Merge branch 'linus' into x86/urgent
[deliverable/linux.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52 * USB Host Controller Driver framework
53 *
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
56 *
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
61 *
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
67 *
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
72 *
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75 *
76 * HISTORY:
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
80 */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* host controllers we manage */
85 LIST_HEAD (usb_bus_list);
86 EXPORT_SYMBOL_GPL (usb_bus_list);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90 struct usb_busmap {
91 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
92 };
93 static struct usb_busmap busmap;
94
95 /* used when updating list of hcds */
96 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
97 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
98
99 /* used for controlling access to virtual root hubs */
100 static DEFINE_SPINLOCK(hcd_root_hub_lock);
101
102 /* used when updating an endpoint's URB list */
103 static DEFINE_SPINLOCK(hcd_urb_list_lock);
104
105 /* wait queue for synchronous unlinks */
106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
107
108 static inline int is_root_hub(struct usb_device *udev)
109 {
110 return (udev->parent == NULL);
111 }
112
113 /*-------------------------------------------------------------------------*/
114
115 /*
116 * Sharable chunks of root hub code.
117 */
118
119 /*-------------------------------------------------------------------------*/
120
121 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
122 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
123
124 /* usb 2.0 root hub device descriptor */
125 static const u8 usb2_rh_dev_descriptor [18] = {
126 0x12, /* __u8 bLength; */
127 0x01, /* __u8 bDescriptorType; Device */
128 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
129
130 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
131 0x00, /* __u8 bDeviceSubClass; */
132 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
133 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
134
135 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
136 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
137 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
138
139 0x03, /* __u8 iManufacturer; */
140 0x02, /* __u8 iProduct; */
141 0x01, /* __u8 iSerialNumber; */
142 0x01 /* __u8 bNumConfigurations; */
143 };
144
145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
146
147 /* usb 1.1 root hub device descriptor */
148 static const u8 usb11_rh_dev_descriptor [18] = {
149 0x12, /* __u8 bLength; */
150 0x01, /* __u8 bDescriptorType; Device */
151 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
152
153 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
154 0x00, /* __u8 bDeviceSubClass; */
155 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
156 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
157
158 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
159 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
160 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
161
162 0x03, /* __u8 iManufacturer; */
163 0x02, /* __u8 iProduct; */
164 0x01, /* __u8 iSerialNumber; */
165 0x01 /* __u8 bNumConfigurations; */
166 };
167
168
169 /*-------------------------------------------------------------------------*/
170
171 /* Configuration descriptors for our root hubs */
172
173 static const u8 fs_rh_config_descriptor [] = {
174
175 /* one configuration */
176 0x09, /* __u8 bLength; */
177 0x02, /* __u8 bDescriptorType; Configuration */
178 0x19, 0x00, /* __le16 wTotalLength; */
179 0x01, /* __u8 bNumInterfaces; (1) */
180 0x01, /* __u8 bConfigurationValue; */
181 0x00, /* __u8 iConfiguration; */
182 0xc0, /* __u8 bmAttributes;
183 Bit 7: must be set,
184 6: Self-powered,
185 5: Remote wakeup,
186 4..0: resvd */
187 0x00, /* __u8 MaxPower; */
188
189 /* USB 1.1:
190 * USB 2.0, single TT organization (mandatory):
191 * one interface, protocol 0
192 *
193 * USB 2.0, multiple TT organization (optional):
194 * two interfaces, protocols 1 (like single TT)
195 * and 2 (multiple TT mode) ... config is
196 * sometimes settable
197 * NOT IMPLEMENTED
198 */
199
200 /* one interface */
201 0x09, /* __u8 if_bLength; */
202 0x04, /* __u8 if_bDescriptorType; Interface */
203 0x00, /* __u8 if_bInterfaceNumber; */
204 0x00, /* __u8 if_bAlternateSetting; */
205 0x01, /* __u8 if_bNumEndpoints; */
206 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
207 0x00, /* __u8 if_bInterfaceSubClass; */
208 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
209 0x00, /* __u8 if_iInterface; */
210
211 /* one endpoint (status change endpoint) */
212 0x07, /* __u8 ep_bLength; */
213 0x05, /* __u8 ep_bDescriptorType; Endpoint */
214 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
215 0x03, /* __u8 ep_bmAttributes; Interrupt */
216 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
217 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
218 };
219
220 static const u8 hs_rh_config_descriptor [] = {
221
222 /* one configuration */
223 0x09, /* __u8 bLength; */
224 0x02, /* __u8 bDescriptorType; Configuration */
225 0x19, 0x00, /* __le16 wTotalLength; */
226 0x01, /* __u8 bNumInterfaces; (1) */
227 0x01, /* __u8 bConfigurationValue; */
228 0x00, /* __u8 iConfiguration; */
229 0xc0, /* __u8 bmAttributes;
230 Bit 7: must be set,
231 6: Self-powered,
232 5: Remote wakeup,
233 4..0: resvd */
234 0x00, /* __u8 MaxPower; */
235
236 /* USB 1.1:
237 * USB 2.0, single TT organization (mandatory):
238 * one interface, protocol 0
239 *
240 * USB 2.0, multiple TT organization (optional):
241 * two interfaces, protocols 1 (like single TT)
242 * and 2 (multiple TT mode) ... config is
243 * sometimes settable
244 * NOT IMPLEMENTED
245 */
246
247 /* one interface */
248 0x09, /* __u8 if_bLength; */
249 0x04, /* __u8 if_bDescriptorType; Interface */
250 0x00, /* __u8 if_bInterfaceNumber; */
251 0x00, /* __u8 if_bAlternateSetting; */
252 0x01, /* __u8 if_bNumEndpoints; */
253 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
254 0x00, /* __u8 if_bInterfaceSubClass; */
255 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
256 0x00, /* __u8 if_iInterface; */
257
258 /* one endpoint (status change endpoint) */
259 0x07, /* __u8 ep_bLength; */
260 0x05, /* __u8 ep_bDescriptorType; Endpoint */
261 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
262 0x03, /* __u8 ep_bmAttributes; Interrupt */
263 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
264 * see hub.c:hub_configure() for details. */
265 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
266 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
267 };
268
269 /*-------------------------------------------------------------------------*/
270
271 /*
272 * helper routine for returning string descriptors in UTF-16LE
273 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
274 */
275 static int ascii2utf (char *s, u8 *utf, int utfmax)
276 {
277 int retval;
278
279 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
280 *utf++ = *s++;
281 *utf++ = 0;
282 }
283 if (utfmax > 0) {
284 *utf = *s;
285 ++retval;
286 }
287 return retval;
288 }
289
290 /*
291 * rh_string - provides manufacturer, product and serial strings for root hub
292 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
293 * @hcd: the host controller for this root hub
294 * @data: return packet in UTF-16 LE
295 * @len: length of the return packet
296 *
297 * Produces either a manufacturer, product or serial number string for the
298 * virtual root hub device.
299 */
300 static int rh_string (
301 int id,
302 struct usb_hcd *hcd,
303 u8 *data,
304 int len
305 ) {
306 char buf [100];
307
308 // language ids
309 if (id == 0) {
310 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
311 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
312 len = min (len, 4);
313 memcpy (data, buf, len);
314 return len;
315
316 // serial number
317 } else if (id == 1) {
318 strlcpy (buf, hcd->self.bus_name, sizeof buf);
319
320 // product description
321 } else if (id == 2) {
322 strlcpy (buf, hcd->product_desc, sizeof buf);
323
324 // id 3 == vendor description
325 } else if (id == 3) {
326 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
327 init_utsname()->release, hcd->driver->description);
328
329 // unsupported IDs --> "protocol stall"
330 } else
331 return -EPIPE;
332
333 switch (len) { /* All cases fall through */
334 default:
335 len = 2 + ascii2utf (buf, data + 2, len - 2);
336 case 2:
337 data [1] = 3; /* type == string */
338 case 1:
339 data [0] = 2 * (strlen (buf) + 1);
340 case 0:
341 ; /* Compiler wants a statement here */
342 }
343 return len;
344 }
345
346
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
349 {
350 struct usb_ctrlrequest *cmd;
351 u16 typeReq, wValue, wIndex, wLength;
352 u8 *ubuf = urb->transfer_buffer;
353 u8 tbuf [sizeof (struct usb_hub_descriptor)]
354 __attribute__((aligned(4)));
355 const u8 *bufp = tbuf;
356 int len = 0;
357 int status;
358 int n;
359 u8 patch_wakeup = 0;
360 u8 patch_protocol = 0;
361
362 might_sleep();
363
364 spin_lock_irq(&hcd_root_hub_lock);
365 status = usb_hcd_link_urb_to_ep(hcd, urb);
366 spin_unlock_irq(&hcd_root_hub_lock);
367 if (status)
368 return status;
369 urb->hcpriv = hcd; /* Indicate it's queued */
370
371 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
372 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
373 wValue = le16_to_cpu (cmd->wValue);
374 wIndex = le16_to_cpu (cmd->wIndex);
375 wLength = le16_to_cpu (cmd->wLength);
376
377 if (wLength > urb->transfer_buffer_length)
378 goto error;
379
380 urb->actual_length = 0;
381 switch (typeReq) {
382
383 /* DEVICE REQUESTS */
384
385 /* The root hub's remote wakeup enable bit is implemented using
386 * driver model wakeup flags. If this system supports wakeup
387 * through USB, userspace may change the default "allow wakeup"
388 * policy through sysfs or these calls.
389 *
390 * Most root hubs support wakeup from downstream devices, for
391 * runtime power management (disabling USB clocks and reducing
392 * VBUS power usage). However, not all of them do so; silicon,
393 * board, and BIOS bugs here are not uncommon, so these can't
394 * be treated quite like external hubs.
395 *
396 * Likewise, not all root hubs will pass wakeup events upstream,
397 * to wake up the whole system. So don't assume root hub and
398 * controller capabilities are identical.
399 */
400
401 case DeviceRequest | USB_REQ_GET_STATUS:
402 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
403 << USB_DEVICE_REMOTE_WAKEUP)
404 | (1 << USB_DEVICE_SELF_POWERED);
405 tbuf [1] = 0;
406 len = 2;
407 break;
408 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
409 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
410 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
411 else
412 goto error;
413 break;
414 case DeviceOutRequest | USB_REQ_SET_FEATURE:
415 if (device_can_wakeup(&hcd->self.root_hub->dev)
416 && wValue == USB_DEVICE_REMOTE_WAKEUP)
417 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
418 else
419 goto error;
420 break;
421 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
422 tbuf [0] = 1;
423 len = 1;
424 /* FALLTHROUGH */
425 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
426 break;
427 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
428 switch (wValue & 0xff00) {
429 case USB_DT_DEVICE << 8:
430 if (hcd->driver->flags & HCD_USB2)
431 bufp = usb2_rh_dev_descriptor;
432 else if (hcd->driver->flags & HCD_USB11)
433 bufp = usb11_rh_dev_descriptor;
434 else
435 goto error;
436 len = 18;
437 if (hcd->has_tt)
438 patch_protocol = 1;
439 break;
440 case USB_DT_CONFIG << 8:
441 if (hcd->driver->flags & HCD_USB2) {
442 bufp = hs_rh_config_descriptor;
443 len = sizeof hs_rh_config_descriptor;
444 } else {
445 bufp = fs_rh_config_descriptor;
446 len = sizeof fs_rh_config_descriptor;
447 }
448 if (device_can_wakeup(&hcd->self.root_hub->dev))
449 patch_wakeup = 1;
450 break;
451 case USB_DT_STRING << 8:
452 n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
453 if (n < 0)
454 goto error;
455 urb->actual_length = n;
456 break;
457 default:
458 goto error;
459 }
460 break;
461 case DeviceRequest | USB_REQ_GET_INTERFACE:
462 tbuf [0] = 0;
463 len = 1;
464 /* FALLTHROUGH */
465 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
466 break;
467 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468 // wValue == urb->dev->devaddr
469 dev_dbg (hcd->self.controller, "root hub device address %d\n",
470 wValue);
471 break;
472
473 /* INTERFACE REQUESTS (no defined feature/status flags) */
474
475 /* ENDPOINT REQUESTS */
476
477 case EndpointRequest | USB_REQ_GET_STATUS:
478 // ENDPOINT_HALT flag
479 tbuf [0] = 0;
480 tbuf [1] = 0;
481 len = 2;
482 /* FALLTHROUGH */
483 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484 case EndpointOutRequest | USB_REQ_SET_FEATURE:
485 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
486 break;
487
488 /* CLASS REQUESTS (and errors) */
489
490 default:
491 /* non-generic request */
492 switch (typeReq) {
493 case GetHubStatus:
494 case GetPortStatus:
495 len = 4;
496 break;
497 case GetHubDescriptor:
498 len = sizeof (struct usb_hub_descriptor);
499 break;
500 }
501 status = hcd->driver->hub_control (hcd,
502 typeReq, wValue, wIndex,
503 tbuf, wLength);
504 break;
505 error:
506 /* "protocol stall" on error */
507 status = -EPIPE;
508 }
509
510 if (status) {
511 len = 0;
512 if (status != -EPIPE) {
513 dev_dbg (hcd->self.controller,
514 "CTRL: TypeReq=0x%x val=0x%x "
515 "idx=0x%x len=%d ==> %d\n",
516 typeReq, wValue, wIndex,
517 wLength, status);
518 }
519 }
520 if (len) {
521 if (urb->transfer_buffer_length < len)
522 len = urb->transfer_buffer_length;
523 urb->actual_length = len;
524 // always USB_DIR_IN, toward host
525 memcpy (ubuf, bufp, len);
526
527 /* report whether RH hardware supports remote wakeup */
528 if (patch_wakeup &&
529 len > offsetof (struct usb_config_descriptor,
530 bmAttributes))
531 ((struct usb_config_descriptor *)ubuf)->bmAttributes
532 |= USB_CONFIG_ATT_WAKEUP;
533
534 /* report whether RH hardware has an integrated TT */
535 if (patch_protocol &&
536 len > offsetof(struct usb_device_descriptor,
537 bDeviceProtocol))
538 ((struct usb_device_descriptor *) ubuf)->
539 bDeviceProtocol = 1;
540 }
541
542 /* any errors get returned through the urb completion */
543 spin_lock_irq(&hcd_root_hub_lock);
544 usb_hcd_unlink_urb_from_ep(hcd, urb);
545
546 /* This peculiar use of spinlocks echoes what real HC drivers do.
547 * Avoiding calls to local_irq_disable/enable makes the code
548 * RT-friendly.
549 */
550 spin_unlock(&hcd_root_hub_lock);
551 usb_hcd_giveback_urb(hcd, urb, status);
552 spin_lock(&hcd_root_hub_lock);
553
554 spin_unlock_irq(&hcd_root_hub_lock);
555 return 0;
556 }
557
558 /*-------------------------------------------------------------------------*/
559
560 /*
561 * Root Hub interrupt transfers are polled using a timer if the
562 * driver requests it; otherwise the driver is responsible for
563 * calling usb_hcd_poll_rh_status() when an event occurs.
564 *
565 * Completions are called in_interrupt(), but they may or may not
566 * be in_irq().
567 */
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
569 {
570 struct urb *urb;
571 int length;
572 unsigned long flags;
573 char buffer[4]; /* Any root hubs with > 31 ports? */
574
575 if (unlikely(!hcd->rh_registered))
576 return;
577 if (!hcd->uses_new_polling && !hcd->status_urb)
578 return;
579
580 length = hcd->driver->hub_status_data(hcd, buffer);
581 if (length > 0) {
582
583 /* try to complete the status urb */
584 spin_lock_irqsave(&hcd_root_hub_lock, flags);
585 urb = hcd->status_urb;
586 if (urb) {
587 hcd->poll_pending = 0;
588 hcd->status_urb = NULL;
589 urb->actual_length = length;
590 memcpy(urb->transfer_buffer, buffer, length);
591
592 usb_hcd_unlink_urb_from_ep(hcd, urb);
593 spin_unlock(&hcd_root_hub_lock);
594 usb_hcd_giveback_urb(hcd, urb, 0);
595 spin_lock(&hcd_root_hub_lock);
596 } else {
597 length = 0;
598 hcd->poll_pending = 1;
599 }
600 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
601 }
602
603 /* The USB 2.0 spec says 256 ms. This is close enough and won't
604 * exceed that limit if HZ is 100. The math is more clunky than
605 * maybe expected, this is to make sure that all timers for USB devices
606 * fire at the same time to give the CPU a break inbetween */
607 if (hcd->uses_new_polling ? hcd->poll_rh :
608 (length == 0 && hcd->status_urb != NULL))
609 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
610 }
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
612
613 /* timer callback */
614 static void rh_timer_func (unsigned long _hcd)
615 {
616 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
617 }
618
619 /*-------------------------------------------------------------------------*/
620
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
622 {
623 int retval;
624 unsigned long flags;
625 int len = 1 + (urb->dev->maxchild / 8);
626
627 spin_lock_irqsave (&hcd_root_hub_lock, flags);
628 if (hcd->status_urb || urb->transfer_buffer_length < len) {
629 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
630 retval = -EINVAL;
631 goto done;
632 }
633
634 retval = usb_hcd_link_urb_to_ep(hcd, urb);
635 if (retval)
636 goto done;
637
638 hcd->status_urb = urb;
639 urb->hcpriv = hcd; /* indicate it's queued */
640 if (!hcd->uses_new_polling)
641 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
642
643 /* If a status change has already occurred, report it ASAP */
644 else if (hcd->poll_pending)
645 mod_timer(&hcd->rh_timer, jiffies);
646 retval = 0;
647 done:
648 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
649 return retval;
650 }
651
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
653 {
654 if (usb_endpoint_xfer_int(&urb->ep->desc))
655 return rh_queue_status (hcd, urb);
656 if (usb_endpoint_xfer_control(&urb->ep->desc))
657 return rh_call_control (hcd, urb);
658 return -EINVAL;
659 }
660
661 /*-------------------------------------------------------------------------*/
662
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664 * since these URBs always execute synchronously.
665 */
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
667 {
668 unsigned long flags;
669 int rc;
670
671 spin_lock_irqsave(&hcd_root_hub_lock, flags);
672 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
673 if (rc)
674 goto done;
675
676 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
677 ; /* Do nothing */
678
679 } else { /* Status URB */
680 if (!hcd->uses_new_polling)
681 del_timer (&hcd->rh_timer);
682 if (urb == hcd->status_urb) {
683 hcd->status_urb = NULL;
684 usb_hcd_unlink_urb_from_ep(hcd, urb);
685
686 spin_unlock(&hcd_root_hub_lock);
687 usb_hcd_giveback_urb(hcd, urb, status);
688 spin_lock(&hcd_root_hub_lock);
689 }
690 }
691 done:
692 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
693 return rc;
694 }
695
696
697
698 /*
699 * Show & store the current value of authorized_default
700 */
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702 struct device_attribute *attr,
703 char *buf)
704 {
705 struct usb_device *rh_usb_dev = to_usb_device(dev);
706 struct usb_bus *usb_bus = rh_usb_dev->bus;
707 struct usb_hcd *usb_hcd;
708
709 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
710 return -ENODEV;
711 usb_hcd = bus_to_hcd(usb_bus);
712 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
713 }
714
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716 struct device_attribute *attr,
717 const char *buf, size_t size)
718 {
719 ssize_t result;
720 unsigned val;
721 struct usb_device *rh_usb_dev = to_usb_device(dev);
722 struct usb_bus *usb_bus = rh_usb_dev->bus;
723 struct usb_hcd *usb_hcd;
724
725 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
726 return -ENODEV;
727 usb_hcd = bus_to_hcd(usb_bus);
728 result = sscanf(buf, "%u\n", &val);
729 if (result == 1) {
730 usb_hcd->authorized_default = val? 1 : 0;
731 result = size;
732 }
733 else
734 result = -EINVAL;
735 return result;
736 }
737
738 static DEVICE_ATTR(authorized_default, 0644,
739 usb_host_authorized_default_show,
740 usb_host_authorized_default_store);
741
742
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745 &dev_attr_authorized_default.attr,
746 NULL,
747 };
748
749 static struct attribute_group usb_bus_attr_group = {
750 .name = NULL, /* we want them in the same directory */
751 .attrs = usb_bus_attrs,
752 };
753
754
755
756 /*-------------------------------------------------------------------------*/
757
758 static struct class *usb_host_class;
759
760 int usb_host_init(void)
761 {
762 int retval = 0;
763
764 usb_host_class = class_create(THIS_MODULE, "usb_host");
765 if (IS_ERR(usb_host_class))
766 retval = PTR_ERR(usb_host_class);
767 return retval;
768 }
769
770 void usb_host_cleanup(void)
771 {
772 class_destroy(usb_host_class);
773 }
774
775 /**
776 * usb_bus_init - shared initialization code
777 * @bus: the bus structure being initialized
778 *
779 * This code is used to initialize a usb_bus structure, memory for which is
780 * separately managed.
781 */
782 static void usb_bus_init (struct usb_bus *bus)
783 {
784 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
785
786 bus->devnum_next = 1;
787
788 bus->root_hub = NULL;
789 bus->busnum = -1;
790 bus->bandwidth_allocated = 0;
791 bus->bandwidth_int_reqs = 0;
792 bus->bandwidth_isoc_reqs = 0;
793
794 INIT_LIST_HEAD (&bus->bus_list);
795 }
796
797 /*-------------------------------------------------------------------------*/
798
799 /**
800 * usb_register_bus - registers the USB host controller with the usb core
801 * @bus: pointer to the bus to register
802 * Context: !in_interrupt()
803 *
804 * Assigns a bus number, and links the controller into usbcore data
805 * structures so that it can be seen by scanning the bus list.
806 */
807 static int usb_register_bus(struct usb_bus *bus)
808 {
809 int result = -E2BIG;
810 int busnum;
811
812 mutex_lock(&usb_bus_list_lock);
813 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
814 if (busnum >= USB_MAXBUS) {
815 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
816 goto error_find_busnum;
817 }
818 set_bit (busnum, busmap.busmap);
819 bus->busnum = busnum;
820
821 bus->dev = device_create_drvdata(usb_host_class, bus->controller,
822 MKDEV(0, 0), bus,
823 "usb_host%d", busnum);
824 result = PTR_ERR(bus->dev);
825 if (IS_ERR(bus->dev))
826 goto error_create_class_dev;
827
828 /* Add it to the local list of buses */
829 list_add (&bus->bus_list, &usb_bus_list);
830 mutex_unlock(&usb_bus_list_lock);
831
832 usb_notify_add_bus(bus);
833
834 dev_info (bus->controller, "new USB bus registered, assigned bus "
835 "number %d\n", bus->busnum);
836 return 0;
837
838 error_create_class_dev:
839 clear_bit(busnum, busmap.busmap);
840 error_find_busnum:
841 mutex_unlock(&usb_bus_list_lock);
842 return result;
843 }
844
845 /**
846 * usb_deregister_bus - deregisters the USB host controller
847 * @bus: pointer to the bus to deregister
848 * Context: !in_interrupt()
849 *
850 * Recycles the bus number, and unlinks the controller from usbcore data
851 * structures so that it won't be seen by scanning the bus list.
852 */
853 static void usb_deregister_bus (struct usb_bus *bus)
854 {
855 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
856
857 /*
858 * NOTE: make sure that all the devices are removed by the
859 * controller code, as well as having it call this when cleaning
860 * itself up
861 */
862 mutex_lock(&usb_bus_list_lock);
863 list_del (&bus->bus_list);
864 mutex_unlock(&usb_bus_list_lock);
865
866 usb_notify_remove_bus(bus);
867
868 clear_bit (bus->busnum, busmap.busmap);
869
870 device_unregister(bus->dev);
871 }
872
873 /**
874 * register_root_hub - called by usb_add_hcd() to register a root hub
875 * @hcd: host controller for this root hub
876 *
877 * This function registers the root hub with the USB subsystem. It sets up
878 * the device properly in the device tree and then calls usb_new_device()
879 * to register the usb device. It also assigns the root hub's USB address
880 * (always 1).
881 */
882 static int register_root_hub(struct usb_hcd *hcd)
883 {
884 struct device *parent_dev = hcd->self.controller;
885 struct usb_device *usb_dev = hcd->self.root_hub;
886 const int devnum = 1;
887 int retval;
888
889 usb_dev->devnum = devnum;
890 usb_dev->bus->devnum_next = devnum + 1;
891 memset (&usb_dev->bus->devmap.devicemap, 0,
892 sizeof usb_dev->bus->devmap.devicemap);
893 set_bit (devnum, usb_dev->bus->devmap.devicemap);
894 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
895
896 mutex_lock(&usb_bus_list_lock);
897
898 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
899 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
900 if (retval != sizeof usb_dev->descriptor) {
901 mutex_unlock(&usb_bus_list_lock);
902 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
903 usb_dev->dev.bus_id, retval);
904 return (retval < 0) ? retval : -EMSGSIZE;
905 }
906
907 retval = usb_new_device (usb_dev);
908 if (retval) {
909 dev_err (parent_dev, "can't register root hub for %s, %d\n",
910 usb_dev->dev.bus_id, retval);
911 }
912 mutex_unlock(&usb_bus_list_lock);
913
914 if (retval == 0) {
915 spin_lock_irq (&hcd_root_hub_lock);
916 hcd->rh_registered = 1;
917 spin_unlock_irq (&hcd_root_hub_lock);
918
919 /* Did the HC die before the root hub was registered? */
920 if (hcd->state == HC_STATE_HALT)
921 usb_hc_died (hcd); /* This time clean up */
922 }
923
924 return retval;
925 }
926
927 void usb_enable_root_hub_irq (struct usb_bus *bus)
928 {
929 struct usb_hcd *hcd;
930
931 hcd = container_of (bus, struct usb_hcd, self);
932 if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT)
933 hcd->driver->hub_irq_enable (hcd);
934 }
935
936
937 /*-------------------------------------------------------------------------*/
938
939 /**
940 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
941 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
942 * @is_input: true iff the transaction sends data to the host
943 * @isoc: true for isochronous transactions, false for interrupt ones
944 * @bytecount: how many bytes in the transaction.
945 *
946 * Returns approximate bus time in nanoseconds for a periodic transaction.
947 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
948 * scheduled in software, this function is only used for such scheduling.
949 */
950 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
951 {
952 unsigned long tmp;
953
954 switch (speed) {
955 case USB_SPEED_LOW: /* INTR only */
956 if (is_input) {
957 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
958 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
959 } else {
960 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
961 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
962 }
963 case USB_SPEED_FULL: /* ISOC or INTR */
964 if (isoc) {
965 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
966 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
967 } else {
968 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
969 return (9107L + BW_HOST_DELAY + tmp);
970 }
971 case USB_SPEED_HIGH: /* ISOC or INTR */
972 // FIXME adjust for input vs output
973 if (isoc)
974 tmp = HS_NSECS_ISO (bytecount);
975 else
976 tmp = HS_NSECS (bytecount);
977 return tmp;
978 default:
979 pr_debug ("%s: bogus device speed!\n", usbcore_name);
980 return -1;
981 }
982 }
983 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
984
985
986 /*-------------------------------------------------------------------------*/
987
988 /*
989 * Generic HC operations.
990 */
991
992 /*-------------------------------------------------------------------------*/
993
994 /**
995 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
996 * @hcd: host controller to which @urb was submitted
997 * @urb: URB being submitted
998 *
999 * Host controller drivers should call this routine in their enqueue()
1000 * method. The HCD's private spinlock must be held and interrupts must
1001 * be disabled. The actions carried out here are required for URB
1002 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1003 *
1004 * Returns 0 for no error, otherwise a negative error code (in which case
1005 * the enqueue() method must fail). If no error occurs but enqueue() fails
1006 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1007 * the private spinlock and returning.
1008 */
1009 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1010 {
1011 int rc = 0;
1012
1013 spin_lock(&hcd_urb_list_lock);
1014
1015 /* Check that the URB isn't being killed */
1016 if (unlikely(urb->reject)) {
1017 rc = -EPERM;
1018 goto done;
1019 }
1020
1021 if (unlikely(!urb->ep->enabled)) {
1022 rc = -ENOENT;
1023 goto done;
1024 }
1025
1026 if (unlikely(!urb->dev->can_submit)) {
1027 rc = -EHOSTUNREACH;
1028 goto done;
1029 }
1030
1031 /*
1032 * Check the host controller's state and add the URB to the
1033 * endpoint's queue.
1034 */
1035 switch (hcd->state) {
1036 case HC_STATE_RUNNING:
1037 case HC_STATE_RESUMING:
1038 urb->unlinked = 0;
1039 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1040 break;
1041 default:
1042 rc = -ESHUTDOWN;
1043 goto done;
1044 }
1045 done:
1046 spin_unlock(&hcd_urb_list_lock);
1047 return rc;
1048 }
1049 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1050
1051 /**
1052 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1053 * @hcd: host controller to which @urb was submitted
1054 * @urb: URB being checked for unlinkability
1055 * @status: error code to store in @urb if the unlink succeeds
1056 *
1057 * Host controller drivers should call this routine in their dequeue()
1058 * method. The HCD's private spinlock must be held and interrupts must
1059 * be disabled. The actions carried out here are required for making
1060 * sure than an unlink is valid.
1061 *
1062 * Returns 0 for no error, otherwise a negative error code (in which case
1063 * the dequeue() method must fail). The possible error codes are:
1064 *
1065 * -EIDRM: @urb was not submitted or has already completed.
1066 * The completion function may not have been called yet.
1067 *
1068 * -EBUSY: @urb has already been unlinked.
1069 */
1070 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1071 int status)
1072 {
1073 struct list_head *tmp;
1074
1075 /* insist the urb is still queued */
1076 list_for_each(tmp, &urb->ep->urb_list) {
1077 if (tmp == &urb->urb_list)
1078 break;
1079 }
1080 if (tmp != &urb->urb_list)
1081 return -EIDRM;
1082
1083 /* Any status except -EINPROGRESS means something already started to
1084 * unlink this URB from the hardware. So there's no more work to do.
1085 */
1086 if (urb->unlinked)
1087 return -EBUSY;
1088 urb->unlinked = status;
1089
1090 /* IRQ setup can easily be broken so that USB controllers
1091 * never get completion IRQs ... maybe even the ones we need to
1092 * finish unlinking the initial failed usb_set_address()
1093 * or device descriptor fetch.
1094 */
1095 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1096 !is_root_hub(urb->dev)) {
1097 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1098 "Controller is probably using the wrong IRQ.\n");
1099 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1100 }
1101
1102 return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1105
1106 /**
1107 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1108 * @hcd: host controller to which @urb was submitted
1109 * @urb: URB being unlinked
1110 *
1111 * Host controller drivers should call this routine before calling
1112 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1113 * interrupts must be disabled. The actions carried out here are required
1114 * for URB completion.
1115 */
1116 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1117 {
1118 /* clear all state linking urb to this dev (and hcd) */
1119 spin_lock(&hcd_urb_list_lock);
1120 list_del_init(&urb->urb_list);
1121 spin_unlock(&hcd_urb_list_lock);
1122 }
1123 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1124
1125 /*
1126 * Some usb host controllers can only perform dma using a small SRAM area.
1127 * The usb core itself is however optimized for host controllers that can dma
1128 * using regular system memory - like pci devices doing bus mastering.
1129 *
1130 * To support host controllers with limited dma capabilites we provide dma
1131 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1132 * For this to work properly the host controller code must first use the
1133 * function dma_declare_coherent_memory() to point out which memory area
1134 * that should be used for dma allocations.
1135 *
1136 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1137 * dma using dma_alloc_coherent() which in turn allocates from the memory
1138 * area pointed out with dma_declare_coherent_memory().
1139 *
1140 * So, to summarize...
1141 *
1142 * - We need "local" memory, canonical example being
1143 * a small SRAM on a discrete controller being the
1144 * only memory that the controller can read ...
1145 * (a) "normal" kernel memory is no good, and
1146 * (b) there's not enough to share
1147 *
1148 * - The only *portable* hook for such stuff in the
1149 * DMA framework is dma_declare_coherent_memory()
1150 *
1151 * - So we use that, even though the primary requirement
1152 * is that the memory be "local" (hence addressible
1153 * by that device), not "coherent".
1154 *
1155 */
1156
1157 static int hcd_alloc_coherent(struct usb_bus *bus,
1158 gfp_t mem_flags, dma_addr_t *dma_handle,
1159 void **vaddr_handle, size_t size,
1160 enum dma_data_direction dir)
1161 {
1162 unsigned char *vaddr;
1163
1164 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1165 mem_flags, dma_handle);
1166 if (!vaddr)
1167 return -ENOMEM;
1168
1169 /*
1170 * Store the virtual address of the buffer at the end
1171 * of the allocated dma buffer. The size of the buffer
1172 * may be uneven so use unaligned functions instead
1173 * of just rounding up. It makes sense to optimize for
1174 * memory footprint over access speed since the amount
1175 * of memory available for dma may be limited.
1176 */
1177 put_unaligned((unsigned long)*vaddr_handle,
1178 (unsigned long *)(vaddr + size));
1179
1180 if (dir == DMA_TO_DEVICE)
1181 memcpy(vaddr, *vaddr_handle, size);
1182
1183 *vaddr_handle = vaddr;
1184 return 0;
1185 }
1186
1187 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1188 void **vaddr_handle, size_t size,
1189 enum dma_data_direction dir)
1190 {
1191 unsigned char *vaddr = *vaddr_handle;
1192
1193 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1194
1195 if (dir == DMA_FROM_DEVICE)
1196 memcpy(vaddr, *vaddr_handle, size);
1197
1198 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1199
1200 *vaddr_handle = vaddr;
1201 *dma_handle = 0;
1202 }
1203
1204 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1205 gfp_t mem_flags)
1206 {
1207 enum dma_data_direction dir;
1208 int ret = 0;
1209
1210 /* Map the URB's buffers for DMA access.
1211 * Lower level HCD code should use *_dma exclusively,
1212 * unless it uses pio or talks to another transport.
1213 */
1214 if (is_root_hub(urb->dev))
1215 return 0;
1216
1217 if (usb_endpoint_xfer_control(&urb->ep->desc)
1218 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1219 if (hcd->self.uses_dma)
1220 urb->setup_dma = dma_map_single(
1221 hcd->self.controller,
1222 urb->setup_packet,
1223 sizeof(struct usb_ctrlrequest),
1224 DMA_TO_DEVICE);
1225 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1226 ret = hcd_alloc_coherent(
1227 urb->dev->bus, mem_flags,
1228 &urb->setup_dma,
1229 (void **)&urb->setup_packet,
1230 sizeof(struct usb_ctrlrequest),
1231 DMA_TO_DEVICE);
1232 }
1233
1234 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1235 if (ret == 0 && urb->transfer_buffer_length != 0
1236 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1237 if (hcd->self.uses_dma)
1238 urb->transfer_dma = dma_map_single (
1239 hcd->self.controller,
1240 urb->transfer_buffer,
1241 urb->transfer_buffer_length,
1242 dir);
1243 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1244 ret = hcd_alloc_coherent(
1245 urb->dev->bus, mem_flags,
1246 &urb->transfer_dma,
1247 &urb->transfer_buffer,
1248 urb->transfer_buffer_length,
1249 dir);
1250
1251 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1252 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1253 hcd_free_coherent(urb->dev->bus,
1254 &urb->setup_dma,
1255 (void **)&urb->setup_packet,
1256 sizeof(struct usb_ctrlrequest),
1257 DMA_TO_DEVICE);
1258 }
1259 }
1260 return ret;
1261 }
1262
1263 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1264 {
1265 enum dma_data_direction dir;
1266
1267 if (is_root_hub(urb->dev))
1268 return;
1269
1270 if (usb_endpoint_xfer_control(&urb->ep->desc)
1271 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1272 if (hcd->self.uses_dma)
1273 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1274 sizeof(struct usb_ctrlrequest),
1275 DMA_TO_DEVICE);
1276 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1277 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1278 (void **)&urb->setup_packet,
1279 sizeof(struct usb_ctrlrequest),
1280 DMA_TO_DEVICE);
1281 }
1282
1283 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1284 if (urb->transfer_buffer_length != 0
1285 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1286 if (hcd->self.uses_dma)
1287 dma_unmap_single(hcd->self.controller,
1288 urb->transfer_dma,
1289 urb->transfer_buffer_length,
1290 dir);
1291 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1292 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1293 &urb->transfer_buffer,
1294 urb->transfer_buffer_length,
1295 dir);
1296 }
1297 }
1298
1299 /*-------------------------------------------------------------------------*/
1300
1301 /* may be called in any context with a valid urb->dev usecount
1302 * caller surrenders "ownership" of urb
1303 * expects usb_submit_urb() to have sanity checked and conditioned all
1304 * inputs in the urb
1305 */
1306 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1307 {
1308 int status;
1309 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1310
1311 /* increment urb's reference count as part of giving it to the HCD
1312 * (which will control it). HCD guarantees that it either returns
1313 * an error or calls giveback(), but not both.
1314 */
1315 usb_get_urb(urb);
1316 atomic_inc(&urb->use_count);
1317 atomic_inc(&urb->dev->urbnum);
1318 usbmon_urb_submit(&hcd->self, urb);
1319
1320 /* NOTE requirements on root-hub callers (usbfs and the hub
1321 * driver, for now): URBs' urb->transfer_buffer must be
1322 * valid and usb_buffer_{sync,unmap}() not be needed, since
1323 * they could clobber root hub response data. Also, control
1324 * URBs must be submitted in process context with interrupts
1325 * enabled.
1326 */
1327 status = map_urb_for_dma(hcd, urb, mem_flags);
1328 if (unlikely(status)) {
1329 usbmon_urb_submit_error(&hcd->self, urb, status);
1330 goto error;
1331 }
1332
1333 if (is_root_hub(urb->dev))
1334 status = rh_urb_enqueue(hcd, urb);
1335 else
1336 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1337
1338 if (unlikely(status)) {
1339 usbmon_urb_submit_error(&hcd->self, urb, status);
1340 unmap_urb_for_dma(hcd, urb);
1341 error:
1342 urb->hcpriv = NULL;
1343 INIT_LIST_HEAD(&urb->urb_list);
1344 atomic_dec(&urb->use_count);
1345 atomic_dec(&urb->dev->urbnum);
1346 if (urb->reject)
1347 wake_up(&usb_kill_urb_queue);
1348 usb_put_urb(urb);
1349 }
1350 return status;
1351 }
1352
1353 /*-------------------------------------------------------------------------*/
1354
1355 /* this makes the hcd giveback() the urb more quickly, by kicking it
1356 * off hardware queues (which may take a while) and returning it as
1357 * soon as practical. we've already set up the urb's return status,
1358 * but we can't know if the callback completed already.
1359 */
1360 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1361 {
1362 int value;
1363
1364 if (is_root_hub(urb->dev))
1365 value = usb_rh_urb_dequeue(hcd, urb, status);
1366 else {
1367
1368 /* The only reason an HCD might fail this call is if
1369 * it has not yet fully queued the urb to begin with.
1370 * Such failures should be harmless. */
1371 value = hcd->driver->urb_dequeue(hcd, urb, status);
1372 }
1373 return value;
1374 }
1375
1376 /*
1377 * called in any context
1378 *
1379 * caller guarantees urb won't be recycled till both unlink()
1380 * and the urb's completion function return
1381 */
1382 int usb_hcd_unlink_urb (struct urb *urb, int status)
1383 {
1384 struct usb_hcd *hcd;
1385 int retval;
1386
1387 hcd = bus_to_hcd(urb->dev->bus);
1388 retval = unlink1(hcd, urb, status);
1389
1390 if (retval == 0)
1391 retval = -EINPROGRESS;
1392 else if (retval != -EIDRM && retval != -EBUSY)
1393 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1394 urb, retval);
1395 return retval;
1396 }
1397
1398 /*-------------------------------------------------------------------------*/
1399
1400 /**
1401 * usb_hcd_giveback_urb - return URB from HCD to device driver
1402 * @hcd: host controller returning the URB
1403 * @urb: urb being returned to the USB device driver.
1404 * @status: completion status code for the URB.
1405 * Context: in_interrupt()
1406 *
1407 * This hands the URB from HCD to its USB device driver, using its
1408 * completion function. The HCD has freed all per-urb resources
1409 * (and is done using urb->hcpriv). It also released all HCD locks;
1410 * the device driver won't cause problems if it frees, modifies,
1411 * or resubmits this URB.
1412 *
1413 * If @urb was unlinked, the value of @status will be overridden by
1414 * @urb->unlinked. Erroneous short transfers are detected in case
1415 * the HCD hasn't checked for them.
1416 */
1417 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1418 {
1419 urb->hcpriv = NULL;
1420 if (unlikely(urb->unlinked))
1421 status = urb->unlinked;
1422 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1423 urb->actual_length < urb->transfer_buffer_length &&
1424 !status))
1425 status = -EREMOTEIO;
1426
1427 unmap_urb_for_dma(hcd, urb);
1428 usbmon_urb_complete(&hcd->self, urb, status);
1429 usb_unanchor_urb(urb);
1430
1431 /* pass ownership to the completion handler */
1432 urb->status = status;
1433 urb->complete (urb);
1434 atomic_dec (&urb->use_count);
1435 if (unlikely (urb->reject))
1436 wake_up (&usb_kill_urb_queue);
1437 usb_put_urb (urb);
1438 }
1439 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1440
1441 /*-------------------------------------------------------------------------*/
1442
1443 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1444 * queue to drain completely. The caller must first insure that no more
1445 * URBs can be submitted for this endpoint.
1446 */
1447 void usb_hcd_flush_endpoint(struct usb_device *udev,
1448 struct usb_host_endpoint *ep)
1449 {
1450 struct usb_hcd *hcd;
1451 struct urb *urb;
1452
1453 if (!ep)
1454 return;
1455 might_sleep();
1456 hcd = bus_to_hcd(udev->bus);
1457
1458 /* No more submits can occur */
1459 spin_lock_irq(&hcd_urb_list_lock);
1460 rescan:
1461 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1462 int is_in;
1463
1464 if (urb->unlinked)
1465 continue;
1466 usb_get_urb (urb);
1467 is_in = usb_urb_dir_in(urb);
1468 spin_unlock(&hcd_urb_list_lock);
1469
1470 /* kick hcd */
1471 unlink1(hcd, urb, -ESHUTDOWN);
1472 dev_dbg (hcd->self.controller,
1473 "shutdown urb %p ep%d%s%s\n",
1474 urb, usb_endpoint_num(&ep->desc),
1475 is_in ? "in" : "out",
1476 ({ char *s;
1477
1478 switch (usb_endpoint_type(&ep->desc)) {
1479 case USB_ENDPOINT_XFER_CONTROL:
1480 s = ""; break;
1481 case USB_ENDPOINT_XFER_BULK:
1482 s = "-bulk"; break;
1483 case USB_ENDPOINT_XFER_INT:
1484 s = "-intr"; break;
1485 default:
1486 s = "-iso"; break;
1487 };
1488 s;
1489 }));
1490 usb_put_urb (urb);
1491
1492 /* list contents may have changed */
1493 spin_lock(&hcd_urb_list_lock);
1494 goto rescan;
1495 }
1496 spin_unlock_irq(&hcd_urb_list_lock);
1497
1498 /* Wait until the endpoint queue is completely empty */
1499 while (!list_empty (&ep->urb_list)) {
1500 spin_lock_irq(&hcd_urb_list_lock);
1501
1502 /* The list may have changed while we acquired the spinlock */
1503 urb = NULL;
1504 if (!list_empty (&ep->urb_list)) {
1505 urb = list_entry (ep->urb_list.prev, struct urb,
1506 urb_list);
1507 usb_get_urb (urb);
1508 }
1509 spin_unlock_irq(&hcd_urb_list_lock);
1510
1511 if (urb) {
1512 usb_kill_urb (urb);
1513 usb_put_urb (urb);
1514 }
1515 }
1516 }
1517
1518 /* Disables the endpoint: synchronizes with the hcd to make sure all
1519 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1520 * have been called previously. Use for set_configuration, set_interface,
1521 * driver removal, physical disconnect.
1522 *
1523 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1524 * type, maxpacket size, toggle, halt status, and scheduling.
1525 */
1526 void usb_hcd_disable_endpoint(struct usb_device *udev,
1527 struct usb_host_endpoint *ep)
1528 {
1529 struct usb_hcd *hcd;
1530
1531 might_sleep();
1532 hcd = bus_to_hcd(udev->bus);
1533 if (hcd->driver->endpoint_disable)
1534 hcd->driver->endpoint_disable(hcd, ep);
1535 }
1536
1537 /*-------------------------------------------------------------------------*/
1538
1539 /* called in any context */
1540 int usb_hcd_get_frame_number (struct usb_device *udev)
1541 {
1542 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1543
1544 if (!HC_IS_RUNNING (hcd->state))
1545 return -ESHUTDOWN;
1546 return hcd->driver->get_frame_number (hcd);
1547 }
1548
1549 /*-------------------------------------------------------------------------*/
1550
1551 #ifdef CONFIG_PM
1552
1553 int hcd_bus_suspend(struct usb_device *rhdev)
1554 {
1555 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1556 int status;
1557 int old_state = hcd->state;
1558
1559 dev_dbg(&rhdev->dev, "bus %s%s\n",
1560 rhdev->auto_pm ? "auto-" : "", "suspend");
1561 if (!hcd->driver->bus_suspend) {
1562 status = -ENOENT;
1563 } else {
1564 hcd->state = HC_STATE_QUIESCING;
1565 status = hcd->driver->bus_suspend(hcd);
1566 }
1567 if (status == 0) {
1568 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1569 hcd->state = HC_STATE_SUSPENDED;
1570 } else {
1571 hcd->state = old_state;
1572 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1573 "suspend", status);
1574 }
1575 return status;
1576 }
1577
1578 int hcd_bus_resume(struct usb_device *rhdev)
1579 {
1580 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1581 int status;
1582 int old_state = hcd->state;
1583
1584 dev_dbg(&rhdev->dev, "usb %s%s\n",
1585 rhdev->auto_pm ? "auto-" : "", "resume");
1586 if (!hcd->driver->bus_resume)
1587 return -ENOENT;
1588 if (hcd->state == HC_STATE_RUNNING)
1589 return 0;
1590
1591 hcd->state = HC_STATE_RESUMING;
1592 status = hcd->driver->bus_resume(hcd);
1593 if (status == 0) {
1594 /* TRSMRCY = 10 msec */
1595 msleep(10);
1596 usb_set_device_state(rhdev, rhdev->actconfig
1597 ? USB_STATE_CONFIGURED
1598 : USB_STATE_ADDRESS);
1599 hcd->state = HC_STATE_RUNNING;
1600 } else {
1601 hcd->state = old_state;
1602 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1603 "resume", status);
1604 if (status != -ESHUTDOWN)
1605 usb_hc_died(hcd);
1606 }
1607 return status;
1608 }
1609
1610 /* Workqueue routine for root-hub remote wakeup */
1611 static void hcd_resume_work(struct work_struct *work)
1612 {
1613 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1614 struct usb_device *udev = hcd->self.root_hub;
1615
1616 usb_lock_device(udev);
1617 usb_mark_last_busy(udev);
1618 usb_external_resume_device(udev);
1619 usb_unlock_device(udev);
1620 }
1621
1622 /**
1623 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1624 * @hcd: host controller for this root hub
1625 *
1626 * The USB host controller calls this function when its root hub is
1627 * suspended (with the remote wakeup feature enabled) and a remote
1628 * wakeup request is received. The routine submits a workqueue request
1629 * to resume the root hub (that is, manage its downstream ports again).
1630 */
1631 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1632 {
1633 unsigned long flags;
1634
1635 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1636 if (hcd->rh_registered)
1637 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1638 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1639 }
1640 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1641
1642 #endif
1643
1644 /*-------------------------------------------------------------------------*/
1645
1646 #ifdef CONFIG_USB_OTG
1647
1648 /**
1649 * usb_bus_start_enum - start immediate enumeration (for OTG)
1650 * @bus: the bus (must use hcd framework)
1651 * @port_num: 1-based number of port; usually bus->otg_port
1652 * Context: in_interrupt()
1653 *
1654 * Starts enumeration, with an immediate reset followed later by
1655 * khubd identifying and possibly configuring the device.
1656 * This is needed by OTG controller drivers, where it helps meet
1657 * HNP protocol timing requirements for starting a port reset.
1658 */
1659 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1660 {
1661 struct usb_hcd *hcd;
1662 int status = -EOPNOTSUPP;
1663
1664 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1665 * boards with root hubs hooked up to internal devices (instead of
1666 * just the OTG port) may need more attention to resetting...
1667 */
1668 hcd = container_of (bus, struct usb_hcd, self);
1669 if (port_num && hcd->driver->start_port_reset)
1670 status = hcd->driver->start_port_reset(hcd, port_num);
1671
1672 /* run khubd shortly after (first) root port reset finishes;
1673 * it may issue others, until at least 50 msecs have passed.
1674 */
1675 if (status == 0)
1676 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1677 return status;
1678 }
1679 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1680
1681 #endif
1682
1683 /*-------------------------------------------------------------------------*/
1684
1685 /**
1686 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1687 * @irq: the IRQ being raised
1688 * @__hcd: pointer to the HCD whose IRQ is being signaled
1689 *
1690 * If the controller isn't HALTed, calls the driver's irq handler.
1691 * Checks whether the controller is now dead.
1692 */
1693 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1694 {
1695 struct usb_hcd *hcd = __hcd;
1696 unsigned long flags;
1697 irqreturn_t rc;
1698
1699 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1700 * when the first handler doesn't use it. So let's just
1701 * assume it's never used.
1702 */
1703 local_irq_save(flags);
1704
1705 if (unlikely(hcd->state == HC_STATE_HALT ||
1706 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1707 rc = IRQ_NONE;
1708 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1709 rc = IRQ_NONE;
1710 } else {
1711 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1712
1713 if (unlikely(hcd->state == HC_STATE_HALT))
1714 usb_hc_died(hcd);
1715 rc = IRQ_HANDLED;
1716 }
1717
1718 local_irq_restore(flags);
1719 return rc;
1720 }
1721
1722 /*-------------------------------------------------------------------------*/
1723
1724 /**
1725 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1726 * @hcd: pointer to the HCD representing the controller
1727 *
1728 * This is called by bus glue to report a USB host controller that died
1729 * while operations may still have been pending. It's called automatically
1730 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1731 */
1732 void usb_hc_died (struct usb_hcd *hcd)
1733 {
1734 unsigned long flags;
1735
1736 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1737
1738 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1739 if (hcd->rh_registered) {
1740 hcd->poll_rh = 0;
1741
1742 /* make khubd clean up old urbs and devices */
1743 usb_set_device_state (hcd->self.root_hub,
1744 USB_STATE_NOTATTACHED);
1745 usb_kick_khubd (hcd->self.root_hub);
1746 }
1747 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1748 }
1749 EXPORT_SYMBOL_GPL (usb_hc_died);
1750
1751 /*-------------------------------------------------------------------------*/
1752
1753 /**
1754 * usb_create_hcd - create and initialize an HCD structure
1755 * @driver: HC driver that will use this hcd
1756 * @dev: device for this HC, stored in hcd->self.controller
1757 * @bus_name: value to store in hcd->self.bus_name
1758 * Context: !in_interrupt()
1759 *
1760 * Allocate a struct usb_hcd, with extra space at the end for the
1761 * HC driver's private data. Initialize the generic members of the
1762 * hcd structure.
1763 *
1764 * If memory is unavailable, returns NULL.
1765 */
1766 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1767 struct device *dev, char *bus_name)
1768 {
1769 struct usb_hcd *hcd;
1770
1771 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1772 if (!hcd) {
1773 dev_dbg (dev, "hcd alloc failed\n");
1774 return NULL;
1775 }
1776 dev_set_drvdata(dev, hcd);
1777 kref_init(&hcd->kref);
1778
1779 usb_bus_init(&hcd->self);
1780 hcd->self.controller = dev;
1781 hcd->self.bus_name = bus_name;
1782 hcd->self.uses_dma = (dev->dma_mask != NULL);
1783
1784 init_timer(&hcd->rh_timer);
1785 hcd->rh_timer.function = rh_timer_func;
1786 hcd->rh_timer.data = (unsigned long) hcd;
1787 #ifdef CONFIG_PM
1788 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1789 #endif
1790
1791 hcd->driver = driver;
1792 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1793 "USB Host Controller";
1794 return hcd;
1795 }
1796 EXPORT_SYMBOL_GPL(usb_create_hcd);
1797
1798 static void hcd_release (struct kref *kref)
1799 {
1800 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1801
1802 kfree(hcd);
1803 }
1804
1805 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1806 {
1807 if (hcd)
1808 kref_get (&hcd->kref);
1809 return hcd;
1810 }
1811 EXPORT_SYMBOL_GPL(usb_get_hcd);
1812
1813 void usb_put_hcd (struct usb_hcd *hcd)
1814 {
1815 if (hcd)
1816 kref_put (&hcd->kref, hcd_release);
1817 }
1818 EXPORT_SYMBOL_GPL(usb_put_hcd);
1819
1820 /**
1821 * usb_add_hcd - finish generic HCD structure initialization and register
1822 * @hcd: the usb_hcd structure to initialize
1823 * @irqnum: Interrupt line to allocate
1824 * @irqflags: Interrupt type flags
1825 *
1826 * Finish the remaining parts of generic HCD initialization: allocate the
1827 * buffers of consistent memory, register the bus, request the IRQ line,
1828 * and call the driver's reset() and start() routines.
1829 */
1830 int usb_add_hcd(struct usb_hcd *hcd,
1831 unsigned int irqnum, unsigned long irqflags)
1832 {
1833 int retval;
1834 struct usb_device *rhdev;
1835
1836 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1837
1838 hcd->authorized_default = hcd->wireless? 0 : 1;
1839 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1840
1841 /* HC is in reset state, but accessible. Now do the one-time init,
1842 * bottom up so that hcds can customize the root hubs before khubd
1843 * starts talking to them. (Note, bus id is assigned early too.)
1844 */
1845 if ((retval = hcd_buffer_create(hcd)) != 0) {
1846 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1847 return retval;
1848 }
1849
1850 if ((retval = usb_register_bus(&hcd->self)) < 0)
1851 goto err_register_bus;
1852
1853 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1854 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1855 retval = -ENOMEM;
1856 goto err_allocate_root_hub;
1857 }
1858 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1859 USB_SPEED_FULL;
1860 hcd->self.root_hub = rhdev;
1861
1862 /* wakeup flag init defaults to "everything works" for root hubs,
1863 * but drivers can override it in reset() if needed, along with
1864 * recording the overall controller's system wakeup capability.
1865 */
1866 device_init_wakeup(&rhdev->dev, 1);
1867
1868 /* "reset" is misnamed; its role is now one-time init. the controller
1869 * should already have been reset (and boot firmware kicked off etc).
1870 */
1871 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1872 dev_err(hcd->self.controller, "can't setup\n");
1873 goto err_hcd_driver_setup;
1874 }
1875
1876 /* NOTE: root hub and controller capabilities may not be the same */
1877 if (device_can_wakeup(hcd->self.controller)
1878 && device_can_wakeup(&hcd->self.root_hub->dev))
1879 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1880
1881 /* enable irqs just before we start the controller */
1882 if (hcd->driver->irq) {
1883
1884 /* IRQF_DISABLED doesn't work as advertised when used together
1885 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1886 * interrupts we can remove it here.
1887 */
1888 irqflags &= ~IRQF_DISABLED;
1889
1890 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1891 hcd->driver->description, hcd->self.busnum);
1892 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1893 hcd->irq_descr, hcd)) != 0) {
1894 dev_err(hcd->self.controller,
1895 "request interrupt %d failed\n", irqnum);
1896 goto err_request_irq;
1897 }
1898 hcd->irq = irqnum;
1899 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1900 (hcd->driver->flags & HCD_MEMORY) ?
1901 "io mem" : "io base",
1902 (unsigned long long)hcd->rsrc_start);
1903 } else {
1904 hcd->irq = -1;
1905 if (hcd->rsrc_start)
1906 dev_info(hcd->self.controller, "%s 0x%08llx\n",
1907 (hcd->driver->flags & HCD_MEMORY) ?
1908 "io mem" : "io base",
1909 (unsigned long long)hcd->rsrc_start);
1910 }
1911
1912 if ((retval = hcd->driver->start(hcd)) < 0) {
1913 dev_err(hcd->self.controller, "startup error %d\n", retval);
1914 goto err_hcd_driver_start;
1915 }
1916
1917 /* starting here, usbcore will pay attention to this root hub */
1918 rhdev->bus_mA = min(500u, hcd->power_budget);
1919 if ((retval = register_root_hub(hcd)) != 0)
1920 goto err_register_root_hub;
1921
1922 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1923 if (retval < 0) {
1924 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1925 retval);
1926 goto error_create_attr_group;
1927 }
1928 if (hcd->uses_new_polling && hcd->poll_rh)
1929 usb_hcd_poll_rh_status(hcd);
1930 return retval;
1931
1932 error_create_attr_group:
1933 mutex_lock(&usb_bus_list_lock);
1934 usb_disconnect(&hcd->self.root_hub);
1935 mutex_unlock(&usb_bus_list_lock);
1936 err_register_root_hub:
1937 hcd->driver->stop(hcd);
1938 err_hcd_driver_start:
1939 if (hcd->irq >= 0)
1940 free_irq(irqnum, hcd);
1941 err_request_irq:
1942 err_hcd_driver_setup:
1943 hcd->self.root_hub = NULL;
1944 usb_put_dev(rhdev);
1945 err_allocate_root_hub:
1946 usb_deregister_bus(&hcd->self);
1947 err_register_bus:
1948 hcd_buffer_destroy(hcd);
1949 return retval;
1950 }
1951 EXPORT_SYMBOL_GPL(usb_add_hcd);
1952
1953 /**
1954 * usb_remove_hcd - shutdown processing for generic HCDs
1955 * @hcd: the usb_hcd structure to remove
1956 * Context: !in_interrupt()
1957 *
1958 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1959 * invoking the HCD's stop() method.
1960 */
1961 void usb_remove_hcd(struct usb_hcd *hcd)
1962 {
1963 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1964
1965 if (HC_IS_RUNNING (hcd->state))
1966 hcd->state = HC_STATE_QUIESCING;
1967
1968 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1969 spin_lock_irq (&hcd_root_hub_lock);
1970 hcd->rh_registered = 0;
1971 spin_unlock_irq (&hcd_root_hub_lock);
1972
1973 #ifdef CONFIG_PM
1974 cancel_work_sync(&hcd->wakeup_work);
1975 #endif
1976
1977 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1978 mutex_lock(&usb_bus_list_lock);
1979 usb_disconnect(&hcd->self.root_hub);
1980 mutex_unlock(&usb_bus_list_lock);
1981
1982 hcd->driver->stop(hcd);
1983 hcd->state = HC_STATE_HALT;
1984
1985 hcd->poll_rh = 0;
1986 del_timer_sync(&hcd->rh_timer);
1987
1988 if (hcd->irq >= 0)
1989 free_irq(hcd->irq, hcd);
1990 usb_deregister_bus(&hcd->self);
1991 hcd_buffer_destroy(hcd);
1992 }
1993 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1994
1995 void
1996 usb_hcd_platform_shutdown(struct platform_device* dev)
1997 {
1998 struct usb_hcd *hcd = platform_get_drvdata(dev);
1999
2000 if (hcd->driver->shutdown)
2001 hcd->driver->shutdown(hcd);
2002 }
2003 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2004
2005 /*-------------------------------------------------------------------------*/
2006
2007 #if defined(CONFIG_USB_MON)
2008
2009 struct usb_mon_operations *mon_ops;
2010
2011 /*
2012 * The registration is unlocked.
2013 * We do it this way because we do not want to lock in hot paths.
2014 *
2015 * Notice that the code is minimally error-proof. Because usbmon needs
2016 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2017 */
2018
2019 int usb_mon_register (struct usb_mon_operations *ops)
2020 {
2021
2022 if (mon_ops)
2023 return -EBUSY;
2024
2025 mon_ops = ops;
2026 mb();
2027 return 0;
2028 }
2029 EXPORT_SYMBOL_GPL (usb_mon_register);
2030
2031 void usb_mon_deregister (void)
2032 {
2033
2034 if (mon_ops == NULL) {
2035 printk(KERN_ERR "USB: monitor was not registered\n");
2036 return;
2037 }
2038 mon_ops = NULL;
2039 mb();
2040 }
2041 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2042
2043 #endif /* CONFIG_USB_MON */
This page took 0.071319 seconds and 6 git commands to generate.