USB: re-enable interface after driver unbinds
[deliverable/linux.git] / drivers / usb / core / message.c
1 /*
2 * message.c - synchronous message handling
3 */
4
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <asm/byteorder.h>
17
18 #include "hcd.h" /* for usbcore internals */
19 #include "usb.h"
20
21 static void cancel_async_set_config(struct usb_device *udev);
22
23 struct api_context {
24 struct completion done;
25 int status;
26 };
27
28 static void usb_api_blocking_completion(struct urb *urb)
29 {
30 struct api_context *ctx = urb->context;
31
32 ctx->status = urb->status;
33 complete(&ctx->done);
34 }
35
36
37 /*
38 * Starts urb and waits for completion or timeout. Note that this call
39 * is NOT interruptible. Many device driver i/o requests should be
40 * interruptible and therefore these drivers should implement their
41 * own interruptible routines.
42 */
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
44 {
45 struct api_context ctx;
46 unsigned long expire;
47 int retval;
48
49 init_completion(&ctx.done);
50 urb->context = &ctx;
51 urb->actual_length = 0;
52 retval = usb_submit_urb(urb, GFP_NOIO);
53 if (unlikely(retval))
54 goto out;
55
56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 usb_kill_urb(urb);
59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
60
61 dev_dbg(&urb->dev->dev,
62 "%s timed out on ep%d%s len=%d/%d\n",
63 current->comm,
64 usb_endpoint_num(&urb->ep->desc),
65 usb_urb_dir_in(urb) ? "in" : "out",
66 urb->actual_length,
67 urb->transfer_buffer_length);
68 } else
69 retval = ctx.status;
70 out:
71 if (actual_length)
72 *actual_length = urb->actual_length;
73
74 usb_free_urb(urb);
75 return retval;
76 }
77
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 unsigned int pipe,
82 struct usb_ctrlrequest *cmd,
83 void *data, int len, int timeout)
84 {
85 struct urb *urb;
86 int retv;
87 int length;
88
89 urb = usb_alloc_urb(0, GFP_NOIO);
90 if (!urb)
91 return -ENOMEM;
92
93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 len, usb_api_blocking_completion, NULL);
95
96 retv = usb_start_wait_urb(urb, timeout, &length);
97 if (retv < 0)
98 return retv;
99 else
100 return length;
101 }
102
103 /**
104 * usb_control_msg - Builds a control urb, sends it off and waits for completion
105 * @dev: pointer to the usb device to send the message to
106 * @pipe: endpoint "pipe" to send the message to
107 * @request: USB message request value
108 * @requesttype: USB message request type value
109 * @value: USB message value
110 * @index: USB message index value
111 * @data: pointer to the data to send
112 * @size: length in bytes of the data to send
113 * @timeout: time in msecs to wait for the message to complete before timing
114 * out (if 0 the wait is forever)
115 *
116 * Context: !in_interrupt ()
117 *
118 * This function sends a simple control message to a specified endpoint and
119 * waits for the message to complete, or timeout.
120 *
121 * If successful, it returns the number of bytes transferred, otherwise a
122 * negative error number.
123 *
124 * Don't use this function from within an interrupt context, like a bottom half
125 * handler. If you need an asynchronous message, or need to send a message
126 * from within interrupt context, use usb_submit_urb().
127 * If a thread in your driver uses this call, make sure your disconnect()
128 * method can wait for it to complete. Since you don't have a handle on the
129 * URB used, you can't cancel the request.
130 */
131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 __u8 requesttype, __u16 value, __u16 index, void *data,
133 __u16 size, int timeout)
134 {
135 struct usb_ctrlrequest *dr;
136 int ret;
137
138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 if (!dr)
140 return -ENOMEM;
141
142 dr->bRequestType = requesttype;
143 dr->bRequest = request;
144 dr->wValue = cpu_to_le16(value);
145 dr->wIndex = cpu_to_le16(index);
146 dr->wLength = cpu_to_le16(size);
147
148 /* dbg("usb_control_msg"); */
149
150 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
151
152 kfree(dr);
153
154 return ret;
155 }
156 EXPORT_SYMBOL_GPL(usb_control_msg);
157
158 /**
159 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
160 * @usb_dev: pointer to the usb device to send the message to
161 * @pipe: endpoint "pipe" to send the message to
162 * @data: pointer to the data to send
163 * @len: length in bytes of the data to send
164 * @actual_length: pointer to a location to put the actual length transferred
165 * in bytes
166 * @timeout: time in msecs to wait for the message to complete before
167 * timing out (if 0 the wait is forever)
168 *
169 * Context: !in_interrupt ()
170 *
171 * This function sends a simple interrupt message to a specified endpoint and
172 * waits for the message to complete, or timeout.
173 *
174 * If successful, it returns 0, otherwise a negative error number. The number
175 * of actual bytes transferred will be stored in the actual_length paramater.
176 *
177 * Don't use this function from within an interrupt context, like a bottom half
178 * handler. If you need an asynchronous message, or need to send a message
179 * from within interrupt context, use usb_submit_urb() If a thread in your
180 * driver uses this call, make sure your disconnect() method can wait for it to
181 * complete. Since you don't have a handle on the URB used, you can't cancel
182 * the request.
183 */
184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
185 void *data, int len, int *actual_length, int timeout)
186 {
187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
188 }
189 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
190
191 /**
192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
193 * @usb_dev: pointer to the usb device to send the message to
194 * @pipe: endpoint "pipe" to send the message to
195 * @data: pointer to the data to send
196 * @len: length in bytes of the data to send
197 * @actual_length: pointer to a location to put the actual length transferred
198 * in bytes
199 * @timeout: time in msecs to wait for the message to complete before
200 * timing out (if 0 the wait is forever)
201 *
202 * Context: !in_interrupt ()
203 *
204 * This function sends a simple bulk message to a specified endpoint
205 * and waits for the message to complete, or timeout.
206 *
207 * If successful, it returns 0, otherwise a negative error number. The number
208 * of actual bytes transferred will be stored in the actual_length paramater.
209 *
210 * Don't use this function from within an interrupt context, like a bottom half
211 * handler. If you need an asynchronous message, or need to send a message
212 * from within interrupt context, use usb_submit_urb() If a thread in your
213 * driver uses this call, make sure your disconnect() method can wait for it to
214 * complete. Since you don't have a handle on the URB used, you can't cancel
215 * the request.
216 *
217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
218 * users are forced to abuse this routine by using it to submit URBs for
219 * interrupt endpoints. We will take the liberty of creating an interrupt URB
220 * (with the default interval) if the target is an interrupt endpoint.
221 */
222 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
223 void *data, int len, int *actual_length, int timeout)
224 {
225 struct urb *urb;
226 struct usb_host_endpoint *ep;
227
228 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
229 [usb_pipeendpoint(pipe)];
230 if (!ep || len < 0)
231 return -EINVAL;
232
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
236
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
246
247 return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251 /*-------------------------------------------------------------------*/
252
253 static void sg_clean(struct usb_sg_request *io)
254 {
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs [io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
260 }
261 if (io->dev->dev.dma_mask != NULL)
262 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
263 io->sg, io->nents);
264 io->dev = NULL;
265 }
266
267 static void sg_complete(struct urb *urb)
268 {
269 struct usb_sg_request *io = urb->context;
270 int status = urb->status;
271
272 spin_lock(&io->lock);
273
274 /* In 2.5 we require hcds' endpoint queues not to progress after fault
275 * reports, until the completion callback (this!) returns. That lets
276 * device driver code (like this routine) unlink queued urbs first,
277 * if it needs to, since the HC won't work on them at all. So it's
278 * not possible for page N+1 to overwrite page N, and so on.
279 *
280 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
281 * complete before the HCD can get requests away from hardware,
282 * though never during cleanup after a hard fault.
283 */
284 if (io->status
285 && (io->status != -ECONNRESET
286 || status != -ECONNRESET)
287 && urb->actual_length) {
288 dev_err(io->dev->bus->controller,
289 "dev %s ep%d%s scatterlist error %d/%d\n",
290 io->dev->devpath,
291 usb_endpoint_num(&urb->ep->desc),
292 usb_urb_dir_in(urb) ? "in" : "out",
293 status, io->status);
294 /* BUG (); */
295 }
296
297 if (io->status == 0 && status && status != -ECONNRESET) {
298 int i, found, retval;
299
300 io->status = status;
301
302 /* the previous urbs, and this one, completed already.
303 * unlink pending urbs so they won't rx/tx bad data.
304 * careful: unlink can sometimes be synchronous...
305 */
306 spin_unlock(&io->lock);
307 for (i = 0, found = 0; i < io->entries; i++) {
308 if (!io->urbs [i] || !io->urbs [i]->dev)
309 continue;
310 if (found) {
311 retval = usb_unlink_urb(io->urbs [i]);
312 if (retval != -EINPROGRESS &&
313 retval != -ENODEV &&
314 retval != -EBUSY)
315 dev_err(&io->dev->dev,
316 "%s, unlink --> %d\n",
317 __func__, retval);
318 } else if (urb == io->urbs [i])
319 found = 1;
320 }
321 spin_lock(&io->lock);
322 }
323 urb->dev = NULL;
324
325 /* on the last completion, signal usb_sg_wait() */
326 io->bytes += urb->actual_length;
327 io->count--;
328 if (!io->count)
329 complete(&io->complete);
330
331 spin_unlock(&io->lock);
332 }
333
334
335 /**
336 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
337 * @io: request block being initialized. until usb_sg_wait() returns,
338 * treat this as a pointer to an opaque block of memory,
339 * @dev: the usb device that will send or receive the data
340 * @pipe: endpoint "pipe" used to transfer the data
341 * @period: polling rate for interrupt endpoints, in frames or
342 * (for high speed endpoints) microframes; ignored for bulk
343 * @sg: scatterlist entries
344 * @nents: how many entries in the scatterlist
345 * @length: how many bytes to send from the scatterlist, or zero to
346 * send every byte identified in the list.
347 * @mem_flags: SLAB_* flags affecting memory allocations in this call
348 *
349 * Returns zero for success, else a negative errno value. This initializes a
350 * scatter/gather request, allocating resources such as I/O mappings and urb
351 * memory (except maybe memory used by USB controller drivers).
352 *
353 * The request must be issued using usb_sg_wait(), which waits for the I/O to
354 * complete (or to be canceled) and then cleans up all resources allocated by
355 * usb_sg_init().
356 *
357 * The request may be canceled with usb_sg_cancel(), either before or after
358 * usb_sg_wait() is called.
359 */
360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
361 unsigned pipe, unsigned period, struct scatterlist *sg,
362 int nents, size_t length, gfp_t mem_flags)
363 {
364 int i;
365 int urb_flags;
366 int dma;
367
368 if (!io || !dev || !sg
369 || usb_pipecontrol(pipe)
370 || usb_pipeisoc(pipe)
371 || nents <= 0)
372 return -EINVAL;
373
374 spin_lock_init(&io->lock);
375 io->dev = dev;
376 io->pipe = pipe;
377 io->sg = sg;
378 io->nents = nents;
379
380 /* not all host controllers use DMA (like the mainstream pci ones);
381 * they can use PIO (sl811) or be software over another transport.
382 */
383 dma = (dev->dev.dma_mask != NULL);
384 if (dma)
385 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
386 sg, nents);
387 else
388 io->entries = nents;
389
390 /* initialize all the urbs we'll use */
391 if (io->entries <= 0)
392 return io->entries;
393
394 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
395 if (!io->urbs)
396 goto nomem;
397
398 urb_flags = URB_NO_INTERRUPT;
399 if (dma)
400 urb_flags |= URB_NO_TRANSFER_DMA_MAP;
401 if (usb_pipein(pipe))
402 urb_flags |= URB_SHORT_NOT_OK;
403
404 for_each_sg(sg, sg, io->entries, i) {
405 unsigned len;
406
407 io->urbs[i] = usb_alloc_urb(0, mem_flags);
408 if (!io->urbs[i]) {
409 io->entries = i;
410 goto nomem;
411 }
412
413 io->urbs[i]->dev = NULL;
414 io->urbs[i]->pipe = pipe;
415 io->urbs[i]->interval = period;
416 io->urbs[i]->transfer_flags = urb_flags;
417
418 io->urbs[i]->complete = sg_complete;
419 io->urbs[i]->context = io;
420
421 /*
422 * Some systems need to revert to PIO when DMA is temporarily
423 * unavailable. For their sakes, both transfer_buffer and
424 * transfer_dma are set when possible. However this can only
425 * work on systems without:
426 *
427 * - HIGHMEM, since DMA buffers located in high memory are
428 * not directly addressable by the CPU for PIO;
429 *
430 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
431 * make virtually discontiguous buffers be "dma-contiguous"
432 * so that PIO and DMA need diferent numbers of URBs.
433 *
434 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
435 * to prevent stale pointers and to help spot bugs.
436 */
437 if (dma) {
438 io->urbs[i]->transfer_dma = sg_dma_address(sg);
439 len = sg_dma_len(sg);
440 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU)
441 io->urbs[i]->transfer_buffer = NULL;
442 #else
443 io->urbs[i]->transfer_buffer = sg_virt(sg);
444 #endif
445 } else {
446 /* hc may use _only_ transfer_buffer */
447 io->urbs[i]->transfer_buffer = sg_virt(sg);
448 len = sg->length;
449 }
450
451 if (length) {
452 len = min_t(unsigned, len, length);
453 length -= len;
454 if (length == 0)
455 io->entries = i + 1;
456 }
457 io->urbs[i]->transfer_buffer_length = len;
458 }
459 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
460
461 /* transaction state */
462 io->count = io->entries;
463 io->status = 0;
464 io->bytes = 0;
465 init_completion(&io->complete);
466 return 0;
467
468 nomem:
469 sg_clean(io);
470 return -ENOMEM;
471 }
472 EXPORT_SYMBOL_GPL(usb_sg_init);
473
474 /**
475 * usb_sg_wait - synchronously execute scatter/gather request
476 * @io: request block handle, as initialized with usb_sg_init().
477 * some fields become accessible when this call returns.
478 * Context: !in_interrupt ()
479 *
480 * This function blocks until the specified I/O operation completes. It
481 * leverages the grouping of the related I/O requests to get good transfer
482 * rates, by queueing the requests. At higher speeds, such queuing can
483 * significantly improve USB throughput.
484 *
485 * There are three kinds of completion for this function.
486 * (1) success, where io->status is zero. The number of io->bytes
487 * transferred is as requested.
488 * (2) error, where io->status is a negative errno value. The number
489 * of io->bytes transferred before the error is usually less
490 * than requested, and can be nonzero.
491 * (3) cancellation, a type of error with status -ECONNRESET that
492 * is initiated by usb_sg_cancel().
493 *
494 * When this function returns, all memory allocated through usb_sg_init() or
495 * this call will have been freed. The request block parameter may still be
496 * passed to usb_sg_cancel(), or it may be freed. It could also be
497 * reinitialized and then reused.
498 *
499 * Data Transfer Rates:
500 *
501 * Bulk transfers are valid for full or high speed endpoints.
502 * The best full speed data rate is 19 packets of 64 bytes each
503 * per frame, or 1216 bytes per millisecond.
504 * The best high speed data rate is 13 packets of 512 bytes each
505 * per microframe, or 52 KBytes per millisecond.
506 *
507 * The reason to use interrupt transfers through this API would most likely
508 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
509 * could be transferred. That capability is less useful for low or full
510 * speed interrupt endpoints, which allow at most one packet per millisecond,
511 * of at most 8 or 64 bytes (respectively).
512 */
513 void usb_sg_wait(struct usb_sg_request *io)
514 {
515 int i;
516 int entries = io->entries;
517
518 /* queue the urbs. */
519 spin_lock_irq(&io->lock);
520 i = 0;
521 while (i < entries && !io->status) {
522 int retval;
523
524 io->urbs[i]->dev = io->dev;
525 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
526
527 /* after we submit, let completions or cancelations fire;
528 * we handshake using io->status.
529 */
530 spin_unlock_irq(&io->lock);
531 switch (retval) {
532 /* maybe we retrying will recover */
533 case -ENXIO: /* hc didn't queue this one */
534 case -EAGAIN:
535 case -ENOMEM:
536 io->urbs[i]->dev = NULL;
537 retval = 0;
538 yield();
539 break;
540
541 /* no error? continue immediately.
542 *
543 * NOTE: to work better with UHCI (4K I/O buffer may
544 * need 3K of TDs) it may be good to limit how many
545 * URBs are queued at once; N milliseconds?
546 */
547 case 0:
548 ++i;
549 cpu_relax();
550 break;
551
552 /* fail any uncompleted urbs */
553 default:
554 io->urbs[i]->dev = NULL;
555 io->urbs[i]->status = retval;
556 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
557 __func__, retval);
558 usb_sg_cancel(io);
559 }
560 spin_lock_irq(&io->lock);
561 if (retval && (io->status == 0 || io->status == -ECONNRESET))
562 io->status = retval;
563 }
564 io->count -= entries - i;
565 if (io->count == 0)
566 complete(&io->complete);
567 spin_unlock_irq(&io->lock);
568
569 /* OK, yes, this could be packaged as non-blocking.
570 * So could the submit loop above ... but it's easier to
571 * solve neither problem than to solve both!
572 */
573 wait_for_completion(&io->complete);
574
575 sg_clean(io);
576 }
577 EXPORT_SYMBOL_GPL(usb_sg_wait);
578
579 /**
580 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
581 * @io: request block, initialized with usb_sg_init()
582 *
583 * This stops a request after it has been started by usb_sg_wait().
584 * It can also prevents one initialized by usb_sg_init() from starting,
585 * so that call just frees resources allocated to the request.
586 */
587 void usb_sg_cancel(struct usb_sg_request *io)
588 {
589 unsigned long flags;
590
591 spin_lock_irqsave(&io->lock, flags);
592
593 /* shut everything down, if it didn't already */
594 if (!io->status) {
595 int i;
596
597 io->status = -ECONNRESET;
598 spin_unlock(&io->lock);
599 for (i = 0; i < io->entries; i++) {
600 int retval;
601
602 if (!io->urbs [i]->dev)
603 continue;
604 retval = usb_unlink_urb(io->urbs [i]);
605 if (retval != -EINPROGRESS && retval != -EBUSY)
606 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
607 __func__, retval);
608 }
609 spin_lock(&io->lock);
610 }
611 spin_unlock_irqrestore(&io->lock, flags);
612 }
613 EXPORT_SYMBOL_GPL(usb_sg_cancel);
614
615 /*-------------------------------------------------------------------*/
616
617 /**
618 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
619 * @dev: the device whose descriptor is being retrieved
620 * @type: the descriptor type (USB_DT_*)
621 * @index: the number of the descriptor
622 * @buf: where to put the descriptor
623 * @size: how big is "buf"?
624 * Context: !in_interrupt ()
625 *
626 * Gets a USB descriptor. Convenience functions exist to simplify
627 * getting some types of descriptors. Use
628 * usb_get_string() or usb_string() for USB_DT_STRING.
629 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
630 * are part of the device structure.
631 * In addition to a number of USB-standard descriptors, some
632 * devices also use class-specific or vendor-specific descriptors.
633 *
634 * This call is synchronous, and may not be used in an interrupt context.
635 *
636 * Returns the number of bytes received on success, or else the status code
637 * returned by the underlying usb_control_msg() call.
638 */
639 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
640 unsigned char index, void *buf, int size)
641 {
642 int i;
643 int result;
644
645 memset(buf, 0, size); /* Make sure we parse really received data */
646
647 for (i = 0; i < 3; ++i) {
648 /* retry on length 0 or error; some devices are flakey */
649 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
650 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
651 (type << 8) + index, 0, buf, size,
652 USB_CTRL_GET_TIMEOUT);
653 if (result <= 0 && result != -ETIMEDOUT)
654 continue;
655 if (result > 1 && ((u8 *)buf)[1] != type) {
656 result = -EPROTO;
657 continue;
658 }
659 break;
660 }
661 return result;
662 }
663 EXPORT_SYMBOL_GPL(usb_get_descriptor);
664
665 /**
666 * usb_get_string - gets a string descriptor
667 * @dev: the device whose string descriptor is being retrieved
668 * @langid: code for language chosen (from string descriptor zero)
669 * @index: the number of the descriptor
670 * @buf: where to put the string
671 * @size: how big is "buf"?
672 * Context: !in_interrupt ()
673 *
674 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
675 * in little-endian byte order).
676 * The usb_string() function will often be a convenient way to turn
677 * these strings into kernel-printable form.
678 *
679 * Strings may be referenced in device, configuration, interface, or other
680 * descriptors, and could also be used in vendor-specific ways.
681 *
682 * This call is synchronous, and may not be used in an interrupt context.
683 *
684 * Returns the number of bytes received on success, or else the status code
685 * returned by the underlying usb_control_msg() call.
686 */
687 static int usb_get_string(struct usb_device *dev, unsigned short langid,
688 unsigned char index, void *buf, int size)
689 {
690 int i;
691 int result;
692
693 for (i = 0; i < 3; ++i) {
694 /* retry on length 0 or stall; some devices are flakey */
695 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
696 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
697 (USB_DT_STRING << 8) + index, langid, buf, size,
698 USB_CTRL_GET_TIMEOUT);
699 if (!(result == 0 || result == -EPIPE))
700 break;
701 }
702 return result;
703 }
704
705 static void usb_try_string_workarounds(unsigned char *buf, int *length)
706 {
707 int newlength, oldlength = *length;
708
709 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
710 if (!isprint(buf[newlength]) || buf[newlength + 1])
711 break;
712
713 if (newlength > 2) {
714 buf[0] = newlength;
715 *length = newlength;
716 }
717 }
718
719 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
720 unsigned int index, unsigned char *buf)
721 {
722 int rc;
723
724 /* Try to read the string descriptor by asking for the maximum
725 * possible number of bytes */
726 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
727 rc = -EIO;
728 else
729 rc = usb_get_string(dev, langid, index, buf, 255);
730
731 /* If that failed try to read the descriptor length, then
732 * ask for just that many bytes */
733 if (rc < 2) {
734 rc = usb_get_string(dev, langid, index, buf, 2);
735 if (rc == 2)
736 rc = usb_get_string(dev, langid, index, buf, buf[0]);
737 }
738
739 if (rc >= 2) {
740 if (!buf[0] && !buf[1])
741 usb_try_string_workarounds(buf, &rc);
742
743 /* There might be extra junk at the end of the descriptor */
744 if (buf[0] < rc)
745 rc = buf[0];
746
747 rc = rc - (rc & 1); /* force a multiple of two */
748 }
749
750 if (rc < 2)
751 rc = (rc < 0 ? rc : -EINVAL);
752
753 return rc;
754 }
755
756 /**
757 * usb_string - returns ISO 8859-1 version of a string descriptor
758 * @dev: the device whose string descriptor is being retrieved
759 * @index: the number of the descriptor
760 * @buf: where to put the string
761 * @size: how big is "buf"?
762 * Context: !in_interrupt ()
763 *
764 * This converts the UTF-16LE encoded strings returned by devices, from
765 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
766 * that are more usable in most kernel contexts. Note that all characters
767 * in the chosen descriptor that can't be encoded using ISO-8859-1
768 * are converted to the question mark ("?") character, and this function
769 * chooses strings in the first language supported by the device.
770 *
771 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
772 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
773 * and is appropriate for use many uses of English and several other
774 * Western European languages. (But it doesn't include the "Euro" symbol.)
775 *
776 * This call is synchronous, and may not be used in an interrupt context.
777 *
778 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
779 */
780 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
781 {
782 unsigned char *tbuf;
783 int err;
784 unsigned int u, idx;
785
786 if (dev->state == USB_STATE_SUSPENDED)
787 return -EHOSTUNREACH;
788 if (size <= 0 || !buf || !index)
789 return -EINVAL;
790 buf[0] = 0;
791 tbuf = kmalloc(256, GFP_NOIO);
792 if (!tbuf)
793 return -ENOMEM;
794
795 /* get langid for strings if it's not yet known */
796 if (!dev->have_langid) {
797 err = usb_string_sub(dev, 0, 0, tbuf);
798 if (err < 0) {
799 dev_err(&dev->dev,
800 "string descriptor 0 read error: %d\n",
801 err);
802 goto errout;
803 } else if (err < 4) {
804 dev_err(&dev->dev, "string descriptor 0 too short\n");
805 err = -EINVAL;
806 goto errout;
807 } else {
808 dev->have_langid = 1;
809 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
810 /* always use the first langid listed */
811 dev_dbg(&dev->dev, "default language 0x%04x\n",
812 dev->string_langid);
813 }
814 }
815
816 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
817 if (err < 0)
818 goto errout;
819
820 size--; /* leave room for trailing NULL char in output buffer */
821 for (idx = 0, u = 2; u < err; u += 2) {
822 if (idx >= size)
823 break;
824 if (tbuf[u+1]) /* high byte */
825 buf[idx++] = '?'; /* non ISO-8859-1 character */
826 else
827 buf[idx++] = tbuf[u];
828 }
829 buf[idx] = 0;
830 err = idx;
831
832 if (tbuf[1] != USB_DT_STRING)
833 dev_dbg(&dev->dev,
834 "wrong descriptor type %02x for string %d (\"%s\")\n",
835 tbuf[1], index, buf);
836
837 errout:
838 kfree(tbuf);
839 return err;
840 }
841 EXPORT_SYMBOL_GPL(usb_string);
842
843 /**
844 * usb_cache_string - read a string descriptor and cache it for later use
845 * @udev: the device whose string descriptor is being read
846 * @index: the descriptor index
847 *
848 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
849 * or NULL if the index is 0 or the string could not be read.
850 */
851 char *usb_cache_string(struct usb_device *udev, int index)
852 {
853 char *buf;
854 char *smallbuf = NULL;
855 int len;
856
857 if (index <= 0)
858 return NULL;
859
860 buf = kmalloc(256, GFP_KERNEL);
861 if (buf) {
862 len = usb_string(udev, index, buf, 256);
863 if (len > 0) {
864 smallbuf = kmalloc(++len, GFP_KERNEL);
865 if (!smallbuf)
866 return buf;
867 memcpy(smallbuf, buf, len);
868 }
869 kfree(buf);
870 }
871 return smallbuf;
872 }
873
874 /*
875 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
876 * @dev: the device whose device descriptor is being updated
877 * @size: how much of the descriptor to read
878 * Context: !in_interrupt ()
879 *
880 * Updates the copy of the device descriptor stored in the device structure,
881 * which dedicates space for this purpose.
882 *
883 * Not exported, only for use by the core. If drivers really want to read
884 * the device descriptor directly, they can call usb_get_descriptor() with
885 * type = USB_DT_DEVICE and index = 0.
886 *
887 * This call is synchronous, and may not be used in an interrupt context.
888 *
889 * Returns the number of bytes received on success, or else the status code
890 * returned by the underlying usb_control_msg() call.
891 */
892 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
893 {
894 struct usb_device_descriptor *desc;
895 int ret;
896
897 if (size > sizeof(*desc))
898 return -EINVAL;
899 desc = kmalloc(sizeof(*desc), GFP_NOIO);
900 if (!desc)
901 return -ENOMEM;
902
903 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
904 if (ret >= 0)
905 memcpy(&dev->descriptor, desc, size);
906 kfree(desc);
907 return ret;
908 }
909
910 /**
911 * usb_get_status - issues a GET_STATUS call
912 * @dev: the device whose status is being checked
913 * @type: USB_RECIP_*; for device, interface, or endpoint
914 * @target: zero (for device), else interface or endpoint number
915 * @data: pointer to two bytes of bitmap data
916 * Context: !in_interrupt ()
917 *
918 * Returns device, interface, or endpoint status. Normally only of
919 * interest to see if the device is self powered, or has enabled the
920 * remote wakeup facility; or whether a bulk or interrupt endpoint
921 * is halted ("stalled").
922 *
923 * Bits in these status bitmaps are set using the SET_FEATURE request,
924 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
925 * function should be used to clear halt ("stall") status.
926 *
927 * This call is synchronous, and may not be used in an interrupt context.
928 *
929 * Returns the number of bytes received on success, or else the status code
930 * returned by the underlying usb_control_msg() call.
931 */
932 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
933 {
934 int ret;
935 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
936
937 if (!status)
938 return -ENOMEM;
939
940 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
941 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
942 sizeof(*status), USB_CTRL_GET_TIMEOUT);
943
944 *(u16 *)data = *status;
945 kfree(status);
946 return ret;
947 }
948 EXPORT_SYMBOL_GPL(usb_get_status);
949
950 /**
951 * usb_clear_halt - tells device to clear endpoint halt/stall condition
952 * @dev: device whose endpoint is halted
953 * @pipe: endpoint "pipe" being cleared
954 * Context: !in_interrupt ()
955 *
956 * This is used to clear halt conditions for bulk and interrupt endpoints,
957 * as reported by URB completion status. Endpoints that are halted are
958 * sometimes referred to as being "stalled". Such endpoints are unable
959 * to transmit or receive data until the halt status is cleared. Any URBs
960 * queued for such an endpoint should normally be unlinked by the driver
961 * before clearing the halt condition, as described in sections 5.7.5
962 * and 5.8.5 of the USB 2.0 spec.
963 *
964 * Note that control and isochronous endpoints don't halt, although control
965 * endpoints report "protocol stall" (for unsupported requests) using the
966 * same status code used to report a true stall.
967 *
968 * This call is synchronous, and may not be used in an interrupt context.
969 *
970 * Returns zero on success, or else the status code returned by the
971 * underlying usb_control_msg() call.
972 */
973 int usb_clear_halt(struct usb_device *dev, int pipe)
974 {
975 int result;
976 int endp = usb_pipeendpoint(pipe);
977
978 if (usb_pipein(pipe))
979 endp |= USB_DIR_IN;
980
981 /* we don't care if it wasn't halted first. in fact some devices
982 * (like some ibmcam model 1 units) seem to expect hosts to make
983 * this request for iso endpoints, which can't halt!
984 */
985 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
986 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
987 USB_ENDPOINT_HALT, endp, NULL, 0,
988 USB_CTRL_SET_TIMEOUT);
989
990 /* don't un-halt or force to DATA0 except on success */
991 if (result < 0)
992 return result;
993
994 /* NOTE: seems like Microsoft and Apple don't bother verifying
995 * the clear "took", so some devices could lock up if you check...
996 * such as the Hagiwara FlashGate DUAL. So we won't bother.
997 *
998 * NOTE: make sure the logic here doesn't diverge much from
999 * the copy in usb-storage, for as long as we need two copies.
1000 */
1001
1002 /* toggle was reset by the clear */
1003 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
1004
1005 return 0;
1006 }
1007 EXPORT_SYMBOL_GPL(usb_clear_halt);
1008
1009 static int create_intf_ep_devs(struct usb_interface *intf)
1010 {
1011 struct usb_device *udev = interface_to_usbdev(intf);
1012 struct usb_host_interface *alt = intf->cur_altsetting;
1013 int i;
1014
1015 if (intf->ep_devs_created || intf->unregistering)
1016 return 0;
1017
1018 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1019 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1020 intf->ep_devs_created = 1;
1021 return 0;
1022 }
1023
1024 static void remove_intf_ep_devs(struct usb_interface *intf)
1025 {
1026 struct usb_host_interface *alt = intf->cur_altsetting;
1027 int i;
1028
1029 if (!intf->ep_devs_created)
1030 return;
1031
1032 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1033 usb_remove_ep_devs(&alt->endpoint[i]);
1034 intf->ep_devs_created = 0;
1035 }
1036
1037 /**
1038 * usb_disable_endpoint -- Disable an endpoint by address
1039 * @dev: the device whose endpoint is being disabled
1040 * @epaddr: the endpoint's address. Endpoint number for output,
1041 * endpoint number + USB_DIR_IN for input
1042 *
1043 * Deallocates hcd/hardware state for this endpoint ... and nukes all
1044 * pending urbs.
1045 *
1046 * If the HCD hasn't registered a disable() function, this sets the
1047 * endpoint's maxpacket size to 0 to prevent further submissions.
1048 */
1049 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
1050 {
1051 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1052 struct usb_host_endpoint *ep;
1053
1054 if (!dev)
1055 return;
1056
1057 if (usb_endpoint_out(epaddr)) {
1058 ep = dev->ep_out[epnum];
1059 dev->ep_out[epnum] = NULL;
1060 } else {
1061 ep = dev->ep_in[epnum];
1062 dev->ep_in[epnum] = NULL;
1063 }
1064 if (ep) {
1065 ep->enabled = 0;
1066 usb_hcd_flush_endpoint(dev, ep);
1067 usb_hcd_disable_endpoint(dev, ep);
1068 }
1069 }
1070
1071 /**
1072 * usb_disable_interface -- Disable all endpoints for an interface
1073 * @dev: the device whose interface is being disabled
1074 * @intf: pointer to the interface descriptor
1075 *
1076 * Disables all the endpoints for the interface's current altsetting.
1077 */
1078 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1079 {
1080 struct usb_host_interface *alt = intf->cur_altsetting;
1081 int i;
1082
1083 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1084 usb_disable_endpoint(dev,
1085 alt->endpoint[i].desc.bEndpointAddress);
1086 }
1087 }
1088
1089 /**
1090 * usb_disable_device - Disable all the endpoints for a USB device
1091 * @dev: the device whose endpoints are being disabled
1092 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1093 *
1094 * Disables all the device's endpoints, potentially including endpoint 0.
1095 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1096 * pending urbs) and usbcore state for the interfaces, so that usbcore
1097 * must usb_set_configuration() before any interfaces could be used.
1098 */
1099 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1100 {
1101 int i;
1102
1103 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1104 skip_ep0 ? "non-ep0" : "all");
1105 for (i = skip_ep0; i < 16; ++i) {
1106 usb_disable_endpoint(dev, i);
1107 usb_disable_endpoint(dev, i + USB_DIR_IN);
1108 }
1109 dev->toggle[0] = dev->toggle[1] = 0;
1110
1111 /* getting rid of interfaces will disconnect
1112 * any drivers bound to them (a key side effect)
1113 */
1114 if (dev->actconfig) {
1115 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1116 struct usb_interface *interface;
1117
1118 /* remove this interface if it has been registered */
1119 interface = dev->actconfig->interface[i];
1120 if (!device_is_registered(&interface->dev))
1121 continue;
1122 dev_dbg(&dev->dev, "unregistering interface %s\n",
1123 dev_name(&interface->dev));
1124 interface->unregistering = 1;
1125 remove_intf_ep_devs(interface);
1126 device_del(&interface->dev);
1127 }
1128
1129 /* Now that the interfaces are unbound, nobody should
1130 * try to access them.
1131 */
1132 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1133 put_device(&dev->actconfig->interface[i]->dev);
1134 dev->actconfig->interface[i] = NULL;
1135 }
1136 dev->actconfig = NULL;
1137 if (dev->state == USB_STATE_CONFIGURED)
1138 usb_set_device_state(dev, USB_STATE_ADDRESS);
1139 }
1140 }
1141
1142 /**
1143 * usb_enable_endpoint - Enable an endpoint for USB communications
1144 * @dev: the device whose interface is being enabled
1145 * @ep: the endpoint
1146 * @reset_toggle: flag to set the endpoint's toggle back to 0
1147 *
1148 * Resets the endpoint toggle if asked, and sets dev->ep_{in,out} pointers.
1149 * For control endpoints, both the input and output sides are handled.
1150 */
1151 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1152 bool reset_toggle)
1153 {
1154 int epnum = usb_endpoint_num(&ep->desc);
1155 int is_out = usb_endpoint_dir_out(&ep->desc);
1156 int is_control = usb_endpoint_xfer_control(&ep->desc);
1157
1158 if (is_out || is_control) {
1159 if (reset_toggle)
1160 usb_settoggle(dev, epnum, 1, 0);
1161 dev->ep_out[epnum] = ep;
1162 }
1163 if (!is_out || is_control) {
1164 if (reset_toggle)
1165 usb_settoggle(dev, epnum, 0, 0);
1166 dev->ep_in[epnum] = ep;
1167 }
1168 ep->enabled = 1;
1169 }
1170
1171 /**
1172 * usb_enable_interface - Enable all the endpoints for an interface
1173 * @dev: the device whose interface is being enabled
1174 * @intf: pointer to the interface descriptor
1175 * @reset_toggles: flag to set the endpoints' toggles back to 0
1176 *
1177 * Enables all the endpoints for the interface's current altsetting.
1178 */
1179 void usb_enable_interface(struct usb_device *dev,
1180 struct usb_interface *intf, bool reset_toggles)
1181 {
1182 struct usb_host_interface *alt = intf->cur_altsetting;
1183 int i;
1184
1185 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1186 usb_enable_endpoint(dev, &alt->endpoint[i], reset_toggles);
1187 }
1188
1189 /**
1190 * usb_set_interface - Makes a particular alternate setting be current
1191 * @dev: the device whose interface is being updated
1192 * @interface: the interface being updated
1193 * @alternate: the setting being chosen.
1194 * Context: !in_interrupt ()
1195 *
1196 * This is used to enable data transfers on interfaces that may not
1197 * be enabled by default. Not all devices support such configurability.
1198 * Only the driver bound to an interface may change its setting.
1199 *
1200 * Within any given configuration, each interface may have several
1201 * alternative settings. These are often used to control levels of
1202 * bandwidth consumption. For example, the default setting for a high
1203 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1204 * while interrupt transfers of up to 3KBytes per microframe are legal.
1205 * Also, isochronous endpoints may never be part of an
1206 * interface's default setting. To access such bandwidth, alternate
1207 * interface settings must be made current.
1208 *
1209 * Note that in the Linux USB subsystem, bandwidth associated with
1210 * an endpoint in a given alternate setting is not reserved until an URB
1211 * is submitted that needs that bandwidth. Some other operating systems
1212 * allocate bandwidth early, when a configuration is chosen.
1213 *
1214 * This call is synchronous, and may not be used in an interrupt context.
1215 * Also, drivers must not change altsettings while urbs are scheduled for
1216 * endpoints in that interface; all such urbs must first be completed
1217 * (perhaps forced by unlinking).
1218 *
1219 * Returns zero on success, or else the status code returned by the
1220 * underlying usb_control_msg() call.
1221 */
1222 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1223 {
1224 struct usb_interface *iface;
1225 struct usb_host_interface *alt;
1226 int ret;
1227 int manual = 0;
1228 unsigned int epaddr;
1229 unsigned int pipe;
1230
1231 if (dev->state == USB_STATE_SUSPENDED)
1232 return -EHOSTUNREACH;
1233
1234 iface = usb_ifnum_to_if(dev, interface);
1235 if (!iface) {
1236 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1237 interface);
1238 return -EINVAL;
1239 }
1240
1241 alt = usb_altnum_to_altsetting(iface, alternate);
1242 if (!alt) {
1243 dev_warn(&dev->dev, "selecting invalid altsetting %d",
1244 alternate);
1245 return -EINVAL;
1246 }
1247
1248 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1249 ret = -EPIPE;
1250 else
1251 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1252 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1253 alternate, interface, NULL, 0, 5000);
1254
1255 /* 9.4.10 says devices don't need this and are free to STALL the
1256 * request if the interface only has one alternate setting.
1257 */
1258 if (ret == -EPIPE && iface->num_altsetting == 1) {
1259 dev_dbg(&dev->dev,
1260 "manual set_interface for iface %d, alt %d\n",
1261 interface, alternate);
1262 manual = 1;
1263 } else if (ret < 0)
1264 return ret;
1265
1266 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1267 * when they implement async or easily-killable versions of this or
1268 * other "should-be-internal" functions (like clear_halt).
1269 * should hcd+usbcore postprocess control requests?
1270 */
1271
1272 /* prevent submissions using previous endpoint settings */
1273 if (iface->cur_altsetting != alt) {
1274 remove_intf_ep_devs(iface);
1275 usb_remove_sysfs_intf_files(iface);
1276 }
1277 usb_disable_interface(dev, iface);
1278
1279 iface->cur_altsetting = alt;
1280
1281 /* If the interface only has one altsetting and the device didn't
1282 * accept the request, we attempt to carry out the equivalent action
1283 * by manually clearing the HALT feature for each endpoint in the
1284 * new altsetting.
1285 */
1286 if (manual) {
1287 int i;
1288
1289 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1290 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1291 pipe = __create_pipe(dev,
1292 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1293 (usb_endpoint_out(epaddr) ?
1294 USB_DIR_OUT : USB_DIR_IN);
1295
1296 usb_clear_halt(dev, pipe);
1297 }
1298 }
1299
1300 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1301 *
1302 * Note:
1303 * Despite EP0 is always present in all interfaces/AS, the list of
1304 * endpoints from the descriptor does not contain EP0. Due to its
1305 * omnipresence one might expect EP0 being considered "affected" by
1306 * any SetInterface request and hence assume toggles need to be reset.
1307 * However, EP0 toggles are re-synced for every individual transfer
1308 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1309 * (Likewise, EP0 never "halts" on well designed devices.)
1310 */
1311 usb_enable_interface(dev, iface, true);
1312 if (device_is_registered(&iface->dev)) {
1313 usb_create_sysfs_intf_files(iface);
1314 create_intf_ep_devs(iface);
1315 }
1316 return 0;
1317 }
1318 EXPORT_SYMBOL_GPL(usb_set_interface);
1319
1320 /**
1321 * usb_reset_configuration - lightweight device reset
1322 * @dev: the device whose configuration is being reset
1323 *
1324 * This issues a standard SET_CONFIGURATION request to the device using
1325 * the current configuration. The effect is to reset most USB-related
1326 * state in the device, including interface altsettings (reset to zero),
1327 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1328 * endpoints). Other usbcore state is unchanged, including bindings of
1329 * usb device drivers to interfaces.
1330 *
1331 * Because this affects multiple interfaces, avoid using this with composite
1332 * (multi-interface) devices. Instead, the driver for each interface may
1333 * use usb_set_interface() on the interfaces it claims. Be careful though;
1334 * some devices don't support the SET_INTERFACE request, and others won't
1335 * reset all the interface state (notably data toggles). Resetting the whole
1336 * configuration would affect other drivers' interfaces.
1337 *
1338 * The caller must own the device lock.
1339 *
1340 * Returns zero on success, else a negative error code.
1341 */
1342 int usb_reset_configuration(struct usb_device *dev)
1343 {
1344 int i, retval;
1345 struct usb_host_config *config;
1346
1347 if (dev->state == USB_STATE_SUSPENDED)
1348 return -EHOSTUNREACH;
1349
1350 /* caller must have locked the device and must own
1351 * the usb bus readlock (so driver bindings are stable);
1352 * calls during probe() are fine
1353 */
1354
1355 for (i = 1; i < 16; ++i) {
1356 usb_disable_endpoint(dev, i);
1357 usb_disable_endpoint(dev, i + USB_DIR_IN);
1358 }
1359
1360 config = dev->actconfig;
1361 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1362 USB_REQ_SET_CONFIGURATION, 0,
1363 config->desc.bConfigurationValue, 0,
1364 NULL, 0, USB_CTRL_SET_TIMEOUT);
1365 if (retval < 0)
1366 return retval;
1367
1368 dev->toggle[0] = dev->toggle[1] = 0;
1369
1370 /* re-init hc/hcd interface/endpoint state */
1371 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1372 struct usb_interface *intf = config->interface[i];
1373 struct usb_host_interface *alt;
1374
1375 alt = usb_altnum_to_altsetting(intf, 0);
1376
1377 /* No altsetting 0? We'll assume the first altsetting.
1378 * We could use a GetInterface call, but if a device is
1379 * so non-compliant that it doesn't have altsetting 0
1380 * then I wouldn't trust its reply anyway.
1381 */
1382 if (!alt)
1383 alt = &intf->altsetting[0];
1384
1385 if (alt != intf->cur_altsetting) {
1386 remove_intf_ep_devs(intf);
1387 usb_remove_sysfs_intf_files(intf);
1388 }
1389 intf->cur_altsetting = alt;
1390 usb_enable_interface(dev, intf, true);
1391 if (device_is_registered(&intf->dev)) {
1392 usb_create_sysfs_intf_files(intf);
1393 create_intf_ep_devs(intf);
1394 }
1395 }
1396 return 0;
1397 }
1398 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1399
1400 static void usb_release_interface(struct device *dev)
1401 {
1402 struct usb_interface *intf = to_usb_interface(dev);
1403 struct usb_interface_cache *intfc =
1404 altsetting_to_usb_interface_cache(intf->altsetting);
1405
1406 kref_put(&intfc->ref, usb_release_interface_cache);
1407 kfree(intf);
1408 }
1409
1410 #ifdef CONFIG_HOTPLUG
1411 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1412 {
1413 struct usb_device *usb_dev;
1414 struct usb_interface *intf;
1415 struct usb_host_interface *alt;
1416
1417 intf = to_usb_interface(dev);
1418 usb_dev = interface_to_usbdev(intf);
1419 alt = intf->cur_altsetting;
1420
1421 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1422 alt->desc.bInterfaceClass,
1423 alt->desc.bInterfaceSubClass,
1424 alt->desc.bInterfaceProtocol))
1425 return -ENOMEM;
1426
1427 if (add_uevent_var(env,
1428 "MODALIAS=usb:"
1429 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1430 le16_to_cpu(usb_dev->descriptor.idVendor),
1431 le16_to_cpu(usb_dev->descriptor.idProduct),
1432 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1433 usb_dev->descriptor.bDeviceClass,
1434 usb_dev->descriptor.bDeviceSubClass,
1435 usb_dev->descriptor.bDeviceProtocol,
1436 alt->desc.bInterfaceClass,
1437 alt->desc.bInterfaceSubClass,
1438 alt->desc.bInterfaceProtocol))
1439 return -ENOMEM;
1440
1441 return 0;
1442 }
1443
1444 #else
1445
1446 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1447 {
1448 return -ENODEV;
1449 }
1450 #endif /* CONFIG_HOTPLUG */
1451
1452 struct device_type usb_if_device_type = {
1453 .name = "usb_interface",
1454 .release = usb_release_interface,
1455 .uevent = usb_if_uevent,
1456 };
1457
1458 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1459 struct usb_host_config *config,
1460 u8 inum)
1461 {
1462 struct usb_interface_assoc_descriptor *retval = NULL;
1463 struct usb_interface_assoc_descriptor *intf_assoc;
1464 int first_intf;
1465 int last_intf;
1466 int i;
1467
1468 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1469 intf_assoc = config->intf_assoc[i];
1470 if (intf_assoc->bInterfaceCount == 0)
1471 continue;
1472
1473 first_intf = intf_assoc->bFirstInterface;
1474 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1475 if (inum >= first_intf && inum <= last_intf) {
1476 if (!retval)
1477 retval = intf_assoc;
1478 else
1479 dev_err(&dev->dev, "Interface #%d referenced"
1480 " by multiple IADs\n", inum);
1481 }
1482 }
1483
1484 return retval;
1485 }
1486
1487
1488 /*
1489 * Internal function to queue a device reset
1490 *
1491 * This is initialized into the workstruct in 'struct
1492 * usb_device->reset_ws' that is launched by
1493 * message.c:usb_set_configuration() when initializing each 'struct
1494 * usb_interface'.
1495 *
1496 * It is safe to get the USB device without reference counts because
1497 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1498 * this function will be ran only if @iface is alive (and before
1499 * freeing it any scheduled instances of it will have been cancelled).
1500 *
1501 * We need to set a flag (usb_dev->reset_running) because when we call
1502 * the reset, the interfaces might be unbound. The current interface
1503 * cannot try to remove the queued work as it would cause a deadlock
1504 * (you cannot remove your work from within your executing
1505 * workqueue). This flag lets it know, so that
1506 * usb_cancel_queued_reset() doesn't try to do it.
1507 *
1508 * See usb_queue_reset_device() for more details
1509 */
1510 void __usb_queue_reset_device(struct work_struct *ws)
1511 {
1512 int rc;
1513 struct usb_interface *iface =
1514 container_of(ws, struct usb_interface, reset_ws);
1515 struct usb_device *udev = interface_to_usbdev(iface);
1516
1517 rc = usb_lock_device_for_reset(udev, iface);
1518 if (rc >= 0) {
1519 iface->reset_running = 1;
1520 usb_reset_device(udev);
1521 iface->reset_running = 0;
1522 usb_unlock_device(udev);
1523 }
1524 }
1525
1526
1527 /*
1528 * usb_set_configuration - Makes a particular device setting be current
1529 * @dev: the device whose configuration is being updated
1530 * @configuration: the configuration being chosen.
1531 * Context: !in_interrupt(), caller owns the device lock
1532 *
1533 * This is used to enable non-default device modes. Not all devices
1534 * use this kind of configurability; many devices only have one
1535 * configuration.
1536 *
1537 * @configuration is the value of the configuration to be installed.
1538 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1539 * must be non-zero; a value of zero indicates that the device in
1540 * unconfigured. However some devices erroneously use 0 as one of their
1541 * configuration values. To help manage such devices, this routine will
1542 * accept @configuration = -1 as indicating the device should be put in
1543 * an unconfigured state.
1544 *
1545 * USB device configurations may affect Linux interoperability,
1546 * power consumption and the functionality available. For example,
1547 * the default configuration is limited to using 100mA of bus power,
1548 * so that when certain device functionality requires more power,
1549 * and the device is bus powered, that functionality should be in some
1550 * non-default device configuration. Other device modes may also be
1551 * reflected as configuration options, such as whether two ISDN
1552 * channels are available independently; and choosing between open
1553 * standard device protocols (like CDC) or proprietary ones.
1554 *
1555 * Note that a non-authorized device (dev->authorized == 0) will only
1556 * be put in unconfigured mode.
1557 *
1558 * Note that USB has an additional level of device configurability,
1559 * associated with interfaces. That configurability is accessed using
1560 * usb_set_interface().
1561 *
1562 * This call is synchronous. The calling context must be able to sleep,
1563 * must own the device lock, and must not hold the driver model's USB
1564 * bus mutex; usb interface driver probe() methods cannot use this routine.
1565 *
1566 * Returns zero on success, or else the status code returned by the
1567 * underlying call that failed. On successful completion, each interface
1568 * in the original device configuration has been destroyed, and each one
1569 * in the new configuration has been probed by all relevant usb device
1570 * drivers currently known to the kernel.
1571 */
1572 int usb_set_configuration(struct usb_device *dev, int configuration)
1573 {
1574 int i, ret;
1575 struct usb_host_config *cp = NULL;
1576 struct usb_interface **new_interfaces = NULL;
1577 int n, nintf;
1578
1579 if (dev->authorized == 0 || configuration == -1)
1580 configuration = 0;
1581 else {
1582 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1583 if (dev->config[i].desc.bConfigurationValue ==
1584 configuration) {
1585 cp = &dev->config[i];
1586 break;
1587 }
1588 }
1589 }
1590 if ((!cp && configuration != 0))
1591 return -EINVAL;
1592
1593 /* The USB spec says configuration 0 means unconfigured.
1594 * But if a device includes a configuration numbered 0,
1595 * we will accept it as a correctly configured state.
1596 * Use -1 if you really want to unconfigure the device.
1597 */
1598 if (cp && configuration == 0)
1599 dev_warn(&dev->dev, "config 0 descriptor??\n");
1600
1601 /* Allocate memory for new interfaces before doing anything else,
1602 * so that if we run out then nothing will have changed. */
1603 n = nintf = 0;
1604 if (cp) {
1605 nintf = cp->desc.bNumInterfaces;
1606 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1607 GFP_KERNEL);
1608 if (!new_interfaces) {
1609 dev_err(&dev->dev, "Out of memory\n");
1610 return -ENOMEM;
1611 }
1612
1613 for (; n < nintf; ++n) {
1614 new_interfaces[n] = kzalloc(
1615 sizeof(struct usb_interface),
1616 GFP_KERNEL);
1617 if (!new_interfaces[n]) {
1618 dev_err(&dev->dev, "Out of memory\n");
1619 ret = -ENOMEM;
1620 free_interfaces:
1621 while (--n >= 0)
1622 kfree(new_interfaces[n]);
1623 kfree(new_interfaces);
1624 return ret;
1625 }
1626 }
1627
1628 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1629 if (i < 0)
1630 dev_warn(&dev->dev, "new config #%d exceeds power "
1631 "limit by %dmA\n",
1632 configuration, -i);
1633 }
1634
1635 /* Wake up the device so we can send it the Set-Config request */
1636 ret = usb_autoresume_device(dev);
1637 if (ret)
1638 goto free_interfaces;
1639
1640 /* if it's already configured, clear out old state first.
1641 * getting rid of old interfaces means unbinding their drivers.
1642 */
1643 if (dev->state != USB_STATE_ADDRESS)
1644 usb_disable_device(dev, 1); /* Skip ep0 */
1645
1646 /* Get rid of pending async Set-Config requests for this device */
1647 cancel_async_set_config(dev);
1648
1649 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1650 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1651 NULL, 0, USB_CTRL_SET_TIMEOUT);
1652 if (ret < 0) {
1653 /* All the old state is gone, so what else can we do?
1654 * The device is probably useless now anyway.
1655 */
1656 cp = NULL;
1657 }
1658
1659 dev->actconfig = cp;
1660 if (!cp) {
1661 usb_set_device_state(dev, USB_STATE_ADDRESS);
1662 usb_autosuspend_device(dev);
1663 goto free_interfaces;
1664 }
1665 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1666
1667 /* Initialize the new interface structures and the
1668 * hc/hcd/usbcore interface/endpoint state.
1669 */
1670 for (i = 0; i < nintf; ++i) {
1671 struct usb_interface_cache *intfc;
1672 struct usb_interface *intf;
1673 struct usb_host_interface *alt;
1674
1675 cp->interface[i] = intf = new_interfaces[i];
1676 intfc = cp->intf_cache[i];
1677 intf->altsetting = intfc->altsetting;
1678 intf->num_altsetting = intfc->num_altsetting;
1679 intf->intf_assoc = find_iad(dev, cp, i);
1680 kref_get(&intfc->ref);
1681
1682 alt = usb_altnum_to_altsetting(intf, 0);
1683
1684 /* No altsetting 0? We'll assume the first altsetting.
1685 * We could use a GetInterface call, but if a device is
1686 * so non-compliant that it doesn't have altsetting 0
1687 * then I wouldn't trust its reply anyway.
1688 */
1689 if (!alt)
1690 alt = &intf->altsetting[0];
1691
1692 intf->cur_altsetting = alt;
1693 usb_enable_interface(dev, intf, true);
1694 intf->dev.parent = &dev->dev;
1695 intf->dev.driver = NULL;
1696 intf->dev.bus = &usb_bus_type;
1697 intf->dev.type = &usb_if_device_type;
1698 intf->dev.groups = usb_interface_groups;
1699 intf->dev.dma_mask = dev->dev.dma_mask;
1700 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1701 device_initialize(&intf->dev);
1702 mark_quiesced(intf);
1703 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1704 dev->bus->busnum, dev->devpath,
1705 configuration, alt->desc.bInterfaceNumber);
1706 }
1707 kfree(new_interfaces);
1708
1709 if (cp->string == NULL)
1710 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1711
1712 /* Now that all the interfaces are set up, register them
1713 * to trigger binding of drivers to interfaces. probe()
1714 * routines may install different altsettings and may
1715 * claim() any interfaces not yet bound. Many class drivers
1716 * need that: CDC, audio, video, etc.
1717 */
1718 for (i = 0; i < nintf; ++i) {
1719 struct usb_interface *intf = cp->interface[i];
1720
1721 dev_dbg(&dev->dev,
1722 "adding %s (config #%d, interface %d)\n",
1723 dev_name(&intf->dev), configuration,
1724 intf->cur_altsetting->desc.bInterfaceNumber);
1725 ret = device_add(&intf->dev);
1726 if (ret != 0) {
1727 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1728 dev_name(&intf->dev), ret);
1729 continue;
1730 }
1731 create_intf_ep_devs(intf);
1732 }
1733
1734 usb_autosuspend_device(dev);
1735 return 0;
1736 }
1737
1738 static LIST_HEAD(set_config_list);
1739 static DEFINE_SPINLOCK(set_config_lock);
1740
1741 struct set_config_request {
1742 struct usb_device *udev;
1743 int config;
1744 struct work_struct work;
1745 struct list_head node;
1746 };
1747
1748 /* Worker routine for usb_driver_set_configuration() */
1749 static void driver_set_config_work(struct work_struct *work)
1750 {
1751 struct set_config_request *req =
1752 container_of(work, struct set_config_request, work);
1753 struct usb_device *udev = req->udev;
1754
1755 usb_lock_device(udev);
1756 spin_lock(&set_config_lock);
1757 list_del(&req->node);
1758 spin_unlock(&set_config_lock);
1759
1760 if (req->config >= -1) /* Is req still valid? */
1761 usb_set_configuration(udev, req->config);
1762 usb_unlock_device(udev);
1763 usb_put_dev(udev);
1764 kfree(req);
1765 }
1766
1767 /* Cancel pending Set-Config requests for a device whose configuration
1768 * was just changed
1769 */
1770 static void cancel_async_set_config(struct usb_device *udev)
1771 {
1772 struct set_config_request *req;
1773
1774 spin_lock(&set_config_lock);
1775 list_for_each_entry(req, &set_config_list, node) {
1776 if (req->udev == udev)
1777 req->config = -999; /* Mark as cancelled */
1778 }
1779 spin_unlock(&set_config_lock);
1780 }
1781
1782 /**
1783 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1784 * @udev: the device whose configuration is being updated
1785 * @config: the configuration being chosen.
1786 * Context: In process context, must be able to sleep
1787 *
1788 * Device interface drivers are not allowed to change device configurations.
1789 * This is because changing configurations will destroy the interface the
1790 * driver is bound to and create new ones; it would be like a floppy-disk
1791 * driver telling the computer to replace the floppy-disk drive with a
1792 * tape drive!
1793 *
1794 * Still, in certain specialized circumstances the need may arise. This
1795 * routine gets around the normal restrictions by using a work thread to
1796 * submit the change-config request.
1797 *
1798 * Returns 0 if the request was succesfully queued, error code otherwise.
1799 * The caller has no way to know whether the queued request will eventually
1800 * succeed.
1801 */
1802 int usb_driver_set_configuration(struct usb_device *udev, int config)
1803 {
1804 struct set_config_request *req;
1805
1806 req = kmalloc(sizeof(*req), GFP_KERNEL);
1807 if (!req)
1808 return -ENOMEM;
1809 req->udev = udev;
1810 req->config = config;
1811 INIT_WORK(&req->work, driver_set_config_work);
1812
1813 spin_lock(&set_config_lock);
1814 list_add(&req->node, &set_config_list);
1815 spin_unlock(&set_config_lock);
1816
1817 usb_get_dev(udev);
1818 schedule_work(&req->work);
1819 return 0;
1820 }
1821 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
This page took 0.072477 seconds and 5 git commands to generate.