Merge remote-tracking branch 'asoc/fix/rt5645' into asoc-linus
[deliverable/linux.git] / drivers / usb / dwc2 / hcd.h
1 /*
2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
38
39 /*
40 * This file contains the structures, constants, and interfaces for the
41 * Host Contoller Driver (HCD)
42 *
43 * The Host Controller Driver (HCD) is responsible for translating requests
44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
45 * It isolates the USBD from the specifics of the controller by providing an
46 * API to the USBD.
47 */
48
49 struct dwc2_qh;
50
51 /**
52 * struct dwc2_host_chan - Software host channel descriptor
53 *
54 * @hc_num: Host channel number, used for register address lookup
55 * @dev_addr: Address of the device
56 * @ep_num: Endpoint of the device
57 * @ep_is_in: Endpoint direction
58 * @speed: Device speed. One of the following values:
59 * - USB_SPEED_LOW
60 * - USB_SPEED_FULL
61 * - USB_SPEED_HIGH
62 * @ep_type: Endpoint type. One of the following values:
63 * - USB_ENDPOINT_XFER_CONTROL: 0
64 * - USB_ENDPOINT_XFER_ISOC: 1
65 * - USB_ENDPOINT_XFER_BULK: 2
66 * - USB_ENDPOINT_XFER_INTR: 3
67 * @max_packet: Max packet size in bytes
68 * @data_pid_start: PID for initial transaction.
69 * 0: DATA0
70 * 1: DATA2
71 * 2: DATA1
72 * 3: MDATA (non-Control EP),
73 * SETUP (Control EP)
74 * @multi_count: Number of additional periodic transactions per
75 * (micro)frame
76 * @xfer_buf: Pointer to current transfer buffer position
77 * @xfer_dma: DMA address of xfer_buf
78 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
79 * DWORD aligned
80 * @xfer_len: Total number of bytes to transfer
81 * @xfer_count: Number of bytes transferred so far
82 * @start_pkt_count: Packet count at start of transfer
83 * @xfer_started: True if the transfer has been started
84 * @ping: True if a PING request should be issued on this channel
85 * @error_state: True if the error count for this transaction is non-zero
86 * @halt_on_queue: True if this channel should be halted the next time a
87 * request is queued for the channel. This is necessary in
88 * slave mode if no request queue space is available when
89 * an attempt is made to halt the channel.
90 * @halt_pending: True if the host channel has been halted, but the core
91 * is not finished flushing queued requests
92 * @do_split: Enable split for the channel
93 * @complete_split: Enable complete split
94 * @hub_addr: Address of high speed hub for the split
95 * @hub_port: Port of the low/full speed device for the split
96 * @xact_pos: Split transaction position. One of the following values:
97 * - DWC2_HCSPLT_XACTPOS_MID
98 * - DWC2_HCSPLT_XACTPOS_BEGIN
99 * - DWC2_HCSPLT_XACTPOS_END
100 * - DWC2_HCSPLT_XACTPOS_ALL
101 * @requests: Number of requests issued for this channel since it was
102 * assigned to the current transfer (not counting PINGs)
103 * @schinfo: Scheduling micro-frame bitmap
104 * @ntd: Number of transfer descriptors for the transfer
105 * @halt_status: Reason for halting the host channel
106 * @hcint Contents of the HCINT register when the interrupt came
107 * @qh: QH for the transfer being processed by this channel
108 * @hc_list_entry: For linking to list of host channels
109 * @desc_list_addr: Current QH's descriptor list DMA address
110 * @desc_list_sz: Current QH's descriptor list size
111 *
112 * This structure represents the state of a single host channel when acting in
113 * host mode. It contains the data items needed to transfer packets to an
114 * endpoint via a host channel.
115 */
116 struct dwc2_host_chan {
117 u8 hc_num;
118
119 unsigned dev_addr:7;
120 unsigned ep_num:4;
121 unsigned ep_is_in:1;
122 unsigned speed:4;
123 unsigned ep_type:2;
124 unsigned max_packet:11;
125 unsigned data_pid_start:2;
126 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
127 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
128 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
129 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
130 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
131
132 unsigned multi_count:2;
133
134 u8 *xfer_buf;
135 dma_addr_t xfer_dma;
136 dma_addr_t align_buf;
137 u32 xfer_len;
138 u32 xfer_count;
139 u16 start_pkt_count;
140 u8 xfer_started;
141 u8 do_ping;
142 u8 error_state;
143 u8 halt_on_queue;
144 u8 halt_pending;
145 u8 do_split;
146 u8 complete_split;
147 u8 hub_addr;
148 u8 hub_port;
149 u8 xact_pos;
150 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
151 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
152 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
153 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
154
155 u8 requests;
156 u8 schinfo;
157 u16 ntd;
158 enum dwc2_halt_status halt_status;
159 u32 hcint;
160 struct dwc2_qh *qh;
161 struct list_head hc_list_entry;
162 dma_addr_t desc_list_addr;
163 u32 desc_list_sz;
164 };
165
166 struct dwc2_hcd_pipe_info {
167 u8 dev_addr;
168 u8 ep_num;
169 u8 pipe_type;
170 u8 pipe_dir;
171 u16 mps;
172 };
173
174 struct dwc2_hcd_iso_packet_desc {
175 u32 offset;
176 u32 length;
177 u32 actual_length;
178 u32 status;
179 };
180
181 struct dwc2_qtd;
182
183 struct dwc2_hcd_urb {
184 void *priv;
185 struct dwc2_qtd *qtd;
186 void *buf;
187 dma_addr_t dma;
188 void *setup_packet;
189 dma_addr_t setup_dma;
190 u32 length;
191 u32 actual_length;
192 u32 status;
193 u32 error_count;
194 u32 packet_count;
195 u32 flags;
196 u16 interval;
197 struct dwc2_hcd_pipe_info pipe_info;
198 struct dwc2_hcd_iso_packet_desc iso_descs[0];
199 };
200
201 /* Phases for control transfers */
202 enum dwc2_control_phase {
203 DWC2_CONTROL_SETUP,
204 DWC2_CONTROL_DATA,
205 DWC2_CONTROL_STATUS,
206 };
207
208 /* Transaction types */
209 enum dwc2_transaction_type {
210 DWC2_TRANSACTION_NONE,
211 DWC2_TRANSACTION_PERIODIC,
212 DWC2_TRANSACTION_NON_PERIODIC,
213 DWC2_TRANSACTION_ALL,
214 };
215
216 /**
217 * struct dwc2_qh - Software queue head structure
218 *
219 * @ep_type: Endpoint type. One of the following values:
220 * - USB_ENDPOINT_XFER_CONTROL
221 * - USB_ENDPOINT_XFER_BULK
222 * - USB_ENDPOINT_XFER_INT
223 * - USB_ENDPOINT_XFER_ISOC
224 * @ep_is_in: Endpoint direction
225 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
226 * @dev_speed: Device speed. One of the following values:
227 * - USB_SPEED_LOW
228 * - USB_SPEED_FULL
229 * - USB_SPEED_HIGH
230 * @data_toggle: Determines the PID of the next data packet for
231 * non-controltransfers. Ignored for control transfers.
232 * One of the following values:
233 * - DWC2_HC_PID_DATA0
234 * - DWC2_HC_PID_DATA1
235 * @ping_state: Ping state
236 * @do_split: Full/low speed endpoint on high-speed hub requires split
237 * @td_first: Index of first activated isochronous transfer descriptor
238 * @td_last: Index of last activated isochronous transfer descriptor
239 * @usecs: Bandwidth in microseconds per (micro)frame
240 * @interval: Interval between transfers in (micro)frames
241 * @sched_frame: (Micro)frame to initialize a periodic transfer.
242 * The transfer executes in the following (micro)frame.
243 * @frame_usecs: Internal variable used by the microframe scheduler
244 * @start_split_frame: (Micro)frame at which last start split was initialized
245 * @ntd: Actual number of transfer descriptors in a list
246 * @dw_align_buf: Used instead of original buffer if its physical address
247 * is not dword-aligned
248 * @dw_align_buf_size: Size of dw_align_buf
249 * @dw_align_buf_dma: DMA address for dw_align_buf
250 * @qtd_list: List of QTDs for this QH
251 * @channel: Host channel currently processing transfers for this QH
252 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
253 * schedule
254 * @desc_list: List of transfer descriptors
255 * @desc_list_dma: Physical address of desc_list
256 * @desc_list_sz: Size of descriptors list
257 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
258 * descriptor and indicates original XferSize value for the
259 * descriptor
260 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
261 *
262 * A Queue Head (QH) holds the static characteristics of an endpoint and
263 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
264 * be entered in either the non-periodic or periodic schedule.
265 */
266 struct dwc2_qh {
267 u8 ep_type;
268 u8 ep_is_in;
269 u16 maxp;
270 u8 dev_speed;
271 u8 data_toggle;
272 u8 ping_state;
273 u8 do_split;
274 u8 td_first;
275 u8 td_last;
276 u16 usecs;
277 u16 interval;
278 u16 sched_frame;
279 u16 frame_usecs[8];
280 u16 start_split_frame;
281 u16 ntd;
282 u8 *dw_align_buf;
283 int dw_align_buf_size;
284 dma_addr_t dw_align_buf_dma;
285 struct list_head qtd_list;
286 struct dwc2_host_chan *channel;
287 struct list_head qh_list_entry;
288 struct dwc2_hcd_dma_desc *desc_list;
289 dma_addr_t desc_list_dma;
290 u32 desc_list_sz;
291 u32 *n_bytes;
292 unsigned tt_buffer_dirty:1;
293 };
294
295 /**
296 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
297 *
298 * @control_phase: Current phase for control transfers (Setup, Data, or
299 * Status)
300 * @in_process: Indicates if this QTD is currently processed by HW
301 * @data_toggle: Determines the PID of the next data packet for the
302 * data phase of control transfers. Ignored for other
303 * transfer types. One of the following values:
304 * - DWC2_HC_PID_DATA0
305 * - DWC2_HC_PID_DATA1
306 * @complete_split: Keeps track of the current split type for FS/LS
307 * endpoints on a HS Hub
308 * @isoc_split_pos: Position of the ISOC split in full/low speed
309 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
310 * transfer. A frame descriptor describes the buffer
311 * position and length of the data to be transferred in the
312 * next scheduled (micro)frame of an isochronous transfer.
313 * It also holds status for that transaction. The frame
314 * index starts at 0.
315 * @isoc_split_offset: Position of the ISOC split in the buffer for the
316 * current frame
317 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
318 * @error_count: Holds the number of bus errors that have occurred for
319 * a transaction within this transfer
320 * @n_desc: Number of DMA descriptors for this QTD
321 * @isoc_frame_index_last: Last activated frame (packet) index, used in
322 * descriptor DMA mode only
323 * @urb: URB for this transfer
324 * @qh: Queue head for this QTD
325 * @qtd_list_entry: For linking to the QH's list of QTDs
326 *
327 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
328 * interrupt, or isochronous transfer. A single QTD is created for each URB
329 * (of one of these types) submitted to the HCD. The transfer associated with
330 * a QTD may require one or multiple transactions.
331 *
332 * A QTD is linked to a Queue Head, which is entered in either the
333 * non-periodic or periodic schedule for execution. When a QTD is chosen for
334 * execution, some or all of its transactions may be executed. After
335 * execution, the state of the QTD is updated. The QTD may be retired if all
336 * its transactions are complete or if an error occurred. Otherwise, it
337 * remains in the schedule so more transactions can be executed later.
338 */
339 struct dwc2_qtd {
340 enum dwc2_control_phase control_phase;
341 u8 in_process;
342 u8 data_toggle;
343 u8 complete_split;
344 u8 isoc_split_pos;
345 u16 isoc_frame_index;
346 u16 isoc_split_offset;
347 u16 isoc_td_last;
348 u16 isoc_td_first;
349 u32 ssplit_out_xfer_count;
350 u8 error_count;
351 u8 n_desc;
352 u16 isoc_frame_index_last;
353 struct dwc2_hcd_urb *urb;
354 struct dwc2_qh *qh;
355 struct list_head qtd_list_entry;
356 };
357
358 #ifdef DEBUG
359 struct hc_xfer_info {
360 struct dwc2_hsotg *hsotg;
361 struct dwc2_host_chan *chan;
362 };
363 #endif
364
365 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
366 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
367 {
368 return (struct usb_hcd *)hsotg->priv;
369 }
370
371 /*
372 * Inline used to disable one channel interrupt. Channel interrupts are
373 * disabled when the channel is halted or released by the interrupt handler.
374 * There is no need to handle further interrupts of that type until the
375 * channel is re-assigned. In fact, subsequent handling may cause crashes
376 * because the channel structures are cleaned up when the channel is released.
377 */
378 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
379 {
380 u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
381
382 mask &= ~intr;
383 dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
384 }
385
386 /*
387 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
388 * are read as 1, they won't clear when written back.
389 */
390 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
391 {
392 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
393
394 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
395 return hprt0;
396 }
397
398 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
399 {
400 return pipe->ep_num;
401 }
402
403 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
404 {
405 return pipe->pipe_type;
406 }
407
408 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
409 {
410 return pipe->mps;
411 }
412
413 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
414 {
415 return pipe->dev_addr;
416 }
417
418 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
419 {
420 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
421 }
422
423 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
424 {
425 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
426 }
427
428 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
429 {
430 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
431 }
432
433 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
434 {
435 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
436 }
437
438 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
439 {
440 return pipe->pipe_dir == USB_DIR_IN;
441 }
442
443 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
444 {
445 return !dwc2_hcd_is_pipe_in(pipe);
446 }
447
448 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
449 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
450
451 /* Transaction Execution Functions */
452 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
453 struct dwc2_hsotg *hsotg);
454 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
455 enum dwc2_transaction_type tr_type);
456
457 /* Schedule Queue Functions */
458 /* Implemented in hcd_queue.c */
459 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
460 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
461 struct dwc2_hcd_urb *urb,
462 gfp_t mem_flags);
463 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
464 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
465 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
466 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
467 int sched_csplit);
468
469 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
470 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
471 struct dwc2_qh *qh);
472
473 /* Unlinks and frees a QTD */
474 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
475 struct dwc2_qtd *qtd,
476 struct dwc2_qh *qh)
477 {
478 list_del(&qtd->qtd_list_entry);
479 kfree(qtd);
480 }
481
482 /* Descriptor DMA support functions */
483 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
484 struct dwc2_qh *qh);
485 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
486 struct dwc2_host_chan *chan, int chnum,
487 enum dwc2_halt_status halt_status);
488
489 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
490 gfp_t mem_flags);
491 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
492
493 /* Check if QH is non-periodic */
494 #define dwc2_qh_is_non_per(_qh_ptr_) \
495 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
496 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
497
498 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
499 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
500 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
501 static inline bool dbg_urb(struct urb *urb) { return true; }
502 static inline bool dbg_perio(void) { return true; }
503 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
504 static inline bool dbg_hc(struct dwc2_host_chan *hc)
505 {
506 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
507 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
508 }
509
510 static inline bool dbg_qh(struct dwc2_qh *qh)
511 {
512 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
513 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
514 }
515
516 static inline bool dbg_urb(struct urb *urb)
517 {
518 return usb_pipetype(urb->pipe) == PIPE_BULK ||
519 usb_pipetype(urb->pipe) == PIPE_CONTROL;
520 }
521
522 static inline bool dbg_perio(void) { return false; }
523 #endif
524
525 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
526 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
527
528 /* Packet size for any kind of endpoint descriptor */
529 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
530
531 /*
532 * Returns true if frame1 index is greater than frame2 index. The comparison
533 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
534 * frame number when the max index frame number is reached.
535 */
536 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
537 {
538 u16 diff = fr_idx1 - fr_idx2;
539 u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
540
541 return diff && !sign;
542 }
543
544 /*
545 * Returns true if frame1 is less than or equal to frame2. The comparison is
546 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
547 * frame number when the max frame number is reached.
548 */
549 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
550 {
551 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
552 }
553
554 /*
555 * Returns true if frame1 is greater than frame2. The comparison is done
556 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
557 * number when the max frame number is reached.
558 */
559 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
560 {
561 return (frame1 != frame2) &&
562 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
563 }
564
565 /*
566 * Increments frame by the amount specified by inc. The addition is done
567 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
568 */
569 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
570 {
571 return (frame + inc) & HFNUM_MAX_FRNUM;
572 }
573
574 static inline u16 dwc2_full_frame_num(u16 frame)
575 {
576 return (frame & HFNUM_MAX_FRNUM) >> 3;
577 }
578
579 static inline u16 dwc2_micro_frame_num(u16 frame)
580 {
581 return frame & 0x7;
582 }
583
584 /*
585 * Returns the Core Interrupt Status register contents, ANDed with the Core
586 * Interrupt Mask register contents
587 */
588 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
589 {
590 return dwc2_readl(hsotg->regs + GINTSTS) &
591 dwc2_readl(hsotg->regs + GINTMSK);
592 }
593
594 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
595 {
596 return dwc2_urb->status;
597 }
598
599 static inline u32 dwc2_hcd_urb_get_actual_length(
600 struct dwc2_hcd_urb *dwc2_urb)
601 {
602 return dwc2_urb->actual_length;
603 }
604
605 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
606 {
607 return dwc2_urb->error_count;
608 }
609
610 static inline void dwc2_hcd_urb_set_iso_desc_params(
611 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
612 u32 length)
613 {
614 dwc2_urb->iso_descs[desc_num].offset = offset;
615 dwc2_urb->iso_descs[desc_num].length = length;
616 }
617
618 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
619 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
620 {
621 return dwc2_urb->iso_descs[desc_num].status;
622 }
623
624 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
625 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
626 {
627 return dwc2_urb->iso_descs[desc_num].actual_length;
628 }
629
630 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
631 struct usb_host_endpoint *ep)
632 {
633 struct dwc2_qh *qh = ep->hcpriv;
634
635 if (qh && !list_empty(&qh->qh_list_entry))
636 return 1;
637
638 return 0;
639 }
640
641 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
642 struct usb_host_endpoint *ep)
643 {
644 struct dwc2_qh *qh = ep->hcpriv;
645
646 if (!qh) {
647 WARN_ON(1);
648 return 0;
649 }
650
651 return qh->usecs;
652 }
653
654 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
655 struct dwc2_host_chan *chan, int chnum,
656 struct dwc2_qtd *qtd);
657
658 /* HCD Core API */
659
660 /**
661 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
662 *
663 * @hsotg: The DWC2 HCD
664 *
665 * Returns IRQ_HANDLED if interrupt is handled
666 * Return IRQ_NONE if interrupt is not handled
667 */
668 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
669
670 /**
671 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
672 *
673 * @hsotg: The DWC2 HCD
674 */
675 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
676
677 /**
678 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
679 * and 0 otherwise
680 *
681 * @hsotg: The DWC2 HCD
682 */
683 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
684
685 /**
686 * dwc2_hcd_dump_state() - Dumps hsotg state
687 *
688 * @hsotg: The DWC2 HCD
689 *
690 * NOTE: This function will be removed once the peripheral controller code
691 * is integrated and the driver is stable
692 */
693 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
694
695 /**
696 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
697 *
698 * @hsotg: The DWC2 HCD
699 *
700 * This can be used to determine average interrupt latency. Frame remaining is
701 * also shown for start transfer and two additional sample points.
702 *
703 * NOTE: This function will be removed once the peripheral controller code
704 * is integrated and the driver is stable
705 */
706 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
707
708 /* URB interface */
709
710 /* Transfer flags */
711 #define URB_GIVEBACK_ASAP 0x1
712 #define URB_SEND_ZERO_PACKET 0x2
713
714 /* Host driver callbacks */
715
716 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
717 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
718 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
719 int *hub_addr, int *hub_port);
720 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
721 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
722 int status);
723
724 #ifdef DEBUG
725 /*
726 * Macro to sample the remaining PHY clocks left in the current frame. This
727 * may be used during debugging to determine the average time it takes to
728 * execute sections of code. There are two possible sample points, "a" and
729 * "b", so the _letter_ argument must be one of these values.
730 *
731 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
732 * example, "cat /sys/devices/lm0/hcd_frrem".
733 */
734 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
735 do { \
736 struct hfnum_data _hfnum_; \
737 struct dwc2_qtd *_qtd_; \
738 \
739 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
740 qtd_list_entry); \
741 if (usb_pipeint(_qtd_->urb->pipe) && \
742 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
743 _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
744 switch (_hfnum_.b.frnum & 0x7) { \
745 case 7: \
746 (_hcd_)->hfnum_7_samples_##_letter_++; \
747 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
748 _hfnum_.b.frrem; \
749 break; \
750 case 0: \
751 (_hcd_)->hfnum_0_samples_##_letter_++; \
752 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
753 _hfnum_.b.frrem; \
754 break; \
755 default: \
756 (_hcd_)->hfnum_other_samples_##_letter_++; \
757 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
758 _hfnum_.b.frrem; \
759 break; \
760 } \
761 } \
762 } while (0)
763 #else
764 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
765 #endif
766
767 #endif /* __DWC2_HCD_H__ */
This page took 0.046082 seconds and 6 git commands to generate.