Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[deliverable/linux.git] / drivers / usb / gadget / Kconfig
1 #
2 # USB Gadget support on a system involves
3 # (a) a peripheral controller, and
4 # (b) the gadget driver using it.
5 #
6 # NOTE: Gadget support ** DOES NOT ** depend on host-side CONFIG_USB !!
7 #
8 # - Host systems (like PCs) need CONFIG_USB (with "A" jacks).
9 # - Peripherals (like PDAs) need CONFIG_USB_GADGET (with "B" jacks).
10 # - Some systems have both kinds of controllers.
11 #
12 # With help from a special transceiver and a "Mini-AB" jack, systems with
13 # both kinds of controller can also support "USB On-the-Go" (CONFIG_USB_OTG).
14 #
15
16 menuconfig USB_GADGET
17 tristate "USB Gadget Support"
18 select NLS
19 help
20 USB is a master/slave protocol, organized with one master
21 host (such as a PC) controlling up to 127 peripheral devices.
22 The USB hardware is asymmetric, which makes it easier to set up:
23 you can't connect a "to-the-host" connector to a peripheral.
24
25 Linux can run in the host, or in the peripheral. In both cases
26 you need a low level bus controller driver, and some software
27 talking to it. Peripheral controllers are often discrete silicon,
28 or are integrated with the CPU in a microcontroller. The more
29 familiar host side controllers have names like "EHCI", "OHCI",
30 or "UHCI", and are usually integrated into southbridges on PC
31 motherboards.
32
33 Enable this configuration option if you want to run Linux inside
34 a USB peripheral device. Configure one hardware driver for your
35 peripheral/device side bus controller, and a "gadget driver" for
36 your peripheral protocol. (If you use modular gadget drivers,
37 you may configure more than one.)
38
39 If in doubt, say "N" and don't enable these drivers; most people
40 don't have this kind of hardware (except maybe inside Linux PDAs).
41
42 For more information, see <http://www.linux-usb.org/gadget> and
43 the kernel DocBook documentation for this API.
44
45 if USB_GADGET
46
47 config USB_GADGET_DEBUG
48 boolean "Debugging messages (DEVELOPMENT)"
49 depends on DEBUG_KERNEL
50 help
51 Many controller and gadget drivers will print some debugging
52 messages if you use this option to ask for those messages.
53
54 Avoid enabling these messages, even if you're actively
55 debugging such a driver. Many drivers will emit so many
56 messages that the driver timings are affected, which will
57 either create new failure modes or remove the one you're
58 trying to track down. Never enable these messages for a
59 production build.
60
61 config USB_GADGET_VERBOSE
62 bool "Verbose debugging Messages (DEVELOPMENT)"
63 depends on USB_GADGET_DEBUG
64 help
65 Many controller and gadget drivers will print verbose debugging
66 messages if you use this option to ask for those messages.
67
68 Avoid enabling these messages, even if you're actively
69 debugging such a driver. Many drivers will emit so many
70 messages that the driver timings are affected, which will
71 either create new failure modes or remove the one you're
72 trying to track down. Never enable these messages for a
73 production build.
74
75 config USB_GADGET_DEBUG_FILES
76 boolean "Debugging information files (DEVELOPMENT)"
77 depends on PROC_FS
78 help
79 Some of the drivers in the "gadget" framework can expose
80 debugging information in files such as /proc/driver/udc
81 (for a peripheral controller). The information in these
82 files may help when you're troubleshooting or bringing up a
83 driver on a new board. Enable these files by choosing "Y"
84 here. If in doubt, or to conserve kernel memory, say "N".
85
86 config USB_GADGET_DEBUG_FS
87 boolean "Debugging information files in debugfs (DEVELOPMENT)"
88 depends on DEBUG_FS
89 help
90 Some of the drivers in the "gadget" framework can expose
91 debugging information in files under /sys/kernel/debug/.
92 The information in these files may help when you're
93 troubleshooting or bringing up a driver on a new board.
94 Enable these files by choosing "Y" here. If in doubt, or
95 to conserve kernel memory, say "N".
96
97 config USB_GADGET_VBUS_DRAW
98 int "Maximum VBUS Power usage (2-500 mA)"
99 range 2 500
100 default 2
101 help
102 Some devices need to draw power from USB when they are
103 configured, perhaps to operate circuitry or to recharge
104 batteries. This is in addition to any local power supply,
105 such as an AC adapter or batteries.
106
107 Enter the maximum power your device draws through USB, in
108 milliAmperes. The permitted range of values is 2 - 500 mA;
109 0 mA would be legal, but can make some hosts misbehave.
110
111 This value will be used except for system-specific gadget
112 drivers that have more specific information.
113
114 config USB_GADGET_STORAGE_NUM_BUFFERS
115 int "Number of storage pipeline buffers"
116 range 2 4
117 default 2
118 help
119 Usually 2 buffers are enough to establish a good buffering
120 pipeline. The number may be increased in order to compensate
121 for a bursty VFS behaviour. For instance there may be CPU wake up
122 latencies that makes the VFS to appear bursty in a system with
123 an CPU on-demand governor. Especially if DMA is doing IO to
124 offload the CPU. In this case the CPU will go into power
125 save often and spin up occasionally to move data within VFS.
126 If selecting USB_GADGET_DEBUG_FILES this value may be set by
127 a module parameter as well.
128 If unsure, say 2.
129
130 #
131 # USB Peripheral Controller Support
132 #
133 # The order here is alphabetical, except that integrated controllers go
134 # before discrete ones so they will be the initial/default value:
135 # - integrated/SOC controllers first
136 # - licensed IP used in both SOC and discrete versions
137 # - discrete ones (including all PCI-only controllers)
138 # - debug/dummy gadget+hcd is last.
139 #
140 menu "USB Peripheral Controller"
141
142 #
143 # Integrated controllers
144 #
145
146 config USB_AT91
147 tristate "Atmel AT91 USB Device Port"
148 depends on ARCH_AT91
149 help
150 Many Atmel AT91 processors (such as the AT91RM2000) have a
151 full speed USB Device Port with support for five configurable
152 endpoints (plus endpoint zero).
153
154 Say "y" to link the driver statically, or "m" to build a
155 dynamically linked module called "at91_udc" and force all
156 gadget drivers to also be dynamically linked.
157
158 config USB_LPC32XX
159 tristate "LPC32XX USB Peripheral Controller"
160 depends on ARCH_LPC32XX
161 select USB_ISP1301
162 help
163 This option selects the USB device controller in the LPC32xx SoC.
164
165 Say "y" to link the driver statically, or "m" to build a
166 dynamically linked module called "lpc32xx_udc" and force all
167 gadget drivers to also be dynamically linked.
168
169 config USB_ATMEL_USBA
170 tristate "Atmel USBA"
171 depends on AVR32 || ARCH_AT91
172 help
173 USBA is the integrated high-speed USB Device controller on
174 the AT32AP700x, some AT91SAM9 and AT91CAP9 processors from Atmel.
175
176 config USB_BCM63XX_UDC
177 tristate "Broadcom BCM63xx Peripheral Controller"
178 depends on BCM63XX
179 help
180 Many Broadcom BCM63xx chipsets (such as the BCM6328) have a
181 high speed USB Device Port with support for four fixed endpoints
182 (plus endpoint zero).
183
184 Say "y" to link the driver statically, or "m" to build a
185 dynamically linked module called "bcm63xx_udc".
186
187 config USB_FSL_USB2
188 tristate "Freescale Highspeed USB DR Peripheral Controller"
189 depends on FSL_SOC || ARCH_MXC
190 select USB_FSL_MPH_DR_OF if OF
191 help
192 Some of Freescale PowerPC and i.MX processors have a High Speed
193 Dual-Role(DR) USB controller, which supports device mode.
194
195 The number of programmable endpoints is different through
196 SOC revisions.
197
198 Say "y" to link the driver statically, or "m" to build a
199 dynamically linked module called "fsl_usb2_udc" and force
200 all gadget drivers to also be dynamically linked.
201
202 config USB_FUSB300
203 tristate "Faraday FUSB300 USB Peripheral Controller"
204 depends on !PHYS_ADDR_T_64BIT && HAS_DMA
205 help
206 Faraday usb device controller FUSB300 driver
207
208 config USB_FOTG210_UDC
209 depends on HAS_DMA
210 tristate "Faraday FOTG210 USB Peripheral Controller"
211 help
212 Faraday USB2.0 OTG controller which can be configured as
213 high speed or full speed USB device. This driver supppors
214 Bulk Transfer so far.
215
216 Say "y" to link the driver statically, or "m" to build a
217 dynamically linked module called "fotg210_udc".
218
219 config USB_OMAP
220 tristate "OMAP USB Device Controller"
221 depends on ARCH_OMAP1
222 select ISP1301_OMAP if MACH_OMAP_H2 || MACH_OMAP_H3 || MACH_OMAP_H4_OTG
223 help
224 Many Texas Instruments OMAP processors have flexible full
225 speed USB device controllers, with support for up to 30
226 endpoints (plus endpoint zero). This driver supports the
227 controller in the OMAP 1611, and should work with controllers
228 in other OMAP processors too, given minor tweaks.
229
230 Say "y" to link the driver statically, or "m" to build a
231 dynamically linked module called "omap_udc" and force all
232 gadget drivers to also be dynamically linked.
233
234 config USB_PXA25X
235 tristate "PXA 25x or IXP 4xx"
236 depends on (ARCH_PXA && PXA25x) || ARCH_IXP4XX
237 help
238 Intel's PXA 25x series XScale ARM-5TE processors include
239 an integrated full speed USB 1.1 device controller. The
240 controller in the IXP 4xx series is register-compatible.
241
242 It has fifteen fixed-function endpoints, as well as endpoint
243 zero (for control transfers).
244
245 Say "y" to link the driver statically, or "m" to build a
246 dynamically linked module called "pxa25x_udc" and force all
247 gadget drivers to also be dynamically linked.
248
249 # if there's only one gadget driver, using only two bulk endpoints,
250 # don't waste memory for the other endpoints
251 config USB_PXA25X_SMALL
252 depends on USB_PXA25X
253 bool
254 default n if USB_ETH_RNDIS
255 default y if USB_ZERO
256 default y if USB_ETH
257 default y if USB_G_SERIAL
258
259 config USB_R8A66597
260 tristate "Renesas R8A66597 USB Peripheral Controller"
261 depends on HAS_DMA
262 help
263 R8A66597 is a discrete USB host and peripheral controller chip that
264 supports both full and high speed USB 2.0 data transfers.
265 It has nine configurable endpoints, and endpoint zero.
266
267 Say "y" to link the driver statically, or "m" to build a
268 dynamically linked module called "r8a66597_udc" and force all
269 gadget drivers to also be dynamically linked.
270
271 config USB_RENESAS_USBHS_UDC
272 tristate 'Renesas USBHS controller'
273 depends on USB_RENESAS_USBHS
274 help
275 Renesas USBHS is a discrete USB host and peripheral controller chip
276 that supports both full and high speed USB 2.0 data transfers.
277 It has nine or more configurable endpoints, and endpoint zero.
278
279 Say "y" to link the driver statically, or "m" to build a
280 dynamically linked module called "renesas_usbhs" and force all
281 gadget drivers to also be dynamically linked.
282
283 config USB_PXA27X
284 tristate "PXA 27x"
285 help
286 Intel's PXA 27x series XScale ARM v5TE processors include
287 an integrated full speed USB 1.1 device controller.
288
289 It has up to 23 endpoints, as well as endpoint zero (for
290 control transfers).
291
292 Say "y" to link the driver statically, or "m" to build a
293 dynamically linked module called "pxa27x_udc" and force all
294 gadget drivers to also be dynamically linked.
295
296 config USB_S3C_HSOTG
297 tristate "S3C HS/OtG USB Device controller"
298 depends on S3C_DEV_USB_HSOTG
299 help
300 The Samsung S3C64XX USB2.0 high-speed gadget controller
301 integrated into the S3C64XX series SoC.
302
303 config USB_S3C2410
304 tristate "S3C2410 USB Device Controller"
305 depends on ARCH_S3C24XX
306 help
307 Samsung's S3C2410 is an ARM-4 processor with an integrated
308 full speed USB 1.1 device controller. It has 4 configurable
309 endpoints, as well as endpoint zero (for control transfers).
310
311 This driver has been tested on the S3C2410, S3C2412, and
312 S3C2440 processors.
313
314 config USB_S3C2410_DEBUG
315 boolean "S3C2410 udc debug messages"
316 depends on USB_S3C2410
317
318 config USB_S3C_HSUDC
319 tristate "S3C2416, S3C2443 and S3C2450 USB Device Controller"
320 depends on ARCH_S3C24XX
321 help
322 Samsung's S3C2416, S3C2443 and S3C2450 is an ARM9 based SoC
323 integrated with dual speed USB 2.0 device controller. It has
324 8 endpoints, as well as endpoint zero.
325
326 This driver has been tested on S3C2416 and S3C2450 processors.
327
328 config USB_MV_UDC
329 tristate "Marvell USB2.0 Device Controller"
330 depends on HAS_DMA
331 help
332 Marvell Socs (including PXA and MMP series) include a high speed
333 USB2.0 OTG controller, which can be configured as high speed or
334 full speed USB peripheral.
335
336 config USB_MV_U3D
337 depends on HAS_DMA
338 tristate "MARVELL PXA2128 USB 3.0 controller"
339 help
340 MARVELL PXA2128 Processor series include a super speed USB3.0 device
341 controller, which support super speed USB peripheral.
342
343 #
344 # Controllers available in both integrated and discrete versions
345 #
346
347 config USB_M66592
348 tristate "Renesas M66592 USB Peripheral Controller"
349 help
350 M66592 is a discrete USB peripheral controller chip that
351 supports both full and high speed USB 2.0 data transfers.
352 It has seven configurable endpoints, and endpoint zero.
353
354 Say "y" to link the driver statically, or "m" to build a
355 dynamically linked module called "m66592_udc" and force all
356 gadget drivers to also be dynamically linked.
357
358 #
359 # Controllers available only in discrete form (and all PCI controllers)
360 #
361
362 config USB_AMD5536UDC
363 tristate "AMD5536 UDC"
364 depends on PCI
365 help
366 The AMD5536 UDC is part of the AMD Geode CS5536, an x86 southbridge.
367 It is a USB Highspeed DMA capable USB device controller. Beside ep0
368 it provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
369 The UDC port supports OTG operation, and may be used as a host port
370 if it's not being used to implement peripheral or OTG roles.
371
372 Say "y" to link the driver statically, or "m" to build a
373 dynamically linked module called "amd5536udc" and force all
374 gadget drivers to also be dynamically linked.
375
376 config USB_FSL_QE
377 tristate "Freescale QE/CPM USB Device Controller"
378 depends on FSL_SOC && (QUICC_ENGINE || CPM)
379 help
380 Some of Freescale PowerPC processors have a Full Speed
381 QE/CPM2 USB controller, which support device mode with 4
382 programmable endpoints. This driver supports the
383 controller in the MPC8360 and MPC8272, and should work with
384 controllers having QE or CPM2, given minor tweaks.
385
386 Set CONFIG_USB_GADGET to "m" to build this driver as a
387 dynamically linked module called "fsl_qe_udc".
388
389 config USB_NET2272
390 tristate "PLX NET2272"
391 help
392 PLX NET2272 is a USB peripheral controller which supports
393 both full and high speed USB 2.0 data transfers.
394
395 It has three configurable endpoints, as well as endpoint zero
396 (for control transfer).
397 Say "y" to link the driver statically, or "m" to build a
398 dynamically linked module called "net2272" and force all
399 gadget drivers to also be dynamically linked.
400
401 config USB_NET2272_DMA
402 boolean "Support external DMA controller"
403 depends on USB_NET2272 && HAS_DMA
404 help
405 The NET2272 part can optionally support an external DMA
406 controller, but your board has to have support in the
407 driver itself.
408
409 If unsure, say "N" here. The driver works fine in PIO mode.
410
411 config USB_NET2280
412 tristate "NetChip 228x"
413 depends on PCI
414 help
415 NetChip 2280 / 2282 is a PCI based USB peripheral controller which
416 supports both full and high speed USB 2.0 data transfers.
417
418 It has six configurable endpoints, as well as endpoint zero
419 (for control transfers) and several endpoints with dedicated
420 functions.
421
422 Say "y" to link the driver statically, or "m" to build a
423 dynamically linked module called "net2280" and force all
424 gadget drivers to also be dynamically linked.
425
426 config USB_GOKU
427 tristate "Toshiba TC86C001 'Goku-S'"
428 depends on PCI
429 help
430 The Toshiba TC86C001 is a PCI device which includes controllers
431 for full speed USB devices, IDE, I2C, SIO, plus a USB host (OHCI).
432
433 The device controller has three configurable (bulk or interrupt)
434 endpoints, plus endpoint zero (for control transfers).
435
436 Say "y" to link the driver statically, or "m" to build a
437 dynamically linked module called "goku_udc" and to force all
438 gadget drivers to also be dynamically linked.
439
440 config USB_EG20T
441 tristate "Intel EG20T PCH/LAPIS Semiconductor IOH(ML7213/ML7831) UDC"
442 depends on PCI
443 help
444 This is a USB device driver for EG20T PCH.
445 EG20T PCH is the platform controller hub that is used in Intel's
446 general embedded platform. EG20T PCH has USB device interface.
447 Using this interface, it is able to access system devices connected
448 to USB device.
449 This driver enables USB device function.
450 USB device is a USB peripheral controller which
451 supports both full and high speed USB 2.0 data transfers.
452 This driver supports both control transfer and bulk transfer modes.
453 This driver dose not support interrupt transfer or isochronous
454 transfer modes.
455
456 This driver also can be used for LAPIS Semiconductor's ML7213 which is
457 for IVI(In-Vehicle Infotainment) use.
458 ML7831 is for general purpose use.
459 ML7213/ML7831 is companion chip for Intel Atom E6xx series.
460 ML7213/ML7831 is completely compatible for Intel EG20T PCH.
461
462 #
463 # LAST -- dummy/emulated controller
464 #
465
466 config USB_DUMMY_HCD
467 tristate "Dummy HCD (DEVELOPMENT)"
468 depends on USB=y || (USB=m && USB_GADGET=m)
469 help
470 This host controller driver emulates USB, looping all data transfer
471 requests back to a USB "gadget driver" in the same host. The host
472 side is the master; the gadget side is the slave. Gadget drivers
473 can be high, full, or low speed; and they have access to endpoints
474 like those from NET2280, PXA2xx, or SA1100 hardware.
475
476 This may help in some stages of creating a driver to embed in a
477 Linux device, since it lets you debug several parts of the gadget
478 driver without its hardware or drivers being involved.
479
480 Since such a gadget side driver needs to interoperate with a host
481 side Linux-USB device driver, this may help to debug both sides
482 of a USB protocol stack.
483
484 Say "y" to link the driver statically, or "m" to build a
485 dynamically linked module called "dummy_hcd" and force all
486 gadget drivers to also be dynamically linked.
487
488 # NOTE: Please keep dummy_hcd LAST so that "real hardware" appears
489 # first and will be selected by default.
490
491 endmenu
492
493 #
494 # USB Gadget Drivers
495 #
496
497 # composite based drivers
498 config USB_LIBCOMPOSITE
499 tristate
500 select CONFIGFS_FS
501 depends on USB_GADGET
502
503 config USB_F_ACM
504 tristate
505
506 config USB_F_SS_LB
507 tristate
508
509 config USB_U_SERIAL
510 tristate
511
512 config USB_U_ETHER
513 tristate
514
515 config USB_U_RNDIS
516 tristate
517
518 config USB_F_SERIAL
519 tristate
520
521 config USB_F_OBEX
522 tristate
523
524 config USB_F_NCM
525 tristate
526
527 config USB_F_ECM
528 tristate
529
530 config USB_F_PHONET
531 tristate
532
533 config USB_F_EEM
534 tristate
535
536 config USB_F_SUBSET
537 tristate
538
539 config USB_F_RNDIS
540 tristate
541
542 config USB_F_MASS_STORAGE
543 tristate
544
545 choice
546 tristate "USB Gadget Drivers"
547 default USB_ETH
548 help
549 A Linux "Gadget Driver" talks to the USB Peripheral Controller
550 driver through the abstract "gadget" API. Some other operating
551 systems call these "client" drivers, of which "class drivers"
552 are a subset (implementing a USB device class specification).
553 A gadget driver implements one or more USB functions using
554 the peripheral hardware.
555
556 Gadget drivers are hardware-neutral, or "platform independent",
557 except that they sometimes must understand quirks or limitations
558 of the particular controllers they work with. For example, when
559 a controller doesn't support alternate configurations or provide
560 enough of the right types of endpoints, the gadget driver might
561 not be able work with that controller, or might need to implement
562 a less common variant of a device class protocol.
563
564 # this first set of drivers all depend on bulk-capable hardware.
565
566 config USB_CONFIGFS
567 tristate "USB functions configurable through configfs"
568 select USB_LIBCOMPOSITE
569 help
570 A Linux USB "gadget" can be set up through configfs.
571 If this is the case, the USB functions (which from the host's
572 perspective are seen as interfaces) and configurations are
573 specified simply by creating appropriate directories in configfs.
574 Associating functions with configurations is done by creating
575 appropriate symbolic links.
576 For more information see Documentation/usb/gadget_configfs.txt.
577
578 config USB_CONFIGFS_SERIAL
579 boolean "Generic serial bulk in/out"
580 depends on USB_CONFIGFS
581 depends on TTY
582 select USB_U_SERIAL
583 select USB_F_SERIAL
584 help
585 The function talks to the Linux-USB generic serial driver.
586
587 config USB_CONFIGFS_ACM
588 boolean "Abstract Control Model (CDC ACM)"
589 depends on USB_CONFIGFS
590 depends on TTY
591 select USB_U_SERIAL
592 select USB_F_ACM
593 help
594 ACM serial link. This function can be used to interoperate with
595 MS-Windows hosts or with the Linux-USB "cdc-acm" driver.
596
597 config USB_CONFIGFS_OBEX
598 boolean "Object Exchange Model (CDC OBEX)"
599 depends on USB_CONFIGFS
600 depends on TTY
601 select USB_U_SERIAL
602 select USB_F_OBEX
603 help
604 You will need a user space OBEX server talking to /dev/ttyGS*,
605 since the kernel itself doesn't implement the OBEX protocol.
606
607 config USB_CONFIGFS_NCM
608 boolean "Network Control Model (CDC NCM)"
609 depends on USB_CONFIGFS
610 depends on NET
611 select USB_U_ETHER
612 select USB_F_NCM
613 help
614 NCM is an advanced protocol for Ethernet encapsulation, allows
615 grouping of several ethernet frames into one USB transfer and
616 different alignment possibilities.
617
618 config USB_CONFIGFS_ECM
619 boolean "Ethernet Control Model (CDC ECM)"
620 depends on USB_CONFIGFS
621 depends on NET
622 select USB_U_ETHER
623 select USB_F_ECM
624 help
625 The "Communication Device Class" (CDC) Ethernet Control Model.
626 That protocol is often avoided with pure Ethernet adapters, in
627 favor of simpler vendor-specific hardware, but is widely
628 supported by firmware for smart network devices.
629
630 config USB_CONFIGFS_ECM_SUBSET
631 boolean "Ethernet Control Model (CDC ECM) subset"
632 depends on USB_CONFIGFS
633 depends on NET
634 select USB_U_ETHER
635 select USB_F_SUBSET
636 help
637 On hardware that can't implement the full protocol,
638 a simple CDC subset is used, placing fewer demands on USB.
639
640 config USB_CONFIGFS_RNDIS
641 bool "RNDIS"
642 depends on USB_CONFIGFS
643 depends on NET
644 select USB_U_ETHER
645 select USB_U_RNDIS
646 select USB_F_RNDIS
647 help
648 Microsoft Windows XP bundles the "Remote NDIS" (RNDIS) protocol,
649 and Microsoft provides redistributable binary RNDIS drivers for
650 older versions of Windows.
651
652 To make MS-Windows work with this, use Documentation/usb/linux.inf
653 as the "driver info file". For versions of MS-Windows older than
654 XP, you'll need to download drivers from Microsoft's website; a URL
655 is given in comments found in that info file.
656
657 config USB_CONFIGFS_EEM
658 bool "Ethernet Emulation Model (EEM)"
659 depends on USB_CONFIGFS
660 depends on NET
661 select USB_U_ETHER
662 select USB_F_EEM
663 help
664 CDC EEM is a newer USB standard that is somewhat simpler than CDC ECM
665 and therefore can be supported by more hardware. Technically ECM and
666 EEM are designed for different applications. The ECM model extends
667 the network interface to the target (e.g. a USB cable modem), and the
668 EEM model is for mobile devices to communicate with hosts using
669 ethernet over USB. For Linux gadgets, however, the interface with
670 the host is the same (a usbX device), so the differences are minimal.
671
672 config USB_CONFIGFS_PHONET
673 boolean "Phonet protocol"
674 depends on USB_CONFIGFS
675 depends on NET
676 depends on PHONET
677 select USB_U_ETHER
678 select USB_F_PHONET
679 help
680 The Phonet protocol implementation for USB device.
681
682 config USB_CONFIGFS_MASS_STORAGE
683 boolean "Mass storage"
684 depends on USB_CONFIGFS
685 select USB_F_MASS_STORAGE
686 help
687 The Mass Storage Gadget acts as a USB Mass Storage disk drive.
688 As its storage repository it can use a regular file or a block
689 device (in much the same way as the "loop" device driver),
690 specified as a module parameter or sysfs option.
691
692 config USB_ZERO
693 tristate "Gadget Zero (DEVELOPMENT)"
694 select USB_LIBCOMPOSITE
695 select USB_F_SS_LB
696 help
697 Gadget Zero is a two-configuration device. It either sinks and
698 sources bulk data; or it loops back a configurable number of
699 transfers. It also implements control requests, for "chapter 9"
700 conformance. The driver needs only two bulk-capable endpoints, so
701 it can work on top of most device-side usb controllers. It's
702 useful for testing, and is also a working example showing how
703 USB "gadget drivers" can be written.
704
705 Make this be the first driver you try using on top of any new
706 USB peripheral controller driver. Then you can use host-side
707 test software, like the "usbtest" driver, to put your hardware
708 and its driver through a basic set of functional tests.
709
710 Gadget Zero also works with the host-side "usb-skeleton" driver,
711 and with many kinds of host-side test software. You may need
712 to tweak product and vendor IDs before host software knows about
713 this device, and arrange to select an appropriate configuration.
714
715 Say "y" to link the driver statically, or "m" to build a
716 dynamically linked module called "g_zero".
717
718 config USB_ZERO_HNPTEST
719 boolean "HNP Test Device"
720 depends on USB_ZERO && USB_OTG
721 help
722 You can configure this device to enumerate using the device
723 identifiers of the USB-OTG test device. That means that when
724 this gadget connects to another OTG device, with this one using
725 the "B-Peripheral" role, that device will use HNP to let this
726 one serve as the USB host instead (in the "B-Host" role).
727
728 config USB_AUDIO
729 tristate "Audio Gadget"
730 depends on SND
731 select USB_LIBCOMPOSITE
732 select SND_PCM
733 help
734 This Gadget Audio driver is compatible with USB Audio Class
735 specification 2.0. It implements 1 AudioControl interface,
736 1 AudioStreaming Interface each for USB-OUT and USB-IN.
737 Number of channels, sample rate and sample size can be
738 specified as module parameters.
739 This driver doesn't expect any real Audio codec to be present
740 on the device - the audio streams are simply sinked to and
741 sourced from a virtual ALSA sound card created. The user-space
742 application may choose to do whatever it wants with the data
743 received from the USB Host and choose to provide whatever it
744 wants as audio data to the USB Host.
745
746 Say "y" to link the driver statically, or "m" to build a
747 dynamically linked module called "g_audio".
748
749 config GADGET_UAC1
750 bool "UAC 1.0 (Legacy)"
751 depends on USB_AUDIO
752 help
753 If you instead want older UAC Spec-1.0 driver that also has audio
754 paths hardwired to the Audio codec chip on-board and doesn't work
755 without one.
756
757 config USB_ETH
758 tristate "Ethernet Gadget (with CDC Ethernet support)"
759 depends on NET
760 select USB_LIBCOMPOSITE
761 select USB_U_ETHER
762 select USB_U_RNDIS
763 select USB_F_ECM
764 select USB_F_SUBSET
765 select CRC32
766 help
767 This driver implements Ethernet style communication, in one of
768 several ways:
769
770 - The "Communication Device Class" (CDC) Ethernet Control Model.
771 That protocol is often avoided with pure Ethernet adapters, in
772 favor of simpler vendor-specific hardware, but is widely
773 supported by firmware for smart network devices.
774
775 - On hardware can't implement that protocol, a simple CDC subset
776 is used, placing fewer demands on USB.
777
778 - CDC Ethernet Emulation Model (EEM) is a newer standard that has
779 a simpler interface that can be used by more USB hardware.
780
781 RNDIS support is an additional option, more demanding than than
782 subset.
783
784 Within the USB device, this gadget driver exposes a network device
785 "usbX", where X depends on what other networking devices you have.
786 Treat it like a two-node Ethernet link: host, and gadget.
787
788 The Linux-USB host-side "usbnet" driver interoperates with this
789 driver, so that deep I/O queues can be supported. On 2.4 kernels,
790 use "CDCEther" instead, if you're using the CDC option. That CDC
791 mode should also interoperate with standard CDC Ethernet class
792 drivers on other host operating systems.
793
794 Say "y" to link the driver statically, or "m" to build a
795 dynamically linked module called "g_ether".
796
797 config USB_ETH_RNDIS
798 bool "RNDIS support"
799 depends on USB_ETH
800 select USB_LIBCOMPOSITE
801 select USB_F_RNDIS
802 default y
803 help
804 Microsoft Windows XP bundles the "Remote NDIS" (RNDIS) protocol,
805 and Microsoft provides redistributable binary RNDIS drivers for
806 older versions of Windows.
807
808 If you say "y" here, the Ethernet gadget driver will try to provide
809 a second device configuration, supporting RNDIS to talk to such
810 Microsoft USB hosts.
811
812 To make MS-Windows work with this, use Documentation/usb/linux.inf
813 as the "driver info file". For versions of MS-Windows older than
814 XP, you'll need to download drivers from Microsoft's website; a URL
815 is given in comments found in that info file.
816
817 config USB_ETH_EEM
818 bool "Ethernet Emulation Model (EEM) support"
819 depends on USB_ETH
820 select USB_LIBCOMPOSITE
821 select USB_F_EEM
822 default n
823 help
824 CDC EEM is a newer USB standard that is somewhat simpler than CDC ECM
825 and therefore can be supported by more hardware. Technically ECM and
826 EEM are designed for different applications. The ECM model extends
827 the network interface to the target (e.g. a USB cable modem), and the
828 EEM model is for mobile devices to communicate with hosts using
829 ethernet over USB. For Linux gadgets, however, the interface with
830 the host is the same (a usbX device), so the differences are minimal.
831
832 If you say "y" here, the Ethernet gadget driver will use the EEM
833 protocol rather than ECM. If unsure, say "n".
834
835 config USB_G_NCM
836 tristate "Network Control Model (NCM) support"
837 depends on NET
838 select USB_LIBCOMPOSITE
839 select USB_U_ETHER
840 select USB_F_NCM
841 select CRC32
842 help
843 This driver implements USB CDC NCM subclass standard. NCM is
844 an advanced protocol for Ethernet encapsulation, allows grouping
845 of several ethernet frames into one USB transfer and different
846 alignment possibilities.
847
848 Say "y" to link the driver statically, or "m" to build a
849 dynamically linked module called "g_ncm".
850
851 config USB_GADGETFS
852 tristate "Gadget Filesystem"
853 help
854 This driver provides a filesystem based API that lets user mode
855 programs implement a single-configuration USB device, including
856 endpoint I/O and control requests that don't relate to enumeration.
857 All endpoints, transfer speeds, and transfer types supported by
858 the hardware are available, through read() and write() calls.
859
860 Say "y" to link the driver statically, or "m" to build a
861 dynamically linked module called "gadgetfs".
862
863 config USB_FUNCTIONFS
864 tristate "Function Filesystem"
865 select USB_LIBCOMPOSITE
866 select USB_FUNCTIONFS_GENERIC if !(USB_FUNCTIONFS_ETH || USB_FUNCTIONFS_RNDIS)
867 help
868 The Function Filesystem (FunctionFS) lets one create USB
869 composite functions in user space in the same way GadgetFS
870 lets one create USB gadgets in user space. This allows creation
871 of composite gadgets such that some of the functions are
872 implemented in kernel space (for instance Ethernet, serial or
873 mass storage) and other are implemented in user space.
874
875 If you say "y" or "m" here you will be able what kind of
876 configurations the gadget will provide.
877
878 Say "y" to link the driver statically, or "m" to build
879 a dynamically linked module called "g_ffs".
880
881 config USB_FUNCTIONFS_ETH
882 bool "Include configuration with CDC ECM (Ethernet)"
883 depends on USB_FUNCTIONFS && NET
884 select USB_U_ETHER
885 help
886 Include a configuration with CDC ECM function (Ethernet) and the
887 Function Filesystem.
888
889 config USB_FUNCTIONFS_RNDIS
890 bool "Include configuration with RNDIS (Ethernet)"
891 depends on USB_FUNCTIONFS && NET
892 select USB_U_ETHER
893 select USB_U_RNDIS
894 help
895 Include a configuration with RNDIS function (Ethernet) and the Filesystem.
896
897 config USB_FUNCTIONFS_GENERIC
898 bool "Include 'pure' configuration"
899 depends on USB_FUNCTIONFS
900 help
901 Include a configuration with the Function Filesystem alone with
902 no Ethernet interface.
903
904 config USB_MASS_STORAGE
905 tristate "Mass Storage Gadget"
906 depends on BLOCK
907 select USB_LIBCOMPOSITE
908 select USB_F_MASS_STORAGE
909 help
910 The Mass Storage Gadget acts as a USB Mass Storage disk drive.
911 As its storage repository it can use a regular file or a block
912 device (in much the same way as the "loop" device driver),
913 specified as a module parameter or sysfs option.
914
915 This driver is a replacement for now removed File-backed
916 Storage Gadget (g_file_storage).
917
918 Say "y" to link the driver statically, or "m" to build
919 a dynamically linked module called "g_mass_storage".
920
921 config USB_GADGET_TARGET
922 tristate "USB Gadget Target Fabric Module"
923 depends on TARGET_CORE
924 select USB_LIBCOMPOSITE
925 help
926 This fabric is an USB gadget. Two USB protocols are supported that is
927 BBB or BOT (Bulk Only Transport) and UAS (USB Attached SCSI). BOT is
928 advertised on alternative interface 0 (primary) and UAS is on
929 alternative interface 1. Both protocols can work on USB2.0 and USB3.0.
930 UAS utilizes the USB 3.0 feature called streams support.
931
932 config USB_G_SERIAL
933 tristate "Serial Gadget (with CDC ACM and CDC OBEX support)"
934 depends on TTY
935 select USB_U_SERIAL
936 select USB_F_ACM
937 select USB_F_SERIAL
938 select USB_F_OBEX
939 select USB_LIBCOMPOSITE
940 help
941 The Serial Gadget talks to the Linux-USB generic serial driver.
942 This driver supports a CDC-ACM module option, which can be used
943 to interoperate with MS-Windows hosts or with the Linux-USB
944 "cdc-acm" driver.
945
946 This driver also supports a CDC-OBEX option. You will need a
947 user space OBEX server talking to /dev/ttyGS*, since the kernel
948 itself doesn't implement the OBEX protocol.
949
950 Say "y" to link the driver statically, or "m" to build a
951 dynamically linked module called "g_serial".
952
953 For more information, see Documentation/usb/gadget_serial.txt
954 which includes instructions and a "driver info file" needed to
955 make MS-Windows work with CDC ACM.
956
957 config USB_MIDI_GADGET
958 tristate "MIDI Gadget"
959 depends on SND
960 select USB_LIBCOMPOSITE
961 select SND_RAWMIDI
962 help
963 The MIDI Gadget acts as a USB Audio device, with one MIDI
964 input and one MIDI output. These MIDI jacks appear as
965 a sound "card" in the ALSA sound system. Other MIDI
966 connections can then be made on the gadget system, using
967 ALSA's aconnect utility etc.
968
969 Say "y" to link the driver statically, or "m" to build a
970 dynamically linked module called "g_midi".
971
972 config USB_G_PRINTER
973 tristate "Printer Gadget"
974 select USB_LIBCOMPOSITE
975 help
976 The Printer Gadget channels data between the USB host and a
977 userspace program driving the print engine. The user space
978 program reads and writes the device file /dev/g_printer to
979 receive or send printer data. It can use ioctl calls to
980 the device file to get or set printer status.
981
982 Say "y" to link the driver statically, or "m" to build a
983 dynamically linked module called "g_printer".
984
985 For more information, see Documentation/usb/gadget_printer.txt
986 which includes sample code for accessing the device file.
987
988 if TTY
989
990 config USB_CDC_COMPOSITE
991 tristate "CDC Composite Device (Ethernet and ACM)"
992 depends on NET
993 select USB_LIBCOMPOSITE
994 select USB_U_SERIAL
995 select USB_U_ETHER
996 select USB_F_ACM
997 select USB_F_ECM
998 help
999 This driver provides two functions in one configuration:
1000 a CDC Ethernet (ECM) link, and a CDC ACM (serial port) link.
1001
1002 This driver requires four bulk and two interrupt endpoints,
1003 plus the ability to handle altsettings. Not all peripheral
1004 controllers are that capable.
1005
1006 Say "y" to link the driver statically, or "m" to build a
1007 dynamically linked module.
1008
1009 config USB_G_NOKIA
1010 tristate "Nokia composite gadget"
1011 depends on PHONET
1012 select USB_LIBCOMPOSITE
1013 select USB_U_SERIAL
1014 select USB_U_ETHER
1015 select USB_F_ACM
1016 select USB_F_OBEX
1017 select USB_F_PHONET
1018 select USB_F_ECM
1019 help
1020 The Nokia composite gadget provides support for acm, obex
1021 and phonet in only one composite gadget driver.
1022
1023 It's only really useful for N900 hardware. If you're building
1024 a kernel for N900, say Y or M here. If unsure, say N.
1025
1026 config USB_G_ACM_MS
1027 tristate "CDC Composite Device (ACM and mass storage)"
1028 depends on BLOCK
1029 select USB_LIBCOMPOSITE
1030 select USB_U_SERIAL
1031 select USB_F_ACM
1032 select USB_F_MASS_STORAGE
1033 help
1034 This driver provides two functions in one configuration:
1035 a mass storage, and a CDC ACM (serial port) link.
1036
1037 Say "y" to link the driver statically, or "m" to build a
1038 dynamically linked module called "g_acm_ms".
1039
1040 config USB_G_MULTI
1041 tristate "Multifunction Composite Gadget"
1042 depends on BLOCK && NET
1043 select USB_G_MULTI_CDC if !USB_G_MULTI_RNDIS
1044 select USB_LIBCOMPOSITE
1045 select USB_U_SERIAL
1046 select USB_U_ETHER
1047 select USB_F_ACM
1048 select USB_F_MASS_STORAGE
1049 help
1050 The Multifunction Composite Gadget provides Ethernet (RNDIS
1051 and/or CDC Ethernet), mass storage and ACM serial link
1052 interfaces.
1053
1054 You will be asked to choose which of the two configurations is
1055 to be available in the gadget. At least one configuration must
1056 be chosen to make the gadget usable. Selecting more than one
1057 configuration will prevent Windows from automatically detecting
1058 the gadget as a composite gadget, so an INF file will be needed to
1059 use the gadget.
1060
1061 Say "y" to link the driver statically, or "m" to build a
1062 dynamically linked module called "g_multi".
1063
1064 config USB_G_MULTI_RNDIS
1065 bool "RNDIS + CDC Serial + Storage configuration"
1066 depends on USB_G_MULTI
1067 select USB_U_RNDIS
1068 select USB_F_RNDIS
1069 default y
1070 help
1071 This option enables a configuration with RNDIS, CDC Serial and
1072 Mass Storage functions available in the Multifunction Composite
1073 Gadget. This is the configuration dedicated for Windows since RNDIS
1074 is Microsoft's protocol.
1075
1076 If unsure, say "y".
1077
1078 config USB_G_MULTI_CDC
1079 bool "CDC Ethernet + CDC Serial + Storage configuration"
1080 depends on USB_G_MULTI
1081 default n
1082 select USB_F_ECM
1083 help
1084 This option enables a configuration with CDC Ethernet (ECM), CDC
1085 Serial and Mass Storage functions available in the Multifunction
1086 Composite Gadget.
1087
1088 If unsure, say "y".
1089
1090 endif # TTY
1091
1092 config USB_G_HID
1093 tristate "HID Gadget"
1094 select USB_LIBCOMPOSITE
1095 help
1096 The HID gadget driver provides generic emulation of USB
1097 Human Interface Devices (HID).
1098
1099 For more information, see Documentation/usb/gadget_hid.txt which
1100 includes sample code for accessing the device files.
1101
1102 Say "y" to link the driver statically, or "m" to build a
1103 dynamically linked module called "g_hid".
1104
1105 # Standalone / single function gadgets
1106 config USB_G_DBGP
1107 tristate "EHCI Debug Device Gadget"
1108 depends on TTY
1109 select USB_LIBCOMPOSITE
1110 help
1111 This gadget emulates an EHCI Debug device. This is useful when you want
1112 to interact with an EHCI Debug Port.
1113
1114 Say "y" to link the driver statically, or "m" to build a
1115 dynamically linked module called "g_dbgp".
1116
1117 if USB_G_DBGP
1118 choice
1119 prompt "EHCI Debug Device mode"
1120 default USB_G_DBGP_SERIAL
1121
1122 config USB_G_DBGP_PRINTK
1123 depends on USB_G_DBGP
1124 bool "printk"
1125 help
1126 Directly printk() received data. No interaction.
1127
1128 config USB_G_DBGP_SERIAL
1129 depends on USB_G_DBGP
1130 select USB_U_SERIAL
1131 bool "serial"
1132 help
1133 Userland can interact using /dev/ttyGSxxx.
1134 endchoice
1135 endif
1136
1137 # put drivers that need isochronous transfer support (for audio
1138 # or video class gadget drivers), or specific hardware, here.
1139 config USB_G_WEBCAM
1140 tristate "USB Webcam Gadget"
1141 depends on VIDEO_DEV
1142 select USB_LIBCOMPOSITE
1143 select VIDEOBUF2_VMALLOC
1144 help
1145 The Webcam Gadget acts as a composite USB Audio and Video Class
1146 device. It provides a userspace API to process UVC control requests
1147 and stream video data to the host.
1148
1149 Say "y" to link the driver statically, or "m" to build a
1150 dynamically linked module called "g_webcam".
1151
1152 endchoice
1153
1154 endif # USB_GADGET
This page took 0.053167 seconds and 6 git commands to generate.