phy);
2910 hcd->usb_phy = NULL;
2911 }
2912
2913 usb_put_invalidate_rhdev(hcd);
2914 }
2915 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2916
2917 void
2918 usb_hcd_platform_shutdown(struct platform_device *dev)
2919 {
2920 struct usb_hcd *hcd = platform_get_drvdata(dev);
2921
2922 if (hcd->driver->shutdown)
2923 hcd->driver->shutdown(hcd);
2924 }
2925 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2926
2927 /*-------------------------------------------------------------------------*/
2928
2929 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2930
2931 struct usb_mon_operations *mon_ops;
2932
2933 /*
2934 * The registration is unlocked.
2935 * We do it this way because we do not want to lock in hot paths.
2936 *
2937 * Notice that the code is minimally error-proof. Because usbmon needs
2938 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2939 */
2940
2941 int usb_mon_register (struct usb_mon_operations *ops)
2942 {
2943
2944 if (mon_ops)
2945 return -EBUSY;
2946
2947 mon_ops = ops;
2948 mb();
2949 return 0;
2950 }
2951 EXPORT_SYMBOL_GPL (usb_mon_register);
2952
2953 void usb_mon_deregister (void)
2954 {
2955
2956 if (mon_ops == NULL) {
2957 printk(KERN_ERR "USB: monitor was not registered\n");
2958 return;
2959 }
2960 mon_ops = NULL;
2961 mb();
2962 }
2963 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2964
2965 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.090995 seconds and 6 git commands to generate.