usb: dwc2: gadget: fix phy interface configuration
[deliverable/linux.git] / drivers / usb / dwc2 / gadget.c
1 /**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/debugfs.h>
24 #include <linux/mutex.h>
25 #include <linux/seq_file.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/of_platform.h>
32 #include <linux/phy/phy.h>
33
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/usb/phy.h>
37 #include <linux/platform_data/s3c-hsotg.h>
38 #include <linux/uaccess.h>
39
40 #include "core.h"
41 #include "hw.h"
42
43 /* conversion functions */
44 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
45 {
46 return container_of(req, struct s3c_hsotg_req, req);
47 }
48
49 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
50 {
51 return container_of(ep, struct s3c_hsotg_ep, ep);
52 }
53
54 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
55 {
56 return container_of(gadget, struct dwc2_hsotg, gadget);
57 }
58
59 static inline void __orr32(void __iomem *ptr, u32 val)
60 {
61 writel(readl(ptr) | val, ptr);
62 }
63
64 static inline void __bic32(void __iomem *ptr, u32 val)
65 {
66 writel(readl(ptr) & ~val, ptr);
67 }
68
69 static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
70 u32 ep_index, u32 dir_in)
71 {
72 if (dir_in)
73 return hsotg->eps_in[ep_index];
74 else
75 return hsotg->eps_out[ep_index];
76 }
77
78 /* forward declaration of functions */
79 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
80
81 /**
82 * using_dma - return the DMA status of the driver.
83 * @hsotg: The driver state.
84 *
85 * Return true if we're using DMA.
86 *
87 * Currently, we have the DMA support code worked into everywhere
88 * that needs it, but the AMBA DMA implementation in the hardware can
89 * only DMA from 32bit aligned addresses. This means that gadgets such
90 * as the CDC Ethernet cannot work as they often pass packets which are
91 * not 32bit aligned.
92 *
93 * Unfortunately the choice to use DMA or not is global to the controller
94 * and seems to be only settable when the controller is being put through
95 * a core reset. This means we either need to fix the gadgets to take
96 * account of DMA alignment, or add bounce buffers (yuerk).
97 *
98 * g_using_dma is set depending on dts flag.
99 */
100 static inline bool using_dma(struct dwc2_hsotg *hsotg)
101 {
102 return hsotg->g_using_dma;
103 }
104
105 /**
106 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
107 * @hsotg: The device state
108 * @ints: A bitmask of the interrupts to enable
109 */
110 static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
111 {
112 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
113 u32 new_gsintmsk;
114
115 new_gsintmsk = gsintmsk | ints;
116
117 if (new_gsintmsk != gsintmsk) {
118 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
119 writel(new_gsintmsk, hsotg->regs + GINTMSK);
120 }
121 }
122
123 /**
124 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
125 * @hsotg: The device state
126 * @ints: A bitmask of the interrupts to enable
127 */
128 static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
129 {
130 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
131 u32 new_gsintmsk;
132
133 new_gsintmsk = gsintmsk & ~ints;
134
135 if (new_gsintmsk != gsintmsk)
136 writel(new_gsintmsk, hsotg->regs + GINTMSK);
137 }
138
139 /**
140 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
141 * @hsotg: The device state
142 * @ep: The endpoint index
143 * @dir_in: True if direction is in.
144 * @en: The enable value, true to enable
145 *
146 * Set or clear the mask for an individual endpoint's interrupt
147 * request.
148 */
149 static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
150 unsigned int ep, unsigned int dir_in,
151 unsigned int en)
152 {
153 unsigned long flags;
154 u32 bit = 1 << ep;
155 u32 daint;
156
157 if (!dir_in)
158 bit <<= 16;
159
160 local_irq_save(flags);
161 daint = readl(hsotg->regs + DAINTMSK);
162 if (en)
163 daint |= bit;
164 else
165 daint &= ~bit;
166 writel(daint, hsotg->regs + DAINTMSK);
167 local_irq_restore(flags);
168 }
169
170 /**
171 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
172 * @hsotg: The device instance.
173 */
174 static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
175 {
176 unsigned int ep;
177 unsigned int addr;
178 int timeout;
179 u32 val;
180
181 /* Reset fifo map if not correctly cleared during previous session */
182 WARN_ON(hsotg->fifo_map);
183 hsotg->fifo_map = 0;
184
185 /* set RX/NPTX FIFO sizes */
186 writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
187 writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
188 (hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
189 hsotg->regs + GNPTXFSIZ);
190
191 /*
192 * arange all the rest of the TX FIFOs, as some versions of this
193 * block have overlapping default addresses. This also ensures
194 * that if the settings have been changed, then they are set to
195 * known values.
196 */
197
198 /* start at the end of the GNPTXFSIZ, rounded up */
199 addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
200
201 /*
202 * Configure fifos sizes from provided configuration and assign
203 * them to endpoints dynamically according to maxpacket size value of
204 * given endpoint.
205 */
206 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
207 if (!hsotg->g_tx_fifo_sz[ep])
208 continue;
209 val = addr;
210 val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
211 WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
212 "insufficient fifo memory");
213 addr += hsotg->g_tx_fifo_sz[ep];
214
215 writel(val, hsotg->regs + DPTXFSIZN(ep));
216 }
217
218 /*
219 * according to p428 of the design guide, we need to ensure that
220 * all fifos are flushed before continuing
221 */
222
223 writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
224 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
225
226 /* wait until the fifos are both flushed */
227 timeout = 100;
228 while (1) {
229 val = readl(hsotg->regs + GRSTCTL);
230
231 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
232 break;
233
234 if (--timeout == 0) {
235 dev_err(hsotg->dev,
236 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
237 __func__, val);
238 break;
239 }
240
241 udelay(1);
242 }
243
244 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
245 }
246
247 /**
248 * @ep: USB endpoint to allocate request for.
249 * @flags: Allocation flags
250 *
251 * Allocate a new USB request structure appropriate for the specified endpoint
252 */
253 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
254 gfp_t flags)
255 {
256 struct s3c_hsotg_req *req;
257
258 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
259 if (!req)
260 return NULL;
261
262 INIT_LIST_HEAD(&req->queue);
263
264 return &req->req;
265 }
266
267 /**
268 * is_ep_periodic - return true if the endpoint is in periodic mode.
269 * @hs_ep: The endpoint to query.
270 *
271 * Returns true if the endpoint is in periodic mode, meaning it is being
272 * used for an Interrupt or ISO transfer.
273 */
274 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
275 {
276 return hs_ep->periodic;
277 }
278
279 /**
280 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
281 * @hsotg: The device state.
282 * @hs_ep: The endpoint for the request
283 * @hs_req: The request being processed.
284 *
285 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
286 * of a request to ensure the buffer is ready for access by the caller.
287 */
288 static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
289 struct s3c_hsotg_ep *hs_ep,
290 struct s3c_hsotg_req *hs_req)
291 {
292 struct usb_request *req = &hs_req->req;
293
294 /* ignore this if we're not moving any data */
295 if (hs_req->req.length == 0)
296 return;
297
298 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
299 }
300
301 /**
302 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
303 * @hsotg: The controller state.
304 * @hs_ep: The endpoint we're going to write for.
305 * @hs_req: The request to write data for.
306 *
307 * This is called when the TxFIFO has some space in it to hold a new
308 * transmission and we have something to give it. The actual setup of
309 * the data size is done elsewhere, so all we have to do is to actually
310 * write the data.
311 *
312 * The return value is zero if there is more space (or nothing was done)
313 * otherwise -ENOSPC is returned if the FIFO space was used up.
314 *
315 * This routine is only needed for PIO
316 */
317 static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
318 struct s3c_hsotg_ep *hs_ep,
319 struct s3c_hsotg_req *hs_req)
320 {
321 bool periodic = is_ep_periodic(hs_ep);
322 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
323 int buf_pos = hs_req->req.actual;
324 int to_write = hs_ep->size_loaded;
325 void *data;
326 int can_write;
327 int pkt_round;
328 int max_transfer;
329
330 to_write -= (buf_pos - hs_ep->last_load);
331
332 /* if there's nothing to write, get out early */
333 if (to_write == 0)
334 return 0;
335
336 if (periodic && !hsotg->dedicated_fifos) {
337 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
338 int size_left;
339 int size_done;
340
341 /*
342 * work out how much data was loaded so we can calculate
343 * how much data is left in the fifo.
344 */
345
346 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
347
348 /*
349 * if shared fifo, we cannot write anything until the
350 * previous data has been completely sent.
351 */
352 if (hs_ep->fifo_load != 0) {
353 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
354 return -ENOSPC;
355 }
356
357 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
358 __func__, size_left,
359 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
360
361 /* how much of the data has moved */
362 size_done = hs_ep->size_loaded - size_left;
363
364 /* how much data is left in the fifo */
365 can_write = hs_ep->fifo_load - size_done;
366 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
367 __func__, can_write);
368
369 can_write = hs_ep->fifo_size - can_write;
370 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
371 __func__, can_write);
372
373 if (can_write <= 0) {
374 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
375 return -ENOSPC;
376 }
377 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
378 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
379
380 can_write &= 0xffff;
381 can_write *= 4;
382 } else {
383 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
384 dev_dbg(hsotg->dev,
385 "%s: no queue slots available (0x%08x)\n",
386 __func__, gnptxsts);
387
388 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
389 return -ENOSPC;
390 }
391
392 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
393 can_write *= 4; /* fifo size is in 32bit quantities. */
394 }
395
396 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
397
398 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
399 __func__, gnptxsts, can_write, to_write, max_transfer);
400
401 /*
402 * limit to 512 bytes of data, it seems at least on the non-periodic
403 * FIFO, requests of >512 cause the endpoint to get stuck with a
404 * fragment of the end of the transfer in it.
405 */
406 if (can_write > 512 && !periodic)
407 can_write = 512;
408
409 /*
410 * limit the write to one max-packet size worth of data, but allow
411 * the transfer to return that it did not run out of fifo space
412 * doing it.
413 */
414 if (to_write > max_transfer) {
415 to_write = max_transfer;
416
417 /* it's needed only when we do not use dedicated fifos */
418 if (!hsotg->dedicated_fifos)
419 s3c_hsotg_en_gsint(hsotg,
420 periodic ? GINTSTS_PTXFEMP :
421 GINTSTS_NPTXFEMP);
422 }
423
424 /* see if we can write data */
425
426 if (to_write > can_write) {
427 to_write = can_write;
428 pkt_round = to_write % max_transfer;
429
430 /*
431 * Round the write down to an
432 * exact number of packets.
433 *
434 * Note, we do not currently check to see if we can ever
435 * write a full packet or not to the FIFO.
436 */
437
438 if (pkt_round)
439 to_write -= pkt_round;
440
441 /*
442 * enable correct FIFO interrupt to alert us when there
443 * is more room left.
444 */
445
446 /* it's needed only when we do not use dedicated fifos */
447 if (!hsotg->dedicated_fifos)
448 s3c_hsotg_en_gsint(hsotg,
449 periodic ? GINTSTS_PTXFEMP :
450 GINTSTS_NPTXFEMP);
451 }
452
453 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
454 to_write, hs_req->req.length, can_write, buf_pos);
455
456 if (to_write <= 0)
457 return -ENOSPC;
458
459 hs_req->req.actual = buf_pos + to_write;
460 hs_ep->total_data += to_write;
461
462 if (periodic)
463 hs_ep->fifo_load += to_write;
464
465 to_write = DIV_ROUND_UP(to_write, 4);
466 data = hs_req->req.buf + buf_pos;
467
468 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
469
470 return (to_write >= can_write) ? -ENOSPC : 0;
471 }
472
473 /**
474 * get_ep_limit - get the maximum data legnth for this endpoint
475 * @hs_ep: The endpoint
476 *
477 * Return the maximum data that can be queued in one go on a given endpoint
478 * so that transfers that are too long can be split.
479 */
480 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
481 {
482 int index = hs_ep->index;
483 unsigned maxsize;
484 unsigned maxpkt;
485
486 if (index != 0) {
487 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
488 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
489 } else {
490 maxsize = 64+64;
491 if (hs_ep->dir_in)
492 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
493 else
494 maxpkt = 2;
495 }
496
497 /* we made the constant loading easier above by using +1 */
498 maxpkt--;
499 maxsize--;
500
501 /*
502 * constrain by packet count if maxpkts*pktsize is greater
503 * than the length register size.
504 */
505
506 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
507 maxsize = maxpkt * hs_ep->ep.maxpacket;
508
509 return maxsize;
510 }
511
512 /**
513 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
514 * @hsotg: The controller state.
515 * @hs_ep: The endpoint to process a request for
516 * @hs_req: The request to start.
517 * @continuing: True if we are doing more for the current request.
518 *
519 * Start the given request running by setting the endpoint registers
520 * appropriately, and writing any data to the FIFOs.
521 */
522 static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
523 struct s3c_hsotg_ep *hs_ep,
524 struct s3c_hsotg_req *hs_req,
525 bool continuing)
526 {
527 struct usb_request *ureq = &hs_req->req;
528 int index = hs_ep->index;
529 int dir_in = hs_ep->dir_in;
530 u32 epctrl_reg;
531 u32 epsize_reg;
532 u32 epsize;
533 u32 ctrl;
534 unsigned length;
535 unsigned packets;
536 unsigned maxreq;
537
538 if (index != 0) {
539 if (hs_ep->req && !continuing) {
540 dev_err(hsotg->dev, "%s: active request\n", __func__);
541 WARN_ON(1);
542 return;
543 } else if (hs_ep->req != hs_req && continuing) {
544 dev_err(hsotg->dev,
545 "%s: continue different req\n", __func__);
546 WARN_ON(1);
547 return;
548 }
549 }
550
551 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
552 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
553
554 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
555 __func__, readl(hsotg->regs + epctrl_reg), index,
556 hs_ep->dir_in ? "in" : "out");
557
558 /* If endpoint is stalled, we will restart request later */
559 ctrl = readl(hsotg->regs + epctrl_reg);
560
561 if (ctrl & DXEPCTL_STALL) {
562 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
563 return;
564 }
565
566 length = ureq->length - ureq->actual;
567 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
568 ureq->length, ureq->actual);
569
570 maxreq = get_ep_limit(hs_ep);
571 if (length > maxreq) {
572 int round = maxreq % hs_ep->ep.maxpacket;
573
574 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
575 __func__, length, maxreq, round);
576
577 /* round down to multiple of packets */
578 if (round)
579 maxreq -= round;
580
581 length = maxreq;
582 }
583
584 if (length)
585 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
586 else
587 packets = 1; /* send one packet if length is zero. */
588
589 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
590 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
591 return;
592 }
593
594 if (dir_in && index != 0)
595 if (hs_ep->isochronous)
596 epsize = DXEPTSIZ_MC(packets);
597 else
598 epsize = DXEPTSIZ_MC(1);
599 else
600 epsize = 0;
601
602 /*
603 * zero length packet should be programmed on its own and should not
604 * be counted in DIEPTSIZ.PktCnt with other packets.
605 */
606 if (dir_in && ureq->zero && !continuing) {
607 /* Test if zlp is actually required. */
608 if ((ureq->length >= hs_ep->ep.maxpacket) &&
609 !(ureq->length % hs_ep->ep.maxpacket))
610 hs_ep->send_zlp = 1;
611 }
612
613 epsize |= DXEPTSIZ_PKTCNT(packets);
614 epsize |= DXEPTSIZ_XFERSIZE(length);
615
616 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
617 __func__, packets, length, ureq->length, epsize, epsize_reg);
618
619 /* store the request as the current one we're doing */
620 hs_ep->req = hs_req;
621
622 /* write size / packets */
623 writel(epsize, hsotg->regs + epsize_reg);
624
625 if (using_dma(hsotg) && !continuing) {
626 unsigned int dma_reg;
627
628 /*
629 * write DMA address to control register, buffer already
630 * synced by s3c_hsotg_ep_queue().
631 */
632
633 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
634 writel(ureq->dma, hsotg->regs + dma_reg);
635
636 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
637 __func__, &ureq->dma, dma_reg);
638 }
639
640 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
641 ctrl |= DXEPCTL_USBACTEP;
642
643 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
644
645 /* For Setup request do not clear NAK */
646 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
647 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
648
649 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
650 writel(ctrl, hsotg->regs + epctrl_reg);
651
652 /*
653 * set these, it seems that DMA support increments past the end
654 * of the packet buffer so we need to calculate the length from
655 * this information.
656 */
657 hs_ep->size_loaded = length;
658 hs_ep->last_load = ureq->actual;
659
660 if (dir_in && !using_dma(hsotg)) {
661 /* set these anyway, we may need them for non-periodic in */
662 hs_ep->fifo_load = 0;
663
664 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
665 }
666
667 /*
668 * clear the INTknTXFEmpMsk when we start request, more as a aide
669 * to debugging to see what is going on.
670 */
671 if (dir_in)
672 writel(DIEPMSK_INTKNTXFEMPMSK,
673 hsotg->regs + DIEPINT(index));
674
675 /*
676 * Note, trying to clear the NAK here causes problems with transmit
677 * on the S3C6400 ending up with the TXFIFO becoming full.
678 */
679
680 /* check ep is enabled */
681 if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
682 dev_dbg(hsotg->dev,
683 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
684 index, readl(hsotg->regs + epctrl_reg));
685
686 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
687 __func__, readl(hsotg->regs + epctrl_reg));
688
689 /* enable ep interrupts */
690 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
691 }
692
693 /**
694 * s3c_hsotg_map_dma - map the DMA memory being used for the request
695 * @hsotg: The device state.
696 * @hs_ep: The endpoint the request is on.
697 * @req: The request being processed.
698 *
699 * We've been asked to queue a request, so ensure that the memory buffer
700 * is correctly setup for DMA. If we've been passed an extant DMA address
701 * then ensure the buffer has been synced to memory. If our buffer has no
702 * DMA memory, then we map the memory and mark our request to allow us to
703 * cleanup on completion.
704 */
705 static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
706 struct s3c_hsotg_ep *hs_ep,
707 struct usb_request *req)
708 {
709 struct s3c_hsotg_req *hs_req = our_req(req);
710 int ret;
711
712 /* if the length is zero, ignore the DMA data */
713 if (hs_req->req.length == 0)
714 return 0;
715
716 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
717 if (ret)
718 goto dma_error;
719
720 return 0;
721
722 dma_error:
723 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
724 __func__, req->buf, req->length);
725
726 return -EIO;
727 }
728
729 static int s3c_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
730 struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
731 {
732 void *req_buf = hs_req->req.buf;
733
734 /* If dma is not being used or buffer is aligned */
735 if (!using_dma(hsotg) || !((long)req_buf & 3))
736 return 0;
737
738 WARN_ON(hs_req->saved_req_buf);
739
740 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
741 hs_ep->ep.name, req_buf, hs_req->req.length);
742
743 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
744 if (!hs_req->req.buf) {
745 hs_req->req.buf = req_buf;
746 dev_err(hsotg->dev,
747 "%s: unable to allocate memory for bounce buffer\n",
748 __func__);
749 return -ENOMEM;
750 }
751
752 /* Save actual buffer */
753 hs_req->saved_req_buf = req_buf;
754
755 if (hs_ep->dir_in)
756 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
757 return 0;
758 }
759
760 static void s3c_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
761 struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
762 {
763 /* If dma is not being used or buffer was aligned */
764 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
765 return;
766
767 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
768 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
769
770 /* Copy data from bounce buffer on successful out transfer */
771 if (!hs_ep->dir_in && !hs_req->req.status)
772 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
773 hs_req->req.actual);
774
775 /* Free bounce buffer */
776 kfree(hs_req->req.buf);
777
778 hs_req->req.buf = hs_req->saved_req_buf;
779 hs_req->saved_req_buf = NULL;
780 }
781
782 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
783 gfp_t gfp_flags)
784 {
785 struct s3c_hsotg_req *hs_req = our_req(req);
786 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
787 struct dwc2_hsotg *hs = hs_ep->parent;
788 bool first;
789 int ret;
790
791 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
792 ep->name, req, req->length, req->buf, req->no_interrupt,
793 req->zero, req->short_not_ok);
794
795 /* initialise status of the request */
796 INIT_LIST_HEAD(&hs_req->queue);
797 req->actual = 0;
798 req->status = -EINPROGRESS;
799
800 ret = s3c_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
801 if (ret)
802 return ret;
803
804 /* if we're using DMA, sync the buffers as necessary */
805 if (using_dma(hs)) {
806 ret = s3c_hsotg_map_dma(hs, hs_ep, req);
807 if (ret)
808 return ret;
809 }
810
811 first = list_empty(&hs_ep->queue);
812 list_add_tail(&hs_req->queue, &hs_ep->queue);
813
814 if (first)
815 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
816
817 return 0;
818 }
819
820 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
821 gfp_t gfp_flags)
822 {
823 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
824 struct dwc2_hsotg *hs = hs_ep->parent;
825 unsigned long flags = 0;
826 int ret = 0;
827
828 spin_lock_irqsave(&hs->lock, flags);
829 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
830 spin_unlock_irqrestore(&hs->lock, flags);
831
832 return ret;
833 }
834
835 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
836 struct usb_request *req)
837 {
838 struct s3c_hsotg_req *hs_req = our_req(req);
839
840 kfree(hs_req);
841 }
842
843 /**
844 * s3c_hsotg_complete_oursetup - setup completion callback
845 * @ep: The endpoint the request was on.
846 * @req: The request completed.
847 *
848 * Called on completion of any requests the driver itself
849 * submitted that need cleaning up.
850 */
851 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
852 struct usb_request *req)
853 {
854 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
855 struct dwc2_hsotg *hsotg = hs_ep->parent;
856
857 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
858
859 s3c_hsotg_ep_free_request(ep, req);
860 }
861
862 /**
863 * ep_from_windex - convert control wIndex value to endpoint
864 * @hsotg: The driver state.
865 * @windex: The control request wIndex field (in host order).
866 *
867 * Convert the given wIndex into a pointer to an driver endpoint
868 * structure, or return NULL if it is not a valid endpoint.
869 */
870 static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
871 u32 windex)
872 {
873 struct s3c_hsotg_ep *ep;
874 int dir = (windex & USB_DIR_IN) ? 1 : 0;
875 int idx = windex & 0x7F;
876
877 if (windex >= 0x100)
878 return NULL;
879
880 if (idx > hsotg->num_of_eps)
881 return NULL;
882
883 ep = index_to_ep(hsotg, idx, dir);
884
885 if (idx && ep->dir_in != dir)
886 return NULL;
887
888 return ep;
889 }
890
891 /**
892 * s3c_hsotg_set_test_mode - Enable usb Test Modes
893 * @hsotg: The driver state.
894 * @testmode: requested usb test mode
895 * Enable usb Test Mode requested by the Host.
896 */
897 static int s3c_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
898 {
899 int dctl = readl(hsotg->regs + DCTL);
900
901 dctl &= ~DCTL_TSTCTL_MASK;
902 switch (testmode) {
903 case TEST_J:
904 case TEST_K:
905 case TEST_SE0_NAK:
906 case TEST_PACKET:
907 case TEST_FORCE_EN:
908 dctl |= testmode << DCTL_TSTCTL_SHIFT;
909 break;
910 default:
911 return -EINVAL;
912 }
913 writel(dctl, hsotg->regs + DCTL);
914 return 0;
915 }
916
917 /**
918 * s3c_hsotg_send_reply - send reply to control request
919 * @hsotg: The device state
920 * @ep: Endpoint 0
921 * @buff: Buffer for request
922 * @length: Length of reply.
923 *
924 * Create a request and queue it on the given endpoint. This is useful as
925 * an internal method of sending replies to certain control requests, etc.
926 */
927 static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
928 struct s3c_hsotg_ep *ep,
929 void *buff,
930 int length)
931 {
932 struct usb_request *req;
933 int ret;
934
935 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
936
937 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
938 hsotg->ep0_reply = req;
939 if (!req) {
940 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
941 return -ENOMEM;
942 }
943
944 req->buf = hsotg->ep0_buff;
945 req->length = length;
946 /*
947 * zero flag is for sending zlp in DATA IN stage. It has no impact on
948 * STATUS stage.
949 */
950 req->zero = 0;
951 req->complete = s3c_hsotg_complete_oursetup;
952
953 if (length)
954 memcpy(req->buf, buff, length);
955
956 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
957 if (ret) {
958 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
959 return ret;
960 }
961
962 return 0;
963 }
964
965 /**
966 * s3c_hsotg_process_req_status - process request GET_STATUS
967 * @hsotg: The device state
968 * @ctrl: USB control request
969 */
970 static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
971 struct usb_ctrlrequest *ctrl)
972 {
973 struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
974 struct s3c_hsotg_ep *ep;
975 __le16 reply;
976 int ret;
977
978 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
979
980 if (!ep0->dir_in) {
981 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
982 return -EINVAL;
983 }
984
985 switch (ctrl->bRequestType & USB_RECIP_MASK) {
986 case USB_RECIP_DEVICE:
987 reply = cpu_to_le16(0); /* bit 0 => self powered,
988 * bit 1 => remote wakeup */
989 break;
990
991 case USB_RECIP_INTERFACE:
992 /* currently, the data result should be zero */
993 reply = cpu_to_le16(0);
994 break;
995
996 case USB_RECIP_ENDPOINT:
997 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
998 if (!ep)
999 return -ENOENT;
1000
1001 reply = cpu_to_le16(ep->halted ? 1 : 0);
1002 break;
1003
1004 default:
1005 return 0;
1006 }
1007
1008 if (le16_to_cpu(ctrl->wLength) != 2)
1009 return -EINVAL;
1010
1011 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1012 if (ret) {
1013 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1014 return ret;
1015 }
1016
1017 return 1;
1018 }
1019
1020 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1021
1022 /**
1023 * get_ep_head - return the first request on the endpoint
1024 * @hs_ep: The controller endpoint to get
1025 *
1026 * Get the first request on the endpoint.
1027 */
1028 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1029 {
1030 if (list_empty(&hs_ep->queue))
1031 return NULL;
1032
1033 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1034 }
1035
1036 /**
1037 * s3c_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1038 * @hsotg: The device state
1039 * @ctrl: USB control request
1040 */
1041 static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1042 struct usb_ctrlrequest *ctrl)
1043 {
1044 struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1045 struct s3c_hsotg_req *hs_req;
1046 bool restart;
1047 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1048 struct s3c_hsotg_ep *ep;
1049 int ret;
1050 bool halted;
1051 u32 recip;
1052 u32 wValue;
1053 u32 wIndex;
1054
1055 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1056 __func__, set ? "SET" : "CLEAR");
1057
1058 wValue = le16_to_cpu(ctrl->wValue);
1059 wIndex = le16_to_cpu(ctrl->wIndex);
1060 recip = ctrl->bRequestType & USB_RECIP_MASK;
1061
1062 switch (recip) {
1063 case USB_RECIP_DEVICE:
1064 switch (wValue) {
1065 case USB_DEVICE_TEST_MODE:
1066 if ((wIndex & 0xff) != 0)
1067 return -EINVAL;
1068 if (!set)
1069 return -EINVAL;
1070
1071 hsotg->test_mode = wIndex >> 8;
1072 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1073 if (ret) {
1074 dev_err(hsotg->dev,
1075 "%s: failed to send reply\n", __func__);
1076 return ret;
1077 }
1078 break;
1079 default:
1080 return -ENOENT;
1081 }
1082 break;
1083
1084 case USB_RECIP_ENDPOINT:
1085 ep = ep_from_windex(hsotg, wIndex);
1086 if (!ep) {
1087 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1088 __func__, wIndex);
1089 return -ENOENT;
1090 }
1091
1092 switch (wValue) {
1093 case USB_ENDPOINT_HALT:
1094 halted = ep->halted;
1095
1096 s3c_hsotg_ep_sethalt(&ep->ep, set);
1097
1098 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1099 if (ret) {
1100 dev_err(hsotg->dev,
1101 "%s: failed to send reply\n", __func__);
1102 return ret;
1103 }
1104
1105 /*
1106 * we have to complete all requests for ep if it was
1107 * halted, and the halt was cleared by CLEAR_FEATURE
1108 */
1109
1110 if (!set && halted) {
1111 /*
1112 * If we have request in progress,
1113 * then complete it
1114 */
1115 if (ep->req) {
1116 hs_req = ep->req;
1117 ep->req = NULL;
1118 list_del_init(&hs_req->queue);
1119 if (hs_req->req.complete) {
1120 spin_unlock(&hsotg->lock);
1121 usb_gadget_giveback_request(
1122 &ep->ep, &hs_req->req);
1123 spin_lock(&hsotg->lock);
1124 }
1125 }
1126
1127 /* If we have pending request, then start it */
1128 if (!ep->req) {
1129 restart = !list_empty(&ep->queue);
1130 if (restart) {
1131 hs_req = get_ep_head(ep);
1132 s3c_hsotg_start_req(hsotg, ep,
1133 hs_req, false);
1134 }
1135 }
1136 }
1137
1138 break;
1139
1140 default:
1141 return -ENOENT;
1142 }
1143 break;
1144 default:
1145 return -ENOENT;
1146 }
1147 return 1;
1148 }
1149
1150 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1151
1152 /**
1153 * s3c_hsotg_stall_ep0 - stall ep0
1154 * @hsotg: The device state
1155 *
1156 * Set stall for ep0 as response for setup request.
1157 */
1158 static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1159 {
1160 struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1161 u32 reg;
1162 u32 ctrl;
1163
1164 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1165 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1166
1167 /*
1168 * DxEPCTL_Stall will be cleared by EP once it has
1169 * taken effect, so no need to clear later.
1170 */
1171
1172 ctrl = readl(hsotg->regs + reg);
1173 ctrl |= DXEPCTL_STALL;
1174 ctrl |= DXEPCTL_CNAK;
1175 writel(ctrl, hsotg->regs + reg);
1176
1177 dev_dbg(hsotg->dev,
1178 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1179 ctrl, reg, readl(hsotg->regs + reg));
1180
1181 /*
1182 * complete won't be called, so we enqueue
1183 * setup request here
1184 */
1185 s3c_hsotg_enqueue_setup(hsotg);
1186 }
1187
1188 /**
1189 * s3c_hsotg_process_control - process a control request
1190 * @hsotg: The device state
1191 * @ctrl: The control request received
1192 *
1193 * The controller has received the SETUP phase of a control request, and
1194 * needs to work out what to do next (and whether to pass it on to the
1195 * gadget driver).
1196 */
1197 static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1198 struct usb_ctrlrequest *ctrl)
1199 {
1200 struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1201 int ret = 0;
1202 u32 dcfg;
1203
1204 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1205 ctrl->bRequest, ctrl->bRequestType,
1206 ctrl->wValue, ctrl->wLength);
1207
1208 if (ctrl->wLength == 0) {
1209 ep0->dir_in = 1;
1210 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1211 } else if (ctrl->bRequestType & USB_DIR_IN) {
1212 ep0->dir_in = 1;
1213 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1214 } else {
1215 ep0->dir_in = 0;
1216 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1217 }
1218
1219 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1220 switch (ctrl->bRequest) {
1221 case USB_REQ_SET_ADDRESS:
1222 hsotg->connected = 1;
1223 dcfg = readl(hsotg->regs + DCFG);
1224 dcfg &= ~DCFG_DEVADDR_MASK;
1225 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1226 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1227 writel(dcfg, hsotg->regs + DCFG);
1228
1229 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1230
1231 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1232 return;
1233
1234 case USB_REQ_GET_STATUS:
1235 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1236 break;
1237
1238 case USB_REQ_CLEAR_FEATURE:
1239 case USB_REQ_SET_FEATURE:
1240 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1241 break;
1242 }
1243 }
1244
1245 /* as a fallback, try delivering it to the driver to deal with */
1246
1247 if (ret == 0 && hsotg->driver) {
1248 spin_unlock(&hsotg->lock);
1249 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1250 spin_lock(&hsotg->lock);
1251 if (ret < 0)
1252 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1253 }
1254
1255 /*
1256 * the request is either unhandlable, or is not formatted correctly
1257 * so respond with a STALL for the status stage to indicate failure.
1258 */
1259
1260 if (ret < 0)
1261 s3c_hsotg_stall_ep0(hsotg);
1262 }
1263
1264 /**
1265 * s3c_hsotg_complete_setup - completion of a setup transfer
1266 * @ep: The endpoint the request was on.
1267 * @req: The request completed.
1268 *
1269 * Called on completion of any requests the driver itself submitted for
1270 * EP0 setup packets
1271 */
1272 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1273 struct usb_request *req)
1274 {
1275 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1276 struct dwc2_hsotg *hsotg = hs_ep->parent;
1277
1278 if (req->status < 0) {
1279 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1280 return;
1281 }
1282
1283 spin_lock(&hsotg->lock);
1284 if (req->actual == 0)
1285 s3c_hsotg_enqueue_setup(hsotg);
1286 else
1287 s3c_hsotg_process_control(hsotg, req->buf);
1288 spin_unlock(&hsotg->lock);
1289 }
1290
1291 /**
1292 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1293 * @hsotg: The device state.
1294 *
1295 * Enqueue a request on EP0 if necessary to received any SETUP packets
1296 * received from the host.
1297 */
1298 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1299 {
1300 struct usb_request *req = hsotg->ctrl_req;
1301 struct s3c_hsotg_req *hs_req = our_req(req);
1302 int ret;
1303
1304 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1305
1306 req->zero = 0;
1307 req->length = 8;
1308 req->buf = hsotg->ctrl_buff;
1309 req->complete = s3c_hsotg_complete_setup;
1310
1311 if (!list_empty(&hs_req->queue)) {
1312 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1313 return;
1314 }
1315
1316 hsotg->eps_out[0]->dir_in = 0;
1317 hsotg->eps_out[0]->send_zlp = 0;
1318 hsotg->ep0_state = DWC2_EP0_SETUP;
1319
1320 ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1321 if (ret < 0) {
1322 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1323 /*
1324 * Don't think there's much we can do other than watch the
1325 * driver fail.
1326 */
1327 }
1328 }
1329
1330 static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1331 struct s3c_hsotg_ep *hs_ep)
1332 {
1333 u32 ctrl;
1334 u8 index = hs_ep->index;
1335 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1336 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1337
1338 if (hs_ep->dir_in)
1339 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1340 index);
1341 else
1342 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1343 index);
1344
1345 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1346 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1347 epsiz_reg);
1348
1349 ctrl = readl(hsotg->regs + epctl_reg);
1350 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1351 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1352 ctrl |= DXEPCTL_USBACTEP;
1353 writel(ctrl, hsotg->regs + epctl_reg);
1354 }
1355
1356 /**
1357 * s3c_hsotg_complete_request - complete a request given to us
1358 * @hsotg: The device state.
1359 * @hs_ep: The endpoint the request was on.
1360 * @hs_req: The request to complete.
1361 * @result: The result code (0 => Ok, otherwise errno)
1362 *
1363 * The given request has finished, so call the necessary completion
1364 * if it has one and then look to see if we can start a new request
1365 * on the endpoint.
1366 *
1367 * Note, expects the ep to already be locked as appropriate.
1368 */
1369 static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1370 struct s3c_hsotg_ep *hs_ep,
1371 struct s3c_hsotg_req *hs_req,
1372 int result)
1373 {
1374 bool restart;
1375
1376 if (!hs_req) {
1377 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1378 return;
1379 }
1380
1381 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1382 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1383
1384 /*
1385 * only replace the status if we've not already set an error
1386 * from a previous transaction
1387 */
1388
1389 if (hs_req->req.status == -EINPROGRESS)
1390 hs_req->req.status = result;
1391
1392 s3c_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1393
1394 hs_ep->req = NULL;
1395 list_del_init(&hs_req->queue);
1396
1397 if (using_dma(hsotg))
1398 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1399
1400 /*
1401 * call the complete request with the locks off, just in case the
1402 * request tries to queue more work for this endpoint.
1403 */
1404
1405 if (hs_req->req.complete) {
1406 spin_unlock(&hsotg->lock);
1407 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1408 spin_lock(&hsotg->lock);
1409 }
1410
1411 /*
1412 * Look to see if there is anything else to do. Note, the completion
1413 * of the previous request may have caused a new request to be started
1414 * so be careful when doing this.
1415 */
1416
1417 if (!hs_ep->req && result >= 0) {
1418 restart = !list_empty(&hs_ep->queue);
1419 if (restart) {
1420 hs_req = get_ep_head(hs_ep);
1421 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1422 }
1423 }
1424 }
1425
1426 /**
1427 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1428 * @hsotg: The device state.
1429 * @ep_idx: The endpoint index for the data
1430 * @size: The size of data in the fifo, in bytes
1431 *
1432 * The FIFO status shows there is data to read from the FIFO for a given
1433 * endpoint, so sort out whether we need to read the data into a request
1434 * that has been made for that endpoint.
1435 */
1436 static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1437 {
1438 struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1439 struct s3c_hsotg_req *hs_req = hs_ep->req;
1440 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1441 int to_read;
1442 int max_req;
1443 int read_ptr;
1444
1445
1446 if (!hs_req) {
1447 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1448 int ptr;
1449
1450 dev_dbg(hsotg->dev,
1451 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1452 __func__, size, ep_idx, epctl);
1453
1454 /* dump the data from the FIFO, we've nothing we can do */
1455 for (ptr = 0; ptr < size; ptr += 4)
1456 (void)readl(fifo);
1457
1458 return;
1459 }
1460
1461 to_read = size;
1462 read_ptr = hs_req->req.actual;
1463 max_req = hs_req->req.length - read_ptr;
1464
1465 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1466 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1467
1468 if (to_read > max_req) {
1469 /*
1470 * more data appeared than we where willing
1471 * to deal with in this request.
1472 */
1473
1474 /* currently we don't deal this */
1475 WARN_ON_ONCE(1);
1476 }
1477
1478 hs_ep->total_data += to_read;
1479 hs_req->req.actual += to_read;
1480 to_read = DIV_ROUND_UP(to_read, 4);
1481
1482 /*
1483 * note, we might over-write the buffer end by 3 bytes depending on
1484 * alignment of the data.
1485 */
1486 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1487 }
1488
1489 /**
1490 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1491 * @hsotg: The device instance
1492 * @dir_in: If IN zlp
1493 *
1494 * Generate a zero-length IN packet request for terminating a SETUP
1495 * transaction.
1496 *
1497 * Note, since we don't write any data to the TxFIFO, then it is
1498 * currently believed that we do not need to wait for any space in
1499 * the TxFIFO.
1500 */
1501 static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1502 {
1503 /* eps_out[0] is used in both directions */
1504 hsotg->eps_out[0]->dir_in = dir_in;
1505 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1506
1507 s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1508 }
1509
1510 /**
1511 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1512 * @hsotg: The device instance
1513 * @epnum: The endpoint received from
1514 *
1515 * The RXFIFO has delivered an OutDone event, which means that the data
1516 * transfer for an OUT endpoint has been completed, either by a short
1517 * packet or by the finish of a transfer.
1518 */
1519 static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1520 {
1521 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1522 struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1523 struct s3c_hsotg_req *hs_req = hs_ep->req;
1524 struct usb_request *req = &hs_req->req;
1525 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1526 int result = 0;
1527
1528 if (!hs_req) {
1529 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1530 return;
1531 }
1532
1533 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1534 dev_dbg(hsotg->dev, "zlp packet received\n");
1535 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1536 s3c_hsotg_enqueue_setup(hsotg);
1537 return;
1538 }
1539
1540 if (using_dma(hsotg)) {
1541 unsigned size_done;
1542
1543 /*
1544 * Calculate the size of the transfer by checking how much
1545 * is left in the endpoint size register and then working it
1546 * out from the amount we loaded for the transfer.
1547 *
1548 * We need to do this as DMA pointers are always 32bit aligned
1549 * so may overshoot/undershoot the transfer.
1550 */
1551
1552 size_done = hs_ep->size_loaded - size_left;
1553 size_done += hs_ep->last_load;
1554
1555 req->actual = size_done;
1556 }
1557
1558 /* if there is more request to do, schedule new transfer */
1559 if (req->actual < req->length && size_left == 0) {
1560 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1561 return;
1562 }
1563
1564 if (req->actual < req->length && req->short_not_ok) {
1565 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1566 __func__, req->actual, req->length);
1567
1568 /*
1569 * todo - what should we return here? there's no one else
1570 * even bothering to check the status.
1571 */
1572 }
1573
1574 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1575 /* Move to STATUS IN */
1576 s3c_hsotg_ep0_zlp(hsotg, true);
1577 return;
1578 }
1579
1580 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1581 }
1582
1583 /**
1584 * s3c_hsotg_read_frameno - read current frame number
1585 * @hsotg: The device instance
1586 *
1587 * Return the current frame number
1588 */
1589 static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1590 {
1591 u32 dsts;
1592
1593 dsts = readl(hsotg->regs + DSTS);
1594 dsts &= DSTS_SOFFN_MASK;
1595 dsts >>= DSTS_SOFFN_SHIFT;
1596
1597 return dsts;
1598 }
1599
1600 /**
1601 * s3c_hsotg_handle_rx - RX FIFO has data
1602 * @hsotg: The device instance
1603 *
1604 * The IRQ handler has detected that the RX FIFO has some data in it
1605 * that requires processing, so find out what is in there and do the
1606 * appropriate read.
1607 *
1608 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1609 * chunks, so if you have x packets received on an endpoint you'll get x
1610 * FIFO events delivered, each with a packet's worth of data in it.
1611 *
1612 * When using DMA, we should not be processing events from the RXFIFO
1613 * as the actual data should be sent to the memory directly and we turn
1614 * on the completion interrupts to get notifications of transfer completion.
1615 */
1616 static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1617 {
1618 u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1619 u32 epnum, status, size;
1620
1621 WARN_ON(using_dma(hsotg));
1622
1623 epnum = grxstsr & GRXSTS_EPNUM_MASK;
1624 status = grxstsr & GRXSTS_PKTSTS_MASK;
1625
1626 size = grxstsr & GRXSTS_BYTECNT_MASK;
1627 size >>= GRXSTS_BYTECNT_SHIFT;
1628
1629 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1630 __func__, grxstsr, size, epnum);
1631
1632 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1633 case GRXSTS_PKTSTS_GLOBALOUTNAK:
1634 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1635 break;
1636
1637 case GRXSTS_PKTSTS_OUTDONE:
1638 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1639 s3c_hsotg_read_frameno(hsotg));
1640
1641 if (!using_dma(hsotg))
1642 s3c_hsotg_handle_outdone(hsotg, epnum);
1643 break;
1644
1645 case GRXSTS_PKTSTS_SETUPDONE:
1646 dev_dbg(hsotg->dev,
1647 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1648 s3c_hsotg_read_frameno(hsotg),
1649 readl(hsotg->regs + DOEPCTL(0)));
1650 /*
1651 * Call s3c_hsotg_handle_outdone here if it was not called from
1652 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1653 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1654 */
1655 if (hsotg->ep0_state == DWC2_EP0_SETUP)
1656 s3c_hsotg_handle_outdone(hsotg, epnum);
1657 break;
1658
1659 case GRXSTS_PKTSTS_OUTRX:
1660 s3c_hsotg_rx_data(hsotg, epnum, size);
1661 break;
1662
1663 case GRXSTS_PKTSTS_SETUPRX:
1664 dev_dbg(hsotg->dev,
1665 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1666 s3c_hsotg_read_frameno(hsotg),
1667 readl(hsotg->regs + DOEPCTL(0)));
1668
1669 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1670
1671 s3c_hsotg_rx_data(hsotg, epnum, size);
1672 break;
1673
1674 default:
1675 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1676 __func__, grxstsr);
1677
1678 s3c_hsotg_dump(hsotg);
1679 break;
1680 }
1681 }
1682
1683 /**
1684 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1685 * @mps: The maximum packet size in bytes.
1686 */
1687 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1688 {
1689 switch (mps) {
1690 case 64:
1691 return D0EPCTL_MPS_64;
1692 case 32:
1693 return D0EPCTL_MPS_32;
1694 case 16:
1695 return D0EPCTL_MPS_16;
1696 case 8:
1697 return D0EPCTL_MPS_8;
1698 }
1699
1700 /* bad max packet size, warn and return invalid result */
1701 WARN_ON(1);
1702 return (u32)-1;
1703 }
1704
1705 /**
1706 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1707 * @hsotg: The driver state.
1708 * @ep: The index number of the endpoint
1709 * @mps: The maximum packet size in bytes
1710 *
1711 * Configure the maximum packet size for the given endpoint, updating
1712 * the hardware control registers to reflect this.
1713 */
1714 static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1715 unsigned int ep, unsigned int mps, unsigned int dir_in)
1716 {
1717 struct s3c_hsotg_ep *hs_ep;
1718 void __iomem *regs = hsotg->regs;
1719 u32 mpsval;
1720 u32 mcval;
1721 u32 reg;
1722
1723 hs_ep = index_to_ep(hsotg, ep, dir_in);
1724 if (!hs_ep)
1725 return;
1726
1727 if (ep == 0) {
1728 /* EP0 is a special case */
1729 mpsval = s3c_hsotg_ep0_mps(mps);
1730 if (mpsval > 3)
1731 goto bad_mps;
1732 hs_ep->ep.maxpacket = mps;
1733 hs_ep->mc = 1;
1734 } else {
1735 mpsval = mps & DXEPCTL_MPS_MASK;
1736 if (mpsval > 1024)
1737 goto bad_mps;
1738 mcval = ((mps >> 11) & 0x3) + 1;
1739 hs_ep->mc = mcval;
1740 if (mcval > 3)
1741 goto bad_mps;
1742 hs_ep->ep.maxpacket = mpsval;
1743 }
1744
1745 if (dir_in) {
1746 reg = readl(regs + DIEPCTL(ep));
1747 reg &= ~DXEPCTL_MPS_MASK;
1748 reg |= mpsval;
1749 writel(reg, regs + DIEPCTL(ep));
1750 } else {
1751 reg = readl(regs + DOEPCTL(ep));
1752 reg &= ~DXEPCTL_MPS_MASK;
1753 reg |= mpsval;
1754 writel(reg, regs + DOEPCTL(ep));
1755 }
1756
1757 return;
1758
1759 bad_mps:
1760 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1761 }
1762
1763 /**
1764 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1765 * @hsotg: The driver state
1766 * @idx: The index for the endpoint (0..15)
1767 */
1768 static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1769 {
1770 int timeout;
1771 int val;
1772
1773 writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1774 hsotg->regs + GRSTCTL);
1775
1776 /* wait until the fifo is flushed */
1777 timeout = 100;
1778
1779 while (1) {
1780 val = readl(hsotg->regs + GRSTCTL);
1781
1782 if ((val & (GRSTCTL_TXFFLSH)) == 0)
1783 break;
1784
1785 if (--timeout == 0) {
1786 dev_err(hsotg->dev,
1787 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1788 __func__, val);
1789 break;
1790 }
1791
1792 udelay(1);
1793 }
1794 }
1795
1796 /**
1797 * s3c_hsotg_trytx - check to see if anything needs transmitting
1798 * @hsotg: The driver state
1799 * @hs_ep: The driver endpoint to check.
1800 *
1801 * Check to see if there is a request that has data to send, and if so
1802 * make an attempt to write data into the FIFO.
1803 */
1804 static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1805 struct s3c_hsotg_ep *hs_ep)
1806 {
1807 struct s3c_hsotg_req *hs_req = hs_ep->req;
1808
1809 if (!hs_ep->dir_in || !hs_req) {
1810 /**
1811 * if request is not enqueued, we disable interrupts
1812 * for endpoints, excepting ep0
1813 */
1814 if (hs_ep->index != 0)
1815 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1816 hs_ep->dir_in, 0);
1817 return 0;
1818 }
1819
1820 if (hs_req->req.actual < hs_req->req.length) {
1821 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1822 hs_ep->index);
1823 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1824 }
1825
1826 return 0;
1827 }
1828
1829 /**
1830 * s3c_hsotg_complete_in - complete IN transfer
1831 * @hsotg: The device state.
1832 * @hs_ep: The endpoint that has just completed.
1833 *
1834 * An IN transfer has been completed, update the transfer's state and then
1835 * call the relevant completion routines.
1836 */
1837 static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1838 struct s3c_hsotg_ep *hs_ep)
1839 {
1840 struct s3c_hsotg_req *hs_req = hs_ep->req;
1841 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1842 int size_left, size_done;
1843
1844 if (!hs_req) {
1845 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1846 return;
1847 }
1848
1849 /* Finish ZLP handling for IN EP0 transactions */
1850 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1851 dev_dbg(hsotg->dev, "zlp packet sent\n");
1852 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1853 if (hsotg->test_mode) {
1854 int ret;
1855
1856 ret = s3c_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1857 if (ret < 0) {
1858 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1859 hsotg->test_mode);
1860 s3c_hsotg_stall_ep0(hsotg);
1861 return;
1862 }
1863 }
1864 s3c_hsotg_enqueue_setup(hsotg);
1865 return;
1866 }
1867
1868 /*
1869 * Calculate the size of the transfer by checking how much is left
1870 * in the endpoint size register and then working it out from
1871 * the amount we loaded for the transfer.
1872 *
1873 * We do this even for DMA, as the transfer may have incremented
1874 * past the end of the buffer (DMA transfers are always 32bit
1875 * aligned).
1876 */
1877
1878 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1879
1880 size_done = hs_ep->size_loaded - size_left;
1881 size_done += hs_ep->last_load;
1882
1883 if (hs_req->req.actual != size_done)
1884 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1885 __func__, hs_req->req.actual, size_done);
1886
1887 hs_req->req.actual = size_done;
1888 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1889 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1890
1891 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1892 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1893 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1894 return;
1895 }
1896
1897 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
1898 if (hs_ep->send_zlp) {
1899 s3c_hsotg_program_zlp(hsotg, hs_ep);
1900 hs_ep->send_zlp = 0;
1901 /* transfer will be completed on next complete interrupt */
1902 return;
1903 }
1904
1905 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1906 /* Move to STATUS OUT */
1907 s3c_hsotg_ep0_zlp(hsotg, false);
1908 return;
1909 }
1910
1911 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1912 }
1913
1914 /**
1915 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1916 * @hsotg: The driver state
1917 * @idx: The index for the endpoint (0..15)
1918 * @dir_in: Set if this is an IN endpoint
1919 *
1920 * Process and clear any interrupt pending for an individual endpoint
1921 */
1922 static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1923 int dir_in)
1924 {
1925 struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1926 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1927 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1928 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1929 u32 ints;
1930 u32 ctrl;
1931
1932 ints = readl(hsotg->regs + epint_reg);
1933 ctrl = readl(hsotg->regs + epctl_reg);
1934
1935 /* Clear endpoint interrupts */
1936 writel(ints, hsotg->regs + epint_reg);
1937
1938 if (!hs_ep) {
1939 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1940 __func__, idx, dir_in ? "in" : "out");
1941 return;
1942 }
1943
1944 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1945 __func__, idx, dir_in ? "in" : "out", ints);
1946
1947 /* Don't process XferCompl interrupt if it is a setup packet */
1948 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1949 ints &= ~DXEPINT_XFERCOMPL;
1950
1951 if (ints & DXEPINT_XFERCOMPL) {
1952 if (hs_ep->isochronous && hs_ep->interval == 1) {
1953 if (ctrl & DXEPCTL_EOFRNUM)
1954 ctrl |= DXEPCTL_SETEVENFR;
1955 else
1956 ctrl |= DXEPCTL_SETODDFR;
1957 writel(ctrl, hsotg->regs + epctl_reg);
1958 }
1959
1960 dev_dbg(hsotg->dev,
1961 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1962 __func__, readl(hsotg->regs + epctl_reg),
1963 readl(hsotg->regs + epsiz_reg));
1964
1965 /*
1966 * we get OutDone from the FIFO, so we only need to look
1967 * at completing IN requests here
1968 */
1969 if (dir_in) {
1970 s3c_hsotg_complete_in(hsotg, hs_ep);
1971
1972 if (idx == 0 && !hs_ep->req)
1973 s3c_hsotg_enqueue_setup(hsotg);
1974 } else if (using_dma(hsotg)) {
1975 /*
1976 * We're using DMA, we need to fire an OutDone here
1977 * as we ignore the RXFIFO.
1978 */
1979
1980 s3c_hsotg_handle_outdone(hsotg, idx);
1981 }
1982 }
1983
1984 if (ints & DXEPINT_EPDISBLD) {
1985 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1986
1987 if (dir_in) {
1988 int epctl = readl(hsotg->regs + epctl_reg);
1989
1990 s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1991
1992 if ((epctl & DXEPCTL_STALL) &&
1993 (epctl & DXEPCTL_EPTYPE_BULK)) {
1994 int dctl = readl(hsotg->regs + DCTL);
1995
1996 dctl |= DCTL_CGNPINNAK;
1997 writel(dctl, hsotg->regs + DCTL);
1998 }
1999 }
2000 }
2001
2002 if (ints & DXEPINT_AHBERR)
2003 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2004
2005 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2006 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2007
2008 if (using_dma(hsotg) && idx == 0) {
2009 /*
2010 * this is the notification we've received a
2011 * setup packet. In non-DMA mode we'd get this
2012 * from the RXFIFO, instead we need to process
2013 * the setup here.
2014 */
2015
2016 if (dir_in)
2017 WARN_ON_ONCE(1);
2018 else
2019 s3c_hsotg_handle_outdone(hsotg, 0);
2020 }
2021 }
2022
2023 if (ints & DXEPINT_BACK2BACKSETUP)
2024 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2025
2026 if (dir_in && !hs_ep->isochronous) {
2027 /* not sure if this is important, but we'll clear it anyway */
2028 if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2029 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2030 __func__, idx);
2031 }
2032
2033 /* this probably means something bad is happening */
2034 if (ints & DIEPMSK_INTKNEPMISMSK) {
2035 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2036 __func__, idx);
2037 }
2038
2039 /* FIFO has space or is empty (see GAHBCFG) */
2040 if (hsotg->dedicated_fifos &&
2041 ints & DIEPMSK_TXFIFOEMPTY) {
2042 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2043 __func__, idx);
2044 if (!using_dma(hsotg))
2045 s3c_hsotg_trytx(hsotg, hs_ep);
2046 }
2047 }
2048 }
2049
2050 /**
2051 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2052 * @hsotg: The device state.
2053 *
2054 * Handle updating the device settings after the enumeration phase has
2055 * been completed.
2056 */
2057 static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2058 {
2059 u32 dsts = readl(hsotg->regs + DSTS);
2060 int ep0_mps = 0, ep_mps = 8;
2061
2062 /*
2063 * This should signal the finish of the enumeration phase
2064 * of the USB handshaking, so we should now know what rate
2065 * we connected at.
2066 */
2067
2068 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2069
2070 /*
2071 * note, since we're limited by the size of transfer on EP0, and
2072 * it seems IN transfers must be a even number of packets we do
2073 * not advertise a 64byte MPS on EP0.
2074 */
2075
2076 /* catch both EnumSpd_FS and EnumSpd_FS48 */
2077 switch (dsts & DSTS_ENUMSPD_MASK) {
2078 case DSTS_ENUMSPD_FS:
2079 case DSTS_ENUMSPD_FS48:
2080 hsotg->gadget.speed = USB_SPEED_FULL;
2081 ep0_mps = EP0_MPS_LIMIT;
2082 ep_mps = 1023;
2083 break;
2084
2085 case DSTS_ENUMSPD_HS:
2086 hsotg->gadget.speed = USB_SPEED_HIGH;
2087 ep0_mps = EP0_MPS_LIMIT;
2088 ep_mps = 1024;
2089 break;
2090
2091 case DSTS_ENUMSPD_LS:
2092 hsotg->gadget.speed = USB_SPEED_LOW;
2093 /*
2094 * note, we don't actually support LS in this driver at the
2095 * moment, and the documentation seems to imply that it isn't
2096 * supported by the PHYs on some of the devices.
2097 */
2098 break;
2099 }
2100 dev_info(hsotg->dev, "new device is %s\n",
2101 usb_speed_string(hsotg->gadget.speed));
2102
2103 /*
2104 * we should now know the maximum packet size for an
2105 * endpoint, so set the endpoints to a default value.
2106 */
2107
2108 if (ep0_mps) {
2109 int i;
2110 /* Initialize ep0 for both in and out directions */
2111 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2112 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2113 for (i = 1; i < hsotg->num_of_eps; i++) {
2114 if (hsotg->eps_in[i])
2115 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2116 if (hsotg->eps_out[i])
2117 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2118 }
2119 }
2120
2121 /* ensure after enumeration our EP0 is active */
2122
2123 s3c_hsotg_enqueue_setup(hsotg);
2124
2125 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2126 readl(hsotg->regs + DIEPCTL0),
2127 readl(hsotg->regs + DOEPCTL0));
2128 }
2129
2130 /**
2131 * kill_all_requests - remove all requests from the endpoint's queue
2132 * @hsotg: The device state.
2133 * @ep: The endpoint the requests may be on.
2134 * @result: The result code to use.
2135 *
2136 * Go through the requests on the given endpoint and mark them
2137 * completed with the given result code.
2138 */
2139 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2140 struct s3c_hsotg_ep *ep,
2141 int result)
2142 {
2143 struct s3c_hsotg_req *req, *treq;
2144 unsigned size;
2145
2146 ep->req = NULL;
2147
2148 list_for_each_entry_safe(req, treq, &ep->queue, queue)
2149 s3c_hsotg_complete_request(hsotg, ep, req,
2150 result);
2151
2152 if (!hsotg->dedicated_fifos)
2153 return;
2154 size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2155 if (size < ep->fifo_size)
2156 s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2157 }
2158
2159 /**
2160 * s3c_hsotg_disconnect - disconnect service
2161 * @hsotg: The device state.
2162 *
2163 * The device has been disconnected. Remove all current
2164 * transactions and signal the gadget driver that this
2165 * has happened.
2166 */
2167 void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2168 {
2169 unsigned ep;
2170
2171 if (!hsotg->connected)
2172 return;
2173
2174 hsotg->connected = 0;
2175 hsotg->test_mode = 0;
2176
2177 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2178 if (hsotg->eps_in[ep])
2179 kill_all_requests(hsotg, hsotg->eps_in[ep],
2180 -ESHUTDOWN);
2181 if (hsotg->eps_out[ep])
2182 kill_all_requests(hsotg, hsotg->eps_out[ep],
2183 -ESHUTDOWN);
2184 }
2185
2186 call_gadget(hsotg, disconnect);
2187 }
2188 EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2189
2190 /**
2191 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2192 * @hsotg: The device state:
2193 * @periodic: True if this is a periodic FIFO interrupt
2194 */
2195 static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2196 {
2197 struct s3c_hsotg_ep *ep;
2198 int epno, ret;
2199
2200 /* look through for any more data to transmit */
2201 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2202 ep = index_to_ep(hsotg, epno, 1);
2203
2204 if (!ep)
2205 continue;
2206
2207 if (!ep->dir_in)
2208 continue;
2209
2210 if ((periodic && !ep->periodic) ||
2211 (!periodic && ep->periodic))
2212 continue;
2213
2214 ret = s3c_hsotg_trytx(hsotg, ep);
2215 if (ret < 0)
2216 break;
2217 }
2218 }
2219
2220 /* IRQ flags which will trigger a retry around the IRQ loop */
2221 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2222 GINTSTS_PTXFEMP | \
2223 GINTSTS_RXFLVL)
2224
2225 /**
2226 * s3c_hsotg_corereset - issue softreset to the core
2227 * @hsotg: The device state
2228 *
2229 * Issue a soft reset to the core, and await the core finishing it.
2230 */
2231 static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2232 {
2233 int timeout;
2234 u32 grstctl;
2235
2236 dev_dbg(hsotg->dev, "resetting core\n");
2237
2238 /* issue soft reset */
2239 writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2240
2241 timeout = 10000;
2242 do {
2243 grstctl = readl(hsotg->regs + GRSTCTL);
2244 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2245
2246 if (grstctl & GRSTCTL_CSFTRST) {
2247 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2248 return -EINVAL;
2249 }
2250
2251 timeout = 10000;
2252
2253 while (1) {
2254 u32 grstctl = readl(hsotg->regs + GRSTCTL);
2255
2256 if (timeout-- < 0) {
2257 dev_info(hsotg->dev,
2258 "%s: reset failed, GRSTCTL=%08x\n",
2259 __func__, grstctl);
2260 return -ETIMEDOUT;
2261 }
2262
2263 if (!(grstctl & GRSTCTL_AHBIDLE))
2264 continue;
2265
2266 break; /* reset done */
2267 }
2268
2269 dev_dbg(hsotg->dev, "reset successful\n");
2270 return 0;
2271 }
2272
2273 /**
2274 * s3c_hsotg_core_init - issue softreset to the core
2275 * @hsotg: The device state
2276 *
2277 * Issue a soft reset to the core, and await the core finishing it.
2278 */
2279 void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2280 bool is_usb_reset)
2281 {
2282 u32 val;
2283
2284 if (!is_usb_reset)
2285 s3c_hsotg_corereset(hsotg);
2286
2287 /*
2288 * we must now enable ep0 ready for host detection and then
2289 * set configuration.
2290 */
2291
2292 /* set the PLL on, remove the HNP/SRP and set the PHY */
2293 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2294 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2295 (val << 10), hsotg->regs + GUSBCFG);
2296
2297 s3c_hsotg_init_fifo(hsotg);
2298
2299 if (!is_usb_reset)
2300 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2301
2302 writel(1 << 18 | DCFG_DEVSPD_HS, hsotg->regs + DCFG);
2303
2304 /* Clear any pending OTG interrupts */
2305 writel(0xffffffff, hsotg->regs + GOTGINT);
2306
2307 /* Clear any pending interrupts */
2308 writel(0xffffffff, hsotg->regs + GINTSTS);
2309
2310 writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2311 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2312 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2313 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2314 GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2315 hsotg->regs + GINTMSK);
2316
2317 if (using_dma(hsotg))
2318 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2319 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2320 hsotg->regs + GAHBCFG);
2321 else
2322 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2323 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2324 GAHBCFG_GLBL_INTR_EN,
2325 hsotg->regs + GAHBCFG);
2326
2327 /*
2328 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2329 * when we have no data to transfer. Otherwise we get being flooded by
2330 * interrupts.
2331 */
2332
2333 writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2334 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2335 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2336 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2337 DIEPMSK_INTKNEPMISMSK,
2338 hsotg->regs + DIEPMSK);
2339
2340 /*
2341 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2342 * DMA mode we may need this.
2343 */
2344 writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2345 DIEPMSK_TIMEOUTMSK) : 0) |
2346 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2347 DOEPMSK_SETUPMSK,
2348 hsotg->regs + DOEPMSK);
2349
2350 writel(0, hsotg->regs + DAINTMSK);
2351
2352 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2353 readl(hsotg->regs + DIEPCTL0),
2354 readl(hsotg->regs + DOEPCTL0));
2355
2356 /* enable in and out endpoint interrupts */
2357 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2358
2359 /*
2360 * Enable the RXFIFO when in slave mode, as this is how we collect
2361 * the data. In DMA mode, we get events from the FIFO but also
2362 * things we cannot process, so do not use it.
2363 */
2364 if (!using_dma(hsotg))
2365 s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2366
2367 /* Enable interrupts for EP0 in and out */
2368 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2369 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2370
2371 if (!is_usb_reset) {
2372 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2373 udelay(10); /* see openiboot */
2374 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2375 }
2376
2377 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2378
2379 /*
2380 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2381 * writing to the EPCTL register..
2382 */
2383
2384 /* set to read 1 8byte packet */
2385 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2386 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2387
2388 writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2389 DXEPCTL_CNAK | DXEPCTL_EPENA |
2390 DXEPCTL_USBACTEP,
2391 hsotg->regs + DOEPCTL0);
2392
2393 /* enable, but don't activate EP0in */
2394 writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2395 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2396
2397 s3c_hsotg_enqueue_setup(hsotg);
2398
2399 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2400 readl(hsotg->regs + DIEPCTL0),
2401 readl(hsotg->regs + DOEPCTL0));
2402
2403 /* clear global NAKs */
2404 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2405 if (!is_usb_reset)
2406 val |= DCTL_SFTDISCON;
2407 __orr32(hsotg->regs + DCTL, val);
2408
2409 /* must be at-least 3ms to allow bus to see disconnect */
2410 mdelay(3);
2411
2412 hsotg->last_rst = jiffies;
2413 }
2414
2415 static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2416 {
2417 /* set the soft-disconnect bit */
2418 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2419 }
2420
2421 void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2422 {
2423 /* remove the soft-disconnect and let's go */
2424 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2425 }
2426
2427 /**
2428 * s3c_hsotg_irq - handle device interrupt
2429 * @irq: The IRQ number triggered
2430 * @pw: The pw value when registered the handler.
2431 */
2432 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2433 {
2434 struct dwc2_hsotg *hsotg = pw;
2435 int retry_count = 8;
2436 u32 gintsts;
2437 u32 gintmsk;
2438
2439 spin_lock(&hsotg->lock);
2440 irq_retry:
2441 gintsts = readl(hsotg->regs + GINTSTS);
2442 gintmsk = readl(hsotg->regs + GINTMSK);
2443
2444 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2445 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2446
2447 gintsts &= gintmsk;
2448
2449 if (gintsts & GINTSTS_ENUMDONE) {
2450 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2451
2452 s3c_hsotg_irq_enumdone(hsotg);
2453 }
2454
2455 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2456 u32 daint = readl(hsotg->regs + DAINT);
2457 u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2458 u32 daint_out, daint_in;
2459 int ep;
2460
2461 daint &= daintmsk;
2462 daint_out = daint >> DAINT_OUTEP_SHIFT;
2463 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2464
2465 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2466
2467 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2468 ep++, daint_out >>= 1) {
2469 if (daint_out & 1)
2470 s3c_hsotg_epint(hsotg, ep, 0);
2471 }
2472
2473 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
2474 ep++, daint_in >>= 1) {
2475 if (daint_in & 1)
2476 s3c_hsotg_epint(hsotg, ep, 1);
2477 }
2478 }
2479
2480 if (gintsts & GINTSTS_USBRST) {
2481
2482 u32 usb_status = readl(hsotg->regs + GOTGCTL);
2483
2484 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2485 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2486 readl(hsotg->regs + GNPTXSTS));
2487
2488 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2489
2490 /* Report disconnection if it is not already done. */
2491 s3c_hsotg_disconnect(hsotg);
2492
2493 if (usb_status & GOTGCTL_BSESVLD) {
2494 if (time_after(jiffies, hsotg->last_rst +
2495 msecs_to_jiffies(200))) {
2496
2497 kill_all_requests(hsotg, hsotg->eps_out[0],
2498 -ECONNRESET);
2499
2500 s3c_hsotg_core_init_disconnected(hsotg, true);
2501 }
2502 }
2503 }
2504
2505 /* check both FIFOs */
2506
2507 if (gintsts & GINTSTS_NPTXFEMP) {
2508 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2509
2510 /*
2511 * Disable the interrupt to stop it happening again
2512 * unless one of these endpoint routines decides that
2513 * it needs re-enabling
2514 */
2515
2516 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2517 s3c_hsotg_irq_fifoempty(hsotg, false);
2518 }
2519
2520 if (gintsts & GINTSTS_PTXFEMP) {
2521 dev_dbg(hsotg->dev, "PTxFEmp\n");
2522
2523 /* See note in GINTSTS_NPTxFEmp */
2524
2525 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2526 s3c_hsotg_irq_fifoempty(hsotg, true);
2527 }
2528
2529 if (gintsts & GINTSTS_RXFLVL) {
2530 /*
2531 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2532 * we need to retry s3c_hsotg_handle_rx if this is still
2533 * set.
2534 */
2535
2536 s3c_hsotg_handle_rx(hsotg);
2537 }
2538
2539 if (gintsts & GINTSTS_ERLYSUSP) {
2540 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2541 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2542 }
2543
2544 /*
2545 * these next two seem to crop-up occasionally causing the core
2546 * to shutdown the USB transfer, so try clearing them and logging
2547 * the occurrence.
2548 */
2549
2550 if (gintsts & GINTSTS_GOUTNAKEFF) {
2551 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2552
2553 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2554
2555 s3c_hsotg_dump(hsotg);
2556 }
2557
2558 if (gintsts & GINTSTS_GINNAKEFF) {
2559 dev_info(hsotg->dev, "GINNakEff triggered\n");
2560
2561 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2562
2563 s3c_hsotg_dump(hsotg);
2564 }
2565
2566 /*
2567 * if we've had fifo events, we should try and go around the
2568 * loop again to see if there's any point in returning yet.
2569 */
2570
2571 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2572 goto irq_retry;
2573
2574 spin_unlock(&hsotg->lock);
2575
2576 return IRQ_HANDLED;
2577 }
2578
2579 /**
2580 * s3c_hsotg_ep_enable - enable the given endpoint
2581 * @ep: The USB endpint to configure
2582 * @desc: The USB endpoint descriptor to configure with.
2583 *
2584 * This is called from the USB gadget code's usb_ep_enable().
2585 */
2586 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2587 const struct usb_endpoint_descriptor *desc)
2588 {
2589 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2590 struct dwc2_hsotg *hsotg = hs_ep->parent;
2591 unsigned long flags;
2592 unsigned int index = hs_ep->index;
2593 u32 epctrl_reg;
2594 u32 epctrl;
2595 u32 mps;
2596 unsigned int dir_in;
2597 unsigned int i, val, size;
2598 int ret = 0;
2599
2600 dev_dbg(hsotg->dev,
2601 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2602 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2603 desc->wMaxPacketSize, desc->bInterval);
2604
2605 /* not to be called for EP0 */
2606 WARN_ON(index == 0);
2607
2608 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2609 if (dir_in != hs_ep->dir_in) {
2610 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2611 return -EINVAL;
2612 }
2613
2614 mps = usb_endpoint_maxp(desc);
2615
2616 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2617
2618 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2619 epctrl = readl(hsotg->regs + epctrl_reg);
2620
2621 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2622 __func__, epctrl, epctrl_reg);
2623
2624 spin_lock_irqsave(&hsotg->lock, flags);
2625
2626 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2627 epctrl |= DXEPCTL_MPS(mps);
2628
2629 /*
2630 * mark the endpoint as active, otherwise the core may ignore
2631 * transactions entirely for this endpoint
2632 */
2633 epctrl |= DXEPCTL_USBACTEP;
2634
2635 /*
2636 * set the NAK status on the endpoint, otherwise we might try and
2637 * do something with data that we've yet got a request to process
2638 * since the RXFIFO will take data for an endpoint even if the
2639 * size register hasn't been set.
2640 */
2641
2642 epctrl |= DXEPCTL_SNAK;
2643
2644 /* update the endpoint state */
2645 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2646
2647 /* default, set to non-periodic */
2648 hs_ep->isochronous = 0;
2649 hs_ep->periodic = 0;
2650 hs_ep->halted = 0;
2651 hs_ep->interval = desc->bInterval;
2652
2653 if (hs_ep->interval > 1 && hs_ep->mc > 1)
2654 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2655
2656 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2657 case USB_ENDPOINT_XFER_ISOC:
2658 epctrl |= DXEPCTL_EPTYPE_ISO;
2659 epctrl |= DXEPCTL_SETEVENFR;
2660 hs_ep->isochronous = 1;
2661 if (dir_in)
2662 hs_ep->periodic = 1;
2663 break;
2664
2665 case USB_ENDPOINT_XFER_BULK:
2666 epctrl |= DXEPCTL_EPTYPE_BULK;
2667 break;
2668
2669 case USB_ENDPOINT_XFER_INT:
2670 if (dir_in)
2671 hs_ep->periodic = 1;
2672
2673 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2674 break;
2675
2676 case USB_ENDPOINT_XFER_CONTROL:
2677 epctrl |= DXEPCTL_EPTYPE_CONTROL;
2678 break;
2679 }
2680
2681 /* If fifo is already allocated for this ep */
2682 if (hs_ep->fifo_index) {
2683 size = hs_ep->ep.maxpacket * hs_ep->mc;
2684 /* If bigger fifo is required deallocate current one */
2685 if (size > hs_ep->fifo_size) {
2686 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2687 hs_ep->fifo_index = 0;
2688 hs_ep->fifo_size = 0;
2689 }
2690 }
2691
2692 /*
2693 * if the hardware has dedicated fifos, we must give each IN EP
2694 * a unique tx-fifo even if it is non-periodic.
2695 */
2696 if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2697 u32 fifo_index = 0;
2698 u32 fifo_size = UINT_MAX;
2699 size = hs_ep->ep.maxpacket*hs_ep->mc;
2700 for (i = 1; i < hsotg->num_of_eps; ++i) {
2701 if (hsotg->fifo_map & (1<<i))
2702 continue;
2703 val = readl(hsotg->regs + DPTXFSIZN(i));
2704 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2705 if (val < size)
2706 continue;
2707 /* Search for smallest acceptable fifo */
2708 if (val < fifo_size) {
2709 fifo_size = val;
2710 fifo_index = i;
2711 }
2712 }
2713 if (!fifo_index) {
2714 dev_err(hsotg->dev,
2715 "%s: No suitable fifo found\n", __func__);
2716 ret = -ENOMEM;
2717 goto error;
2718 }
2719 hsotg->fifo_map |= 1 << fifo_index;
2720 epctrl |= DXEPCTL_TXFNUM(fifo_index);
2721 hs_ep->fifo_index = fifo_index;
2722 hs_ep->fifo_size = fifo_size;
2723 }
2724
2725 /* for non control endpoints, set PID to D0 */
2726 if (index)
2727 epctrl |= DXEPCTL_SETD0PID;
2728
2729 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2730 __func__, epctrl);
2731
2732 writel(epctrl, hsotg->regs + epctrl_reg);
2733 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2734 __func__, readl(hsotg->regs + epctrl_reg));
2735
2736 /* enable the endpoint interrupt */
2737 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2738
2739 error:
2740 spin_unlock_irqrestore(&hsotg->lock, flags);
2741 return ret;
2742 }
2743
2744 /**
2745 * s3c_hsotg_ep_disable - disable given endpoint
2746 * @ep: The endpoint to disable.
2747 */
2748 static int s3c_hsotg_ep_disable_force(struct usb_ep *ep, bool force)
2749 {
2750 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2751 struct dwc2_hsotg *hsotg = hs_ep->parent;
2752 int dir_in = hs_ep->dir_in;
2753 int index = hs_ep->index;
2754 unsigned long flags;
2755 u32 epctrl_reg;
2756 u32 ctrl;
2757
2758 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2759
2760 if (ep == &hsotg->eps_out[0]->ep) {
2761 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2762 return -EINVAL;
2763 }
2764
2765 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2766
2767 spin_lock_irqsave(&hsotg->lock, flags);
2768
2769 hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2770 hs_ep->fifo_index = 0;
2771 hs_ep->fifo_size = 0;
2772
2773 ctrl = readl(hsotg->regs + epctrl_reg);
2774 ctrl &= ~DXEPCTL_EPENA;
2775 ctrl &= ~DXEPCTL_USBACTEP;
2776 ctrl |= DXEPCTL_SNAK;
2777
2778 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2779 writel(ctrl, hsotg->regs + epctrl_reg);
2780
2781 /* disable endpoint interrupts */
2782 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2783
2784 /* terminate all requests with shutdown */
2785 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2786
2787 spin_unlock_irqrestore(&hsotg->lock, flags);
2788 return 0;
2789 }
2790
2791 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2792 {
2793 return s3c_hsotg_ep_disable_force(ep, false);
2794 }
2795 /**
2796 * on_list - check request is on the given endpoint
2797 * @ep: The endpoint to check.
2798 * @test: The request to test if it is on the endpoint.
2799 */
2800 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2801 {
2802 struct s3c_hsotg_req *req, *treq;
2803
2804 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2805 if (req == test)
2806 return true;
2807 }
2808
2809 return false;
2810 }
2811
2812 /**
2813 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2814 * @ep: The endpoint to dequeue.
2815 * @req: The request to be removed from a queue.
2816 */
2817 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2818 {
2819 struct s3c_hsotg_req *hs_req = our_req(req);
2820 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2821 struct dwc2_hsotg *hs = hs_ep->parent;
2822 unsigned long flags;
2823
2824 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2825
2826 spin_lock_irqsave(&hs->lock, flags);
2827
2828 if (!on_list(hs_ep, hs_req)) {
2829 spin_unlock_irqrestore(&hs->lock, flags);
2830 return -EINVAL;
2831 }
2832
2833 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2834 spin_unlock_irqrestore(&hs->lock, flags);
2835
2836 return 0;
2837 }
2838
2839 /**
2840 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2841 * @ep: The endpoint to set halt.
2842 * @value: Set or unset the halt.
2843 */
2844 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2845 {
2846 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2847 struct dwc2_hsotg *hs = hs_ep->parent;
2848 int index = hs_ep->index;
2849 u32 epreg;
2850 u32 epctl;
2851 u32 xfertype;
2852
2853 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2854
2855 if (index == 0) {
2856 if (value)
2857 s3c_hsotg_stall_ep0(hs);
2858 else
2859 dev_warn(hs->dev,
2860 "%s: can't clear halt on ep0\n", __func__);
2861 return 0;
2862 }
2863
2864 if (hs_ep->dir_in) {
2865 epreg = DIEPCTL(index);
2866 epctl = readl(hs->regs + epreg);
2867
2868 if (value) {
2869 epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2870 if (epctl & DXEPCTL_EPENA)
2871 epctl |= DXEPCTL_EPDIS;
2872 } else {
2873 epctl &= ~DXEPCTL_STALL;
2874 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2875 if (xfertype == DXEPCTL_EPTYPE_BULK ||
2876 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2877 epctl |= DXEPCTL_SETD0PID;
2878 }
2879 writel(epctl, hs->regs + epreg);
2880 } else {
2881
2882 epreg = DOEPCTL(index);
2883 epctl = readl(hs->regs + epreg);
2884
2885 if (value)
2886 epctl |= DXEPCTL_STALL;
2887 else {
2888 epctl &= ~DXEPCTL_STALL;
2889 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2890 if (xfertype == DXEPCTL_EPTYPE_BULK ||
2891 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2892 epctl |= DXEPCTL_SETD0PID;
2893 }
2894 writel(epctl, hs->regs + epreg);
2895 }
2896
2897 hs_ep->halted = value;
2898
2899 return 0;
2900 }
2901
2902 /**
2903 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2904 * @ep: The endpoint to set halt.
2905 * @value: Set or unset the halt.
2906 */
2907 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2908 {
2909 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2910 struct dwc2_hsotg *hs = hs_ep->parent;
2911 unsigned long flags = 0;
2912 int ret = 0;
2913
2914 spin_lock_irqsave(&hs->lock, flags);
2915 ret = s3c_hsotg_ep_sethalt(ep, value);
2916 spin_unlock_irqrestore(&hs->lock, flags);
2917
2918 return ret;
2919 }
2920
2921 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2922 .enable = s3c_hsotg_ep_enable,
2923 .disable = s3c_hsotg_ep_disable,
2924 .alloc_request = s3c_hsotg_ep_alloc_request,
2925 .free_request = s3c_hsotg_ep_free_request,
2926 .queue = s3c_hsotg_ep_queue_lock,
2927 .dequeue = s3c_hsotg_ep_dequeue,
2928 .set_halt = s3c_hsotg_ep_sethalt_lock,
2929 /* note, don't believe we have any call for the fifo routines */
2930 };
2931
2932 /**
2933 * s3c_hsotg_phy_enable - enable platform phy dev
2934 * @hsotg: The driver state
2935 *
2936 * A wrapper for platform code responsible for controlling
2937 * low-level USB code
2938 */
2939 static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2940 {
2941 struct platform_device *pdev = to_platform_device(hsotg->dev);
2942
2943 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2944
2945 if (hsotg->uphy)
2946 usb_phy_init(hsotg->uphy);
2947 else if (hsotg->plat && hsotg->plat->phy_init)
2948 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2949 else {
2950 phy_init(hsotg->phy);
2951 phy_power_on(hsotg->phy);
2952 }
2953 }
2954
2955 /**
2956 * s3c_hsotg_phy_disable - disable platform phy dev
2957 * @hsotg: The driver state
2958 *
2959 * A wrapper for platform code responsible for controlling
2960 * low-level USB code
2961 */
2962 static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2963 {
2964 struct platform_device *pdev = to_platform_device(hsotg->dev);
2965
2966 if (hsotg->uphy)
2967 usb_phy_shutdown(hsotg->uphy);
2968 else if (hsotg->plat && hsotg->plat->phy_exit)
2969 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2970 else {
2971 phy_power_off(hsotg->phy);
2972 phy_exit(hsotg->phy);
2973 }
2974 }
2975
2976 /**
2977 * s3c_hsotg_init - initalize the usb core
2978 * @hsotg: The driver state
2979 */
2980 static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2981 {
2982 u32 trdtim;
2983 /* unmask subset of endpoint interrupts */
2984
2985 writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2986 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2987 hsotg->regs + DIEPMSK);
2988
2989 writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2990 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2991 hsotg->regs + DOEPMSK);
2992
2993 writel(0, hsotg->regs + DAINTMSK);
2994
2995 /* Be in disconnected state until gadget is registered */
2996 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2997
2998 /* setup fifos */
2999
3000 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3001 readl(hsotg->regs + GRXFSIZ),
3002 readl(hsotg->regs + GNPTXFSIZ));
3003
3004 s3c_hsotg_init_fifo(hsotg);
3005
3006 /* set the PLL on, remove the HNP/SRP and set the PHY */
3007 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3008 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3009 (trdtim << 10),
3010 hsotg->regs + GUSBCFG);
3011
3012 if (using_dma(hsotg))
3013 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3014 }
3015
3016 /**
3017 * s3c_hsotg_udc_start - prepare the udc for work
3018 * @gadget: The usb gadget state
3019 * @driver: The usb gadget driver
3020 *
3021 * Perform initialization to prepare udc device and driver
3022 * to work.
3023 */
3024 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
3025 struct usb_gadget_driver *driver)
3026 {
3027 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3028 unsigned long flags;
3029 int ret;
3030
3031 if (!hsotg) {
3032 pr_err("%s: called with no device\n", __func__);
3033 return -ENODEV;
3034 }
3035
3036 if (!driver) {
3037 dev_err(hsotg->dev, "%s: no driver\n", __func__);
3038 return -EINVAL;
3039 }
3040
3041 if (driver->max_speed < USB_SPEED_FULL)
3042 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3043
3044 if (!driver->setup) {
3045 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3046 return -EINVAL;
3047 }
3048
3049 mutex_lock(&hsotg->init_mutex);
3050 WARN_ON(hsotg->driver);
3051
3052 driver->driver.bus = NULL;
3053 hsotg->driver = driver;
3054 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3055 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3056
3057 clk_enable(hsotg->clk);
3058
3059 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3060 hsotg->supplies);
3061 if (ret) {
3062 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3063 goto err;
3064 }
3065
3066 s3c_hsotg_phy_enable(hsotg);
3067 if (!IS_ERR_OR_NULL(hsotg->uphy))
3068 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3069
3070 spin_lock_irqsave(&hsotg->lock, flags);
3071 s3c_hsotg_init(hsotg);
3072 s3c_hsotg_core_init_disconnected(hsotg, false);
3073 hsotg->enabled = 0;
3074 spin_unlock_irqrestore(&hsotg->lock, flags);
3075
3076 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3077
3078 mutex_unlock(&hsotg->init_mutex);
3079
3080 return 0;
3081
3082 err:
3083 mutex_unlock(&hsotg->init_mutex);
3084 hsotg->driver = NULL;
3085 return ret;
3086 }
3087
3088 /**
3089 * s3c_hsotg_udc_stop - stop the udc
3090 * @gadget: The usb gadget state
3091 * @driver: The usb gadget driver
3092 *
3093 * Stop udc hw block and stay tunned for future transmissions
3094 */
3095 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
3096 {
3097 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3098 unsigned long flags = 0;
3099 int ep;
3100
3101 if (!hsotg)
3102 return -ENODEV;
3103
3104 mutex_lock(&hsotg->init_mutex);
3105
3106 /* all endpoints should be shutdown */
3107 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3108 if (hsotg->eps_in[ep])
3109 s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3110 if (hsotg->eps_out[ep])
3111 s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3112 }
3113
3114 spin_lock_irqsave(&hsotg->lock, flags);
3115
3116 hsotg->driver = NULL;
3117 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3118 hsotg->enabled = 0;
3119
3120 spin_unlock_irqrestore(&hsotg->lock, flags);
3121
3122 if (!IS_ERR_OR_NULL(hsotg->uphy))
3123 otg_set_peripheral(hsotg->uphy->otg, NULL);
3124 s3c_hsotg_phy_disable(hsotg);
3125
3126 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3127
3128 clk_disable(hsotg->clk);
3129
3130 mutex_unlock(&hsotg->init_mutex);
3131
3132 return 0;
3133 }
3134
3135 /**
3136 * s3c_hsotg_gadget_getframe - read the frame number
3137 * @gadget: The usb gadget state
3138 *
3139 * Read the {micro} frame number
3140 */
3141 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
3142 {
3143 return s3c_hsotg_read_frameno(to_hsotg(gadget));
3144 }
3145
3146 /**
3147 * s3c_hsotg_pullup - connect/disconnect the USB PHY
3148 * @gadget: The usb gadget state
3149 * @is_on: Current state of the USB PHY
3150 *
3151 * Connect/Disconnect the USB PHY pullup
3152 */
3153 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3154 {
3155 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3156 unsigned long flags = 0;
3157
3158 dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3159
3160 mutex_lock(&hsotg->init_mutex);
3161 spin_lock_irqsave(&hsotg->lock, flags);
3162 if (is_on) {
3163 clk_enable(hsotg->clk);
3164 hsotg->enabled = 1;
3165 s3c_hsotg_core_connect(hsotg);
3166 } else {
3167 s3c_hsotg_core_disconnect(hsotg);
3168 s3c_hsotg_disconnect(hsotg);
3169 hsotg->enabled = 0;
3170 clk_disable(hsotg->clk);
3171 }
3172
3173 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3174 spin_unlock_irqrestore(&hsotg->lock, flags);
3175 mutex_unlock(&hsotg->init_mutex);
3176
3177 return 0;
3178 }
3179
3180 static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3181 {
3182 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3183 unsigned long flags;
3184
3185 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3186 spin_lock_irqsave(&hsotg->lock, flags);
3187
3188 if (is_active) {
3189 /* Kill any ep0 requests as controller will be reinitialized */
3190 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3191 s3c_hsotg_core_init_disconnected(hsotg, false);
3192 if (hsotg->enabled)
3193 s3c_hsotg_core_connect(hsotg);
3194 } else {
3195 s3c_hsotg_core_disconnect(hsotg);
3196 s3c_hsotg_disconnect(hsotg);
3197 }
3198
3199 spin_unlock_irqrestore(&hsotg->lock, flags);
3200 return 0;
3201 }
3202
3203 /**
3204 * s3c_hsotg_vbus_draw - report bMaxPower field
3205 * @gadget: The usb gadget state
3206 * @mA: Amount of current
3207 *
3208 * Report how much power the device may consume to the phy.
3209 */
3210 static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3211 {
3212 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3213
3214 if (IS_ERR_OR_NULL(hsotg->uphy))
3215 return -ENOTSUPP;
3216 return usb_phy_set_power(hsotg->uphy, mA);
3217 }
3218
3219 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3220 .get_frame = s3c_hsotg_gadget_getframe,
3221 .udc_start = s3c_hsotg_udc_start,
3222 .udc_stop = s3c_hsotg_udc_stop,
3223 .pullup = s3c_hsotg_pullup,
3224 .vbus_session = s3c_hsotg_vbus_session,
3225 .vbus_draw = s3c_hsotg_vbus_draw,
3226 };
3227
3228 /**
3229 * s3c_hsotg_initep - initialise a single endpoint
3230 * @hsotg: The device state.
3231 * @hs_ep: The endpoint to be initialised.
3232 * @epnum: The endpoint number
3233 *
3234 * Initialise the given endpoint (as part of the probe and device state
3235 * creation) to give to the gadget driver. Setup the endpoint name, any
3236 * direction information and other state that may be required.
3237 */
3238 static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3239 struct s3c_hsotg_ep *hs_ep,
3240 int epnum,
3241 bool dir_in)
3242 {
3243 char *dir;
3244
3245 if (epnum == 0)
3246 dir = "";
3247 else if (dir_in)
3248 dir = "in";
3249 else
3250 dir = "out";
3251
3252 hs_ep->dir_in = dir_in;
3253 hs_ep->index = epnum;
3254
3255 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3256
3257 INIT_LIST_HEAD(&hs_ep->queue);
3258 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3259
3260 /* add to the list of endpoints known by the gadget driver */
3261 if (epnum)
3262 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3263
3264 hs_ep->parent = hsotg;
3265 hs_ep->ep.name = hs_ep->name;
3266 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3267 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3268
3269 /*
3270 * if we're using dma, we need to set the next-endpoint pointer
3271 * to be something valid.
3272 */
3273
3274 if (using_dma(hsotg)) {
3275 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3276 if (dir_in)
3277 writel(next, hsotg->regs + DIEPCTL(epnum));
3278 else
3279 writel(next, hsotg->regs + DOEPCTL(epnum));
3280 }
3281 }
3282
3283 /**
3284 * s3c_hsotg_hw_cfg - read HW configuration registers
3285 * @param: The device state
3286 *
3287 * Read the USB core HW configuration registers
3288 */
3289 static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3290 {
3291 u32 cfg;
3292 u32 ep_type;
3293 u32 i;
3294
3295 /* check hardware configuration */
3296
3297 cfg = readl(hsotg->regs + GHWCFG2);
3298 hsotg->num_of_eps = (cfg >> 10) & 0xF;
3299 /* Add ep0 */
3300 hsotg->num_of_eps++;
3301
3302 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
3303 GFP_KERNEL);
3304 if (!hsotg->eps_in[0])
3305 return -ENOMEM;
3306 /* Same s3c_hsotg_ep is used in both directions for ep0 */
3307 hsotg->eps_out[0] = hsotg->eps_in[0];
3308
3309 cfg = readl(hsotg->regs + GHWCFG1);
3310 for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3311 ep_type = cfg & 3;
3312 /* Direction in or both */
3313 if (!(ep_type & 2)) {
3314 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3315 sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
3316 if (!hsotg->eps_in[i])
3317 return -ENOMEM;
3318 }
3319 /* Direction out or both */
3320 if (!(ep_type & 1)) {
3321 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3322 sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
3323 if (!hsotg->eps_out[i])
3324 return -ENOMEM;
3325 }
3326 }
3327
3328 cfg = readl(hsotg->regs + GHWCFG3);
3329 hsotg->fifo_mem = (cfg >> 16);
3330
3331 cfg = readl(hsotg->regs + GHWCFG4);
3332 hsotg->dedicated_fifos = (cfg >> 25) & 1;
3333
3334 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3335 hsotg->num_of_eps,
3336 hsotg->dedicated_fifos ? "dedicated" : "shared",
3337 hsotg->fifo_mem);
3338 return 0;
3339 }
3340
3341 /**
3342 * s3c_hsotg_dump - dump state of the udc
3343 * @param: The device state
3344 */
3345 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3346 {
3347 #ifdef DEBUG
3348 struct device *dev = hsotg->dev;
3349 void __iomem *regs = hsotg->regs;
3350 u32 val;
3351 int idx;
3352
3353 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3354 readl(regs + DCFG), readl(regs + DCTL),
3355 readl(regs + DIEPMSK));
3356
3357 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3358 readl(regs + GAHBCFG), readl(regs + 0x44));
3359
3360 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3361 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3362
3363 /* show periodic fifo settings */
3364
3365 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3366 val = readl(regs + DPTXFSIZN(idx));
3367 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3368 val >> FIFOSIZE_DEPTH_SHIFT,
3369 val & FIFOSIZE_STARTADDR_MASK);
3370 }
3371
3372 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3373 dev_info(dev,
3374 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3375 readl(regs + DIEPCTL(idx)),
3376 readl(regs + DIEPTSIZ(idx)),
3377 readl(regs + DIEPDMA(idx)));
3378
3379 val = readl(regs + DOEPCTL(idx));
3380 dev_info(dev,
3381 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3382 idx, readl(regs + DOEPCTL(idx)),
3383 readl(regs + DOEPTSIZ(idx)),
3384 readl(regs + DOEPDMA(idx)));
3385
3386 }
3387
3388 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3389 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3390 #endif
3391 }
3392
3393 /**
3394 * testmode_write - debugfs: change usb test mode
3395 * @seq: The seq file to write to.
3396 * @v: Unused parameter.
3397 *
3398 * This debugfs entry modify the current usb test mode.
3399 */
3400 static ssize_t testmode_write(struct file *file, const char __user *ubuf, size_t
3401 count, loff_t *ppos)
3402 {
3403 struct seq_file *s = file->private_data;
3404 struct dwc2_hsotg *hsotg = s->private;
3405 unsigned long flags;
3406 u32 testmode = 0;
3407 char buf[32];
3408
3409 if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count)))
3410 return -EFAULT;
3411
3412 if (!strncmp(buf, "test_j", 6))
3413 testmode = TEST_J;
3414 else if (!strncmp(buf, "test_k", 6))
3415 testmode = TEST_K;
3416 else if (!strncmp(buf, "test_se0_nak", 12))
3417 testmode = TEST_SE0_NAK;
3418 else if (!strncmp(buf, "test_packet", 11))
3419 testmode = TEST_PACKET;
3420 else if (!strncmp(buf, "test_force_enable", 17))
3421 testmode = TEST_FORCE_EN;
3422 else
3423 testmode = 0;
3424
3425 spin_lock_irqsave(&hsotg->lock, flags);
3426 s3c_hsotg_set_test_mode(hsotg, testmode);
3427 spin_unlock_irqrestore(&hsotg->lock, flags);
3428 return count;
3429 }
3430
3431 /**
3432 * testmode_show - debugfs: show usb test mode state
3433 * @seq: The seq file to write to.
3434 * @v: Unused parameter.
3435 *
3436 * This debugfs entry shows which usb test mode is currently enabled.
3437 */
3438 static int testmode_show(struct seq_file *s, void *unused)
3439 {
3440 struct dwc2_hsotg *hsotg = s->private;
3441 unsigned long flags;
3442 int dctl;
3443
3444 spin_lock_irqsave(&hsotg->lock, flags);
3445 dctl = readl(hsotg->regs + DCTL);
3446 dctl &= DCTL_TSTCTL_MASK;
3447 dctl >>= DCTL_TSTCTL_SHIFT;
3448 spin_unlock_irqrestore(&hsotg->lock, flags);
3449
3450 switch (dctl) {
3451 case 0:
3452 seq_puts(s, "no test\n");
3453 break;
3454 case TEST_J:
3455 seq_puts(s, "test_j\n");
3456 break;
3457 case TEST_K:
3458 seq_puts(s, "test_k\n");
3459 break;
3460 case TEST_SE0_NAK:
3461 seq_puts(s, "test_se0_nak\n");
3462 break;
3463 case TEST_PACKET:
3464 seq_puts(s, "test_packet\n");
3465 break;
3466 case TEST_FORCE_EN:
3467 seq_puts(s, "test_force_enable\n");
3468 break;
3469 default:
3470 seq_printf(s, "UNKNOWN %d\n", dctl);
3471 }
3472
3473 return 0;
3474 }
3475
3476 static int testmode_open(struct inode *inode, struct file *file)
3477 {
3478 return single_open(file, testmode_show, inode->i_private);
3479 }
3480
3481 static const struct file_operations testmode_fops = {
3482 .owner = THIS_MODULE,
3483 .open = testmode_open,
3484 .write = testmode_write,
3485 .read = seq_read,
3486 .llseek = seq_lseek,
3487 .release = single_release,
3488 };
3489
3490 /**
3491 * state_show - debugfs: show overall driver and device state.
3492 * @seq: The seq file to write to.
3493 * @v: Unused parameter.
3494 *
3495 * This debugfs entry shows the overall state of the hardware and
3496 * some general information about each of the endpoints available
3497 * to the system.
3498 */
3499 static int state_show(struct seq_file *seq, void *v)
3500 {
3501 struct dwc2_hsotg *hsotg = seq->private;
3502 void __iomem *regs = hsotg->regs;
3503 int idx;
3504
3505 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3506 readl(regs + DCFG),
3507 readl(regs + DCTL),
3508 readl(regs + DSTS));
3509
3510 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3511 readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3512
3513 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3514 readl(regs + GINTMSK),
3515 readl(regs + GINTSTS));
3516
3517 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3518 readl(regs + DAINTMSK),
3519 readl(regs + DAINT));
3520
3521 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3522 readl(regs + GNPTXSTS),
3523 readl(regs + GRXSTSR));
3524
3525 seq_puts(seq, "\nEndpoint status:\n");
3526
3527 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3528 u32 in, out;
3529
3530 in = readl(regs + DIEPCTL(idx));
3531 out = readl(regs + DOEPCTL(idx));
3532
3533 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3534 idx, in, out);
3535
3536 in = readl(regs + DIEPTSIZ(idx));
3537 out = readl(regs + DOEPTSIZ(idx));
3538
3539 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3540 in, out);
3541
3542 seq_puts(seq, "\n");
3543 }
3544
3545 return 0;
3546 }
3547
3548 static int state_open(struct inode *inode, struct file *file)
3549 {
3550 return single_open(file, state_show, inode->i_private);
3551 }
3552
3553 static const struct file_operations state_fops = {
3554 .owner = THIS_MODULE,
3555 .open = state_open,
3556 .read = seq_read,
3557 .llseek = seq_lseek,
3558 .release = single_release,
3559 };
3560
3561 /**
3562 * fifo_show - debugfs: show the fifo information
3563 * @seq: The seq_file to write data to.
3564 * @v: Unused parameter.
3565 *
3566 * Show the FIFO information for the overall fifo and all the
3567 * periodic transmission FIFOs.
3568 */
3569 static int fifo_show(struct seq_file *seq, void *v)
3570 {
3571 struct dwc2_hsotg *hsotg = seq->private;
3572 void __iomem *regs = hsotg->regs;
3573 u32 val;
3574 int idx;
3575
3576 seq_puts(seq, "Non-periodic FIFOs:\n");
3577 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3578
3579 val = readl(regs + GNPTXFSIZ);
3580 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3581 val >> FIFOSIZE_DEPTH_SHIFT,
3582 val & FIFOSIZE_DEPTH_MASK);
3583
3584 seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3585
3586 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3587 val = readl(regs + DPTXFSIZN(idx));
3588
3589 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3590 val >> FIFOSIZE_DEPTH_SHIFT,
3591 val & FIFOSIZE_STARTADDR_MASK);
3592 }
3593
3594 return 0;
3595 }
3596
3597 static int fifo_open(struct inode *inode, struct file *file)
3598 {
3599 return single_open(file, fifo_show, inode->i_private);
3600 }
3601
3602 static const struct file_operations fifo_fops = {
3603 .owner = THIS_MODULE,
3604 .open = fifo_open,
3605 .read = seq_read,
3606 .llseek = seq_lseek,
3607 .release = single_release,
3608 };
3609
3610
3611 static const char *decode_direction(int is_in)
3612 {
3613 return is_in ? "in" : "out";
3614 }
3615
3616 /**
3617 * ep_show - debugfs: show the state of an endpoint.
3618 * @seq: The seq_file to write data to.
3619 * @v: Unused parameter.
3620 *
3621 * This debugfs entry shows the state of the given endpoint (one is
3622 * registered for each available).
3623 */
3624 static int ep_show(struct seq_file *seq, void *v)
3625 {
3626 struct s3c_hsotg_ep *ep = seq->private;
3627 struct dwc2_hsotg *hsotg = ep->parent;
3628 struct s3c_hsotg_req *req;
3629 void __iomem *regs = hsotg->regs;
3630 int index = ep->index;
3631 int show_limit = 15;
3632 unsigned long flags;
3633
3634 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3635 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3636
3637 /* first show the register state */
3638
3639 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3640 readl(regs + DIEPCTL(index)),
3641 readl(regs + DOEPCTL(index)));
3642
3643 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3644 readl(regs + DIEPDMA(index)),
3645 readl(regs + DOEPDMA(index)));
3646
3647 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3648 readl(regs + DIEPINT(index)),
3649 readl(regs + DOEPINT(index)));
3650
3651 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3652 readl(regs + DIEPTSIZ(index)),
3653 readl(regs + DOEPTSIZ(index)));
3654
3655 seq_puts(seq, "\n");
3656 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3657 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3658
3659 seq_printf(seq, "request list (%p,%p):\n",
3660 ep->queue.next, ep->queue.prev);
3661
3662 spin_lock_irqsave(&hsotg->lock, flags);
3663
3664 list_for_each_entry(req, &ep->queue, queue) {
3665 if (--show_limit < 0) {
3666 seq_puts(seq, "not showing more requests...\n");
3667 break;
3668 }
3669
3670 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3671 req == ep->req ? '*' : ' ',
3672 req, req->req.length, req->req.buf);
3673 seq_printf(seq, "%d done, res %d\n",
3674 req->req.actual, req->req.status);
3675 }
3676
3677 spin_unlock_irqrestore(&hsotg->lock, flags);
3678
3679 return 0;
3680 }
3681
3682 static int ep_open(struct inode *inode, struct file *file)
3683 {
3684 return single_open(file, ep_show, inode->i_private);
3685 }
3686
3687 static const struct file_operations ep_fops = {
3688 .owner = THIS_MODULE,
3689 .open = ep_open,
3690 .read = seq_read,
3691 .llseek = seq_lseek,
3692 .release = single_release,
3693 };
3694
3695 /**
3696 * s3c_hsotg_create_debug - create debugfs directory and files
3697 * @hsotg: The driver state
3698 *
3699 * Create the debugfs files to allow the user to get information
3700 * about the state of the system. The directory name is created
3701 * with the same name as the device itself, in case we end up
3702 * with multiple blocks in future systems.
3703 */
3704 static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3705 {
3706 struct dentry *root;
3707 unsigned epidx;
3708
3709 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3710 hsotg->debug_root = root;
3711 if (IS_ERR(root)) {
3712 dev_err(hsotg->dev, "cannot create debug root\n");
3713 return;
3714 }
3715
3716 /* create general state file */
3717
3718 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3719 hsotg, &state_fops);
3720
3721 if (IS_ERR(hsotg->debug_file))
3722 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3723
3724 hsotg->debug_testmode = debugfs_create_file("testmode",
3725 S_IRUGO | S_IWUSR, root,
3726 hsotg, &testmode_fops);
3727
3728 if (IS_ERR(hsotg->debug_testmode))
3729 dev_err(hsotg->dev, "%s: failed to create testmode\n",
3730 __func__);
3731
3732 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3733 hsotg, &fifo_fops);
3734
3735 if (IS_ERR(hsotg->debug_fifo))
3736 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3737
3738 /* Create one file for each out endpoint */
3739 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3740 struct s3c_hsotg_ep *ep;
3741
3742 ep = hsotg->eps_out[epidx];
3743 if (ep) {
3744 ep->debugfs = debugfs_create_file(ep->name, 0444,
3745 root, ep, &ep_fops);
3746
3747 if (IS_ERR(ep->debugfs))
3748 dev_err(hsotg->dev, "failed to create %s debug file\n",
3749 ep->name);
3750 }
3751 }
3752 /* Create one file for each in endpoint. EP0 is handled with out eps */
3753 for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
3754 struct s3c_hsotg_ep *ep;
3755
3756 ep = hsotg->eps_in[epidx];
3757 if (ep) {
3758 ep->debugfs = debugfs_create_file(ep->name, 0444,
3759 root, ep, &ep_fops);
3760
3761 if (IS_ERR(ep->debugfs))
3762 dev_err(hsotg->dev, "failed to create %s debug file\n",
3763 ep->name);
3764 }
3765 }
3766 }
3767
3768 /**
3769 * s3c_hsotg_delete_debug - cleanup debugfs entries
3770 * @hsotg: The driver state
3771 *
3772 * Cleanup (remove) the debugfs files for use on module exit.
3773 */
3774 static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3775 {
3776 unsigned epidx;
3777
3778 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3779 if (hsotg->eps_in[epidx])
3780 debugfs_remove(hsotg->eps_in[epidx]->debugfs);
3781 if (hsotg->eps_out[epidx])
3782 debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3783 }
3784
3785 debugfs_remove(hsotg->debug_file);
3786 debugfs_remove(hsotg->debug_testmode);
3787 debugfs_remove(hsotg->debug_fifo);
3788 debugfs_remove(hsotg->debug_root);
3789 }
3790
3791 #ifdef CONFIG_OF
3792 static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3793 {
3794 struct device_node *np = hsotg->dev->of_node;
3795 u32 len = 0;
3796 u32 i = 0;
3797
3798 /* Enable dma if requested in device tree */
3799 hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3800
3801 /*
3802 * Register TX periodic fifo size per endpoint.
3803 * EP0 is excluded since it has no fifo configuration.
3804 */
3805 if (!of_find_property(np, "g-tx-fifo-size", &len))
3806 goto rx_fifo;
3807
3808 len /= sizeof(u32);
3809
3810 /* Read tx fifo sizes other than ep0 */
3811 if (of_property_read_u32_array(np, "g-tx-fifo-size",
3812 &hsotg->g_tx_fifo_sz[1], len))
3813 goto rx_fifo;
3814
3815 /* Add ep0 */
3816 len++;
3817
3818 /* Make remaining TX fifos unavailable */
3819 if (len < MAX_EPS_CHANNELS) {
3820 for (i = len; i < MAX_EPS_CHANNELS; i++)
3821 hsotg->g_tx_fifo_sz[i] = 0;
3822 }
3823
3824 rx_fifo:
3825 /* Register RX fifo size */
3826 of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3827
3828 /* Register NPTX fifo size */
3829 of_property_read_u32(np, "g-np-tx-fifo-size",
3830 &hsotg->g_np_g_tx_fifo_sz);
3831 }
3832 #else
3833 static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3834 #endif
3835
3836 /**
3837 * dwc2_gadget_init - init function for gadget
3838 * @dwc2: The data structure for the DWC2 driver.
3839 * @irq: The IRQ number for the controller.
3840 */
3841 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3842 {
3843 struct device *dev = hsotg->dev;
3844 struct s3c_hsotg_plat *plat = dev->platform_data;
3845 int epnum;
3846 int ret;
3847 int i;
3848 u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3849
3850 /* Set default UTMI width */
3851 hsotg->phyif = GUSBCFG_PHYIF16;
3852
3853 s3c_hsotg_of_probe(hsotg);
3854
3855 /* Initialize to legacy fifo configuration values */
3856 hsotg->g_rx_fifo_sz = 2048;
3857 hsotg->g_np_g_tx_fifo_sz = 1024;
3858 memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3859 /* Device tree specific probe */
3860 s3c_hsotg_of_probe(hsotg);
3861 /* Dump fifo information */
3862 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3863 hsotg->g_np_g_tx_fifo_sz);
3864 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3865 for (i = 0; i < MAX_EPS_CHANNELS; i++)
3866 dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3867 hsotg->g_tx_fifo_sz[i]);
3868 /*
3869 * If platform probe couldn't find a generic PHY or an old style
3870 * USB PHY, fall back to pdata
3871 */
3872 if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
3873 plat = dev_get_platdata(dev);
3874 if (!plat) {
3875 dev_err(dev,
3876 "no platform data or transceiver defined\n");
3877 return -EPROBE_DEFER;
3878 }
3879 hsotg->plat = plat;
3880 } else if (hsotg->phy) {
3881 /*
3882 * If using the generic PHY framework, check if the PHY bus
3883 * width is 8-bit and set the phyif appropriately.
3884 */
3885 if (phy_get_bus_width(hsotg->phy) == 8)
3886 hsotg->phyif = GUSBCFG_PHYIF8;
3887 }
3888
3889 hsotg->clk = devm_clk_get(dev, "otg");
3890 if (IS_ERR(hsotg->clk)) {
3891 hsotg->clk = NULL;
3892 dev_dbg(dev, "cannot get otg clock\n");
3893 }
3894
3895 hsotg->gadget.max_speed = USB_SPEED_HIGH;
3896 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3897 hsotg->gadget.name = dev_name(dev);
3898
3899 /* reset the system */
3900
3901 ret = clk_prepare_enable(hsotg->clk);
3902 if (ret) {
3903 dev_err(dev, "failed to enable otg clk\n");
3904 goto err_clk;
3905 }
3906
3907
3908 /* regulators */
3909
3910 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3911 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3912
3913 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3914 hsotg->supplies);
3915 if (ret) {
3916 dev_err(dev, "failed to request supplies: %d\n", ret);
3917 goto err_clk;
3918 }
3919
3920 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3921 hsotg->supplies);
3922
3923 if (ret) {
3924 dev_err(dev, "failed to enable supplies: %d\n", ret);
3925 goto err_clk;
3926 }
3927
3928 /* usb phy enable */
3929 s3c_hsotg_phy_enable(hsotg);
3930
3931 /*
3932 * Force Device mode before initialization.
3933 * This allows correctly configuring fifo for device mode.
3934 */
3935 __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
3936 __orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3937
3938 /*
3939 * According to Synopsys databook, this sleep is needed for the force
3940 * device mode to take effect.
3941 */
3942 msleep(25);
3943
3944 s3c_hsotg_corereset(hsotg);
3945 ret = s3c_hsotg_hw_cfg(hsotg);
3946 if (ret) {
3947 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3948 goto err_clk;
3949 }
3950
3951 s3c_hsotg_init(hsotg);
3952
3953 /* Switch back to default configuration */
3954 __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3955
3956 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3957 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3958 if (!hsotg->ctrl_buff) {
3959 dev_err(dev, "failed to allocate ctrl request buff\n");
3960 ret = -ENOMEM;
3961 goto err_supplies;
3962 }
3963
3964 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3965 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3966 if (!hsotg->ep0_buff) {
3967 dev_err(dev, "failed to allocate ctrl reply buff\n");
3968 ret = -ENOMEM;
3969 goto err_supplies;
3970 }
3971
3972 ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
3973 dev_name(hsotg->dev), hsotg);
3974 if (ret < 0) {
3975 s3c_hsotg_phy_disable(hsotg);
3976 clk_disable_unprepare(hsotg->clk);
3977 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3978 hsotg->supplies);
3979 dev_err(dev, "cannot claim IRQ for gadget\n");
3980 goto err_supplies;
3981 }
3982
3983 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3984
3985 if (hsotg->num_of_eps == 0) {
3986 dev_err(dev, "wrong number of EPs (zero)\n");
3987 ret = -EINVAL;
3988 goto err_supplies;
3989 }
3990
3991 /* setup endpoint information */
3992
3993 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3994 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3995
3996 /* allocate EP0 request */
3997
3998 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3999 GFP_KERNEL);
4000 if (!hsotg->ctrl_req) {
4001 dev_err(dev, "failed to allocate ctrl req\n");
4002 ret = -ENOMEM;
4003 goto err_supplies;
4004 }
4005
4006 /* initialise the endpoints now the core has been initialised */
4007 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4008 if (hsotg->eps_in[epnum])
4009 s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4010 epnum, 1);
4011 if (hsotg->eps_out[epnum])
4012 s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4013 epnum, 0);
4014 }
4015
4016 /* disable power and clock */
4017 s3c_hsotg_phy_disable(hsotg);
4018
4019 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
4020 hsotg->supplies);
4021 if (ret) {
4022 dev_err(dev, "failed to disable supplies: %d\n", ret);
4023 goto err_supplies;
4024 }
4025
4026 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4027 if (ret)
4028 goto err_supplies;
4029
4030 s3c_hsotg_create_debug(hsotg);
4031
4032 s3c_hsotg_dump(hsotg);
4033
4034 return 0;
4035
4036 err_supplies:
4037 s3c_hsotg_phy_disable(hsotg);
4038 err_clk:
4039 clk_disable_unprepare(hsotg->clk);
4040
4041 return ret;
4042 }
4043 EXPORT_SYMBOL_GPL(dwc2_gadget_init);
4044
4045 /**
4046 * s3c_hsotg_remove - remove function for hsotg driver
4047 * @pdev: The platform information for the driver
4048 */
4049 int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
4050 {
4051 usb_del_gadget_udc(&hsotg->gadget);
4052 s3c_hsotg_delete_debug(hsotg);
4053 clk_disable_unprepare(hsotg->clk);
4054
4055 return 0;
4056 }
4057 EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
4058
4059 int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
4060 {
4061 unsigned long flags;
4062 int ret = 0;
4063
4064 mutex_lock(&hsotg->init_mutex);
4065
4066 if (hsotg->driver) {
4067 int ep;
4068
4069 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4070 hsotg->driver->driver.name);
4071
4072 spin_lock_irqsave(&hsotg->lock, flags);
4073 if (hsotg->enabled)
4074 s3c_hsotg_core_disconnect(hsotg);
4075 s3c_hsotg_disconnect(hsotg);
4076 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4077 spin_unlock_irqrestore(&hsotg->lock, flags);
4078
4079 s3c_hsotg_phy_disable(hsotg);
4080
4081 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4082 if (hsotg->eps_in[ep])
4083 s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4084 if (hsotg->eps_out[ep])
4085 s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4086 }
4087
4088 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
4089 hsotg->supplies);
4090 clk_disable(hsotg->clk);
4091 }
4092
4093 mutex_unlock(&hsotg->init_mutex);
4094
4095 return ret;
4096 }
4097 EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
4098
4099 int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
4100 {
4101 unsigned long flags;
4102 int ret = 0;
4103
4104 mutex_lock(&hsotg->init_mutex);
4105
4106 if (hsotg->driver) {
4107 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4108 hsotg->driver->driver.name);
4109
4110 clk_enable(hsotg->clk);
4111 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
4112 hsotg->supplies);
4113
4114 s3c_hsotg_phy_enable(hsotg);
4115
4116 spin_lock_irqsave(&hsotg->lock, flags);
4117 s3c_hsotg_core_init_disconnected(hsotg, false);
4118 if (hsotg->enabled)
4119 s3c_hsotg_core_connect(hsotg);
4120 spin_unlock_irqrestore(&hsotg->lock, flags);
4121 }
4122 mutex_unlock(&hsotg->init_mutex);
4123
4124 return ret;
4125 }
4126 EXPORT_SYMBOL_GPL(s3c_hsotg_resume);
This page took 0.123539 seconds and 5 git commands to generate.