Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
[deliverable/linux.git] / drivers / usb / core / usb.c
1 /*
2 * drivers/usb/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h> /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/smp_lock.h>
35 #include <linux/usb.h>
36 #include <linux/mutex.h>
37
38 #include <asm/io.h>
39 #include <asm/scatterlist.h>
40 #include <linux/mm.h>
41 #include <linux/dma-mapping.h>
42
43 #include "hcd.h"
44 #include "usb.h"
45
46
47 const char *usbcore_name = "usbcore";
48
49 static int nousb; /* Disable USB when built into kernel image */
50
51
52 /**
53 * usb_ifnum_to_if - get the interface object with a given interface number
54 * @dev: the device whose current configuration is considered
55 * @ifnum: the desired interface
56 *
57 * This walks the device descriptor for the currently active configuration
58 * and returns a pointer to the interface with that particular interface
59 * number, or null.
60 *
61 * Note that configuration descriptors are not required to assign interface
62 * numbers sequentially, so that it would be incorrect to assume that
63 * the first interface in that descriptor corresponds to interface zero.
64 * This routine helps device drivers avoid such mistakes.
65 * However, you should make sure that you do the right thing with any
66 * alternate settings available for this interfaces.
67 *
68 * Don't call this function unless you are bound to one of the interfaces
69 * on this device or you have locked the device!
70 */
71 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
72 {
73 struct usb_host_config *config = dev->actconfig;
74 int i;
75
76 if (!config)
77 return NULL;
78 for (i = 0; i < config->desc.bNumInterfaces; i++)
79 if (config->interface[i]->altsetting[0]
80 .desc.bInterfaceNumber == ifnum)
81 return config->interface[i];
82
83 return NULL;
84 }
85
86 /**
87 * usb_altnum_to_altsetting - get the altsetting structure with a given
88 * alternate setting number.
89 * @intf: the interface containing the altsetting in question
90 * @altnum: the desired alternate setting number
91 *
92 * This searches the altsetting array of the specified interface for
93 * an entry with the correct bAlternateSetting value and returns a pointer
94 * to that entry, or null.
95 *
96 * Note that altsettings need not be stored sequentially by number, so
97 * it would be incorrect to assume that the first altsetting entry in
98 * the array corresponds to altsetting zero. This routine helps device
99 * drivers avoid such mistakes.
100 *
101 * Don't call this function unless you are bound to the intf interface
102 * or you have locked the device!
103 */
104 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
105 unsigned int altnum)
106 {
107 int i;
108
109 for (i = 0; i < intf->num_altsetting; i++) {
110 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
111 return &intf->altsetting[i];
112 }
113 return NULL;
114 }
115
116 /**
117 * usb_driver_claim_interface - bind a driver to an interface
118 * @driver: the driver to be bound
119 * @iface: the interface to which it will be bound; must be in the
120 * usb device's active configuration
121 * @priv: driver data associated with that interface
122 *
123 * This is used by usb device drivers that need to claim more than one
124 * interface on a device when probing (audio and acm are current examples).
125 * No device driver should directly modify internal usb_interface or
126 * usb_device structure members.
127 *
128 * Few drivers should need to use this routine, since the most natural
129 * way to bind to an interface is to return the private data from
130 * the driver's probe() method.
131 *
132 * Callers must own the device lock and the driver model's usb_bus_type.subsys
133 * writelock. So driver probe() entries don't need extra locking,
134 * but other call contexts may need to explicitly claim those locks.
135 */
136 int usb_driver_claim_interface(struct usb_driver *driver,
137 struct usb_interface *iface, void* priv)
138 {
139 struct device *dev = &iface->dev;
140
141 if (dev->driver)
142 return -EBUSY;
143
144 dev->driver = &driver->driver;
145 usb_set_intfdata(iface, priv);
146 iface->condition = USB_INTERFACE_BOUND;
147 mark_active(iface);
148
149 /* if interface was already added, bind now; else let
150 * the future device_add() bind it, bypassing probe()
151 */
152 if (device_is_registered(dev))
153 device_bind_driver(dev);
154
155 return 0;
156 }
157
158 /**
159 * usb_driver_release_interface - unbind a driver from an interface
160 * @driver: the driver to be unbound
161 * @iface: the interface from which it will be unbound
162 *
163 * This can be used by drivers to release an interface without waiting
164 * for their disconnect() methods to be called. In typical cases this
165 * also causes the driver disconnect() method to be called.
166 *
167 * This call is synchronous, and may not be used in an interrupt context.
168 * Callers must own the device lock and the driver model's usb_bus_type.subsys
169 * writelock. So driver disconnect() entries don't need extra locking,
170 * but other call contexts may need to explicitly claim those locks.
171 */
172 void usb_driver_release_interface(struct usb_driver *driver,
173 struct usb_interface *iface)
174 {
175 struct device *dev = &iface->dev;
176
177 /* this should never happen, don't release something that's not ours */
178 if (!dev->driver || dev->driver != &driver->driver)
179 return;
180
181 /* don't release from within disconnect() */
182 if (iface->condition != USB_INTERFACE_BOUND)
183 return;
184
185 /* don't release if the interface hasn't been added yet */
186 if (device_is_registered(dev)) {
187 iface->condition = USB_INTERFACE_UNBINDING;
188 device_release_driver(dev);
189 }
190
191 dev->driver = NULL;
192 usb_set_intfdata(iface, NULL);
193 iface->condition = USB_INTERFACE_UNBOUND;
194 mark_quiesced(iface);
195 }
196
197 struct find_interface_arg {
198 int minor;
199 struct usb_interface *interface;
200 };
201
202 static int __find_interface(struct device * dev, void * data)
203 {
204 struct find_interface_arg *arg = data;
205 struct usb_interface *intf;
206
207 /* can't look at usb devices, only interfaces */
208 if (dev->driver == &usb_generic_driver)
209 return 0;
210
211 intf = to_usb_interface(dev);
212 if (intf->minor != -1 && intf->minor == arg->minor) {
213 arg->interface = intf;
214 return 1;
215 }
216 return 0;
217 }
218
219 /**
220 * usb_find_interface - find usb_interface pointer for driver and device
221 * @drv: the driver whose current configuration is considered
222 * @minor: the minor number of the desired device
223 *
224 * This walks the driver device list and returns a pointer to the interface
225 * with the matching minor. Note, this only works for devices that share the
226 * USB major number.
227 */
228 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
229 {
230 struct find_interface_arg argb;
231
232 argb.minor = minor;
233 argb.interface = NULL;
234 driver_for_each_device(&drv->driver, NULL, &argb, __find_interface);
235 return argb.interface;
236 }
237
238 #ifdef CONFIG_HOTPLUG
239
240 /*
241 * This sends an uevent to userspace, typically helping to load driver
242 * or other modules, configure the device, and more. Drivers can provide
243 * a MODULE_DEVICE_TABLE to help with module loading subtasks.
244 *
245 * We're called either from khubd (the typical case) or from root hub
246 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
247 * delays in event delivery. Use sysfs (and DEVPATH) to make sure the
248 * device (and this configuration!) are still present.
249 */
250 static int usb_uevent(struct device *dev, char **envp, int num_envp,
251 char *buffer, int buffer_size)
252 {
253 struct usb_interface *intf;
254 struct usb_device *usb_dev;
255 struct usb_host_interface *alt;
256 int i = 0;
257 int length = 0;
258
259 if (!dev)
260 return -ENODEV;
261
262 /* driver is often null here; dev_dbg() would oops */
263 pr_debug ("usb %s: uevent\n", dev->bus_id);
264
265 /* Must check driver_data here, as on remove driver is always NULL */
266 if ((dev->driver == &usb_generic_driver) ||
267 (dev->driver_data == &usb_generic_driver_data))
268 return 0;
269
270 intf = to_usb_interface(dev);
271 usb_dev = interface_to_usbdev (intf);
272 alt = intf->cur_altsetting;
273
274 if (usb_dev->devnum < 0) {
275 pr_debug ("usb %s: already deleted?\n", dev->bus_id);
276 return -ENODEV;
277 }
278 if (!usb_dev->bus) {
279 pr_debug ("usb %s: bus removed?\n", dev->bus_id);
280 return -ENODEV;
281 }
282
283 #ifdef CONFIG_USB_DEVICEFS
284 /* If this is available, userspace programs can directly read
285 * all the device descriptors we don't tell them about. Or
286 * even act as usermode drivers.
287 *
288 * FIXME reduce hardwired intelligence here
289 */
290 if (add_uevent_var(envp, num_envp, &i,
291 buffer, buffer_size, &length,
292 "DEVICE=/proc/bus/usb/%03d/%03d",
293 usb_dev->bus->busnum, usb_dev->devnum))
294 return -ENOMEM;
295 #endif
296
297 /* per-device configurations are common */
298 if (add_uevent_var(envp, num_envp, &i,
299 buffer, buffer_size, &length,
300 "PRODUCT=%x/%x/%x",
301 le16_to_cpu(usb_dev->descriptor.idVendor),
302 le16_to_cpu(usb_dev->descriptor.idProduct),
303 le16_to_cpu(usb_dev->descriptor.bcdDevice)))
304 return -ENOMEM;
305
306 /* class-based driver binding models */
307 if (add_uevent_var(envp, num_envp, &i,
308 buffer, buffer_size, &length,
309 "TYPE=%d/%d/%d",
310 usb_dev->descriptor.bDeviceClass,
311 usb_dev->descriptor.bDeviceSubClass,
312 usb_dev->descriptor.bDeviceProtocol))
313 return -ENOMEM;
314
315 if (add_uevent_var(envp, num_envp, &i,
316 buffer, buffer_size, &length,
317 "INTERFACE=%d/%d/%d",
318 alt->desc.bInterfaceClass,
319 alt->desc.bInterfaceSubClass,
320 alt->desc.bInterfaceProtocol))
321 return -ENOMEM;
322
323 if (add_uevent_var(envp, num_envp, &i,
324 buffer, buffer_size, &length,
325 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
326 le16_to_cpu(usb_dev->descriptor.idVendor),
327 le16_to_cpu(usb_dev->descriptor.idProduct),
328 le16_to_cpu(usb_dev->descriptor.bcdDevice),
329 usb_dev->descriptor.bDeviceClass,
330 usb_dev->descriptor.bDeviceSubClass,
331 usb_dev->descriptor.bDeviceProtocol,
332 alt->desc.bInterfaceClass,
333 alt->desc.bInterfaceSubClass,
334 alt->desc.bInterfaceProtocol))
335 return -ENOMEM;
336
337 envp[i] = NULL;
338
339 return 0;
340 }
341
342 #else
343
344 static int usb_uevent(struct device *dev, char **envp,
345 int num_envp, char *buffer, int buffer_size)
346 {
347 return -ENODEV;
348 }
349
350 #endif /* CONFIG_HOTPLUG */
351
352 /**
353 * usb_release_dev - free a usb device structure when all users of it are finished.
354 * @dev: device that's been disconnected
355 *
356 * Will be called only by the device core when all users of this usb device are
357 * done.
358 */
359 static void usb_release_dev(struct device *dev)
360 {
361 struct usb_device *udev;
362
363 udev = to_usb_device(dev);
364
365 usb_destroy_configuration(udev);
366 usb_bus_put(udev->bus);
367 kfree(udev->product);
368 kfree(udev->manufacturer);
369 kfree(udev->serial);
370 kfree(udev);
371 }
372
373 /**
374 * usb_alloc_dev - usb device constructor (usbcore-internal)
375 * @parent: hub to which device is connected; null to allocate a root hub
376 * @bus: bus used to access the device
377 * @port1: one-based index of port; ignored for root hubs
378 * Context: !in_interrupt ()
379 *
380 * Only hub drivers (including virtual root hub drivers for host
381 * controllers) should ever call this.
382 *
383 * This call may not be used in a non-sleeping context.
384 */
385 struct usb_device *
386 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
387 {
388 struct usb_device *dev;
389
390 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
391 if (!dev)
392 return NULL;
393
394 bus = usb_bus_get(bus);
395 if (!bus) {
396 kfree(dev);
397 return NULL;
398 }
399
400 device_initialize(&dev->dev);
401 dev->dev.bus = &usb_bus_type;
402 dev->dev.dma_mask = bus->controller->dma_mask;
403 dev->dev.driver_data = &usb_generic_driver_data;
404 dev->dev.driver = &usb_generic_driver;
405 dev->dev.release = usb_release_dev;
406 dev->state = USB_STATE_ATTACHED;
407
408 INIT_LIST_HEAD(&dev->ep0.urb_list);
409 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
410 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
411 /* ep0 maxpacket comes later, from device descriptor */
412 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
413
414 /* Save readable and stable topology id, distinguishing devices
415 * by location for diagnostics, tools, driver model, etc. The
416 * string is a path along hub ports, from the root. Each device's
417 * dev->devpath will be stable until USB is re-cabled, and hubs
418 * are often labeled with these port numbers. The bus_id isn't
419 * as stable: bus->busnum changes easily from modprobe order,
420 * cardbus or pci hotplugging, and so on.
421 */
422 if (unlikely (!parent)) {
423 dev->devpath [0] = '0';
424
425 dev->dev.parent = bus->controller;
426 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
427 } else {
428 /* match any labeling on the hubs; it's one-based */
429 if (parent->devpath [0] == '0')
430 snprintf (dev->devpath, sizeof dev->devpath,
431 "%d", port1);
432 else
433 snprintf (dev->devpath, sizeof dev->devpath,
434 "%s.%d", parent->devpath, port1);
435
436 dev->dev.parent = &parent->dev;
437 sprintf (&dev->dev.bus_id[0], "%d-%s",
438 bus->busnum, dev->devpath);
439
440 /* hub driver sets up TT records */
441 }
442
443 dev->portnum = port1;
444 dev->bus = bus;
445 dev->parent = parent;
446 INIT_LIST_HEAD(&dev->filelist);
447
448 return dev;
449 }
450
451 /**
452 * usb_get_dev - increments the reference count of the usb device structure
453 * @dev: the device being referenced
454 *
455 * Each live reference to a device should be refcounted.
456 *
457 * Drivers for USB interfaces should normally record such references in
458 * their probe() methods, when they bind to an interface, and release
459 * them by calling usb_put_dev(), in their disconnect() methods.
460 *
461 * A pointer to the device with the incremented reference counter is returned.
462 */
463 struct usb_device *usb_get_dev(struct usb_device *dev)
464 {
465 if (dev)
466 get_device(&dev->dev);
467 return dev;
468 }
469
470 /**
471 * usb_put_dev - release a use of the usb device structure
472 * @dev: device that's been disconnected
473 *
474 * Must be called when a user of a device is finished with it. When the last
475 * user of the device calls this function, the memory of the device is freed.
476 */
477 void usb_put_dev(struct usb_device *dev)
478 {
479 if (dev)
480 put_device(&dev->dev);
481 }
482
483 /**
484 * usb_get_intf - increments the reference count of the usb interface structure
485 * @intf: the interface being referenced
486 *
487 * Each live reference to a interface must be refcounted.
488 *
489 * Drivers for USB interfaces should normally record such references in
490 * their probe() methods, when they bind to an interface, and release
491 * them by calling usb_put_intf(), in their disconnect() methods.
492 *
493 * A pointer to the interface with the incremented reference counter is
494 * returned.
495 */
496 struct usb_interface *usb_get_intf(struct usb_interface *intf)
497 {
498 if (intf)
499 get_device(&intf->dev);
500 return intf;
501 }
502
503 /**
504 * usb_put_intf - release a use of the usb interface structure
505 * @intf: interface that's been decremented
506 *
507 * Must be called when a user of an interface is finished with it. When the
508 * last user of the interface calls this function, the memory of the interface
509 * is freed.
510 */
511 void usb_put_intf(struct usb_interface *intf)
512 {
513 if (intf)
514 put_device(&intf->dev);
515 }
516
517
518 /* USB device locking
519 *
520 * USB devices and interfaces are locked using the semaphore in their
521 * embedded struct device. The hub driver guarantees that whenever a
522 * device is connected or disconnected, drivers are called with the
523 * USB device locked as well as their particular interface.
524 *
525 * Complications arise when several devices are to be locked at the same
526 * time. Only hub-aware drivers that are part of usbcore ever have to
527 * do this; nobody else needs to worry about it. The rule for locking
528 * is simple:
529 *
530 * When locking both a device and its parent, always lock the
531 * the parent first.
532 */
533
534 /**
535 * usb_lock_device_for_reset - cautiously acquire the lock for a
536 * usb device structure
537 * @udev: device that's being locked
538 * @iface: interface bound to the driver making the request (optional)
539 *
540 * Attempts to acquire the device lock, but fails if the device is
541 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
542 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
543 * lock, the routine polls repeatedly. This is to prevent deadlock with
544 * disconnect; in some drivers (such as usb-storage) the disconnect()
545 * or suspend() method will block waiting for a device reset to complete.
546 *
547 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
548 * that the device will or will not have to be unlocked. (0 can be
549 * returned when an interface is given and is BINDING, because in that
550 * case the driver already owns the device lock.)
551 */
552 int usb_lock_device_for_reset(struct usb_device *udev,
553 struct usb_interface *iface)
554 {
555 unsigned long jiffies_expire = jiffies + HZ;
556
557 if (udev->state == USB_STATE_NOTATTACHED)
558 return -ENODEV;
559 if (udev->state == USB_STATE_SUSPENDED)
560 return -EHOSTUNREACH;
561 if (iface) {
562 switch (iface->condition) {
563 case USB_INTERFACE_BINDING:
564 return 0;
565 case USB_INTERFACE_BOUND:
566 break;
567 default:
568 return -EINTR;
569 }
570 }
571
572 while (usb_trylock_device(udev) != 0) {
573
574 /* If we can't acquire the lock after waiting one second,
575 * we're probably deadlocked */
576 if (time_after(jiffies, jiffies_expire))
577 return -EBUSY;
578
579 msleep(15);
580 if (udev->state == USB_STATE_NOTATTACHED)
581 return -ENODEV;
582 if (udev->state == USB_STATE_SUSPENDED)
583 return -EHOSTUNREACH;
584 if (iface && iface->condition != USB_INTERFACE_BOUND)
585 return -EINTR;
586 }
587 return 1;
588 }
589
590
591 static struct usb_device *match_device(struct usb_device *dev,
592 u16 vendor_id, u16 product_id)
593 {
594 struct usb_device *ret_dev = NULL;
595 int child;
596
597 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
598 le16_to_cpu(dev->descriptor.idVendor),
599 le16_to_cpu(dev->descriptor.idProduct));
600
601 /* see if this device matches */
602 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
603 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
604 dev_dbg (&dev->dev, "matched this device!\n");
605 ret_dev = usb_get_dev(dev);
606 goto exit;
607 }
608
609 /* look through all of the children of this device */
610 for (child = 0; child < dev->maxchild; ++child) {
611 if (dev->children[child]) {
612 usb_lock_device(dev->children[child]);
613 ret_dev = match_device(dev->children[child],
614 vendor_id, product_id);
615 usb_unlock_device(dev->children[child]);
616 if (ret_dev)
617 goto exit;
618 }
619 }
620 exit:
621 return ret_dev;
622 }
623
624 /**
625 * usb_find_device - find a specific usb device in the system
626 * @vendor_id: the vendor id of the device to find
627 * @product_id: the product id of the device to find
628 *
629 * Returns a pointer to a struct usb_device if such a specified usb
630 * device is present in the system currently. The usage count of the
631 * device will be incremented if a device is found. Make sure to call
632 * usb_put_dev() when the caller is finished with the device.
633 *
634 * If a device with the specified vendor and product id is not found,
635 * NULL is returned.
636 */
637 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
638 {
639 struct list_head *buslist;
640 struct usb_bus *bus;
641 struct usb_device *dev = NULL;
642
643 mutex_lock(&usb_bus_list_lock);
644 for (buslist = usb_bus_list.next;
645 buslist != &usb_bus_list;
646 buslist = buslist->next) {
647 bus = container_of(buslist, struct usb_bus, bus_list);
648 if (!bus->root_hub)
649 continue;
650 usb_lock_device(bus->root_hub);
651 dev = match_device(bus->root_hub, vendor_id, product_id);
652 usb_unlock_device(bus->root_hub);
653 if (dev)
654 goto exit;
655 }
656 exit:
657 mutex_unlock(&usb_bus_list_lock);
658 return dev;
659 }
660
661 /**
662 * usb_get_current_frame_number - return current bus frame number
663 * @dev: the device whose bus is being queried
664 *
665 * Returns the current frame number for the USB host controller
666 * used with the given USB device. This can be used when scheduling
667 * isochronous requests.
668 *
669 * Note that different kinds of host controller have different
670 * "scheduling horizons". While one type might support scheduling only
671 * 32 frames into the future, others could support scheduling up to
672 * 1024 frames into the future.
673 */
674 int usb_get_current_frame_number(struct usb_device *dev)
675 {
676 return dev->bus->op->get_frame_number (dev);
677 }
678
679 /*-------------------------------------------------------------------*/
680 /*
681 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
682 * extra field of the interface and endpoint descriptor structs.
683 */
684
685 int __usb_get_extra_descriptor(char *buffer, unsigned size,
686 unsigned char type, void **ptr)
687 {
688 struct usb_descriptor_header *header;
689
690 while (size >= sizeof(struct usb_descriptor_header)) {
691 header = (struct usb_descriptor_header *)buffer;
692
693 if (header->bLength < 2) {
694 printk(KERN_ERR
695 "%s: bogus descriptor, type %d length %d\n",
696 usbcore_name,
697 header->bDescriptorType,
698 header->bLength);
699 return -1;
700 }
701
702 if (header->bDescriptorType == type) {
703 *ptr = header;
704 return 0;
705 }
706
707 buffer += header->bLength;
708 size -= header->bLength;
709 }
710 return -1;
711 }
712
713 /**
714 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
715 * @dev: device the buffer will be used with
716 * @size: requested buffer size
717 * @mem_flags: affect whether allocation may block
718 * @dma: used to return DMA address of buffer
719 *
720 * Return value is either null (indicating no buffer could be allocated), or
721 * the cpu-space pointer to a buffer that may be used to perform DMA to the
722 * specified device. Such cpu-space buffers are returned along with the DMA
723 * address (through the pointer provided).
724 *
725 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
726 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
727 * mapping hardware for long idle periods. The implementation varies between
728 * platforms, depending on details of how DMA will work to this device.
729 * Using these buffers also helps prevent cacheline sharing problems on
730 * architectures where CPU caches are not DMA-coherent.
731 *
732 * When the buffer is no longer used, free it with usb_buffer_free().
733 */
734 void *usb_buffer_alloc (
735 struct usb_device *dev,
736 size_t size,
737 gfp_t mem_flags,
738 dma_addr_t *dma
739 )
740 {
741 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
742 return NULL;
743 return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
744 }
745
746 /**
747 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
748 * @dev: device the buffer was used with
749 * @size: requested buffer size
750 * @addr: CPU address of buffer
751 * @dma: DMA address of buffer
752 *
753 * This reclaims an I/O buffer, letting it be reused. The memory must have
754 * been allocated using usb_buffer_alloc(), and the parameters must match
755 * those provided in that allocation request.
756 */
757 void usb_buffer_free (
758 struct usb_device *dev,
759 size_t size,
760 void *addr,
761 dma_addr_t dma
762 )
763 {
764 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
765 return;
766 dev->bus->op->buffer_free (dev->bus, size, addr, dma);
767 }
768
769 /**
770 * usb_buffer_map - create DMA mapping(s) for an urb
771 * @urb: urb whose transfer_buffer/setup_packet will be mapped
772 *
773 * Return value is either null (indicating no buffer could be mapped), or
774 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
775 * added to urb->transfer_flags if the operation succeeds. If the device
776 * is connected to this system through a non-DMA controller, this operation
777 * always succeeds.
778 *
779 * This call would normally be used for an urb which is reused, perhaps
780 * as the target of a large periodic transfer, with usb_buffer_dmasync()
781 * calls to synchronize memory and dma state.
782 *
783 * Reverse the effect of this call with usb_buffer_unmap().
784 */
785 #if 0
786 struct urb *usb_buffer_map (struct urb *urb)
787 {
788 struct usb_bus *bus;
789 struct device *controller;
790
791 if (!urb
792 || !urb->dev
793 || !(bus = urb->dev->bus)
794 || !(controller = bus->controller))
795 return NULL;
796
797 if (controller->dma_mask) {
798 urb->transfer_dma = dma_map_single (controller,
799 urb->transfer_buffer, urb->transfer_buffer_length,
800 usb_pipein (urb->pipe)
801 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
802 if (usb_pipecontrol (urb->pipe))
803 urb->setup_dma = dma_map_single (controller,
804 urb->setup_packet,
805 sizeof (struct usb_ctrlrequest),
806 DMA_TO_DEVICE);
807 // FIXME generic api broken like pci, can't report errors
808 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
809 } else
810 urb->transfer_dma = ~0;
811 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
812 | URB_NO_SETUP_DMA_MAP);
813 return urb;
814 }
815 #endif /* 0 */
816
817 /* XXX DISABLED, no users currently. If you wish to re-enable this
818 * XXX please determine whether the sync is to transfer ownership of
819 * XXX the buffer from device to cpu or vice verse, and thusly use the
820 * XXX appropriate _for_{cpu,device}() method. -DaveM
821 */
822 #if 0
823
824 /**
825 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
826 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
827 */
828 void usb_buffer_dmasync (struct urb *urb)
829 {
830 struct usb_bus *bus;
831 struct device *controller;
832
833 if (!urb
834 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
835 || !urb->dev
836 || !(bus = urb->dev->bus)
837 || !(controller = bus->controller))
838 return;
839
840 if (controller->dma_mask) {
841 dma_sync_single (controller,
842 urb->transfer_dma, urb->transfer_buffer_length,
843 usb_pipein (urb->pipe)
844 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
845 if (usb_pipecontrol (urb->pipe))
846 dma_sync_single (controller,
847 urb->setup_dma,
848 sizeof (struct usb_ctrlrequest),
849 DMA_TO_DEVICE);
850 }
851 }
852 #endif
853
854 /**
855 * usb_buffer_unmap - free DMA mapping(s) for an urb
856 * @urb: urb whose transfer_buffer will be unmapped
857 *
858 * Reverses the effect of usb_buffer_map().
859 */
860 #if 0
861 void usb_buffer_unmap (struct urb *urb)
862 {
863 struct usb_bus *bus;
864 struct device *controller;
865
866 if (!urb
867 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
868 || !urb->dev
869 || !(bus = urb->dev->bus)
870 || !(controller = bus->controller))
871 return;
872
873 if (controller->dma_mask) {
874 dma_unmap_single (controller,
875 urb->transfer_dma, urb->transfer_buffer_length,
876 usb_pipein (urb->pipe)
877 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
878 if (usb_pipecontrol (urb->pipe))
879 dma_unmap_single (controller,
880 urb->setup_dma,
881 sizeof (struct usb_ctrlrequest),
882 DMA_TO_DEVICE);
883 }
884 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
885 | URB_NO_SETUP_DMA_MAP);
886 }
887 #endif /* 0 */
888
889 /**
890 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
891 * @dev: device to which the scatterlist will be mapped
892 * @pipe: endpoint defining the mapping direction
893 * @sg: the scatterlist to map
894 * @nents: the number of entries in the scatterlist
895 *
896 * Return value is either < 0 (indicating no buffers could be mapped), or
897 * the number of DMA mapping array entries in the scatterlist.
898 *
899 * The caller is responsible for placing the resulting DMA addresses from
900 * the scatterlist into URB transfer buffer pointers, and for setting the
901 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
902 *
903 * Top I/O rates come from queuing URBs, instead of waiting for each one
904 * to complete before starting the next I/O. This is particularly easy
905 * to do with scatterlists. Just allocate and submit one URB for each DMA
906 * mapping entry returned, stopping on the first error or when all succeed.
907 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
908 *
909 * This call would normally be used when translating scatterlist requests,
910 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
911 * may be able to coalesce mappings for improved I/O efficiency.
912 *
913 * Reverse the effect of this call with usb_buffer_unmap_sg().
914 */
915 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
916 struct scatterlist *sg, int nents)
917 {
918 struct usb_bus *bus;
919 struct device *controller;
920
921 if (!dev
922 || usb_pipecontrol (pipe)
923 || !(bus = dev->bus)
924 || !(controller = bus->controller)
925 || !controller->dma_mask)
926 return -1;
927
928 // FIXME generic api broken like pci, can't report errors
929 return dma_map_sg (controller, sg, nents,
930 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
931 }
932
933 /* XXX DISABLED, no users currently. If you wish to re-enable this
934 * XXX please determine whether the sync is to transfer ownership of
935 * XXX the buffer from device to cpu or vice verse, and thusly use the
936 * XXX appropriate _for_{cpu,device}() method. -DaveM
937 */
938 #if 0
939
940 /**
941 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
942 * @dev: device to which the scatterlist will be mapped
943 * @pipe: endpoint defining the mapping direction
944 * @sg: the scatterlist to synchronize
945 * @n_hw_ents: the positive return value from usb_buffer_map_sg
946 *
947 * Use this when you are re-using a scatterlist's data buffers for
948 * another USB request.
949 */
950 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
951 struct scatterlist *sg, int n_hw_ents)
952 {
953 struct usb_bus *bus;
954 struct device *controller;
955
956 if (!dev
957 || !(bus = dev->bus)
958 || !(controller = bus->controller)
959 || !controller->dma_mask)
960 return;
961
962 dma_sync_sg (controller, sg, n_hw_ents,
963 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
964 }
965 #endif
966
967 /**
968 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
969 * @dev: device to which the scatterlist will be mapped
970 * @pipe: endpoint defining the mapping direction
971 * @sg: the scatterlist to unmap
972 * @n_hw_ents: the positive return value from usb_buffer_map_sg
973 *
974 * Reverses the effect of usb_buffer_map_sg().
975 */
976 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
977 struct scatterlist *sg, int n_hw_ents)
978 {
979 struct usb_bus *bus;
980 struct device *controller;
981
982 if (!dev
983 || !(bus = dev->bus)
984 || !(controller = bus->controller)
985 || !controller->dma_mask)
986 return;
987
988 dma_unmap_sg (controller, sg, n_hw_ents,
989 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
990 }
991
992 static int verify_suspended(struct device *dev, void *unused)
993 {
994 if (dev->driver == NULL)
995 return 0;
996 return (dev->power.power_state.event == PM_EVENT_ON) ? -EBUSY : 0;
997 }
998
999 static int usb_generic_suspend(struct device *dev, pm_message_t message)
1000 {
1001 struct usb_interface *intf;
1002 struct usb_driver *driver;
1003 int status;
1004
1005 /* USB devices enter SUSPEND state through their hubs, but can be
1006 * marked for FREEZE as soon as their children are already idled.
1007 * But those semantics are useless, so we equate the two (sigh).
1008 */
1009 if (dev->driver == &usb_generic_driver) {
1010 if (dev->power.power_state.event == message.event)
1011 return 0;
1012 /* we need to rule out bogus requests through sysfs */
1013 status = device_for_each_child(dev, NULL, verify_suspended);
1014 if (status)
1015 return status;
1016 return usb_suspend_device (to_usb_device(dev));
1017 }
1018
1019 if ((dev->driver == NULL) ||
1020 (dev->driver_data == &usb_generic_driver_data))
1021 return 0;
1022
1023 intf = to_usb_interface(dev);
1024 driver = to_usb_driver(dev->driver);
1025
1026 /* with no hardware, USB interfaces only use FREEZE and ON states */
1027 if (!is_active(intf))
1028 return 0;
1029
1030 if (driver->suspend && driver->resume) {
1031 status = driver->suspend(intf, message);
1032 if (status)
1033 dev_err(dev, "%s error %d\n", "suspend", status);
1034 else
1035 mark_quiesced(intf);
1036 } else {
1037 // FIXME else if there's no suspend method, disconnect...
1038 dev_warn(dev, "no suspend for driver %s?\n", driver->name);
1039 mark_quiesced(intf);
1040 status = 0;
1041 }
1042 return status;
1043 }
1044
1045 static int usb_generic_resume(struct device *dev)
1046 {
1047 struct usb_interface *intf;
1048 struct usb_driver *driver;
1049 struct usb_device *udev;
1050 int status;
1051
1052 if (dev->power.power_state.event == PM_EVENT_ON)
1053 return 0;
1054
1055 /* mark things as "on" immediately, no matter what errors crop up */
1056 dev->power.power_state.event = PM_EVENT_ON;
1057
1058 /* devices resume through their hubs */
1059 if (dev->driver == &usb_generic_driver) {
1060 udev = to_usb_device(dev);
1061 if (udev->state == USB_STATE_NOTATTACHED)
1062 return 0;
1063 return usb_resume_device (to_usb_device(dev));
1064 }
1065
1066 if ((dev->driver == NULL) ||
1067 (dev->driver_data == &usb_generic_driver_data)) {
1068 dev->power.power_state.event = PM_EVENT_FREEZE;
1069 return 0;
1070 }
1071
1072 intf = to_usb_interface(dev);
1073 driver = to_usb_driver(dev->driver);
1074
1075 udev = interface_to_usbdev(intf);
1076 if (udev->state == USB_STATE_NOTATTACHED)
1077 return 0;
1078
1079 /* if driver was suspended, it has a resume method;
1080 * however, sysfs can wrongly mark things as suspended
1081 * (on the "no suspend method" FIXME path above)
1082 */
1083 if (driver->resume) {
1084 status = driver->resume(intf);
1085 if (status) {
1086 dev_err(dev, "%s error %d\n", "resume", status);
1087 mark_quiesced(intf);
1088 }
1089 } else
1090 dev_warn(dev, "no resume for driver %s?\n", driver->name);
1091 return 0;
1092 }
1093
1094 struct bus_type usb_bus_type = {
1095 .name = "usb",
1096 .match = usb_device_match,
1097 .uevent = usb_uevent,
1098 .suspend = usb_generic_suspend,
1099 .resume = usb_generic_resume,
1100 };
1101
1102 /* format to disable USB on kernel command line is: nousb */
1103 __module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);
1104
1105 /*
1106 * for external read access to <nousb>
1107 */
1108 int usb_disabled(void)
1109 {
1110 return nousb;
1111 }
1112
1113 /*
1114 * Init
1115 */
1116 static int __init usb_init(void)
1117 {
1118 int retval;
1119 if (nousb) {
1120 pr_info ("%s: USB support disabled\n", usbcore_name);
1121 return 0;
1122 }
1123
1124 retval = bus_register(&usb_bus_type);
1125 if (retval)
1126 goto out;
1127 retval = usb_host_init();
1128 if (retval)
1129 goto host_init_failed;
1130 retval = usb_major_init();
1131 if (retval)
1132 goto major_init_failed;
1133 retval = usb_register(&usbfs_driver);
1134 if (retval)
1135 goto driver_register_failed;
1136 retval = usbdev_init();
1137 if (retval)
1138 goto usbdevice_init_failed;
1139 retval = usbfs_init();
1140 if (retval)
1141 goto fs_init_failed;
1142 retval = usb_hub_init();
1143 if (retval)
1144 goto hub_init_failed;
1145 retval = driver_register(&usb_generic_driver);
1146 if (!retval)
1147 goto out;
1148
1149 usb_hub_cleanup();
1150 hub_init_failed:
1151 usbfs_cleanup();
1152 fs_init_failed:
1153 usbdev_cleanup();
1154 usbdevice_init_failed:
1155 usb_deregister(&usbfs_driver);
1156 driver_register_failed:
1157 usb_major_cleanup();
1158 major_init_failed:
1159 usb_host_cleanup();
1160 host_init_failed:
1161 bus_unregister(&usb_bus_type);
1162 out:
1163 return retval;
1164 }
1165
1166 /*
1167 * Cleanup
1168 */
1169 static void __exit usb_exit(void)
1170 {
1171 /* This will matter if shutdown/reboot does exitcalls. */
1172 if (nousb)
1173 return;
1174
1175 driver_unregister(&usb_generic_driver);
1176 usb_major_cleanup();
1177 usbfs_cleanup();
1178 usb_deregister(&usbfs_driver);
1179 usbdev_cleanup();
1180 usb_hub_cleanup();
1181 usb_host_cleanup();
1182 bus_unregister(&usb_bus_type);
1183 }
1184
1185 subsys_initcall(usb_init);
1186 module_exit(usb_exit);
1187
1188 /*
1189 * USB may be built into the kernel or be built as modules.
1190 * These symbols are exported for device (or host controller)
1191 * driver modules to use.
1192 */
1193
1194 EXPORT_SYMBOL(usb_disabled);
1195
1196 EXPORT_SYMBOL_GPL(usb_get_intf);
1197 EXPORT_SYMBOL_GPL(usb_put_intf);
1198
1199 EXPORT_SYMBOL(usb_put_dev);
1200 EXPORT_SYMBOL(usb_get_dev);
1201 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1202
1203 EXPORT_SYMBOL(usb_lock_device_for_reset);
1204
1205 EXPORT_SYMBOL(usb_driver_claim_interface);
1206 EXPORT_SYMBOL(usb_driver_release_interface);
1207 EXPORT_SYMBOL(usb_find_interface);
1208 EXPORT_SYMBOL(usb_ifnum_to_if);
1209 EXPORT_SYMBOL(usb_altnum_to_altsetting);
1210
1211 EXPORT_SYMBOL(usb_reset_device);
1212 EXPORT_SYMBOL(usb_reset_composite_device);
1213
1214 EXPORT_SYMBOL(__usb_get_extra_descriptor);
1215
1216 EXPORT_SYMBOL(usb_find_device);
1217 EXPORT_SYMBOL(usb_get_current_frame_number);
1218
1219 EXPORT_SYMBOL (usb_buffer_alloc);
1220 EXPORT_SYMBOL (usb_buffer_free);
1221
1222 #if 0
1223 EXPORT_SYMBOL (usb_buffer_map);
1224 EXPORT_SYMBOL (usb_buffer_dmasync);
1225 EXPORT_SYMBOL (usb_buffer_unmap);
1226 #endif
1227
1228 EXPORT_SYMBOL (usb_buffer_map_sg);
1229 #if 0
1230 EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1231 #endif
1232 EXPORT_SYMBOL (usb_buffer_unmap_sg);
1233
1234 MODULE_LICENSE("GPL");
This page took 0.122185 seconds and 6 git commands to generate.