usb: gadget: amd5536: use generic map/unmap routines
[deliverable/linux.git] / drivers / usb / gadget / amd5536udc.c
1 /*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
3 *
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12
13 /*
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
17 *
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
20 * by BIOS init).
21 *
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
25 */
26
27 /* debug control */
28 /* #define UDC_VERBOSE */
29
30 /* Driver strings */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
33
34 /* system */
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/init.h>
44 #include <linux/timer.h>
45 #include <linux/list.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioctl.h>
48 #include <linux/fs.h>
49 #include <linux/dmapool.h>
50 #include <linux/moduleparam.h>
51 #include <linux/device.h>
52 #include <linux/io.h>
53 #include <linux/irq.h>
54 #include <linux/prefetch.h>
55
56 #include <asm/byteorder.h>
57 #include <asm/system.h>
58 #include <asm/unaligned.h>
59
60 /* gadget stack */
61 #include <linux/usb/ch9.h>
62 #include <linux/usb/gadget.h>
63
64 /* udc specific */
65 #include "amd5536udc.h"
66
67
68 static void udc_tasklet_disconnect(unsigned long);
69 static void empty_req_queue(struct udc_ep *);
70 static int udc_probe(struct udc *dev);
71 static void udc_basic_init(struct udc *dev);
72 static void udc_setup_endpoints(struct udc *dev);
73 static void udc_soft_reset(struct udc *dev);
74 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
75 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
76 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
77 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
78 unsigned long buf_len, gfp_t gfp_flags);
79 static int udc_remote_wakeup(struct udc *dev);
80 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
81 static void udc_pci_remove(struct pci_dev *pdev);
82
83 /* description */
84 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
85 static const char name[] = "amd5536udc";
86
87 /* structure to hold endpoint function pointers */
88 static const struct usb_ep_ops udc_ep_ops;
89
90 /* received setup data */
91 static union udc_setup_data setup_data;
92
93 /* pointer to device object */
94 static struct udc *udc;
95
96 /* irq spin lock for soft reset */
97 static DEFINE_SPINLOCK(udc_irq_spinlock);
98 /* stall spin lock */
99 static DEFINE_SPINLOCK(udc_stall_spinlock);
100
101 /*
102 * slave mode: pending bytes in rx fifo after nyet,
103 * used if EPIN irq came but no req was available
104 */
105 static unsigned int udc_rxfifo_pending;
106
107 /* count soft resets after suspend to avoid loop */
108 static int soft_reset_occured;
109 static int soft_reset_after_usbreset_occured;
110
111 /* timer */
112 static struct timer_list udc_timer;
113 static int stop_timer;
114
115 /* set_rde -- Is used to control enabling of RX DMA. Problem is
116 * that UDC has only one bit (RDE) to enable/disable RX DMA for
117 * all OUT endpoints. So we have to handle race conditions like
118 * when OUT data reaches the fifo but no request was queued yet.
119 * This cannot be solved by letting the RX DMA disabled until a
120 * request gets queued because there may be other OUT packets
121 * in the FIFO (important for not blocking control traffic).
122 * The value of set_rde controls the correspondig timer.
123 *
124 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
125 * set_rde 0 == do not touch RDE, do no start the RDE timer
126 * set_rde 1 == timer function will look whether FIFO has data
127 * set_rde 2 == set by timer function to enable RX DMA on next call
128 */
129 static int set_rde = -1;
130
131 static DECLARE_COMPLETION(on_exit);
132 static struct timer_list udc_pollstall_timer;
133 static int stop_pollstall_timer;
134 static DECLARE_COMPLETION(on_pollstall_exit);
135
136 /* tasklet for usb disconnect */
137 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
138 (unsigned long) &udc);
139
140
141 /* endpoint names used for print */
142 static const char ep0_string[] = "ep0in";
143 static const char *const ep_string[] = {
144 ep0_string,
145 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
146 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
147 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
148 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
149 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
150 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
151 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
152 };
153
154 /* DMA usage flag */
155 static bool use_dma = 1;
156 /* packet per buffer dma */
157 static bool use_dma_ppb = 1;
158 /* with per descr. update */
159 static bool use_dma_ppb_du;
160 /* buffer fill mode */
161 static int use_dma_bufferfill_mode;
162 /* full speed only mode */
163 static bool use_fullspeed;
164 /* tx buffer size for high speed */
165 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
166
167 /* module parameters */
168 module_param(use_dma, bool, S_IRUGO);
169 MODULE_PARM_DESC(use_dma, "true for DMA");
170 module_param(use_dma_ppb, bool, S_IRUGO);
171 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
172 module_param(use_dma_ppb_du, bool, S_IRUGO);
173 MODULE_PARM_DESC(use_dma_ppb_du,
174 "true for DMA in packet per buffer mode with descriptor update");
175 module_param(use_fullspeed, bool, S_IRUGO);
176 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
177
178 /*---------------------------------------------------------------------------*/
179 /* Prints UDC device registers and endpoint irq registers */
180 static void print_regs(struct udc *dev)
181 {
182 DBG(dev, "------- Device registers -------\n");
183 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
184 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
185 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
186 DBG(dev, "\n");
187 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
188 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
189 DBG(dev, "\n");
190 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
191 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
192 DBG(dev, "\n");
193 DBG(dev, "USE DMA = %d\n", use_dma);
194 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
195 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
196 "WITHOUT desc. update)\n");
197 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
198 } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
199 DBG(dev, "DMA mode = PPBDU (packet per buffer "
200 "WITH desc. update)\n");
201 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
202 }
203 if (use_dma && use_dma_bufferfill_mode) {
204 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
205 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
206 }
207 if (!use_dma)
208 dev_info(&dev->pdev->dev, "FIFO mode\n");
209 DBG(dev, "-------------------------------------------------------\n");
210 }
211
212 /* Masks unused interrupts */
213 static int udc_mask_unused_interrupts(struct udc *dev)
214 {
215 u32 tmp;
216
217 /* mask all dev interrupts */
218 tmp = AMD_BIT(UDC_DEVINT_SVC) |
219 AMD_BIT(UDC_DEVINT_ENUM) |
220 AMD_BIT(UDC_DEVINT_US) |
221 AMD_BIT(UDC_DEVINT_UR) |
222 AMD_BIT(UDC_DEVINT_ES) |
223 AMD_BIT(UDC_DEVINT_SI) |
224 AMD_BIT(UDC_DEVINT_SOF)|
225 AMD_BIT(UDC_DEVINT_SC);
226 writel(tmp, &dev->regs->irqmsk);
227
228 /* mask all ep interrupts */
229 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
230
231 return 0;
232 }
233
234 /* Enables endpoint 0 interrupts */
235 static int udc_enable_ep0_interrupts(struct udc *dev)
236 {
237 u32 tmp;
238
239 DBG(dev, "udc_enable_ep0_interrupts()\n");
240
241 /* read irq mask */
242 tmp = readl(&dev->regs->ep_irqmsk);
243 /* enable ep0 irq's */
244 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
245 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
246 writel(tmp, &dev->regs->ep_irqmsk);
247
248 return 0;
249 }
250
251 /* Enables device interrupts for SET_INTF and SET_CONFIG */
252 static int udc_enable_dev_setup_interrupts(struct udc *dev)
253 {
254 u32 tmp;
255
256 DBG(dev, "enable device interrupts for setup data\n");
257
258 /* read irq mask */
259 tmp = readl(&dev->regs->irqmsk);
260
261 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
262 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
263 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
264 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
265 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
266 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
267 writel(tmp, &dev->regs->irqmsk);
268
269 return 0;
270 }
271
272 /* Calculates fifo start of endpoint based on preceding endpoints */
273 static int udc_set_txfifo_addr(struct udc_ep *ep)
274 {
275 struct udc *dev;
276 u32 tmp;
277 int i;
278
279 if (!ep || !(ep->in))
280 return -EINVAL;
281
282 dev = ep->dev;
283 ep->txfifo = dev->txfifo;
284
285 /* traverse ep's */
286 for (i = 0; i < ep->num; i++) {
287 if (dev->ep[i].regs) {
288 /* read fifo size */
289 tmp = readl(&dev->ep[i].regs->bufin_framenum);
290 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
291 ep->txfifo += tmp;
292 }
293 }
294 return 0;
295 }
296
297 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
298 static u32 cnak_pending;
299
300 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
301 {
302 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
303 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
304 cnak_pending |= 1 << (num);
305 ep->naking = 1;
306 } else
307 cnak_pending = cnak_pending & (~(1 << (num)));
308 }
309
310
311 /* Enables endpoint, is called by gadget driver */
312 static int
313 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
314 {
315 struct udc_ep *ep;
316 struct udc *dev;
317 u32 tmp;
318 unsigned long iflags;
319 u8 udc_csr_epix;
320 unsigned maxpacket;
321
322 if (!usbep
323 || usbep->name == ep0_string
324 || !desc
325 || desc->bDescriptorType != USB_DT_ENDPOINT)
326 return -EINVAL;
327
328 ep = container_of(usbep, struct udc_ep, ep);
329 dev = ep->dev;
330
331 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
332
333 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
334 return -ESHUTDOWN;
335
336 spin_lock_irqsave(&dev->lock, iflags);
337 ep->desc = desc;
338
339 ep->halted = 0;
340
341 /* set traffic type */
342 tmp = readl(&dev->ep[ep->num].regs->ctl);
343 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
344 writel(tmp, &dev->ep[ep->num].regs->ctl);
345
346 /* set max packet size */
347 maxpacket = usb_endpoint_maxp(desc);
348 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
349 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
350 ep->ep.maxpacket = maxpacket;
351 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
352
353 /* IN ep */
354 if (ep->in) {
355
356 /* ep ix in UDC CSR register space */
357 udc_csr_epix = ep->num;
358
359 /* set buffer size (tx fifo entries) */
360 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
361 /* double buffering: fifo size = 2 x max packet size */
362 tmp = AMD_ADDBITS(
363 tmp,
364 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
365 / UDC_DWORD_BYTES,
366 UDC_EPIN_BUFF_SIZE);
367 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
368
369 /* calc. tx fifo base addr */
370 udc_set_txfifo_addr(ep);
371
372 /* flush fifo */
373 tmp = readl(&ep->regs->ctl);
374 tmp |= AMD_BIT(UDC_EPCTL_F);
375 writel(tmp, &ep->regs->ctl);
376
377 /* OUT ep */
378 } else {
379 /* ep ix in UDC CSR register space */
380 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
381
382 /* set max packet size UDC CSR */
383 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
384 tmp = AMD_ADDBITS(tmp, maxpacket,
385 UDC_CSR_NE_MAX_PKT);
386 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
387
388 if (use_dma && !ep->in) {
389 /* alloc and init BNA dummy request */
390 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
391 ep->bna_occurred = 0;
392 }
393
394 if (ep->num != UDC_EP0OUT_IX)
395 dev->data_ep_enabled = 1;
396 }
397
398 /* set ep values */
399 tmp = readl(&dev->csr->ne[udc_csr_epix]);
400 /* max packet */
401 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
402 /* ep number */
403 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
404 /* ep direction */
405 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
406 /* ep type */
407 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
408 /* ep config */
409 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
410 /* ep interface */
411 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
412 /* ep alt */
413 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
414 /* write reg */
415 writel(tmp, &dev->csr->ne[udc_csr_epix]);
416
417 /* enable ep irq */
418 tmp = readl(&dev->regs->ep_irqmsk);
419 tmp &= AMD_UNMASK_BIT(ep->num);
420 writel(tmp, &dev->regs->ep_irqmsk);
421
422 /*
423 * clear NAK by writing CNAK
424 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
425 */
426 if (!use_dma || ep->in) {
427 tmp = readl(&ep->regs->ctl);
428 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
429 writel(tmp, &ep->regs->ctl);
430 ep->naking = 0;
431 UDC_QUEUE_CNAK(ep, ep->num);
432 }
433 tmp = desc->bEndpointAddress;
434 DBG(dev, "%s enabled\n", usbep->name);
435
436 spin_unlock_irqrestore(&dev->lock, iflags);
437 return 0;
438 }
439
440 /* Resets endpoint */
441 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
442 {
443 u32 tmp;
444
445 VDBG(ep->dev, "ep-%d reset\n", ep->num);
446 ep->desc = NULL;
447 ep->ep.desc = NULL;
448 ep->ep.ops = &udc_ep_ops;
449 INIT_LIST_HEAD(&ep->queue);
450
451 ep->ep.maxpacket = (u16) ~0;
452 /* set NAK */
453 tmp = readl(&ep->regs->ctl);
454 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
455 writel(tmp, &ep->regs->ctl);
456 ep->naking = 1;
457
458 /* disable interrupt */
459 tmp = readl(&regs->ep_irqmsk);
460 tmp |= AMD_BIT(ep->num);
461 writel(tmp, &regs->ep_irqmsk);
462
463 if (ep->in) {
464 /* unset P and IN bit of potential former DMA */
465 tmp = readl(&ep->regs->ctl);
466 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
467 writel(tmp, &ep->regs->ctl);
468
469 tmp = readl(&ep->regs->sts);
470 tmp |= AMD_BIT(UDC_EPSTS_IN);
471 writel(tmp, &ep->regs->sts);
472
473 /* flush the fifo */
474 tmp = readl(&ep->regs->ctl);
475 tmp |= AMD_BIT(UDC_EPCTL_F);
476 writel(tmp, &ep->regs->ctl);
477
478 }
479 /* reset desc pointer */
480 writel(0, &ep->regs->desptr);
481 }
482
483 /* Disables endpoint, is called by gadget driver */
484 static int udc_ep_disable(struct usb_ep *usbep)
485 {
486 struct udc_ep *ep = NULL;
487 unsigned long iflags;
488
489 if (!usbep)
490 return -EINVAL;
491
492 ep = container_of(usbep, struct udc_ep, ep);
493 if (usbep->name == ep0_string || !ep->desc)
494 return -EINVAL;
495
496 DBG(ep->dev, "Disable ep-%d\n", ep->num);
497
498 spin_lock_irqsave(&ep->dev->lock, iflags);
499 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
500 empty_req_queue(ep);
501 ep_init(ep->dev->regs, ep);
502 spin_unlock_irqrestore(&ep->dev->lock, iflags);
503
504 return 0;
505 }
506
507 /* Allocates request packet, called by gadget driver */
508 static struct usb_request *
509 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
510 {
511 struct udc_request *req;
512 struct udc_data_dma *dma_desc;
513 struct udc_ep *ep;
514
515 if (!usbep)
516 return NULL;
517
518 ep = container_of(usbep, struct udc_ep, ep);
519
520 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
521 req = kzalloc(sizeof(struct udc_request), gfp);
522 if (!req)
523 return NULL;
524
525 req->req.dma = DMA_DONT_USE;
526 INIT_LIST_HEAD(&req->queue);
527
528 if (ep->dma) {
529 /* ep0 in requests are allocated from data pool here */
530 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
531 &req->td_phys);
532 if (!dma_desc) {
533 kfree(req);
534 return NULL;
535 }
536
537 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
538 "td_phys = %lx\n",
539 req, dma_desc,
540 (unsigned long)req->td_phys);
541 /* prevent from using desc. - set HOST BUSY */
542 dma_desc->status = AMD_ADDBITS(dma_desc->status,
543 UDC_DMA_STP_STS_BS_HOST_BUSY,
544 UDC_DMA_STP_STS_BS);
545 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
546 req->td_data = dma_desc;
547 req->td_data_last = NULL;
548 req->chain_len = 1;
549 }
550
551 return &req->req;
552 }
553
554 /* Frees request packet, called by gadget driver */
555 static void
556 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
557 {
558 struct udc_ep *ep;
559 struct udc_request *req;
560
561 if (!usbep || !usbreq)
562 return;
563
564 ep = container_of(usbep, struct udc_ep, ep);
565 req = container_of(usbreq, struct udc_request, req);
566 VDBG(ep->dev, "free_req req=%p\n", req);
567 BUG_ON(!list_empty(&req->queue));
568 if (req->td_data) {
569 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
570
571 /* free dma chain if created */
572 if (req->chain_len > 1)
573 udc_free_dma_chain(ep->dev, req);
574
575 pci_pool_free(ep->dev->data_requests, req->td_data,
576 req->td_phys);
577 }
578 kfree(req);
579 }
580
581 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
582 static void udc_init_bna_dummy(struct udc_request *req)
583 {
584 if (req) {
585 /* set last bit */
586 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
587 /* set next pointer to itself */
588 req->td_data->next = req->td_phys;
589 /* set HOST BUSY */
590 req->td_data->status
591 = AMD_ADDBITS(req->td_data->status,
592 UDC_DMA_STP_STS_BS_DMA_DONE,
593 UDC_DMA_STP_STS_BS);
594 #ifdef UDC_VERBOSE
595 pr_debug("bna desc = %p, sts = %08x\n",
596 req->td_data, req->td_data->status);
597 #endif
598 }
599 }
600
601 /* Allocate BNA dummy descriptor */
602 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
603 {
604 struct udc_request *req = NULL;
605 struct usb_request *_req = NULL;
606
607 /* alloc the dummy request */
608 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
609 if (_req) {
610 req = container_of(_req, struct udc_request, req);
611 ep->bna_dummy_req = req;
612 udc_init_bna_dummy(req);
613 }
614 return req;
615 }
616
617 /* Write data to TX fifo for IN packets */
618 static void
619 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
620 {
621 u8 *req_buf;
622 u32 *buf;
623 int i, j;
624 unsigned bytes = 0;
625 unsigned remaining = 0;
626
627 if (!req || !ep)
628 return;
629
630 req_buf = req->buf + req->actual;
631 prefetch(req_buf);
632 remaining = req->length - req->actual;
633
634 buf = (u32 *) req_buf;
635
636 bytes = ep->ep.maxpacket;
637 if (bytes > remaining)
638 bytes = remaining;
639
640 /* dwords first */
641 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
642 writel(*(buf + i), ep->txfifo);
643
644 /* remaining bytes must be written by byte access */
645 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
646 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
647 ep->txfifo);
648 }
649
650 /* dummy write confirm */
651 writel(0, &ep->regs->confirm);
652 }
653
654 /* Read dwords from RX fifo for OUT transfers */
655 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
656 {
657 int i;
658
659 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
660
661 for (i = 0; i < dwords; i++)
662 *(buf + i) = readl(dev->rxfifo);
663 return 0;
664 }
665
666 /* Read bytes from RX fifo for OUT transfers */
667 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
668 {
669 int i, j;
670 u32 tmp;
671
672 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
673
674 /* dwords first */
675 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
676 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
677
678 /* remaining bytes must be read by byte access */
679 if (bytes % UDC_DWORD_BYTES) {
680 tmp = readl(dev->rxfifo);
681 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
682 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
683 tmp = tmp >> UDC_BITS_PER_BYTE;
684 }
685 }
686
687 return 0;
688 }
689
690 /* Read data from RX fifo for OUT transfers */
691 static int
692 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
693 {
694 u8 *buf;
695 unsigned buf_space;
696 unsigned bytes = 0;
697 unsigned finished = 0;
698
699 /* received number bytes */
700 bytes = readl(&ep->regs->sts);
701 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
702
703 buf_space = req->req.length - req->req.actual;
704 buf = req->req.buf + req->req.actual;
705 if (bytes > buf_space) {
706 if ((buf_space % ep->ep.maxpacket) != 0) {
707 DBG(ep->dev,
708 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
709 ep->ep.name, bytes, buf_space);
710 req->req.status = -EOVERFLOW;
711 }
712 bytes = buf_space;
713 }
714 req->req.actual += bytes;
715
716 /* last packet ? */
717 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
718 || ((req->req.actual == req->req.length) && !req->req.zero))
719 finished = 1;
720
721 /* read rx fifo bytes */
722 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
723 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
724
725 return finished;
726 }
727
728 /* create/re-init a DMA descriptor or a DMA descriptor chain */
729 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
730 {
731 int retval = 0;
732 u32 tmp;
733
734 VDBG(ep->dev, "prep_dma\n");
735 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
736 ep->num, req->td_data);
737
738 /* set buffer pointer */
739 req->td_data->bufptr = req->req.dma;
740
741 /* set last bit */
742 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
743
744 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
745 if (use_dma_ppb) {
746
747 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
748 if (retval != 0) {
749 if (retval == -ENOMEM)
750 DBG(ep->dev, "Out of DMA memory\n");
751 return retval;
752 }
753 if (ep->in) {
754 if (req->req.length == ep->ep.maxpacket) {
755 /* write tx bytes */
756 req->td_data->status =
757 AMD_ADDBITS(req->td_data->status,
758 ep->ep.maxpacket,
759 UDC_DMA_IN_STS_TXBYTES);
760
761 }
762 }
763
764 }
765
766 if (ep->in) {
767 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
768 "maxpacket=%d ep%d\n",
769 use_dma_ppb, req->req.length,
770 ep->ep.maxpacket, ep->num);
771 /*
772 * if bytes < max packet then tx bytes must
773 * be written in packet per buffer mode
774 */
775 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
776 || ep->num == UDC_EP0OUT_IX
777 || ep->num == UDC_EP0IN_IX) {
778 /* write tx bytes */
779 req->td_data->status =
780 AMD_ADDBITS(req->td_data->status,
781 req->req.length,
782 UDC_DMA_IN_STS_TXBYTES);
783 /* reset frame num */
784 req->td_data->status =
785 AMD_ADDBITS(req->td_data->status,
786 0,
787 UDC_DMA_IN_STS_FRAMENUM);
788 }
789 /* set HOST BUSY */
790 req->td_data->status =
791 AMD_ADDBITS(req->td_data->status,
792 UDC_DMA_STP_STS_BS_HOST_BUSY,
793 UDC_DMA_STP_STS_BS);
794 } else {
795 VDBG(ep->dev, "OUT set host ready\n");
796 /* set HOST READY */
797 req->td_data->status =
798 AMD_ADDBITS(req->td_data->status,
799 UDC_DMA_STP_STS_BS_HOST_READY,
800 UDC_DMA_STP_STS_BS);
801
802
803 /* clear NAK by writing CNAK */
804 if (ep->naking) {
805 tmp = readl(&ep->regs->ctl);
806 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
807 writel(tmp, &ep->regs->ctl);
808 ep->naking = 0;
809 UDC_QUEUE_CNAK(ep, ep->num);
810 }
811
812 }
813
814 return retval;
815 }
816
817 /* Completes request packet ... caller MUST hold lock */
818 static void
819 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
820 __releases(ep->dev->lock)
821 __acquires(ep->dev->lock)
822 {
823 struct udc *dev;
824 unsigned halted;
825
826 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
827
828 dev = ep->dev;
829 /* unmap DMA */
830 if (ep->dma)
831 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
832
833 halted = ep->halted;
834 ep->halted = 1;
835
836 /* set new status if pending */
837 if (req->req.status == -EINPROGRESS)
838 req->req.status = sts;
839
840 /* remove from ep queue */
841 list_del_init(&req->queue);
842
843 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
844 &req->req, req->req.length, ep->ep.name, sts);
845
846 spin_unlock(&dev->lock);
847 req->req.complete(&ep->ep, &req->req);
848 spin_lock(&dev->lock);
849 ep->halted = halted;
850 }
851
852 /* frees pci pool descriptors of a DMA chain */
853 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
854 {
855
856 int ret_val = 0;
857 struct udc_data_dma *td;
858 struct udc_data_dma *td_last = NULL;
859 unsigned int i;
860
861 DBG(dev, "free chain req = %p\n", req);
862
863 /* do not free first desc., will be done by free for request */
864 td_last = req->td_data;
865 td = phys_to_virt(td_last->next);
866
867 for (i = 1; i < req->chain_len; i++) {
868
869 pci_pool_free(dev->data_requests, td,
870 (dma_addr_t) td_last->next);
871 td_last = td;
872 td = phys_to_virt(td_last->next);
873 }
874
875 return ret_val;
876 }
877
878 /* Iterates to the end of a DMA chain and returns last descriptor */
879 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
880 {
881 struct udc_data_dma *td;
882
883 td = req->td_data;
884 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
885 td = phys_to_virt(td->next);
886
887 return td;
888
889 }
890
891 /* Iterates to the end of a DMA chain and counts bytes received */
892 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
893 {
894 struct udc_data_dma *td;
895 u32 count;
896
897 td = req->td_data;
898 /* received number bytes */
899 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
900
901 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
902 td = phys_to_virt(td->next);
903 /* received number bytes */
904 if (td) {
905 count += AMD_GETBITS(td->status,
906 UDC_DMA_OUT_STS_RXBYTES);
907 }
908 }
909
910 return count;
911
912 }
913
914 /* Creates or re-inits a DMA chain */
915 static int udc_create_dma_chain(
916 struct udc_ep *ep,
917 struct udc_request *req,
918 unsigned long buf_len, gfp_t gfp_flags
919 )
920 {
921 unsigned long bytes = req->req.length;
922 unsigned int i;
923 dma_addr_t dma_addr;
924 struct udc_data_dma *td = NULL;
925 struct udc_data_dma *last = NULL;
926 unsigned long txbytes;
927 unsigned create_new_chain = 0;
928 unsigned len;
929
930 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
931 bytes, buf_len);
932 dma_addr = DMA_DONT_USE;
933
934 /* unset L bit in first desc for OUT */
935 if (!ep->in)
936 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
937
938 /* alloc only new desc's if not already available */
939 len = req->req.length / ep->ep.maxpacket;
940 if (req->req.length % ep->ep.maxpacket)
941 len++;
942
943 if (len > req->chain_len) {
944 /* shorter chain already allocated before */
945 if (req->chain_len > 1)
946 udc_free_dma_chain(ep->dev, req);
947 req->chain_len = len;
948 create_new_chain = 1;
949 }
950
951 td = req->td_data;
952 /* gen. required number of descriptors and buffers */
953 for (i = buf_len; i < bytes; i += buf_len) {
954 /* create or determine next desc. */
955 if (create_new_chain) {
956
957 td = pci_pool_alloc(ep->dev->data_requests,
958 gfp_flags, &dma_addr);
959 if (!td)
960 return -ENOMEM;
961
962 td->status = 0;
963 } else if (i == buf_len) {
964 /* first td */
965 td = (struct udc_data_dma *) phys_to_virt(
966 req->td_data->next);
967 td->status = 0;
968 } else {
969 td = (struct udc_data_dma *) phys_to_virt(last->next);
970 td->status = 0;
971 }
972
973
974 if (td)
975 td->bufptr = req->req.dma + i; /* assign buffer */
976 else
977 break;
978
979 /* short packet ? */
980 if ((bytes - i) >= buf_len) {
981 txbytes = buf_len;
982 } else {
983 /* short packet */
984 txbytes = bytes - i;
985 }
986
987 /* link td and assign tx bytes */
988 if (i == buf_len) {
989 if (create_new_chain)
990 req->td_data->next = dma_addr;
991 /*
992 else
993 req->td_data->next = virt_to_phys(td);
994 */
995 /* write tx bytes */
996 if (ep->in) {
997 /* first desc */
998 req->td_data->status =
999 AMD_ADDBITS(req->td_data->status,
1000 ep->ep.maxpacket,
1001 UDC_DMA_IN_STS_TXBYTES);
1002 /* second desc */
1003 td->status = AMD_ADDBITS(td->status,
1004 txbytes,
1005 UDC_DMA_IN_STS_TXBYTES);
1006 }
1007 } else {
1008 if (create_new_chain)
1009 last->next = dma_addr;
1010 /*
1011 else
1012 last->next = virt_to_phys(td);
1013 */
1014 if (ep->in) {
1015 /* write tx bytes */
1016 td->status = AMD_ADDBITS(td->status,
1017 txbytes,
1018 UDC_DMA_IN_STS_TXBYTES);
1019 }
1020 }
1021 last = td;
1022 }
1023 /* set last bit */
1024 if (td) {
1025 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1026 /* last desc. points to itself */
1027 req->td_data_last = td;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /* Enabling RX DMA */
1034 static void udc_set_rde(struct udc *dev)
1035 {
1036 u32 tmp;
1037
1038 VDBG(dev, "udc_set_rde()\n");
1039 /* stop RDE timer */
1040 if (timer_pending(&udc_timer)) {
1041 set_rde = 0;
1042 mod_timer(&udc_timer, jiffies - 1);
1043 }
1044 /* set RDE */
1045 tmp = readl(&dev->regs->ctl);
1046 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1047 writel(tmp, &dev->regs->ctl);
1048 }
1049
1050 /* Queues a request packet, called by gadget driver */
1051 static int
1052 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1053 {
1054 int retval = 0;
1055 u8 open_rxfifo = 0;
1056 unsigned long iflags;
1057 struct udc_ep *ep;
1058 struct udc_request *req;
1059 struct udc *dev;
1060 u32 tmp;
1061
1062 /* check the inputs */
1063 req = container_of(usbreq, struct udc_request, req);
1064
1065 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1066 || !list_empty(&req->queue))
1067 return -EINVAL;
1068
1069 ep = container_of(usbep, struct udc_ep, ep);
1070 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1071 return -EINVAL;
1072
1073 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1074 dev = ep->dev;
1075
1076 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1077 return -ESHUTDOWN;
1078
1079 /* map dma (usually done before) */
1080 if (ep->dma) {
1081 VDBG(dev, "DMA map req %p\n", req);
1082 retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1083 if (retval)
1084 return retval;
1085 }
1086
1087 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1088 usbep->name, usbreq, usbreq->length,
1089 req->td_data, usbreq->buf);
1090
1091 spin_lock_irqsave(&dev->lock, iflags);
1092 usbreq->actual = 0;
1093 usbreq->status = -EINPROGRESS;
1094 req->dma_done = 0;
1095
1096 /* on empty queue just do first transfer */
1097 if (list_empty(&ep->queue)) {
1098 /* zlp */
1099 if (usbreq->length == 0) {
1100 /* IN zlp's are handled by hardware */
1101 complete_req(ep, req, 0);
1102 VDBG(dev, "%s: zlp\n", ep->ep.name);
1103 /*
1104 * if set_config or set_intf is waiting for ack by zlp
1105 * then set CSR_DONE
1106 */
1107 if (dev->set_cfg_not_acked) {
1108 tmp = readl(&dev->regs->ctl);
1109 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1110 writel(tmp, &dev->regs->ctl);
1111 dev->set_cfg_not_acked = 0;
1112 }
1113 /* setup command is ACK'ed now by zlp */
1114 if (dev->waiting_zlp_ack_ep0in) {
1115 /* clear NAK by writing CNAK in EP0_IN */
1116 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1117 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1118 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1119 dev->ep[UDC_EP0IN_IX].naking = 0;
1120 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1121 UDC_EP0IN_IX);
1122 dev->waiting_zlp_ack_ep0in = 0;
1123 }
1124 goto finished;
1125 }
1126 if (ep->dma) {
1127 retval = prep_dma(ep, req, gfp);
1128 if (retval != 0)
1129 goto finished;
1130 /* write desc pointer to enable DMA */
1131 if (ep->in) {
1132 /* set HOST READY */
1133 req->td_data->status =
1134 AMD_ADDBITS(req->td_data->status,
1135 UDC_DMA_IN_STS_BS_HOST_READY,
1136 UDC_DMA_IN_STS_BS);
1137 }
1138
1139 /* disabled rx dma while descriptor update */
1140 if (!ep->in) {
1141 /* stop RDE timer */
1142 if (timer_pending(&udc_timer)) {
1143 set_rde = 0;
1144 mod_timer(&udc_timer, jiffies - 1);
1145 }
1146 /* clear RDE */
1147 tmp = readl(&dev->regs->ctl);
1148 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1149 writel(tmp, &dev->regs->ctl);
1150 open_rxfifo = 1;
1151
1152 /*
1153 * if BNA occurred then let BNA dummy desc.
1154 * point to current desc.
1155 */
1156 if (ep->bna_occurred) {
1157 VDBG(dev, "copy to BNA dummy desc.\n");
1158 memcpy(ep->bna_dummy_req->td_data,
1159 req->td_data,
1160 sizeof(struct udc_data_dma));
1161 }
1162 }
1163 /* write desc pointer */
1164 writel(req->td_phys, &ep->regs->desptr);
1165
1166 /* clear NAK by writing CNAK */
1167 if (ep->naking) {
1168 tmp = readl(&ep->regs->ctl);
1169 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1170 writel(tmp, &ep->regs->ctl);
1171 ep->naking = 0;
1172 UDC_QUEUE_CNAK(ep, ep->num);
1173 }
1174
1175 if (ep->in) {
1176 /* enable ep irq */
1177 tmp = readl(&dev->regs->ep_irqmsk);
1178 tmp &= AMD_UNMASK_BIT(ep->num);
1179 writel(tmp, &dev->regs->ep_irqmsk);
1180 }
1181 } else if (ep->in) {
1182 /* enable ep irq */
1183 tmp = readl(&dev->regs->ep_irqmsk);
1184 tmp &= AMD_UNMASK_BIT(ep->num);
1185 writel(tmp, &dev->regs->ep_irqmsk);
1186 }
1187
1188 } else if (ep->dma) {
1189
1190 /*
1191 * prep_dma not used for OUT ep's, this is not possible
1192 * for PPB modes, because of chain creation reasons
1193 */
1194 if (ep->in) {
1195 retval = prep_dma(ep, req, gfp);
1196 if (retval != 0)
1197 goto finished;
1198 }
1199 }
1200 VDBG(dev, "list_add\n");
1201 /* add request to ep queue */
1202 if (req) {
1203
1204 list_add_tail(&req->queue, &ep->queue);
1205
1206 /* open rxfifo if out data queued */
1207 if (open_rxfifo) {
1208 /* enable DMA */
1209 req->dma_going = 1;
1210 udc_set_rde(dev);
1211 if (ep->num != UDC_EP0OUT_IX)
1212 dev->data_ep_queued = 1;
1213 }
1214 /* stop OUT naking */
1215 if (!ep->in) {
1216 if (!use_dma && udc_rxfifo_pending) {
1217 DBG(dev, "udc_queue(): pending bytes in "
1218 "rxfifo after nyet\n");
1219 /*
1220 * read pending bytes afer nyet:
1221 * referring to isr
1222 */
1223 if (udc_rxfifo_read(ep, req)) {
1224 /* finish */
1225 complete_req(ep, req, 0);
1226 }
1227 udc_rxfifo_pending = 0;
1228
1229 }
1230 }
1231 }
1232
1233 finished:
1234 spin_unlock_irqrestore(&dev->lock, iflags);
1235 return retval;
1236 }
1237
1238 /* Empty request queue of an endpoint; caller holds spinlock */
1239 static void empty_req_queue(struct udc_ep *ep)
1240 {
1241 struct udc_request *req;
1242
1243 ep->halted = 1;
1244 while (!list_empty(&ep->queue)) {
1245 req = list_entry(ep->queue.next,
1246 struct udc_request,
1247 queue);
1248 complete_req(ep, req, -ESHUTDOWN);
1249 }
1250 }
1251
1252 /* Dequeues a request packet, called by gadget driver */
1253 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1254 {
1255 struct udc_ep *ep;
1256 struct udc_request *req;
1257 unsigned halted;
1258 unsigned long iflags;
1259
1260 ep = container_of(usbep, struct udc_ep, ep);
1261 if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
1262 && ep->num != UDC_EP0OUT_IX)))
1263 return -EINVAL;
1264
1265 req = container_of(usbreq, struct udc_request, req);
1266
1267 spin_lock_irqsave(&ep->dev->lock, iflags);
1268 halted = ep->halted;
1269 ep->halted = 1;
1270 /* request in processing or next one */
1271 if (ep->queue.next == &req->queue) {
1272 if (ep->dma && req->dma_going) {
1273 if (ep->in)
1274 ep->cancel_transfer = 1;
1275 else {
1276 u32 tmp;
1277 u32 dma_sts;
1278 /* stop potential receive DMA */
1279 tmp = readl(&udc->regs->ctl);
1280 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1281 &udc->regs->ctl);
1282 /*
1283 * Cancel transfer later in ISR
1284 * if descriptor was touched.
1285 */
1286 dma_sts = AMD_GETBITS(req->td_data->status,
1287 UDC_DMA_OUT_STS_BS);
1288 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1289 ep->cancel_transfer = 1;
1290 else {
1291 udc_init_bna_dummy(ep->req);
1292 writel(ep->bna_dummy_req->td_phys,
1293 &ep->regs->desptr);
1294 }
1295 writel(tmp, &udc->regs->ctl);
1296 }
1297 }
1298 }
1299 complete_req(ep, req, -ECONNRESET);
1300 ep->halted = halted;
1301
1302 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1303 return 0;
1304 }
1305
1306 /* Halt or clear halt of endpoint */
1307 static int
1308 udc_set_halt(struct usb_ep *usbep, int halt)
1309 {
1310 struct udc_ep *ep;
1311 u32 tmp;
1312 unsigned long iflags;
1313 int retval = 0;
1314
1315 if (!usbep)
1316 return -EINVAL;
1317
1318 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1319
1320 ep = container_of(usbep, struct udc_ep, ep);
1321 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1322 return -EINVAL;
1323 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1324 return -ESHUTDOWN;
1325
1326 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1327 /* halt or clear halt */
1328 if (halt) {
1329 if (ep->num == 0)
1330 ep->dev->stall_ep0in = 1;
1331 else {
1332 /*
1333 * set STALL
1334 * rxfifo empty not taken into acount
1335 */
1336 tmp = readl(&ep->regs->ctl);
1337 tmp |= AMD_BIT(UDC_EPCTL_S);
1338 writel(tmp, &ep->regs->ctl);
1339 ep->halted = 1;
1340
1341 /* setup poll timer */
1342 if (!timer_pending(&udc_pollstall_timer)) {
1343 udc_pollstall_timer.expires = jiffies +
1344 HZ * UDC_POLLSTALL_TIMER_USECONDS
1345 / (1000 * 1000);
1346 if (!stop_pollstall_timer) {
1347 DBG(ep->dev, "start polltimer\n");
1348 add_timer(&udc_pollstall_timer);
1349 }
1350 }
1351 }
1352 } else {
1353 /* ep is halted by set_halt() before */
1354 if (ep->halted) {
1355 tmp = readl(&ep->regs->ctl);
1356 /* clear stall bit */
1357 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1358 /* clear NAK by writing CNAK */
1359 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1360 writel(tmp, &ep->regs->ctl);
1361 ep->halted = 0;
1362 UDC_QUEUE_CNAK(ep, ep->num);
1363 }
1364 }
1365 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1366 return retval;
1367 }
1368
1369 /* gadget interface */
1370 static const struct usb_ep_ops udc_ep_ops = {
1371 .enable = udc_ep_enable,
1372 .disable = udc_ep_disable,
1373
1374 .alloc_request = udc_alloc_request,
1375 .free_request = udc_free_request,
1376
1377 .queue = udc_queue,
1378 .dequeue = udc_dequeue,
1379
1380 .set_halt = udc_set_halt,
1381 /* fifo ops not implemented */
1382 };
1383
1384 /*-------------------------------------------------------------------------*/
1385
1386 /* Get frame counter (not implemented) */
1387 static int udc_get_frame(struct usb_gadget *gadget)
1388 {
1389 return -EOPNOTSUPP;
1390 }
1391
1392 /* Remote wakeup gadget interface */
1393 static int udc_wakeup(struct usb_gadget *gadget)
1394 {
1395 struct udc *dev;
1396
1397 if (!gadget)
1398 return -EINVAL;
1399 dev = container_of(gadget, struct udc, gadget);
1400 udc_remote_wakeup(dev);
1401
1402 return 0;
1403 }
1404
1405 static int amd5536_start(struct usb_gadget_driver *driver,
1406 int (*bind)(struct usb_gadget *));
1407 static int amd5536_stop(struct usb_gadget_driver *driver);
1408 /* gadget operations */
1409 static const struct usb_gadget_ops udc_ops = {
1410 .wakeup = udc_wakeup,
1411 .get_frame = udc_get_frame,
1412 .start = amd5536_start,
1413 .stop = amd5536_stop,
1414 };
1415
1416 /* Setups endpoint parameters, adds endpoints to linked list */
1417 static void make_ep_lists(struct udc *dev)
1418 {
1419 /* make gadget ep lists */
1420 INIT_LIST_HEAD(&dev->gadget.ep_list);
1421 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1422 &dev->gadget.ep_list);
1423 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1424 &dev->gadget.ep_list);
1425 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1426 &dev->gadget.ep_list);
1427
1428 /* fifo config */
1429 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1430 if (dev->gadget.speed == USB_SPEED_FULL)
1431 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1432 else if (dev->gadget.speed == USB_SPEED_HIGH)
1433 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1434 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1435 }
1436
1437 /* init registers at driver load time */
1438 static int startup_registers(struct udc *dev)
1439 {
1440 u32 tmp;
1441
1442 /* init controller by soft reset */
1443 udc_soft_reset(dev);
1444
1445 /* mask not needed interrupts */
1446 udc_mask_unused_interrupts(dev);
1447
1448 /* put into initial config */
1449 udc_basic_init(dev);
1450 /* link up all endpoints */
1451 udc_setup_endpoints(dev);
1452
1453 /* program speed */
1454 tmp = readl(&dev->regs->cfg);
1455 if (use_fullspeed)
1456 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1457 else
1458 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1459 writel(tmp, &dev->regs->cfg);
1460
1461 return 0;
1462 }
1463
1464 /* Inits UDC context */
1465 static void udc_basic_init(struct udc *dev)
1466 {
1467 u32 tmp;
1468
1469 DBG(dev, "udc_basic_init()\n");
1470
1471 dev->gadget.speed = USB_SPEED_UNKNOWN;
1472
1473 /* stop RDE timer */
1474 if (timer_pending(&udc_timer)) {
1475 set_rde = 0;
1476 mod_timer(&udc_timer, jiffies - 1);
1477 }
1478 /* stop poll stall timer */
1479 if (timer_pending(&udc_pollstall_timer))
1480 mod_timer(&udc_pollstall_timer, jiffies - 1);
1481 /* disable DMA */
1482 tmp = readl(&dev->regs->ctl);
1483 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1484 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1485 writel(tmp, &dev->regs->ctl);
1486
1487 /* enable dynamic CSR programming */
1488 tmp = readl(&dev->regs->cfg);
1489 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1490 /* set self powered */
1491 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1492 /* set remote wakeupable */
1493 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1494 writel(tmp, &dev->regs->cfg);
1495
1496 make_ep_lists(dev);
1497
1498 dev->data_ep_enabled = 0;
1499 dev->data_ep_queued = 0;
1500 }
1501
1502 /* Sets initial endpoint parameters */
1503 static void udc_setup_endpoints(struct udc *dev)
1504 {
1505 struct udc_ep *ep;
1506 u32 tmp;
1507 u32 reg;
1508
1509 DBG(dev, "udc_setup_endpoints()\n");
1510
1511 /* read enum speed */
1512 tmp = readl(&dev->regs->sts);
1513 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1514 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1515 dev->gadget.speed = USB_SPEED_HIGH;
1516 else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1517 dev->gadget.speed = USB_SPEED_FULL;
1518
1519 /* set basic ep parameters */
1520 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1521 ep = &dev->ep[tmp];
1522 ep->dev = dev;
1523 ep->ep.name = ep_string[tmp];
1524 ep->num = tmp;
1525 /* txfifo size is calculated at enable time */
1526 ep->txfifo = dev->txfifo;
1527
1528 /* fifo size */
1529 if (tmp < UDC_EPIN_NUM) {
1530 ep->fifo_depth = UDC_TXFIFO_SIZE;
1531 ep->in = 1;
1532 } else {
1533 ep->fifo_depth = UDC_RXFIFO_SIZE;
1534 ep->in = 0;
1535
1536 }
1537 ep->regs = &dev->ep_regs[tmp];
1538 /*
1539 * ep will be reset only if ep was not enabled before to avoid
1540 * disabling ep interrupts when ENUM interrupt occurs but ep is
1541 * not enabled by gadget driver
1542 */
1543 if (!ep->desc)
1544 ep_init(dev->regs, ep);
1545
1546 if (use_dma) {
1547 /*
1548 * ep->dma is not really used, just to indicate that
1549 * DMA is active: remove this
1550 * dma regs = dev control regs
1551 */
1552 ep->dma = &dev->regs->ctl;
1553
1554 /* nak OUT endpoints until enable - not for ep0 */
1555 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1556 && tmp > UDC_EPIN_NUM) {
1557 /* set NAK */
1558 reg = readl(&dev->ep[tmp].regs->ctl);
1559 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1560 writel(reg, &dev->ep[tmp].regs->ctl);
1561 dev->ep[tmp].naking = 1;
1562
1563 }
1564 }
1565 }
1566 /* EP0 max packet */
1567 if (dev->gadget.speed == USB_SPEED_FULL) {
1568 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1569 dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1570 UDC_FS_EP0OUT_MAX_PKT_SIZE;
1571 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1572 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1573 dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1574 }
1575
1576 /*
1577 * with suspend bug workaround, ep0 params for gadget driver
1578 * are set at gadget driver bind() call
1579 */
1580 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1581 dev->ep[UDC_EP0IN_IX].halted = 0;
1582 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1583
1584 /* init cfg/alt/int */
1585 dev->cur_config = 0;
1586 dev->cur_intf = 0;
1587 dev->cur_alt = 0;
1588 }
1589
1590 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1591 static void usb_connect(struct udc *dev)
1592 {
1593
1594 dev_info(&dev->pdev->dev, "USB Connect\n");
1595
1596 dev->connected = 1;
1597
1598 /* put into initial config */
1599 udc_basic_init(dev);
1600
1601 /* enable device setup interrupts */
1602 udc_enable_dev_setup_interrupts(dev);
1603 }
1604
1605 /*
1606 * Calls gadget with disconnect event and resets the UDC and makes
1607 * initial bringup to be ready for ep0 events
1608 */
1609 static void usb_disconnect(struct udc *dev)
1610 {
1611
1612 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1613
1614 dev->connected = 0;
1615
1616 /* mask interrupts */
1617 udc_mask_unused_interrupts(dev);
1618
1619 /* REVISIT there doesn't seem to be a point to having this
1620 * talk to a tasklet ... do it directly, we already hold
1621 * the spinlock needed to process the disconnect.
1622 */
1623
1624 tasklet_schedule(&disconnect_tasklet);
1625 }
1626
1627 /* Tasklet for disconnect to be outside of interrupt context */
1628 static void udc_tasklet_disconnect(unsigned long par)
1629 {
1630 struct udc *dev = (struct udc *)(*((struct udc **) par));
1631 u32 tmp;
1632
1633 DBG(dev, "Tasklet disconnect\n");
1634 spin_lock_irq(&dev->lock);
1635
1636 if (dev->driver) {
1637 spin_unlock(&dev->lock);
1638 dev->driver->disconnect(&dev->gadget);
1639 spin_lock(&dev->lock);
1640
1641 /* empty queues */
1642 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1643 empty_req_queue(&dev->ep[tmp]);
1644
1645 }
1646
1647 /* disable ep0 */
1648 ep_init(dev->regs,
1649 &dev->ep[UDC_EP0IN_IX]);
1650
1651
1652 if (!soft_reset_occured) {
1653 /* init controller by soft reset */
1654 udc_soft_reset(dev);
1655 soft_reset_occured++;
1656 }
1657
1658 /* re-enable dev interrupts */
1659 udc_enable_dev_setup_interrupts(dev);
1660 /* back to full speed ? */
1661 if (use_fullspeed) {
1662 tmp = readl(&dev->regs->cfg);
1663 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1664 writel(tmp, &dev->regs->cfg);
1665 }
1666
1667 spin_unlock_irq(&dev->lock);
1668 }
1669
1670 /* Reset the UDC core */
1671 static void udc_soft_reset(struct udc *dev)
1672 {
1673 unsigned long flags;
1674
1675 DBG(dev, "Soft reset\n");
1676 /*
1677 * reset possible waiting interrupts, because int.
1678 * status is lost after soft reset,
1679 * ep int. status reset
1680 */
1681 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1682 /* device int. status reset */
1683 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1684
1685 spin_lock_irqsave(&udc_irq_spinlock, flags);
1686 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1687 readl(&dev->regs->cfg);
1688 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1689
1690 }
1691
1692 /* RDE timer callback to set RDE bit */
1693 static void udc_timer_function(unsigned long v)
1694 {
1695 u32 tmp;
1696
1697 spin_lock_irq(&udc_irq_spinlock);
1698
1699 if (set_rde > 0) {
1700 /*
1701 * open the fifo if fifo was filled on last timer call
1702 * conditionally
1703 */
1704 if (set_rde > 1) {
1705 /* set RDE to receive setup data */
1706 tmp = readl(&udc->regs->ctl);
1707 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1708 writel(tmp, &udc->regs->ctl);
1709 set_rde = -1;
1710 } else if (readl(&udc->regs->sts)
1711 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1712 /*
1713 * if fifo empty setup polling, do not just
1714 * open the fifo
1715 */
1716 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1717 if (!stop_timer)
1718 add_timer(&udc_timer);
1719 } else {
1720 /*
1721 * fifo contains data now, setup timer for opening
1722 * the fifo when timer expires to be able to receive
1723 * setup packets, when data packets gets queued by
1724 * gadget layer then timer will forced to expire with
1725 * set_rde=0 (RDE is set in udc_queue())
1726 */
1727 set_rde++;
1728 /* debug: lhadmot_timer_start = 221070 */
1729 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1730 if (!stop_timer)
1731 add_timer(&udc_timer);
1732 }
1733
1734 } else
1735 set_rde = -1; /* RDE was set by udc_queue() */
1736 spin_unlock_irq(&udc_irq_spinlock);
1737 if (stop_timer)
1738 complete(&on_exit);
1739
1740 }
1741
1742 /* Handle halt state, used in stall poll timer */
1743 static void udc_handle_halt_state(struct udc_ep *ep)
1744 {
1745 u32 tmp;
1746 /* set stall as long not halted */
1747 if (ep->halted == 1) {
1748 tmp = readl(&ep->regs->ctl);
1749 /* STALL cleared ? */
1750 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1751 /*
1752 * FIXME: MSC spec requires that stall remains
1753 * even on receivng of CLEAR_FEATURE HALT. So
1754 * we would set STALL again here to be compliant.
1755 * But with current mass storage drivers this does
1756 * not work (would produce endless host retries).
1757 * So we clear halt on CLEAR_FEATURE.
1758 *
1759 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1760 tmp |= AMD_BIT(UDC_EPCTL_S);
1761 writel(tmp, &ep->regs->ctl);*/
1762
1763 /* clear NAK by writing CNAK */
1764 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1765 writel(tmp, &ep->regs->ctl);
1766 ep->halted = 0;
1767 UDC_QUEUE_CNAK(ep, ep->num);
1768 }
1769 }
1770 }
1771
1772 /* Stall timer callback to poll S bit and set it again after */
1773 static void udc_pollstall_timer_function(unsigned long v)
1774 {
1775 struct udc_ep *ep;
1776 int halted = 0;
1777
1778 spin_lock_irq(&udc_stall_spinlock);
1779 /*
1780 * only one IN and OUT endpoints are handled
1781 * IN poll stall
1782 */
1783 ep = &udc->ep[UDC_EPIN_IX];
1784 udc_handle_halt_state(ep);
1785 if (ep->halted)
1786 halted = 1;
1787 /* OUT poll stall */
1788 ep = &udc->ep[UDC_EPOUT_IX];
1789 udc_handle_halt_state(ep);
1790 if (ep->halted)
1791 halted = 1;
1792
1793 /* setup timer again when still halted */
1794 if (!stop_pollstall_timer && halted) {
1795 udc_pollstall_timer.expires = jiffies +
1796 HZ * UDC_POLLSTALL_TIMER_USECONDS
1797 / (1000 * 1000);
1798 add_timer(&udc_pollstall_timer);
1799 }
1800 spin_unlock_irq(&udc_stall_spinlock);
1801
1802 if (stop_pollstall_timer)
1803 complete(&on_pollstall_exit);
1804 }
1805
1806 /* Inits endpoint 0 so that SETUP packets are processed */
1807 static void activate_control_endpoints(struct udc *dev)
1808 {
1809 u32 tmp;
1810
1811 DBG(dev, "activate_control_endpoints\n");
1812
1813 /* flush fifo */
1814 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1815 tmp |= AMD_BIT(UDC_EPCTL_F);
1816 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1817
1818 /* set ep0 directions */
1819 dev->ep[UDC_EP0IN_IX].in = 1;
1820 dev->ep[UDC_EP0OUT_IX].in = 0;
1821
1822 /* set buffer size (tx fifo entries) of EP0_IN */
1823 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1824 if (dev->gadget.speed == USB_SPEED_FULL)
1825 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1826 UDC_EPIN_BUFF_SIZE);
1827 else if (dev->gadget.speed == USB_SPEED_HIGH)
1828 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1829 UDC_EPIN_BUFF_SIZE);
1830 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1831
1832 /* set max packet size of EP0_IN */
1833 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1834 if (dev->gadget.speed == USB_SPEED_FULL)
1835 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1836 UDC_EP_MAX_PKT_SIZE);
1837 else if (dev->gadget.speed == USB_SPEED_HIGH)
1838 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1839 UDC_EP_MAX_PKT_SIZE);
1840 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1841
1842 /* set max packet size of EP0_OUT */
1843 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1844 if (dev->gadget.speed == USB_SPEED_FULL)
1845 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1846 UDC_EP_MAX_PKT_SIZE);
1847 else if (dev->gadget.speed == USB_SPEED_HIGH)
1848 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1849 UDC_EP_MAX_PKT_SIZE);
1850 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1851
1852 /* set max packet size of EP0 in UDC CSR */
1853 tmp = readl(&dev->csr->ne[0]);
1854 if (dev->gadget.speed == USB_SPEED_FULL)
1855 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1856 UDC_CSR_NE_MAX_PKT);
1857 else if (dev->gadget.speed == USB_SPEED_HIGH)
1858 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1859 UDC_CSR_NE_MAX_PKT);
1860 writel(tmp, &dev->csr->ne[0]);
1861
1862 if (use_dma) {
1863 dev->ep[UDC_EP0OUT_IX].td->status |=
1864 AMD_BIT(UDC_DMA_OUT_STS_L);
1865 /* write dma desc address */
1866 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1867 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1868 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1869 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1870 /* stop RDE timer */
1871 if (timer_pending(&udc_timer)) {
1872 set_rde = 0;
1873 mod_timer(&udc_timer, jiffies - 1);
1874 }
1875 /* stop pollstall timer */
1876 if (timer_pending(&udc_pollstall_timer))
1877 mod_timer(&udc_pollstall_timer, jiffies - 1);
1878 /* enable DMA */
1879 tmp = readl(&dev->regs->ctl);
1880 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1881 | AMD_BIT(UDC_DEVCTL_RDE)
1882 | AMD_BIT(UDC_DEVCTL_TDE);
1883 if (use_dma_bufferfill_mode)
1884 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1885 else if (use_dma_ppb_du)
1886 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1887 writel(tmp, &dev->regs->ctl);
1888 }
1889
1890 /* clear NAK by writing CNAK for EP0IN */
1891 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1892 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1893 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1894 dev->ep[UDC_EP0IN_IX].naking = 0;
1895 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1896
1897 /* clear NAK by writing CNAK for EP0OUT */
1898 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1899 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1900 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1901 dev->ep[UDC_EP0OUT_IX].naking = 0;
1902 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1903 }
1904
1905 /* Make endpoint 0 ready for control traffic */
1906 static int setup_ep0(struct udc *dev)
1907 {
1908 activate_control_endpoints(dev);
1909 /* enable ep0 interrupts */
1910 udc_enable_ep0_interrupts(dev);
1911 /* enable device setup interrupts */
1912 udc_enable_dev_setup_interrupts(dev);
1913
1914 return 0;
1915 }
1916
1917 /* Called by gadget driver to register itself */
1918 static int amd5536_start(struct usb_gadget_driver *driver,
1919 int (*bind)(struct usb_gadget *))
1920 {
1921 struct udc *dev = udc;
1922 int retval;
1923 u32 tmp;
1924
1925 if (!driver || !bind || !driver->setup
1926 || driver->max_speed < USB_SPEED_HIGH)
1927 return -EINVAL;
1928 if (!dev)
1929 return -ENODEV;
1930 if (dev->driver)
1931 return -EBUSY;
1932
1933 driver->driver.bus = NULL;
1934 dev->driver = driver;
1935 dev->gadget.dev.driver = &driver->driver;
1936
1937 retval = bind(&dev->gadget);
1938
1939 /* Some gadget drivers use both ep0 directions.
1940 * NOTE: to gadget driver, ep0 is just one endpoint...
1941 */
1942 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1943 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1944
1945 if (retval) {
1946 DBG(dev, "binding to %s returning %d\n",
1947 driver->driver.name, retval);
1948 dev->driver = NULL;
1949 dev->gadget.dev.driver = NULL;
1950 return retval;
1951 }
1952
1953 /* get ready for ep0 traffic */
1954 setup_ep0(dev);
1955
1956 /* clear SD */
1957 tmp = readl(&dev->regs->ctl);
1958 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1959 writel(tmp, &dev->regs->ctl);
1960
1961 usb_connect(dev);
1962
1963 return 0;
1964 }
1965
1966 /* shutdown requests and disconnect from gadget */
1967 static void
1968 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1969 __releases(dev->lock)
1970 __acquires(dev->lock)
1971 {
1972 int tmp;
1973
1974 if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
1975 spin_unlock(&dev->lock);
1976 driver->disconnect(&dev->gadget);
1977 spin_lock(&dev->lock);
1978 }
1979
1980 /* empty queues and init hardware */
1981 udc_basic_init(dev);
1982 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1983 empty_req_queue(&dev->ep[tmp]);
1984
1985 udc_setup_endpoints(dev);
1986 }
1987
1988 /* Called by gadget driver to unregister itself */
1989 static int amd5536_stop(struct usb_gadget_driver *driver)
1990 {
1991 struct udc *dev = udc;
1992 unsigned long flags;
1993 u32 tmp;
1994
1995 if (!dev)
1996 return -ENODEV;
1997 if (!driver || driver != dev->driver || !driver->unbind)
1998 return -EINVAL;
1999
2000 spin_lock_irqsave(&dev->lock, flags);
2001 udc_mask_unused_interrupts(dev);
2002 shutdown(dev, driver);
2003 spin_unlock_irqrestore(&dev->lock, flags);
2004
2005 driver->unbind(&dev->gadget);
2006 dev->gadget.dev.driver = NULL;
2007 dev->driver = NULL;
2008
2009 /* set SD */
2010 tmp = readl(&dev->regs->ctl);
2011 tmp |= AMD_BIT(UDC_DEVCTL_SD);
2012 writel(tmp, &dev->regs->ctl);
2013
2014
2015 DBG(dev, "%s: unregistered\n", driver->driver.name);
2016
2017 return 0;
2018 }
2019
2020 /* Clear pending NAK bits */
2021 static void udc_process_cnak_queue(struct udc *dev)
2022 {
2023 u32 tmp;
2024 u32 reg;
2025
2026 /* check epin's */
2027 DBG(dev, "CNAK pending queue processing\n");
2028 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2029 if (cnak_pending & (1 << tmp)) {
2030 DBG(dev, "CNAK pending for ep%d\n", tmp);
2031 /* clear NAK by writing CNAK */
2032 reg = readl(&dev->ep[tmp].regs->ctl);
2033 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2034 writel(reg, &dev->ep[tmp].regs->ctl);
2035 dev->ep[tmp].naking = 0;
2036 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2037 }
2038 }
2039 /* ... and ep0out */
2040 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2041 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2042 /* clear NAK by writing CNAK */
2043 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2044 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2045 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2046 dev->ep[UDC_EP0OUT_IX].naking = 0;
2047 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2048 dev->ep[UDC_EP0OUT_IX].num);
2049 }
2050 }
2051
2052 /* Enabling RX DMA after setup packet */
2053 static void udc_ep0_set_rde(struct udc *dev)
2054 {
2055 if (use_dma) {
2056 /*
2057 * only enable RXDMA when no data endpoint enabled
2058 * or data is queued
2059 */
2060 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2061 udc_set_rde(dev);
2062 } else {
2063 /*
2064 * setup timer for enabling RDE (to not enable
2065 * RXFIFO DMA for data endpoints to early)
2066 */
2067 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2068 udc_timer.expires =
2069 jiffies + HZ/UDC_RDE_TIMER_DIV;
2070 set_rde = 1;
2071 if (!stop_timer)
2072 add_timer(&udc_timer);
2073 }
2074 }
2075 }
2076 }
2077
2078
2079 /* Interrupt handler for data OUT traffic */
2080 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2081 {
2082 irqreturn_t ret_val = IRQ_NONE;
2083 u32 tmp;
2084 struct udc_ep *ep;
2085 struct udc_request *req;
2086 unsigned int count;
2087 struct udc_data_dma *td = NULL;
2088 unsigned dma_done;
2089
2090 VDBG(dev, "ep%d irq\n", ep_ix);
2091 ep = &dev->ep[ep_ix];
2092
2093 tmp = readl(&ep->regs->sts);
2094 if (use_dma) {
2095 /* BNA event ? */
2096 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2097 DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2098 ep->num, readl(&ep->regs->desptr));
2099 /* clear BNA */
2100 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2101 if (!ep->cancel_transfer)
2102 ep->bna_occurred = 1;
2103 else
2104 ep->cancel_transfer = 0;
2105 ret_val = IRQ_HANDLED;
2106 goto finished;
2107 }
2108 }
2109 /* HE event ? */
2110 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2111 dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
2112
2113 /* clear HE */
2114 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2115 ret_val = IRQ_HANDLED;
2116 goto finished;
2117 }
2118
2119 if (!list_empty(&ep->queue)) {
2120
2121 /* next request */
2122 req = list_entry(ep->queue.next,
2123 struct udc_request, queue);
2124 } else {
2125 req = NULL;
2126 udc_rxfifo_pending = 1;
2127 }
2128 VDBG(dev, "req = %p\n", req);
2129 /* fifo mode */
2130 if (!use_dma) {
2131
2132 /* read fifo */
2133 if (req && udc_rxfifo_read(ep, req)) {
2134 ret_val = IRQ_HANDLED;
2135
2136 /* finish */
2137 complete_req(ep, req, 0);
2138 /* next request */
2139 if (!list_empty(&ep->queue) && !ep->halted) {
2140 req = list_entry(ep->queue.next,
2141 struct udc_request, queue);
2142 } else
2143 req = NULL;
2144 }
2145
2146 /* DMA */
2147 } else if (!ep->cancel_transfer && req != NULL) {
2148 ret_val = IRQ_HANDLED;
2149
2150 /* check for DMA done */
2151 if (!use_dma_ppb) {
2152 dma_done = AMD_GETBITS(req->td_data->status,
2153 UDC_DMA_OUT_STS_BS);
2154 /* packet per buffer mode - rx bytes */
2155 } else {
2156 /*
2157 * if BNA occurred then recover desc. from
2158 * BNA dummy desc.
2159 */
2160 if (ep->bna_occurred) {
2161 VDBG(dev, "Recover desc. from BNA dummy\n");
2162 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2163 sizeof(struct udc_data_dma));
2164 ep->bna_occurred = 0;
2165 udc_init_bna_dummy(ep->req);
2166 }
2167 td = udc_get_last_dma_desc(req);
2168 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2169 }
2170 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2171 /* buffer fill mode - rx bytes */
2172 if (!use_dma_ppb) {
2173 /* received number bytes */
2174 count = AMD_GETBITS(req->td_data->status,
2175 UDC_DMA_OUT_STS_RXBYTES);
2176 VDBG(dev, "rx bytes=%u\n", count);
2177 /* packet per buffer mode - rx bytes */
2178 } else {
2179 VDBG(dev, "req->td_data=%p\n", req->td_data);
2180 VDBG(dev, "last desc = %p\n", td);
2181 /* received number bytes */
2182 if (use_dma_ppb_du) {
2183 /* every desc. counts bytes */
2184 count = udc_get_ppbdu_rxbytes(req);
2185 } else {
2186 /* last desc. counts bytes */
2187 count = AMD_GETBITS(td->status,
2188 UDC_DMA_OUT_STS_RXBYTES);
2189 if (!count && req->req.length
2190 == UDC_DMA_MAXPACKET) {
2191 /*
2192 * on 64k packets the RXBYTES
2193 * field is zero
2194 */
2195 count = UDC_DMA_MAXPACKET;
2196 }
2197 }
2198 VDBG(dev, "last desc rx bytes=%u\n", count);
2199 }
2200
2201 tmp = req->req.length - req->req.actual;
2202 if (count > tmp) {
2203 if ((tmp % ep->ep.maxpacket) != 0) {
2204 DBG(dev, "%s: rx %db, space=%db\n",
2205 ep->ep.name, count, tmp);
2206 req->req.status = -EOVERFLOW;
2207 }
2208 count = tmp;
2209 }
2210 req->req.actual += count;
2211 req->dma_going = 0;
2212 /* complete request */
2213 complete_req(ep, req, 0);
2214
2215 /* next request */
2216 if (!list_empty(&ep->queue) && !ep->halted) {
2217 req = list_entry(ep->queue.next,
2218 struct udc_request,
2219 queue);
2220 /*
2221 * DMA may be already started by udc_queue()
2222 * called by gadget drivers completion
2223 * routine. This happens when queue
2224 * holds one request only.
2225 */
2226 if (req->dma_going == 0) {
2227 /* next dma */
2228 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2229 goto finished;
2230 /* write desc pointer */
2231 writel(req->td_phys,
2232 &ep->regs->desptr);
2233 req->dma_going = 1;
2234 /* enable DMA */
2235 udc_set_rde(dev);
2236 }
2237 } else {
2238 /*
2239 * implant BNA dummy descriptor to allow
2240 * RXFIFO opening by RDE
2241 */
2242 if (ep->bna_dummy_req) {
2243 /* write desc pointer */
2244 writel(ep->bna_dummy_req->td_phys,
2245 &ep->regs->desptr);
2246 ep->bna_occurred = 0;
2247 }
2248
2249 /*
2250 * schedule timer for setting RDE if queue
2251 * remains empty to allow ep0 packets pass
2252 * through
2253 */
2254 if (set_rde != 0
2255 && !timer_pending(&udc_timer)) {
2256 udc_timer.expires =
2257 jiffies
2258 + HZ*UDC_RDE_TIMER_SECONDS;
2259 set_rde = 1;
2260 if (!stop_timer)
2261 add_timer(&udc_timer);
2262 }
2263 if (ep->num != UDC_EP0OUT_IX)
2264 dev->data_ep_queued = 0;
2265 }
2266
2267 } else {
2268 /*
2269 * RX DMA must be reenabled for each desc in PPBDU mode
2270 * and must be enabled for PPBNDU mode in case of BNA
2271 */
2272 udc_set_rde(dev);
2273 }
2274
2275 } else if (ep->cancel_transfer) {
2276 ret_val = IRQ_HANDLED;
2277 ep->cancel_transfer = 0;
2278 }
2279
2280 /* check pending CNAKS */
2281 if (cnak_pending) {
2282 /* CNAk processing when rxfifo empty only */
2283 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2284 udc_process_cnak_queue(dev);
2285 }
2286
2287 /* clear OUT bits in ep status */
2288 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2289 finished:
2290 return ret_val;
2291 }
2292
2293 /* Interrupt handler for data IN traffic */
2294 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2295 {
2296 irqreturn_t ret_val = IRQ_NONE;
2297 u32 tmp;
2298 u32 epsts;
2299 struct udc_ep *ep;
2300 struct udc_request *req;
2301 struct udc_data_dma *td;
2302 unsigned dma_done;
2303 unsigned len;
2304
2305 ep = &dev->ep[ep_ix];
2306
2307 epsts = readl(&ep->regs->sts);
2308 if (use_dma) {
2309 /* BNA ? */
2310 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2311 dev_err(&dev->pdev->dev,
2312 "BNA ep%din occurred - DESPTR = %08lx\n",
2313 ep->num,
2314 (unsigned long) readl(&ep->regs->desptr));
2315
2316 /* clear BNA */
2317 writel(epsts, &ep->regs->sts);
2318 ret_val = IRQ_HANDLED;
2319 goto finished;
2320 }
2321 }
2322 /* HE event ? */
2323 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2324 dev_err(&dev->pdev->dev,
2325 "HE ep%dn occurred - DESPTR = %08lx\n",
2326 ep->num, (unsigned long) readl(&ep->regs->desptr));
2327
2328 /* clear HE */
2329 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2330 ret_val = IRQ_HANDLED;
2331 goto finished;
2332 }
2333
2334 /* DMA completion */
2335 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2336 VDBG(dev, "TDC set- completion\n");
2337 ret_val = IRQ_HANDLED;
2338 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2339 req = list_entry(ep->queue.next,
2340 struct udc_request, queue);
2341 /*
2342 * length bytes transferred
2343 * check dma done of last desc. in PPBDU mode
2344 */
2345 if (use_dma_ppb_du) {
2346 td = udc_get_last_dma_desc(req);
2347 if (td) {
2348 dma_done =
2349 AMD_GETBITS(td->status,
2350 UDC_DMA_IN_STS_BS);
2351 /* don't care DMA done */
2352 req->req.actual = req->req.length;
2353 }
2354 } else {
2355 /* assume all bytes transferred */
2356 req->req.actual = req->req.length;
2357 }
2358
2359 if (req->req.actual == req->req.length) {
2360 /* complete req */
2361 complete_req(ep, req, 0);
2362 req->dma_going = 0;
2363 /* further request available ? */
2364 if (list_empty(&ep->queue)) {
2365 /* disable interrupt */
2366 tmp = readl(&dev->regs->ep_irqmsk);
2367 tmp |= AMD_BIT(ep->num);
2368 writel(tmp, &dev->regs->ep_irqmsk);
2369 }
2370 }
2371 }
2372 ep->cancel_transfer = 0;
2373
2374 }
2375 /*
2376 * status reg has IN bit set and TDC not set (if TDC was handled,
2377 * IN must not be handled (UDC defect) ?
2378 */
2379 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2380 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2381 ret_val = IRQ_HANDLED;
2382 if (!list_empty(&ep->queue)) {
2383 /* next request */
2384 req = list_entry(ep->queue.next,
2385 struct udc_request, queue);
2386 /* FIFO mode */
2387 if (!use_dma) {
2388 /* write fifo */
2389 udc_txfifo_write(ep, &req->req);
2390 len = req->req.length - req->req.actual;
2391 if (len > ep->ep.maxpacket)
2392 len = ep->ep.maxpacket;
2393 req->req.actual += len;
2394 if (req->req.actual == req->req.length
2395 || (len != ep->ep.maxpacket)) {
2396 /* complete req */
2397 complete_req(ep, req, 0);
2398 }
2399 /* DMA */
2400 } else if (req && !req->dma_going) {
2401 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2402 req, req->td_data);
2403 if (req->td_data) {
2404
2405 req->dma_going = 1;
2406
2407 /*
2408 * unset L bit of first desc.
2409 * for chain
2410 */
2411 if (use_dma_ppb && req->req.length >
2412 ep->ep.maxpacket) {
2413 req->td_data->status &=
2414 AMD_CLEAR_BIT(
2415 UDC_DMA_IN_STS_L);
2416 }
2417
2418 /* write desc pointer */
2419 writel(req->td_phys, &ep->regs->desptr);
2420
2421 /* set HOST READY */
2422 req->td_data->status =
2423 AMD_ADDBITS(
2424 req->td_data->status,
2425 UDC_DMA_IN_STS_BS_HOST_READY,
2426 UDC_DMA_IN_STS_BS);
2427
2428 /* set poll demand bit */
2429 tmp = readl(&ep->regs->ctl);
2430 tmp |= AMD_BIT(UDC_EPCTL_P);
2431 writel(tmp, &ep->regs->ctl);
2432 }
2433 }
2434
2435 } else if (!use_dma && ep->in) {
2436 /* disable interrupt */
2437 tmp = readl(
2438 &dev->regs->ep_irqmsk);
2439 tmp |= AMD_BIT(ep->num);
2440 writel(tmp,
2441 &dev->regs->ep_irqmsk);
2442 }
2443 }
2444 /* clear status bits */
2445 writel(epsts, &ep->regs->sts);
2446
2447 finished:
2448 return ret_val;
2449
2450 }
2451
2452 /* Interrupt handler for Control OUT traffic */
2453 static irqreturn_t udc_control_out_isr(struct udc *dev)
2454 __releases(dev->lock)
2455 __acquires(dev->lock)
2456 {
2457 irqreturn_t ret_val = IRQ_NONE;
2458 u32 tmp;
2459 int setup_supported;
2460 u32 count;
2461 int set = 0;
2462 struct udc_ep *ep;
2463 struct udc_ep *ep_tmp;
2464
2465 ep = &dev->ep[UDC_EP0OUT_IX];
2466
2467 /* clear irq */
2468 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2469
2470 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2471 /* check BNA and clear if set */
2472 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2473 VDBG(dev, "ep0: BNA set\n");
2474 writel(AMD_BIT(UDC_EPSTS_BNA),
2475 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2476 ep->bna_occurred = 1;
2477 ret_val = IRQ_HANDLED;
2478 goto finished;
2479 }
2480
2481 /* type of data: SETUP or DATA 0 bytes */
2482 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2483 VDBG(dev, "data_typ = %x\n", tmp);
2484
2485 /* setup data */
2486 if (tmp == UDC_EPSTS_OUT_SETUP) {
2487 ret_val = IRQ_HANDLED;
2488
2489 ep->dev->stall_ep0in = 0;
2490 dev->waiting_zlp_ack_ep0in = 0;
2491
2492 /* set NAK for EP0_IN */
2493 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2494 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2495 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2496 dev->ep[UDC_EP0IN_IX].naking = 1;
2497 /* get setup data */
2498 if (use_dma) {
2499
2500 /* clear OUT bits in ep status */
2501 writel(UDC_EPSTS_OUT_CLEAR,
2502 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2503
2504 setup_data.data[0] =
2505 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2506 setup_data.data[1] =
2507 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2508 /* set HOST READY */
2509 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2510 UDC_DMA_STP_STS_BS_HOST_READY;
2511 } else {
2512 /* read fifo */
2513 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2514 }
2515
2516 /* determine direction of control data */
2517 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2518 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2519 /* enable RDE */
2520 udc_ep0_set_rde(dev);
2521 set = 0;
2522 } else {
2523 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2524 /*
2525 * implant BNA dummy descriptor to allow RXFIFO opening
2526 * by RDE
2527 */
2528 if (ep->bna_dummy_req) {
2529 /* write desc pointer */
2530 writel(ep->bna_dummy_req->td_phys,
2531 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2532 ep->bna_occurred = 0;
2533 }
2534
2535 set = 1;
2536 dev->ep[UDC_EP0OUT_IX].naking = 1;
2537 /*
2538 * setup timer for enabling RDE (to not enable
2539 * RXFIFO DMA for data to early)
2540 */
2541 set_rde = 1;
2542 if (!timer_pending(&udc_timer)) {
2543 udc_timer.expires = jiffies +
2544 HZ/UDC_RDE_TIMER_DIV;
2545 if (!stop_timer)
2546 add_timer(&udc_timer);
2547 }
2548 }
2549
2550 /*
2551 * mass storage reset must be processed here because
2552 * next packet may be a CLEAR_FEATURE HALT which would not
2553 * clear the stall bit when no STALL handshake was received
2554 * before (autostall can cause this)
2555 */
2556 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2557 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2558 DBG(dev, "MSC Reset\n");
2559 /*
2560 * clear stall bits
2561 * only one IN and OUT endpoints are handled
2562 */
2563 ep_tmp = &udc->ep[UDC_EPIN_IX];
2564 udc_set_halt(&ep_tmp->ep, 0);
2565 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2566 udc_set_halt(&ep_tmp->ep, 0);
2567 }
2568
2569 /* call gadget with setup data received */
2570 spin_unlock(&dev->lock);
2571 setup_supported = dev->driver->setup(&dev->gadget,
2572 &setup_data.request);
2573 spin_lock(&dev->lock);
2574
2575 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2576 /* ep0 in returns data (not zlp) on IN phase */
2577 if (setup_supported >= 0 && setup_supported <
2578 UDC_EP0IN_MAXPACKET) {
2579 /* clear NAK by writing CNAK in EP0_IN */
2580 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2581 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2582 dev->ep[UDC_EP0IN_IX].naking = 0;
2583 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2584
2585 /* if unsupported request then stall */
2586 } else if (setup_supported < 0) {
2587 tmp |= AMD_BIT(UDC_EPCTL_S);
2588 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2589 } else
2590 dev->waiting_zlp_ack_ep0in = 1;
2591
2592
2593 /* clear NAK by writing CNAK in EP0_OUT */
2594 if (!set) {
2595 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2596 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2597 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2598 dev->ep[UDC_EP0OUT_IX].naking = 0;
2599 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2600 }
2601
2602 if (!use_dma) {
2603 /* clear OUT bits in ep status */
2604 writel(UDC_EPSTS_OUT_CLEAR,
2605 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2606 }
2607
2608 /* data packet 0 bytes */
2609 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2610 /* clear OUT bits in ep status */
2611 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2612
2613 /* get setup data: only 0 packet */
2614 if (use_dma) {
2615 /* no req if 0 packet, just reactivate */
2616 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2617 VDBG(dev, "ZLP\n");
2618
2619 /* set HOST READY */
2620 dev->ep[UDC_EP0OUT_IX].td->status =
2621 AMD_ADDBITS(
2622 dev->ep[UDC_EP0OUT_IX].td->status,
2623 UDC_DMA_OUT_STS_BS_HOST_READY,
2624 UDC_DMA_OUT_STS_BS);
2625 /* enable RDE */
2626 udc_ep0_set_rde(dev);
2627 ret_val = IRQ_HANDLED;
2628
2629 } else {
2630 /* control write */
2631 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2632 /* re-program desc. pointer for possible ZLPs */
2633 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2634 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2635 /* enable RDE */
2636 udc_ep0_set_rde(dev);
2637 }
2638 } else {
2639
2640 /* received number bytes */
2641 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2642 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2643 /* out data for fifo mode not working */
2644 count = 0;
2645
2646 /* 0 packet or real data ? */
2647 if (count != 0) {
2648 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2649 } else {
2650 /* dummy read confirm */
2651 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2652 ret_val = IRQ_HANDLED;
2653 }
2654 }
2655 }
2656
2657 /* check pending CNAKS */
2658 if (cnak_pending) {
2659 /* CNAk processing when rxfifo empty only */
2660 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2661 udc_process_cnak_queue(dev);
2662 }
2663
2664 finished:
2665 return ret_val;
2666 }
2667
2668 /* Interrupt handler for Control IN traffic */
2669 static irqreturn_t udc_control_in_isr(struct udc *dev)
2670 {
2671 irqreturn_t ret_val = IRQ_NONE;
2672 u32 tmp;
2673 struct udc_ep *ep;
2674 struct udc_request *req;
2675 unsigned len;
2676
2677 ep = &dev->ep[UDC_EP0IN_IX];
2678
2679 /* clear irq */
2680 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2681
2682 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2683 /* DMA completion */
2684 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2685 VDBG(dev, "isr: TDC clear\n");
2686 ret_val = IRQ_HANDLED;
2687
2688 /* clear TDC bit */
2689 writel(AMD_BIT(UDC_EPSTS_TDC),
2690 &dev->ep[UDC_EP0IN_IX].regs->sts);
2691
2692 /* status reg has IN bit set ? */
2693 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2694 ret_val = IRQ_HANDLED;
2695
2696 if (ep->dma) {
2697 /* clear IN bit */
2698 writel(AMD_BIT(UDC_EPSTS_IN),
2699 &dev->ep[UDC_EP0IN_IX].regs->sts);
2700 }
2701 if (dev->stall_ep0in) {
2702 DBG(dev, "stall ep0in\n");
2703 /* halt ep0in */
2704 tmp = readl(&ep->regs->ctl);
2705 tmp |= AMD_BIT(UDC_EPCTL_S);
2706 writel(tmp, &ep->regs->ctl);
2707 } else {
2708 if (!list_empty(&ep->queue)) {
2709 /* next request */
2710 req = list_entry(ep->queue.next,
2711 struct udc_request, queue);
2712
2713 if (ep->dma) {
2714 /* write desc pointer */
2715 writel(req->td_phys, &ep->regs->desptr);
2716 /* set HOST READY */
2717 req->td_data->status =
2718 AMD_ADDBITS(
2719 req->td_data->status,
2720 UDC_DMA_STP_STS_BS_HOST_READY,
2721 UDC_DMA_STP_STS_BS);
2722
2723 /* set poll demand bit */
2724 tmp =
2725 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2726 tmp |= AMD_BIT(UDC_EPCTL_P);
2727 writel(tmp,
2728 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2729
2730 /* all bytes will be transferred */
2731 req->req.actual = req->req.length;
2732
2733 /* complete req */
2734 complete_req(ep, req, 0);
2735
2736 } else {
2737 /* write fifo */
2738 udc_txfifo_write(ep, &req->req);
2739
2740 /* lengh bytes transferred */
2741 len = req->req.length - req->req.actual;
2742 if (len > ep->ep.maxpacket)
2743 len = ep->ep.maxpacket;
2744
2745 req->req.actual += len;
2746 if (req->req.actual == req->req.length
2747 || (len != ep->ep.maxpacket)) {
2748 /* complete req */
2749 complete_req(ep, req, 0);
2750 }
2751 }
2752
2753 }
2754 }
2755 ep->halted = 0;
2756 dev->stall_ep0in = 0;
2757 if (!ep->dma) {
2758 /* clear IN bit */
2759 writel(AMD_BIT(UDC_EPSTS_IN),
2760 &dev->ep[UDC_EP0IN_IX].regs->sts);
2761 }
2762 }
2763
2764 return ret_val;
2765 }
2766
2767
2768 /* Interrupt handler for global device events */
2769 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2770 __releases(dev->lock)
2771 __acquires(dev->lock)
2772 {
2773 irqreturn_t ret_val = IRQ_NONE;
2774 u32 tmp;
2775 u32 cfg;
2776 struct udc_ep *ep;
2777 u16 i;
2778 u8 udc_csr_epix;
2779
2780 /* SET_CONFIG irq ? */
2781 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2782 ret_val = IRQ_HANDLED;
2783
2784 /* read config value */
2785 tmp = readl(&dev->regs->sts);
2786 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2787 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2788 dev->cur_config = cfg;
2789 dev->set_cfg_not_acked = 1;
2790
2791 /* make usb request for gadget driver */
2792 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2793 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2794 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2795
2796 /* programm the NE registers */
2797 for (i = 0; i < UDC_EP_NUM; i++) {
2798 ep = &dev->ep[i];
2799 if (ep->in) {
2800
2801 /* ep ix in UDC CSR register space */
2802 udc_csr_epix = ep->num;
2803
2804
2805 /* OUT ep */
2806 } else {
2807 /* ep ix in UDC CSR register space */
2808 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2809 }
2810
2811 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2812 /* ep cfg */
2813 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2814 UDC_CSR_NE_CFG);
2815 /* write reg */
2816 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2817
2818 /* clear stall bits */
2819 ep->halted = 0;
2820 tmp = readl(&ep->regs->ctl);
2821 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2822 writel(tmp, &ep->regs->ctl);
2823 }
2824 /* call gadget zero with setup data received */
2825 spin_unlock(&dev->lock);
2826 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2827 spin_lock(&dev->lock);
2828
2829 } /* SET_INTERFACE ? */
2830 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2831 ret_val = IRQ_HANDLED;
2832
2833 dev->set_cfg_not_acked = 1;
2834 /* read interface and alt setting values */
2835 tmp = readl(&dev->regs->sts);
2836 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2837 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2838
2839 /* make usb request for gadget driver */
2840 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2841 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2842 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2843 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2844 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2845
2846 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2847 dev->cur_alt, dev->cur_intf);
2848
2849 /* programm the NE registers */
2850 for (i = 0; i < UDC_EP_NUM; i++) {
2851 ep = &dev->ep[i];
2852 if (ep->in) {
2853
2854 /* ep ix in UDC CSR register space */
2855 udc_csr_epix = ep->num;
2856
2857
2858 /* OUT ep */
2859 } else {
2860 /* ep ix in UDC CSR register space */
2861 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2862 }
2863
2864 /* UDC CSR reg */
2865 /* set ep values */
2866 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2867 /* ep interface */
2868 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2869 UDC_CSR_NE_INTF);
2870 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2871 /* ep alt */
2872 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2873 UDC_CSR_NE_ALT);
2874 /* write reg */
2875 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2876
2877 /* clear stall bits */
2878 ep->halted = 0;
2879 tmp = readl(&ep->regs->ctl);
2880 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2881 writel(tmp, &ep->regs->ctl);
2882 }
2883
2884 /* call gadget zero with setup data received */
2885 spin_unlock(&dev->lock);
2886 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2887 spin_lock(&dev->lock);
2888
2889 } /* USB reset */
2890 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2891 DBG(dev, "USB Reset interrupt\n");
2892 ret_val = IRQ_HANDLED;
2893
2894 /* allow soft reset when suspend occurs */
2895 soft_reset_occured = 0;
2896
2897 dev->waiting_zlp_ack_ep0in = 0;
2898 dev->set_cfg_not_acked = 0;
2899
2900 /* mask not needed interrupts */
2901 udc_mask_unused_interrupts(dev);
2902
2903 /* call gadget to resume and reset configs etc. */
2904 spin_unlock(&dev->lock);
2905 if (dev->sys_suspended && dev->driver->resume) {
2906 dev->driver->resume(&dev->gadget);
2907 dev->sys_suspended = 0;
2908 }
2909 dev->driver->disconnect(&dev->gadget);
2910 spin_lock(&dev->lock);
2911
2912 /* disable ep0 to empty req queue */
2913 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2914 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2915
2916 /* soft reset when rxfifo not empty */
2917 tmp = readl(&dev->regs->sts);
2918 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2919 && !soft_reset_after_usbreset_occured) {
2920 udc_soft_reset(dev);
2921 soft_reset_after_usbreset_occured++;
2922 }
2923
2924 /*
2925 * DMA reset to kill potential old DMA hw hang,
2926 * POLL bit is already reset by ep_init() through
2927 * disconnect()
2928 */
2929 DBG(dev, "DMA machine reset\n");
2930 tmp = readl(&dev->regs->cfg);
2931 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2932 writel(tmp, &dev->regs->cfg);
2933
2934 /* put into initial config */
2935 udc_basic_init(dev);
2936
2937 /* enable device setup interrupts */
2938 udc_enable_dev_setup_interrupts(dev);
2939
2940 /* enable suspend interrupt */
2941 tmp = readl(&dev->regs->irqmsk);
2942 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2943 writel(tmp, &dev->regs->irqmsk);
2944
2945 } /* USB suspend */
2946 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2947 DBG(dev, "USB Suspend interrupt\n");
2948 ret_val = IRQ_HANDLED;
2949 if (dev->driver->suspend) {
2950 spin_unlock(&dev->lock);
2951 dev->sys_suspended = 1;
2952 dev->driver->suspend(&dev->gadget);
2953 spin_lock(&dev->lock);
2954 }
2955 } /* new speed ? */
2956 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2957 DBG(dev, "ENUM interrupt\n");
2958 ret_val = IRQ_HANDLED;
2959 soft_reset_after_usbreset_occured = 0;
2960
2961 /* disable ep0 to empty req queue */
2962 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2963 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2964
2965 /* link up all endpoints */
2966 udc_setup_endpoints(dev);
2967 dev_info(&dev->pdev->dev, "Connect: %s\n",
2968 usb_speed_string(dev->gadget.speed));
2969
2970 /* init ep 0 */
2971 activate_control_endpoints(dev);
2972
2973 /* enable ep0 interrupts */
2974 udc_enable_ep0_interrupts(dev);
2975 }
2976 /* session valid change interrupt */
2977 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2978 DBG(dev, "USB SVC interrupt\n");
2979 ret_val = IRQ_HANDLED;
2980
2981 /* check that session is not valid to detect disconnect */
2982 tmp = readl(&dev->regs->sts);
2983 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2984 /* disable suspend interrupt */
2985 tmp = readl(&dev->regs->irqmsk);
2986 tmp |= AMD_BIT(UDC_DEVINT_US);
2987 writel(tmp, &dev->regs->irqmsk);
2988 DBG(dev, "USB Disconnect (session valid low)\n");
2989 /* cleanup on disconnect */
2990 usb_disconnect(udc);
2991 }
2992
2993 }
2994
2995 return ret_val;
2996 }
2997
2998 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
2999 static irqreturn_t udc_irq(int irq, void *pdev)
3000 {
3001 struct udc *dev = pdev;
3002 u32 reg;
3003 u16 i;
3004 u32 ep_irq;
3005 irqreturn_t ret_val = IRQ_NONE;
3006
3007 spin_lock(&dev->lock);
3008
3009 /* check for ep irq */
3010 reg = readl(&dev->regs->ep_irqsts);
3011 if (reg) {
3012 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3013 ret_val |= udc_control_out_isr(dev);
3014 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3015 ret_val |= udc_control_in_isr(dev);
3016
3017 /*
3018 * data endpoint
3019 * iterate ep's
3020 */
3021 for (i = 1; i < UDC_EP_NUM; i++) {
3022 ep_irq = 1 << i;
3023 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3024 continue;
3025
3026 /* clear irq status */
3027 writel(ep_irq, &dev->regs->ep_irqsts);
3028
3029 /* irq for out ep ? */
3030 if (i > UDC_EPIN_NUM)
3031 ret_val |= udc_data_out_isr(dev, i);
3032 else
3033 ret_val |= udc_data_in_isr(dev, i);
3034 }
3035
3036 }
3037
3038
3039 /* check for dev irq */
3040 reg = readl(&dev->regs->irqsts);
3041 if (reg) {
3042 /* clear irq */
3043 writel(reg, &dev->regs->irqsts);
3044 ret_val |= udc_dev_isr(dev, reg);
3045 }
3046
3047
3048 spin_unlock(&dev->lock);
3049 return ret_val;
3050 }
3051
3052 /* Tears down device */
3053 static void gadget_release(struct device *pdev)
3054 {
3055 struct amd5536udc *dev = dev_get_drvdata(pdev);
3056 kfree(dev);
3057 }
3058
3059 /* Cleanup on device remove */
3060 static void udc_remove(struct udc *dev)
3061 {
3062 /* remove timer */
3063 stop_timer++;
3064 if (timer_pending(&udc_timer))
3065 wait_for_completion(&on_exit);
3066 if (udc_timer.data)
3067 del_timer_sync(&udc_timer);
3068 /* remove pollstall timer */
3069 stop_pollstall_timer++;
3070 if (timer_pending(&udc_pollstall_timer))
3071 wait_for_completion(&on_pollstall_exit);
3072 if (udc_pollstall_timer.data)
3073 del_timer_sync(&udc_pollstall_timer);
3074 udc = NULL;
3075 }
3076
3077 /* Reset all pci context */
3078 static void udc_pci_remove(struct pci_dev *pdev)
3079 {
3080 struct udc *dev;
3081
3082 dev = pci_get_drvdata(pdev);
3083
3084 usb_del_gadget_udc(&udc->gadget);
3085 /* gadget driver must not be registered */
3086 BUG_ON(dev->driver != NULL);
3087
3088 /* dma pool cleanup */
3089 if (dev->data_requests)
3090 pci_pool_destroy(dev->data_requests);
3091
3092 if (dev->stp_requests) {
3093 /* cleanup DMA desc's for ep0in */
3094 pci_pool_free(dev->stp_requests,
3095 dev->ep[UDC_EP0OUT_IX].td_stp,
3096 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3097 pci_pool_free(dev->stp_requests,
3098 dev->ep[UDC_EP0OUT_IX].td,
3099 dev->ep[UDC_EP0OUT_IX].td_phys);
3100
3101 pci_pool_destroy(dev->stp_requests);
3102 }
3103
3104 /* reset controller */
3105 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3106 if (dev->irq_registered)
3107 free_irq(pdev->irq, dev);
3108 if (dev->regs)
3109 iounmap(dev->regs);
3110 if (dev->mem_region)
3111 release_mem_region(pci_resource_start(pdev, 0),
3112 pci_resource_len(pdev, 0));
3113 if (dev->active)
3114 pci_disable_device(pdev);
3115
3116 device_unregister(&dev->gadget.dev);
3117 pci_set_drvdata(pdev, NULL);
3118
3119 udc_remove(dev);
3120 }
3121
3122 /* create dma pools on init */
3123 static int init_dma_pools(struct udc *dev)
3124 {
3125 struct udc_stp_dma *td_stp;
3126 struct udc_data_dma *td_data;
3127 int retval;
3128
3129 /* consistent DMA mode setting ? */
3130 if (use_dma_ppb) {
3131 use_dma_bufferfill_mode = 0;
3132 } else {
3133 use_dma_ppb_du = 0;
3134 use_dma_bufferfill_mode = 1;
3135 }
3136
3137 /* DMA setup */
3138 dev->data_requests = dma_pool_create("data_requests", NULL,
3139 sizeof(struct udc_data_dma), 0, 0);
3140 if (!dev->data_requests) {
3141 DBG(dev, "can't get request data pool\n");
3142 retval = -ENOMEM;
3143 goto finished;
3144 }
3145
3146 /* EP0 in dma regs = dev control regs */
3147 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3148
3149 /* dma desc for setup data */
3150 dev->stp_requests = dma_pool_create("setup requests", NULL,
3151 sizeof(struct udc_stp_dma), 0, 0);
3152 if (!dev->stp_requests) {
3153 DBG(dev, "can't get stp request pool\n");
3154 retval = -ENOMEM;
3155 goto finished;
3156 }
3157 /* setup */
3158 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3159 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3160 if (td_stp == NULL) {
3161 retval = -ENOMEM;
3162 goto finished;
3163 }
3164 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3165
3166 /* data: 0 packets !? */
3167 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3168 &dev->ep[UDC_EP0OUT_IX].td_phys);
3169 if (td_data == NULL) {
3170 retval = -ENOMEM;
3171 goto finished;
3172 }
3173 dev->ep[UDC_EP0OUT_IX].td = td_data;
3174 return 0;
3175
3176 finished:
3177 return retval;
3178 }
3179
3180 /* Called by pci bus driver to init pci context */
3181 static int udc_pci_probe(
3182 struct pci_dev *pdev,
3183 const struct pci_device_id *id
3184 )
3185 {
3186 struct udc *dev;
3187 unsigned long resource;
3188 unsigned long len;
3189 int retval = 0;
3190
3191 /* one udc only */
3192 if (udc) {
3193 dev_dbg(&pdev->dev, "already probed\n");
3194 return -EBUSY;
3195 }
3196
3197 /* init */
3198 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3199 if (!dev) {
3200 retval = -ENOMEM;
3201 goto finished;
3202 }
3203
3204 /* pci setup */
3205 if (pci_enable_device(pdev) < 0) {
3206 kfree(dev);
3207 dev = NULL;
3208 retval = -ENODEV;
3209 goto finished;
3210 }
3211 dev->active = 1;
3212
3213 /* PCI resource allocation */
3214 resource = pci_resource_start(pdev, 0);
3215 len = pci_resource_len(pdev, 0);
3216
3217 if (!request_mem_region(resource, len, name)) {
3218 dev_dbg(&pdev->dev, "pci device used already\n");
3219 kfree(dev);
3220 dev = NULL;
3221 retval = -EBUSY;
3222 goto finished;
3223 }
3224 dev->mem_region = 1;
3225
3226 dev->virt_addr = ioremap_nocache(resource, len);
3227 if (dev->virt_addr == NULL) {
3228 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3229 kfree(dev);
3230 dev = NULL;
3231 retval = -EFAULT;
3232 goto finished;
3233 }
3234
3235 if (!pdev->irq) {
3236 dev_err(&dev->pdev->dev, "irq not set\n");
3237 kfree(dev);
3238 dev = NULL;
3239 retval = -ENODEV;
3240 goto finished;
3241 }
3242
3243 spin_lock_init(&dev->lock);
3244 /* udc csr registers base */
3245 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3246 /* dev registers base */
3247 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3248 /* ep registers base */
3249 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3250 /* fifo's base */
3251 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3252 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3253
3254 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3255 dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3256 kfree(dev);
3257 dev = NULL;
3258 retval = -EBUSY;
3259 goto finished;
3260 }
3261 dev->irq_registered = 1;
3262
3263 pci_set_drvdata(pdev, dev);
3264
3265 /* chip revision for Hs AMD5536 */
3266 dev->chiprev = pdev->revision;
3267
3268 pci_set_master(pdev);
3269 pci_try_set_mwi(pdev);
3270
3271 /* init dma pools */
3272 if (use_dma) {
3273 retval = init_dma_pools(dev);
3274 if (retval != 0)
3275 goto finished;
3276 }
3277
3278 dev->phys_addr = resource;
3279 dev->irq = pdev->irq;
3280 dev->pdev = pdev;
3281 dev->gadget.dev.parent = &pdev->dev;
3282 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3283
3284 /* general probing */
3285 if (udc_probe(dev) == 0)
3286 return 0;
3287
3288 finished:
3289 if (dev)
3290 udc_pci_remove(pdev);
3291 return retval;
3292 }
3293
3294 /* general probe */
3295 static int udc_probe(struct udc *dev)
3296 {
3297 char tmp[128];
3298 u32 reg;
3299 int retval;
3300
3301 /* mark timer as not initialized */
3302 udc_timer.data = 0;
3303 udc_pollstall_timer.data = 0;
3304
3305 /* device struct setup */
3306 dev->gadget.ops = &udc_ops;
3307
3308 dev_set_name(&dev->gadget.dev, "gadget");
3309 dev->gadget.dev.release = gadget_release;
3310 dev->gadget.name = name;
3311 dev->gadget.max_speed = USB_SPEED_HIGH;
3312
3313 /* init registers, interrupts, ... */
3314 startup_registers(dev);
3315
3316 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3317
3318 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3319 dev_info(&dev->pdev->dev,
3320 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3321 tmp, dev->phys_addr, dev->chiprev,
3322 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3323 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3324 if (dev->chiprev == UDC_HSA0_REV) {
3325 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3326 retval = -ENODEV;
3327 goto finished;
3328 }
3329 dev_info(&dev->pdev->dev,
3330 "driver version: %s(for Geode5536 B1)\n", tmp);
3331 udc = dev;
3332
3333 retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
3334 if (retval)
3335 goto finished;
3336
3337 retval = device_register(&dev->gadget.dev);
3338 if (retval) {
3339 usb_del_gadget_udc(&dev->gadget);
3340 put_device(&dev->gadget.dev);
3341 goto finished;
3342 }
3343
3344 /* timer init */
3345 init_timer(&udc_timer);
3346 udc_timer.function = udc_timer_function;
3347 udc_timer.data = 1;
3348 /* timer pollstall init */
3349 init_timer(&udc_pollstall_timer);
3350 udc_pollstall_timer.function = udc_pollstall_timer_function;
3351 udc_pollstall_timer.data = 1;
3352
3353 /* set SD */
3354 reg = readl(&dev->regs->ctl);
3355 reg |= AMD_BIT(UDC_DEVCTL_SD);
3356 writel(reg, &dev->regs->ctl);
3357
3358 /* print dev register info */
3359 print_regs(dev);
3360
3361 return 0;
3362
3363 finished:
3364 return retval;
3365 }
3366
3367 /* Initiates a remote wakeup */
3368 static int udc_remote_wakeup(struct udc *dev)
3369 {
3370 unsigned long flags;
3371 u32 tmp;
3372
3373 DBG(dev, "UDC initiates remote wakeup\n");
3374
3375 spin_lock_irqsave(&dev->lock, flags);
3376
3377 tmp = readl(&dev->regs->ctl);
3378 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3379 writel(tmp, &dev->regs->ctl);
3380 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3381 writel(tmp, &dev->regs->ctl);
3382
3383 spin_unlock_irqrestore(&dev->lock, flags);
3384 return 0;
3385 }
3386
3387 /* PCI device parameters */
3388 static DEFINE_PCI_DEVICE_TABLE(pci_id) = {
3389 {
3390 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3391 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3392 .class_mask = 0xffffffff,
3393 },
3394 {},
3395 };
3396 MODULE_DEVICE_TABLE(pci, pci_id);
3397
3398 /* PCI functions */
3399 static struct pci_driver udc_pci_driver = {
3400 .name = (char *) name,
3401 .id_table = pci_id,
3402 .probe = udc_pci_probe,
3403 .remove = udc_pci_remove,
3404 };
3405
3406 /* Inits driver */
3407 static int __init init(void)
3408 {
3409 return pci_register_driver(&udc_pci_driver);
3410 }
3411 module_init(init);
3412
3413 /* Cleans driver */
3414 static void __exit cleanup(void)
3415 {
3416 pci_unregister_driver(&udc_pci_driver);
3417 }
3418 module_exit(cleanup);
3419
3420 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3421 MODULE_AUTHOR("Thomas Dahlmann");
3422 MODULE_LICENSE("GPL");
3423
This page took 0.13608 seconds and 5 git commands to generate.