gadget/r8a66597: remove conditional compilation of clk code
[deliverable/linux.git] / drivers / usb / gadget / mv_udc_core.c
1 /*
2 * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3 * Author: Chao Xie <chao.xie@marvell.com>
4 * Neil Zhang <zhangwm@marvell.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/timer.h>
25 #include <linux/list.h>
26 #include <linux/interrupt.h>
27 #include <linux/moduleparam.h>
28 #include <linux/device.h>
29 #include <linux/usb/ch9.h>
30 #include <linux/usb/gadget.h>
31 #include <linux/usb/otg.h>
32 #include <linux/pm.h>
33 #include <linux/io.h>
34 #include <linux/irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/clk.h>
37 #include <linux/platform_data/mv_usb.h>
38 #include <asm/unaligned.h>
39
40 #include "mv_udc.h"
41
42 #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
43 #define DRIVER_VERSION "8 Nov 2010"
44
45 #define ep_dir(ep) (((ep)->ep_num == 0) ? \
46 ((ep)->udc->ep0_dir) : ((ep)->direction))
47
48 /* timeout value -- usec */
49 #define RESET_TIMEOUT 10000
50 #define FLUSH_TIMEOUT 10000
51 #define EPSTATUS_TIMEOUT 10000
52 #define PRIME_TIMEOUT 10000
53 #define READSAFE_TIMEOUT 1000
54 #define DTD_TIMEOUT 1000
55
56 #define LOOPS_USEC_SHIFT 4
57 #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
58 #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
59
60 static DECLARE_COMPLETION(release_done);
61
62 static const char driver_name[] = "mv_udc";
63 static const char driver_desc[] = DRIVER_DESC;
64
65 /* controller device global variable */
66 static struct mv_udc *the_controller;
67 int mv_usb_otgsc;
68
69 static void nuke(struct mv_ep *ep, int status);
70 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
71
72 /* for endpoint 0 operations */
73 static const struct usb_endpoint_descriptor mv_ep0_desc = {
74 .bLength = USB_DT_ENDPOINT_SIZE,
75 .bDescriptorType = USB_DT_ENDPOINT,
76 .bEndpointAddress = 0,
77 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
78 .wMaxPacketSize = EP0_MAX_PKT_SIZE,
79 };
80
81 static void ep0_reset(struct mv_udc *udc)
82 {
83 struct mv_ep *ep;
84 u32 epctrlx;
85 int i = 0;
86
87 /* ep0 in and out */
88 for (i = 0; i < 2; i++) {
89 ep = &udc->eps[i];
90 ep->udc = udc;
91
92 /* ep0 dQH */
93 ep->dqh = &udc->ep_dqh[i];
94
95 /* configure ep0 endpoint capabilities in dQH */
96 ep->dqh->max_packet_length =
97 (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
98 | EP_QUEUE_HEAD_IOS;
99
100 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
101
102 epctrlx = readl(&udc->op_regs->epctrlx[0]);
103 if (i) { /* TX */
104 epctrlx |= EPCTRL_TX_ENABLE
105 | (USB_ENDPOINT_XFER_CONTROL
106 << EPCTRL_TX_EP_TYPE_SHIFT);
107
108 } else { /* RX */
109 epctrlx |= EPCTRL_RX_ENABLE
110 | (USB_ENDPOINT_XFER_CONTROL
111 << EPCTRL_RX_EP_TYPE_SHIFT);
112 }
113
114 writel(epctrlx, &udc->op_regs->epctrlx[0]);
115 }
116 }
117
118 /* protocol ep0 stall, will automatically be cleared on new transaction */
119 static void ep0_stall(struct mv_udc *udc)
120 {
121 u32 epctrlx;
122
123 /* set TX and RX to stall */
124 epctrlx = readl(&udc->op_regs->epctrlx[0]);
125 epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
126 writel(epctrlx, &udc->op_regs->epctrlx[0]);
127
128 /* update ep0 state */
129 udc->ep0_state = WAIT_FOR_SETUP;
130 udc->ep0_dir = EP_DIR_OUT;
131 }
132
133 static int process_ep_req(struct mv_udc *udc, int index,
134 struct mv_req *curr_req)
135 {
136 struct mv_dtd *curr_dtd;
137 struct mv_dqh *curr_dqh;
138 int td_complete, actual, remaining_length;
139 int i, direction;
140 int retval = 0;
141 u32 errors;
142 u32 bit_pos;
143
144 curr_dqh = &udc->ep_dqh[index];
145 direction = index % 2;
146
147 curr_dtd = curr_req->head;
148 td_complete = 0;
149 actual = curr_req->req.length;
150
151 for (i = 0; i < curr_req->dtd_count; i++) {
152 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
153 dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
154 udc->eps[index].name);
155 return 1;
156 }
157
158 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
159 if (!errors) {
160 remaining_length =
161 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
162 >> DTD_LENGTH_BIT_POS;
163 actual -= remaining_length;
164
165 if (remaining_length) {
166 if (direction) {
167 dev_dbg(&udc->dev->dev,
168 "TX dTD remains data\n");
169 retval = -EPROTO;
170 break;
171 } else
172 break;
173 }
174 } else {
175 dev_info(&udc->dev->dev,
176 "complete_tr error: ep=%d %s: error = 0x%x\n",
177 index >> 1, direction ? "SEND" : "RECV",
178 errors);
179 if (errors & DTD_STATUS_HALTED) {
180 /* Clear the errors and Halt condition */
181 curr_dqh->size_ioc_int_sts &= ~errors;
182 retval = -EPIPE;
183 } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
184 retval = -EPROTO;
185 } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
186 retval = -EILSEQ;
187 }
188 }
189 if (i != curr_req->dtd_count - 1)
190 curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
191 }
192 if (retval)
193 return retval;
194
195 if (direction == EP_DIR_OUT)
196 bit_pos = 1 << curr_req->ep->ep_num;
197 else
198 bit_pos = 1 << (16 + curr_req->ep->ep_num);
199
200 while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
201 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
202 while (readl(&udc->op_regs->epstatus) & bit_pos)
203 udelay(1);
204 break;
205 }
206 udelay(1);
207 }
208
209 curr_req->req.actual = actual;
210
211 return 0;
212 }
213
214 /*
215 * done() - retire a request; caller blocked irqs
216 * @status : request status to be set, only works when
217 * request is still in progress.
218 */
219 static void done(struct mv_ep *ep, struct mv_req *req, int status)
220 {
221 struct mv_udc *udc = NULL;
222 unsigned char stopped = ep->stopped;
223 struct mv_dtd *curr_td, *next_td;
224 int j;
225
226 udc = (struct mv_udc *)ep->udc;
227 /* Removed the req from fsl_ep->queue */
228 list_del_init(&req->queue);
229
230 /* req.status should be set as -EINPROGRESS in ep_queue() */
231 if (req->req.status == -EINPROGRESS)
232 req->req.status = status;
233 else
234 status = req->req.status;
235
236 /* Free dtd for the request */
237 next_td = req->head;
238 for (j = 0; j < req->dtd_count; j++) {
239 curr_td = next_td;
240 if (j != req->dtd_count - 1)
241 next_td = curr_td->next_dtd_virt;
242 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
243 }
244
245 if (req->mapped) {
246 dma_unmap_single(ep->udc->gadget.dev.parent,
247 req->req.dma, req->req.length,
248 ((ep_dir(ep) == EP_DIR_IN) ?
249 DMA_TO_DEVICE : DMA_FROM_DEVICE));
250 req->req.dma = DMA_ADDR_INVALID;
251 req->mapped = 0;
252 } else
253 dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
254 req->req.dma, req->req.length,
255 ((ep_dir(ep) == EP_DIR_IN) ?
256 DMA_TO_DEVICE : DMA_FROM_DEVICE));
257
258 if (status && (status != -ESHUTDOWN))
259 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
260 ep->ep.name, &req->req, status,
261 req->req.actual, req->req.length);
262
263 ep->stopped = 1;
264
265 spin_unlock(&ep->udc->lock);
266 /*
267 * complete() is from gadget layer,
268 * eg fsg->bulk_in_complete()
269 */
270 if (req->req.complete)
271 req->req.complete(&ep->ep, &req->req);
272
273 spin_lock(&ep->udc->lock);
274 ep->stopped = stopped;
275 }
276
277 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
278 {
279 struct mv_udc *udc;
280 struct mv_dqh *dqh;
281 u32 bit_pos, direction;
282 u32 usbcmd, epstatus;
283 unsigned int loops;
284 int retval = 0;
285
286 udc = ep->udc;
287 direction = ep_dir(ep);
288 dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
289 bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
290
291 /* check if the pipe is empty */
292 if (!(list_empty(&ep->queue))) {
293 struct mv_req *lastreq;
294 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
295 lastreq->tail->dtd_next =
296 req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
297
298 wmb();
299
300 if (readl(&udc->op_regs->epprime) & bit_pos)
301 goto done;
302
303 loops = LOOPS(READSAFE_TIMEOUT);
304 while (1) {
305 /* start with setting the semaphores */
306 usbcmd = readl(&udc->op_regs->usbcmd);
307 usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
308 writel(usbcmd, &udc->op_regs->usbcmd);
309
310 /* read the endpoint status */
311 epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
312
313 /*
314 * Reread the ATDTW semaphore bit to check if it is
315 * cleared. When hardware see a hazard, it will clear
316 * the bit or else we remain set to 1 and we can
317 * proceed with priming of endpoint if not already
318 * primed.
319 */
320 if (readl(&udc->op_regs->usbcmd)
321 & USBCMD_ATDTW_TRIPWIRE_SET)
322 break;
323
324 loops--;
325 if (loops == 0) {
326 dev_err(&udc->dev->dev,
327 "Timeout for ATDTW_TRIPWIRE...\n");
328 retval = -ETIME;
329 goto done;
330 }
331 udelay(LOOPS_USEC);
332 }
333
334 /* Clear the semaphore */
335 usbcmd = readl(&udc->op_regs->usbcmd);
336 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
337 writel(usbcmd, &udc->op_regs->usbcmd);
338
339 if (epstatus)
340 goto done;
341 }
342
343 /* Write dQH next pointer and terminate bit to 0 */
344 dqh->next_dtd_ptr = req->head->td_dma
345 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
346
347 /* clear active and halt bit, in case set from a previous error */
348 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
349
350 /* Ensure that updates to the QH will occure before priming. */
351 wmb();
352
353 /* Prime the Endpoint */
354 writel(bit_pos, &udc->op_regs->epprime);
355
356 done:
357 return retval;
358 }
359
360
361 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
362 dma_addr_t *dma, int *is_last)
363 {
364 u32 temp;
365 struct mv_dtd *dtd;
366 struct mv_udc *udc;
367
368 /* how big will this transfer be? */
369 *length = min(req->req.length - req->req.actual,
370 (unsigned)EP_MAX_LENGTH_TRANSFER);
371
372 udc = req->ep->udc;
373
374 /*
375 * Be careful that no _GFP_HIGHMEM is set,
376 * or we can not use dma_to_virt
377 */
378 dtd = dma_pool_alloc(udc->dtd_pool, GFP_KERNEL, dma);
379 if (dtd == NULL)
380 return dtd;
381
382 dtd->td_dma = *dma;
383 /* initialize buffer page pointers */
384 temp = (u32)(req->req.dma + req->req.actual);
385 dtd->buff_ptr0 = cpu_to_le32(temp);
386 temp &= ~0xFFF;
387 dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
388 dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
389 dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
390 dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
391
392 req->req.actual += *length;
393
394 /* zlp is needed if req->req.zero is set */
395 if (req->req.zero) {
396 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
397 *is_last = 1;
398 else
399 *is_last = 0;
400 } else if (req->req.length == req->req.actual)
401 *is_last = 1;
402 else
403 *is_last = 0;
404
405 /* Fill in the transfer size; set active bit */
406 temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
407
408 /* Enable interrupt for the last dtd of a request */
409 if (*is_last && !req->req.no_interrupt)
410 temp |= DTD_IOC;
411
412 dtd->size_ioc_sts = temp;
413
414 mb();
415
416 return dtd;
417 }
418
419 /* generate dTD linked list for a request */
420 static int req_to_dtd(struct mv_req *req)
421 {
422 unsigned count;
423 int is_last, is_first = 1;
424 struct mv_dtd *dtd, *last_dtd = NULL;
425 struct mv_udc *udc;
426 dma_addr_t dma;
427
428 udc = req->ep->udc;
429
430 do {
431 dtd = build_dtd(req, &count, &dma, &is_last);
432 if (dtd == NULL)
433 return -ENOMEM;
434
435 if (is_first) {
436 is_first = 0;
437 req->head = dtd;
438 } else {
439 last_dtd->dtd_next = dma;
440 last_dtd->next_dtd_virt = dtd;
441 }
442 last_dtd = dtd;
443 req->dtd_count++;
444 } while (!is_last);
445
446 /* set terminate bit to 1 for the last dTD */
447 dtd->dtd_next = DTD_NEXT_TERMINATE;
448
449 req->tail = dtd;
450
451 return 0;
452 }
453
454 static int mv_ep_enable(struct usb_ep *_ep,
455 const struct usb_endpoint_descriptor *desc)
456 {
457 struct mv_udc *udc;
458 struct mv_ep *ep;
459 struct mv_dqh *dqh;
460 u16 max = 0;
461 u32 bit_pos, epctrlx, direction;
462 unsigned char zlt = 0, ios = 0, mult = 0;
463 unsigned long flags;
464
465 ep = container_of(_ep, struct mv_ep, ep);
466 udc = ep->udc;
467
468 if (!_ep || !desc
469 || desc->bDescriptorType != USB_DT_ENDPOINT)
470 return -EINVAL;
471
472 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
473 return -ESHUTDOWN;
474
475 direction = ep_dir(ep);
476 max = usb_endpoint_maxp(desc);
477
478 /*
479 * disable HW zero length termination select
480 * driver handles zero length packet through req->req.zero
481 */
482 zlt = 1;
483
484 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
485
486 /* Check if the Endpoint is Primed */
487 if ((readl(&udc->op_regs->epprime) & bit_pos)
488 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
489 dev_info(&udc->dev->dev,
490 "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
491 " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
492 (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
493 (unsigned)readl(&udc->op_regs->epprime),
494 (unsigned)readl(&udc->op_regs->epstatus),
495 (unsigned)bit_pos);
496 goto en_done;
497 }
498 /* Set the max packet length, interrupt on Setup and Mult fields */
499 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
500 case USB_ENDPOINT_XFER_BULK:
501 zlt = 1;
502 mult = 0;
503 break;
504 case USB_ENDPOINT_XFER_CONTROL:
505 ios = 1;
506 case USB_ENDPOINT_XFER_INT:
507 mult = 0;
508 break;
509 case USB_ENDPOINT_XFER_ISOC:
510 /* Calculate transactions needed for high bandwidth iso */
511 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
512 max = max & 0x7ff; /* bit 0~10 */
513 /* 3 transactions at most */
514 if (mult > 3)
515 goto en_done;
516 break;
517 default:
518 goto en_done;
519 }
520
521 spin_lock_irqsave(&udc->lock, flags);
522 /* Get the endpoint queue head address */
523 dqh = ep->dqh;
524 dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
525 | (mult << EP_QUEUE_HEAD_MULT_POS)
526 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
527 | (ios ? EP_QUEUE_HEAD_IOS : 0);
528 dqh->next_dtd_ptr = 1;
529 dqh->size_ioc_int_sts = 0;
530
531 ep->ep.maxpacket = max;
532 ep->ep.desc = desc;
533 ep->stopped = 0;
534
535 /* Enable the endpoint for Rx or Tx and set the endpoint type */
536 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
537 if (direction == EP_DIR_IN) {
538 epctrlx &= ~EPCTRL_TX_ALL_MASK;
539 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
540 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
541 << EPCTRL_TX_EP_TYPE_SHIFT);
542 } else {
543 epctrlx &= ~EPCTRL_RX_ALL_MASK;
544 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
545 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
546 << EPCTRL_RX_EP_TYPE_SHIFT);
547 }
548 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
549
550 /*
551 * Implement Guideline (GL# USB-7) The unused endpoint type must
552 * be programmed to bulk.
553 */
554 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
555 if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
556 epctrlx |= (USB_ENDPOINT_XFER_BULK
557 << EPCTRL_RX_EP_TYPE_SHIFT);
558 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
559 }
560
561 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
562 if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
563 epctrlx |= (USB_ENDPOINT_XFER_BULK
564 << EPCTRL_TX_EP_TYPE_SHIFT);
565 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
566 }
567
568 spin_unlock_irqrestore(&udc->lock, flags);
569
570 return 0;
571 en_done:
572 return -EINVAL;
573 }
574
575 static int mv_ep_disable(struct usb_ep *_ep)
576 {
577 struct mv_udc *udc;
578 struct mv_ep *ep;
579 struct mv_dqh *dqh;
580 u32 bit_pos, epctrlx, direction;
581 unsigned long flags;
582
583 ep = container_of(_ep, struct mv_ep, ep);
584 if ((_ep == NULL) || !ep->ep.desc)
585 return -EINVAL;
586
587 udc = ep->udc;
588
589 /* Get the endpoint queue head address */
590 dqh = ep->dqh;
591
592 spin_lock_irqsave(&udc->lock, flags);
593
594 direction = ep_dir(ep);
595 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
596
597 /* Reset the max packet length and the interrupt on Setup */
598 dqh->max_packet_length = 0;
599
600 /* Disable the endpoint for Rx or Tx and reset the endpoint type */
601 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
602 epctrlx &= ~((direction == EP_DIR_IN)
603 ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
604 : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
605 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
606
607 /* nuke all pending requests (does flush) */
608 nuke(ep, -ESHUTDOWN);
609
610 ep->ep.desc = NULL;
611 ep->stopped = 1;
612
613 spin_unlock_irqrestore(&udc->lock, flags);
614
615 return 0;
616 }
617
618 static struct usb_request *
619 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
620 {
621 struct mv_req *req = NULL;
622
623 req = kzalloc(sizeof *req, gfp_flags);
624 if (!req)
625 return NULL;
626
627 req->req.dma = DMA_ADDR_INVALID;
628 INIT_LIST_HEAD(&req->queue);
629
630 return &req->req;
631 }
632
633 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
634 {
635 struct mv_req *req = NULL;
636
637 req = container_of(_req, struct mv_req, req);
638
639 if (_req)
640 kfree(req);
641 }
642
643 static void mv_ep_fifo_flush(struct usb_ep *_ep)
644 {
645 struct mv_udc *udc;
646 u32 bit_pos, direction;
647 struct mv_ep *ep;
648 unsigned int loops;
649
650 if (!_ep)
651 return;
652
653 ep = container_of(_ep, struct mv_ep, ep);
654 if (!ep->ep.desc)
655 return;
656
657 udc = ep->udc;
658 direction = ep_dir(ep);
659
660 if (ep->ep_num == 0)
661 bit_pos = (1 << 16) | 1;
662 else if (direction == EP_DIR_OUT)
663 bit_pos = 1 << ep->ep_num;
664 else
665 bit_pos = 1 << (16 + ep->ep_num);
666
667 loops = LOOPS(EPSTATUS_TIMEOUT);
668 do {
669 unsigned int inter_loops;
670
671 if (loops == 0) {
672 dev_err(&udc->dev->dev,
673 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
674 (unsigned)readl(&udc->op_regs->epstatus),
675 (unsigned)bit_pos);
676 return;
677 }
678 /* Write 1 to the Flush register */
679 writel(bit_pos, &udc->op_regs->epflush);
680
681 /* Wait until flushing completed */
682 inter_loops = LOOPS(FLUSH_TIMEOUT);
683 while (readl(&udc->op_regs->epflush)) {
684 /*
685 * ENDPTFLUSH bit should be cleared to indicate this
686 * operation is complete
687 */
688 if (inter_loops == 0) {
689 dev_err(&udc->dev->dev,
690 "TIMEOUT for ENDPTFLUSH=0x%x,"
691 "bit_pos=0x%x\n",
692 (unsigned)readl(&udc->op_regs->epflush),
693 (unsigned)bit_pos);
694 return;
695 }
696 inter_loops--;
697 udelay(LOOPS_USEC);
698 }
699 loops--;
700 } while (readl(&udc->op_regs->epstatus) & bit_pos);
701 }
702
703 /* queues (submits) an I/O request to an endpoint */
704 static int
705 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
706 {
707 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
708 struct mv_req *req = container_of(_req, struct mv_req, req);
709 struct mv_udc *udc = ep->udc;
710 unsigned long flags;
711
712 /* catch various bogus parameters */
713 if (!_req || !req->req.complete || !req->req.buf
714 || !list_empty(&req->queue)) {
715 dev_err(&udc->dev->dev, "%s, bad params", __func__);
716 return -EINVAL;
717 }
718 if (unlikely(!_ep || !ep->ep.desc)) {
719 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
720 return -EINVAL;
721 }
722 if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
723 if (req->req.length > ep->ep.maxpacket)
724 return -EMSGSIZE;
725 }
726
727 udc = ep->udc;
728 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
729 return -ESHUTDOWN;
730
731 req->ep = ep;
732
733 /* map virtual address to hardware */
734 if (req->req.dma == DMA_ADDR_INVALID) {
735 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
736 req->req.buf,
737 req->req.length, ep_dir(ep)
738 ? DMA_TO_DEVICE
739 : DMA_FROM_DEVICE);
740 req->mapped = 1;
741 } else {
742 dma_sync_single_for_device(ep->udc->gadget.dev.parent,
743 req->req.dma, req->req.length,
744 ep_dir(ep)
745 ? DMA_TO_DEVICE
746 : DMA_FROM_DEVICE);
747 req->mapped = 0;
748 }
749
750 req->req.status = -EINPROGRESS;
751 req->req.actual = 0;
752 req->dtd_count = 0;
753
754 spin_lock_irqsave(&udc->lock, flags);
755
756 /* build dtds and push them to device queue */
757 if (!req_to_dtd(req)) {
758 int retval;
759 retval = queue_dtd(ep, req);
760 if (retval) {
761 spin_unlock_irqrestore(&udc->lock, flags);
762 return retval;
763 }
764 } else {
765 spin_unlock_irqrestore(&udc->lock, flags);
766 return -ENOMEM;
767 }
768
769 /* Update ep0 state */
770 if (ep->ep_num == 0)
771 udc->ep0_state = DATA_STATE_XMIT;
772
773 /* irq handler advances the queue */
774 list_add_tail(&req->queue, &ep->queue);
775 spin_unlock_irqrestore(&udc->lock, flags);
776
777 return 0;
778 }
779
780 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
781 {
782 struct mv_dqh *dqh = ep->dqh;
783 u32 bit_pos;
784
785 /* Write dQH next pointer and terminate bit to 0 */
786 dqh->next_dtd_ptr = req->head->td_dma
787 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
788
789 /* clear active and halt bit, in case set from a previous error */
790 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
791
792 /* Ensure that updates to the QH will occure before priming. */
793 wmb();
794
795 bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
796
797 /* Prime the Endpoint */
798 writel(bit_pos, &ep->udc->op_regs->epprime);
799 }
800
801 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
802 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
803 {
804 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
805 struct mv_req *req;
806 struct mv_udc *udc = ep->udc;
807 unsigned long flags;
808 int stopped, ret = 0;
809 u32 epctrlx;
810
811 if (!_ep || !_req)
812 return -EINVAL;
813
814 spin_lock_irqsave(&ep->udc->lock, flags);
815 stopped = ep->stopped;
816
817 /* Stop the ep before we deal with the queue */
818 ep->stopped = 1;
819 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
820 if (ep_dir(ep) == EP_DIR_IN)
821 epctrlx &= ~EPCTRL_TX_ENABLE;
822 else
823 epctrlx &= ~EPCTRL_RX_ENABLE;
824 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
825
826 /* make sure it's actually queued on this endpoint */
827 list_for_each_entry(req, &ep->queue, queue) {
828 if (&req->req == _req)
829 break;
830 }
831 if (&req->req != _req) {
832 ret = -EINVAL;
833 goto out;
834 }
835
836 /* The request is in progress, or completed but not dequeued */
837 if (ep->queue.next == &req->queue) {
838 _req->status = -ECONNRESET;
839 mv_ep_fifo_flush(_ep); /* flush current transfer */
840
841 /* The request isn't the last request in this ep queue */
842 if (req->queue.next != &ep->queue) {
843 struct mv_req *next_req;
844
845 next_req = list_entry(req->queue.next,
846 struct mv_req, queue);
847
848 /* Point the QH to the first TD of next request */
849 mv_prime_ep(ep, next_req);
850 } else {
851 struct mv_dqh *qh;
852
853 qh = ep->dqh;
854 qh->next_dtd_ptr = 1;
855 qh->size_ioc_int_sts = 0;
856 }
857
858 /* The request hasn't been processed, patch up the TD chain */
859 } else {
860 struct mv_req *prev_req;
861
862 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
863 writel(readl(&req->tail->dtd_next),
864 &prev_req->tail->dtd_next);
865
866 }
867
868 done(ep, req, -ECONNRESET);
869
870 /* Enable EP */
871 out:
872 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
873 if (ep_dir(ep) == EP_DIR_IN)
874 epctrlx |= EPCTRL_TX_ENABLE;
875 else
876 epctrlx |= EPCTRL_RX_ENABLE;
877 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
878 ep->stopped = stopped;
879
880 spin_unlock_irqrestore(&ep->udc->lock, flags);
881 return ret;
882 }
883
884 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
885 {
886 u32 epctrlx;
887
888 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
889
890 if (stall) {
891 if (direction == EP_DIR_IN)
892 epctrlx |= EPCTRL_TX_EP_STALL;
893 else
894 epctrlx |= EPCTRL_RX_EP_STALL;
895 } else {
896 if (direction == EP_DIR_IN) {
897 epctrlx &= ~EPCTRL_TX_EP_STALL;
898 epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
899 } else {
900 epctrlx &= ~EPCTRL_RX_EP_STALL;
901 epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
902 }
903 }
904 writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
905 }
906
907 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
908 {
909 u32 epctrlx;
910
911 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
912
913 if (direction == EP_DIR_OUT)
914 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
915 else
916 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
917 }
918
919 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
920 {
921 struct mv_ep *ep;
922 unsigned long flags = 0;
923 int status = 0;
924 struct mv_udc *udc;
925
926 ep = container_of(_ep, struct mv_ep, ep);
927 udc = ep->udc;
928 if (!_ep || !ep->ep.desc) {
929 status = -EINVAL;
930 goto out;
931 }
932
933 if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
934 status = -EOPNOTSUPP;
935 goto out;
936 }
937
938 /*
939 * Attempt to halt IN ep will fail if any transfer requests
940 * are still queue
941 */
942 if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
943 status = -EAGAIN;
944 goto out;
945 }
946
947 spin_lock_irqsave(&ep->udc->lock, flags);
948 ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
949 if (halt && wedge)
950 ep->wedge = 1;
951 else if (!halt)
952 ep->wedge = 0;
953 spin_unlock_irqrestore(&ep->udc->lock, flags);
954
955 if (ep->ep_num == 0) {
956 udc->ep0_state = WAIT_FOR_SETUP;
957 udc->ep0_dir = EP_DIR_OUT;
958 }
959 out:
960 return status;
961 }
962
963 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
964 {
965 return mv_ep_set_halt_wedge(_ep, halt, 0);
966 }
967
968 static int mv_ep_set_wedge(struct usb_ep *_ep)
969 {
970 return mv_ep_set_halt_wedge(_ep, 1, 1);
971 }
972
973 static struct usb_ep_ops mv_ep_ops = {
974 .enable = mv_ep_enable,
975 .disable = mv_ep_disable,
976
977 .alloc_request = mv_alloc_request,
978 .free_request = mv_free_request,
979
980 .queue = mv_ep_queue,
981 .dequeue = mv_ep_dequeue,
982
983 .set_wedge = mv_ep_set_wedge,
984 .set_halt = mv_ep_set_halt,
985 .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
986 };
987
988 static void udc_clock_enable(struct mv_udc *udc)
989 {
990 unsigned int i;
991
992 for (i = 0; i < udc->clknum; i++)
993 clk_enable(udc->clk[i]);
994 }
995
996 static void udc_clock_disable(struct mv_udc *udc)
997 {
998 unsigned int i;
999
1000 for (i = 0; i < udc->clknum; i++)
1001 clk_disable(udc->clk[i]);
1002 }
1003
1004 static void udc_stop(struct mv_udc *udc)
1005 {
1006 u32 tmp;
1007
1008 /* Disable interrupts */
1009 tmp = readl(&udc->op_regs->usbintr);
1010 tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
1011 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
1012 writel(tmp, &udc->op_regs->usbintr);
1013
1014 udc->stopped = 1;
1015
1016 /* Reset the Run the bit in the command register to stop VUSB */
1017 tmp = readl(&udc->op_regs->usbcmd);
1018 tmp &= ~USBCMD_RUN_STOP;
1019 writel(tmp, &udc->op_regs->usbcmd);
1020 }
1021
1022 static void udc_start(struct mv_udc *udc)
1023 {
1024 u32 usbintr;
1025
1026 usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1027 | USBINTR_PORT_CHANGE_DETECT_EN
1028 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1029 /* Enable interrupts */
1030 writel(usbintr, &udc->op_regs->usbintr);
1031
1032 udc->stopped = 0;
1033
1034 /* Set the Run bit in the command register */
1035 writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1036 }
1037
1038 static int udc_reset(struct mv_udc *udc)
1039 {
1040 unsigned int loops;
1041 u32 tmp, portsc;
1042
1043 /* Stop the controller */
1044 tmp = readl(&udc->op_regs->usbcmd);
1045 tmp &= ~USBCMD_RUN_STOP;
1046 writel(tmp, &udc->op_regs->usbcmd);
1047
1048 /* Reset the controller to get default values */
1049 writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1050
1051 /* wait for reset to complete */
1052 loops = LOOPS(RESET_TIMEOUT);
1053 while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1054 if (loops == 0) {
1055 dev_err(&udc->dev->dev,
1056 "Wait for RESET completed TIMEOUT\n");
1057 return -ETIMEDOUT;
1058 }
1059 loops--;
1060 udelay(LOOPS_USEC);
1061 }
1062
1063 /* set controller to device mode */
1064 tmp = readl(&udc->op_regs->usbmode);
1065 tmp |= USBMODE_CTRL_MODE_DEVICE;
1066
1067 /* turn setup lockout off, require setup tripwire in usbcmd */
1068 tmp |= USBMODE_SETUP_LOCK_OFF | USBMODE_STREAM_DISABLE;
1069
1070 writel(tmp, &udc->op_regs->usbmode);
1071
1072 writel(0x0, &udc->op_regs->epsetupstat);
1073
1074 /* Configure the Endpoint List Address */
1075 writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1076 &udc->op_regs->eplistaddr);
1077
1078 portsc = readl(&udc->op_regs->portsc[0]);
1079 if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1080 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1081
1082 if (udc->force_fs)
1083 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1084 else
1085 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1086
1087 writel(portsc, &udc->op_regs->portsc[0]);
1088
1089 tmp = readl(&udc->op_regs->epctrlx[0]);
1090 tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1091 writel(tmp, &udc->op_regs->epctrlx[0]);
1092
1093 return 0;
1094 }
1095
1096 static int mv_udc_enable_internal(struct mv_udc *udc)
1097 {
1098 int retval;
1099
1100 if (udc->active)
1101 return 0;
1102
1103 dev_dbg(&udc->dev->dev, "enable udc\n");
1104 udc_clock_enable(udc);
1105 if (udc->pdata->phy_init) {
1106 retval = udc->pdata->phy_init(udc->phy_regs);
1107 if (retval) {
1108 dev_err(&udc->dev->dev,
1109 "init phy error %d\n", retval);
1110 udc_clock_disable(udc);
1111 return retval;
1112 }
1113 }
1114 udc->active = 1;
1115
1116 return 0;
1117 }
1118
1119 static int mv_udc_enable(struct mv_udc *udc)
1120 {
1121 if (udc->clock_gating)
1122 return mv_udc_enable_internal(udc);
1123
1124 return 0;
1125 }
1126
1127 static void mv_udc_disable_internal(struct mv_udc *udc)
1128 {
1129 if (udc->active) {
1130 dev_dbg(&udc->dev->dev, "disable udc\n");
1131 if (udc->pdata->phy_deinit)
1132 udc->pdata->phy_deinit(udc->phy_regs);
1133 udc_clock_disable(udc);
1134 udc->active = 0;
1135 }
1136 }
1137
1138 static void mv_udc_disable(struct mv_udc *udc)
1139 {
1140 if (udc->clock_gating)
1141 mv_udc_disable_internal(udc);
1142 }
1143
1144 static int mv_udc_get_frame(struct usb_gadget *gadget)
1145 {
1146 struct mv_udc *udc;
1147 u16 retval;
1148
1149 if (!gadget)
1150 return -ENODEV;
1151
1152 udc = container_of(gadget, struct mv_udc, gadget);
1153
1154 retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1155
1156 return retval;
1157 }
1158
1159 /* Tries to wake up the host connected to this gadget */
1160 static int mv_udc_wakeup(struct usb_gadget *gadget)
1161 {
1162 struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1163 u32 portsc;
1164
1165 /* Remote wakeup feature not enabled by host */
1166 if (!udc->remote_wakeup)
1167 return -ENOTSUPP;
1168
1169 portsc = readl(&udc->op_regs->portsc);
1170 /* not suspended? */
1171 if (!(portsc & PORTSCX_PORT_SUSPEND))
1172 return 0;
1173 /* trigger force resume */
1174 portsc |= PORTSCX_PORT_FORCE_RESUME;
1175 writel(portsc, &udc->op_regs->portsc[0]);
1176 return 0;
1177 }
1178
1179 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1180 {
1181 struct mv_udc *udc;
1182 unsigned long flags;
1183 int retval = 0;
1184
1185 udc = container_of(gadget, struct mv_udc, gadget);
1186 spin_lock_irqsave(&udc->lock, flags);
1187
1188 udc->vbus_active = (is_active != 0);
1189
1190 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1191 __func__, udc->softconnect, udc->vbus_active);
1192
1193 if (udc->driver && udc->softconnect && udc->vbus_active) {
1194 retval = mv_udc_enable(udc);
1195 if (retval == 0) {
1196 /* Clock is disabled, need re-init registers */
1197 udc_reset(udc);
1198 ep0_reset(udc);
1199 udc_start(udc);
1200 }
1201 } else if (udc->driver && udc->softconnect) {
1202 /* stop all the transfer in queue*/
1203 stop_activity(udc, udc->driver);
1204 udc_stop(udc);
1205 mv_udc_disable(udc);
1206 }
1207
1208 spin_unlock_irqrestore(&udc->lock, flags);
1209 return retval;
1210 }
1211
1212 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1213 {
1214 struct mv_udc *udc;
1215 unsigned long flags;
1216 int retval = 0;
1217
1218 udc = container_of(gadget, struct mv_udc, gadget);
1219 spin_lock_irqsave(&udc->lock, flags);
1220
1221 udc->softconnect = (is_on != 0);
1222
1223 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1224 __func__, udc->softconnect, udc->vbus_active);
1225
1226 if (udc->driver && udc->softconnect && udc->vbus_active) {
1227 retval = mv_udc_enable(udc);
1228 if (retval == 0) {
1229 /* Clock is disabled, need re-init registers */
1230 udc_reset(udc);
1231 ep0_reset(udc);
1232 udc_start(udc);
1233 }
1234 } else if (udc->driver && udc->vbus_active) {
1235 /* stop all the transfer in queue*/
1236 stop_activity(udc, udc->driver);
1237 udc_stop(udc);
1238 mv_udc_disable(udc);
1239 }
1240
1241 spin_unlock_irqrestore(&udc->lock, flags);
1242 return retval;
1243 }
1244
1245 static int mv_udc_start(struct usb_gadget_driver *driver,
1246 int (*bind)(struct usb_gadget *));
1247 static int mv_udc_stop(struct usb_gadget_driver *driver);
1248 /* device controller usb_gadget_ops structure */
1249 static const struct usb_gadget_ops mv_ops = {
1250
1251 /* returns the current frame number */
1252 .get_frame = mv_udc_get_frame,
1253
1254 /* tries to wake up the host connected to this gadget */
1255 .wakeup = mv_udc_wakeup,
1256
1257 /* notify controller that VBUS is powered or not */
1258 .vbus_session = mv_udc_vbus_session,
1259
1260 /* D+ pullup, software-controlled connect/disconnect to USB host */
1261 .pullup = mv_udc_pullup,
1262 .start = mv_udc_start,
1263 .stop = mv_udc_stop,
1264 };
1265
1266 static int eps_init(struct mv_udc *udc)
1267 {
1268 struct mv_ep *ep;
1269 char name[14];
1270 int i;
1271
1272 /* initialize ep0 */
1273 ep = &udc->eps[0];
1274 ep->udc = udc;
1275 strncpy(ep->name, "ep0", sizeof(ep->name));
1276 ep->ep.name = ep->name;
1277 ep->ep.ops = &mv_ep_ops;
1278 ep->wedge = 0;
1279 ep->stopped = 0;
1280 ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
1281 ep->ep_num = 0;
1282 ep->ep.desc = &mv_ep0_desc;
1283 INIT_LIST_HEAD(&ep->queue);
1284
1285 ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1286
1287 /* initialize other endpoints */
1288 for (i = 2; i < udc->max_eps * 2; i++) {
1289 ep = &udc->eps[i];
1290 if (i % 2) {
1291 snprintf(name, sizeof(name), "ep%din", i / 2);
1292 ep->direction = EP_DIR_IN;
1293 } else {
1294 snprintf(name, sizeof(name), "ep%dout", i / 2);
1295 ep->direction = EP_DIR_OUT;
1296 }
1297 ep->udc = udc;
1298 strncpy(ep->name, name, sizeof(ep->name));
1299 ep->ep.name = ep->name;
1300
1301 ep->ep.ops = &mv_ep_ops;
1302 ep->stopped = 0;
1303 ep->ep.maxpacket = (unsigned short) ~0;
1304 ep->ep_num = i / 2;
1305
1306 INIT_LIST_HEAD(&ep->queue);
1307 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1308
1309 ep->dqh = &udc->ep_dqh[i];
1310 }
1311
1312 return 0;
1313 }
1314
1315 /* delete all endpoint requests, called with spinlock held */
1316 static void nuke(struct mv_ep *ep, int status)
1317 {
1318 /* called with spinlock held */
1319 ep->stopped = 1;
1320
1321 /* endpoint fifo flush */
1322 mv_ep_fifo_flush(&ep->ep);
1323
1324 while (!list_empty(&ep->queue)) {
1325 struct mv_req *req = NULL;
1326 req = list_entry(ep->queue.next, struct mv_req, queue);
1327 done(ep, req, status);
1328 }
1329 }
1330
1331 /* stop all USB activities */
1332 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1333 {
1334 struct mv_ep *ep;
1335
1336 nuke(&udc->eps[0], -ESHUTDOWN);
1337
1338 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1339 nuke(ep, -ESHUTDOWN);
1340 }
1341
1342 /* report disconnect; the driver is already quiesced */
1343 if (driver) {
1344 spin_unlock(&udc->lock);
1345 driver->disconnect(&udc->gadget);
1346 spin_lock(&udc->lock);
1347 }
1348 }
1349
1350 static int mv_udc_start(struct usb_gadget_driver *driver,
1351 int (*bind)(struct usb_gadget *))
1352 {
1353 struct mv_udc *udc = the_controller;
1354 int retval = 0;
1355 unsigned long flags;
1356
1357 if (!udc)
1358 return -ENODEV;
1359
1360 if (udc->driver)
1361 return -EBUSY;
1362
1363 spin_lock_irqsave(&udc->lock, flags);
1364
1365 /* hook up the driver ... */
1366 driver->driver.bus = NULL;
1367 udc->driver = driver;
1368 udc->gadget.dev.driver = &driver->driver;
1369
1370 udc->usb_state = USB_STATE_ATTACHED;
1371 udc->ep0_state = WAIT_FOR_SETUP;
1372 udc->ep0_dir = EP_DIR_OUT;
1373
1374 spin_unlock_irqrestore(&udc->lock, flags);
1375
1376 retval = bind(&udc->gadget);
1377 if (retval) {
1378 dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
1379 driver->driver.name, retval);
1380 udc->driver = NULL;
1381 udc->gadget.dev.driver = NULL;
1382 return retval;
1383 }
1384
1385 if (!IS_ERR_OR_NULL(udc->transceiver)) {
1386 retval = otg_set_peripheral(udc->transceiver->otg,
1387 &udc->gadget);
1388 if (retval) {
1389 dev_err(&udc->dev->dev,
1390 "unable to register peripheral to otg\n");
1391 if (driver->unbind) {
1392 driver->unbind(&udc->gadget);
1393 udc->gadget.dev.driver = NULL;
1394 udc->driver = NULL;
1395 }
1396 return retval;
1397 }
1398 }
1399
1400 /* pullup is always on */
1401 mv_udc_pullup(&udc->gadget, 1);
1402
1403 /* When boot with cable attached, there will be no vbus irq occurred */
1404 if (udc->qwork)
1405 queue_work(udc->qwork, &udc->vbus_work);
1406
1407 return 0;
1408 }
1409
1410 static int mv_udc_stop(struct usb_gadget_driver *driver)
1411 {
1412 struct mv_udc *udc = the_controller;
1413 unsigned long flags;
1414
1415 if (!udc)
1416 return -ENODEV;
1417
1418 spin_lock_irqsave(&udc->lock, flags);
1419
1420 mv_udc_enable(udc);
1421 udc_stop(udc);
1422
1423 /* stop all usb activities */
1424 udc->gadget.speed = USB_SPEED_UNKNOWN;
1425 stop_activity(udc, driver);
1426 mv_udc_disable(udc);
1427
1428 spin_unlock_irqrestore(&udc->lock, flags);
1429
1430 /* unbind gadget driver */
1431 driver->unbind(&udc->gadget);
1432 udc->gadget.dev.driver = NULL;
1433 udc->driver = NULL;
1434
1435 return 0;
1436 }
1437
1438 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1439 {
1440 u32 portsc;
1441
1442 portsc = readl(&udc->op_regs->portsc[0]);
1443 portsc |= mode << 16;
1444 writel(portsc, &udc->op_regs->portsc[0]);
1445 }
1446
1447 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1448 {
1449 struct mv_udc *udc = the_controller;
1450 struct mv_req *req = container_of(_req, struct mv_req, req);
1451 unsigned long flags;
1452
1453 dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1454
1455 spin_lock_irqsave(&udc->lock, flags);
1456 if (req->test_mode) {
1457 mv_set_ptc(udc, req->test_mode);
1458 req->test_mode = 0;
1459 }
1460 spin_unlock_irqrestore(&udc->lock, flags);
1461 }
1462
1463 static int
1464 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1465 {
1466 int retval = 0;
1467 struct mv_req *req;
1468 struct mv_ep *ep;
1469
1470 ep = &udc->eps[0];
1471 udc->ep0_dir = direction;
1472 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1473
1474 req = udc->status_req;
1475
1476 /* fill in the reqest structure */
1477 if (empty == false) {
1478 *((u16 *) req->req.buf) = cpu_to_le16(status);
1479 req->req.length = 2;
1480 } else
1481 req->req.length = 0;
1482
1483 req->ep = ep;
1484 req->req.status = -EINPROGRESS;
1485 req->req.actual = 0;
1486 if (udc->test_mode) {
1487 req->req.complete = prime_status_complete;
1488 req->test_mode = udc->test_mode;
1489 udc->test_mode = 0;
1490 } else
1491 req->req.complete = NULL;
1492 req->dtd_count = 0;
1493
1494 if (req->req.dma == DMA_ADDR_INVALID) {
1495 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1496 req->req.buf, req->req.length,
1497 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1498 req->mapped = 1;
1499 }
1500
1501 /* prime the data phase */
1502 if (!req_to_dtd(req))
1503 retval = queue_dtd(ep, req);
1504 else{ /* no mem */
1505 retval = -ENOMEM;
1506 goto out;
1507 }
1508
1509 if (retval) {
1510 dev_err(&udc->dev->dev, "response error on GET_STATUS request\n");
1511 goto out;
1512 }
1513
1514 list_add_tail(&req->queue, &ep->queue);
1515
1516 return 0;
1517 out:
1518 return retval;
1519 }
1520
1521 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1522 {
1523 if (index <= TEST_FORCE_EN) {
1524 udc->test_mode = index;
1525 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1526 ep0_stall(udc);
1527 } else
1528 dev_err(&udc->dev->dev,
1529 "This test mode(%d) is not supported\n", index);
1530 }
1531
1532 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1533 {
1534 udc->dev_addr = (u8)setup->wValue;
1535
1536 /* update usb state */
1537 udc->usb_state = USB_STATE_ADDRESS;
1538
1539 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1540 ep0_stall(udc);
1541 }
1542
1543 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1544 struct usb_ctrlrequest *setup)
1545 {
1546 u16 status = 0;
1547 int retval;
1548
1549 if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1550 != (USB_DIR_IN | USB_TYPE_STANDARD))
1551 return;
1552
1553 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1554 status = 1 << USB_DEVICE_SELF_POWERED;
1555 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1556 } else if ((setup->bRequestType & USB_RECIP_MASK)
1557 == USB_RECIP_INTERFACE) {
1558 /* get interface status */
1559 status = 0;
1560 } else if ((setup->bRequestType & USB_RECIP_MASK)
1561 == USB_RECIP_ENDPOINT) {
1562 u8 ep_num, direction;
1563
1564 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1565 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1566 ? EP_DIR_IN : EP_DIR_OUT;
1567 status = ep_is_stall(udc, ep_num, direction)
1568 << USB_ENDPOINT_HALT;
1569 }
1570
1571 retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1572 if (retval)
1573 ep0_stall(udc);
1574 else
1575 udc->ep0_state = DATA_STATE_XMIT;
1576 }
1577
1578 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1579 {
1580 u8 ep_num;
1581 u8 direction;
1582 struct mv_ep *ep;
1583
1584 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1585 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1586 switch (setup->wValue) {
1587 case USB_DEVICE_REMOTE_WAKEUP:
1588 udc->remote_wakeup = 0;
1589 break;
1590 default:
1591 goto out;
1592 }
1593 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1594 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1595 switch (setup->wValue) {
1596 case USB_ENDPOINT_HALT:
1597 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1598 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1599 ? EP_DIR_IN : EP_DIR_OUT;
1600 if (setup->wValue != 0 || setup->wLength != 0
1601 || ep_num > udc->max_eps)
1602 goto out;
1603 ep = &udc->eps[ep_num * 2 + direction];
1604 if (ep->wedge == 1)
1605 break;
1606 spin_unlock(&udc->lock);
1607 ep_set_stall(udc, ep_num, direction, 0);
1608 spin_lock(&udc->lock);
1609 break;
1610 default:
1611 goto out;
1612 }
1613 } else
1614 goto out;
1615
1616 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1617 ep0_stall(udc);
1618 out:
1619 return;
1620 }
1621
1622 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1623 {
1624 u8 ep_num;
1625 u8 direction;
1626
1627 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1628 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1629 switch (setup->wValue) {
1630 case USB_DEVICE_REMOTE_WAKEUP:
1631 udc->remote_wakeup = 1;
1632 break;
1633 case USB_DEVICE_TEST_MODE:
1634 if (setup->wIndex & 0xFF
1635 || udc->gadget.speed != USB_SPEED_HIGH)
1636 ep0_stall(udc);
1637
1638 if (udc->usb_state != USB_STATE_CONFIGURED
1639 && udc->usb_state != USB_STATE_ADDRESS
1640 && udc->usb_state != USB_STATE_DEFAULT)
1641 ep0_stall(udc);
1642
1643 mv_udc_testmode(udc, (setup->wIndex >> 8));
1644 goto out;
1645 default:
1646 goto out;
1647 }
1648 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1649 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1650 switch (setup->wValue) {
1651 case USB_ENDPOINT_HALT:
1652 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1653 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1654 ? EP_DIR_IN : EP_DIR_OUT;
1655 if (setup->wValue != 0 || setup->wLength != 0
1656 || ep_num > udc->max_eps)
1657 goto out;
1658 spin_unlock(&udc->lock);
1659 ep_set_stall(udc, ep_num, direction, 1);
1660 spin_lock(&udc->lock);
1661 break;
1662 default:
1663 goto out;
1664 }
1665 } else
1666 goto out;
1667
1668 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1669 ep0_stall(udc);
1670 out:
1671 return;
1672 }
1673
1674 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1675 struct usb_ctrlrequest *setup)
1676 {
1677 bool delegate = false;
1678
1679 nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1680
1681 dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1682 setup->bRequestType, setup->bRequest,
1683 setup->wValue, setup->wIndex, setup->wLength);
1684 /* We process some stardard setup requests here */
1685 if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1686 switch (setup->bRequest) {
1687 case USB_REQ_GET_STATUS:
1688 ch9getstatus(udc, ep_num, setup);
1689 break;
1690
1691 case USB_REQ_SET_ADDRESS:
1692 ch9setaddress(udc, setup);
1693 break;
1694
1695 case USB_REQ_CLEAR_FEATURE:
1696 ch9clearfeature(udc, setup);
1697 break;
1698
1699 case USB_REQ_SET_FEATURE:
1700 ch9setfeature(udc, setup);
1701 break;
1702
1703 default:
1704 delegate = true;
1705 }
1706 } else
1707 delegate = true;
1708
1709 /* delegate USB standard requests to the gadget driver */
1710 if (delegate == true) {
1711 /* USB requests handled by gadget */
1712 if (setup->wLength) {
1713 /* DATA phase from gadget, STATUS phase from udc */
1714 udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1715 ? EP_DIR_IN : EP_DIR_OUT;
1716 spin_unlock(&udc->lock);
1717 if (udc->driver->setup(&udc->gadget,
1718 &udc->local_setup_buff) < 0)
1719 ep0_stall(udc);
1720 spin_lock(&udc->lock);
1721 udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1722 ? DATA_STATE_XMIT : DATA_STATE_RECV;
1723 } else {
1724 /* no DATA phase, IN STATUS phase from gadget */
1725 udc->ep0_dir = EP_DIR_IN;
1726 spin_unlock(&udc->lock);
1727 if (udc->driver->setup(&udc->gadget,
1728 &udc->local_setup_buff) < 0)
1729 ep0_stall(udc);
1730 spin_lock(&udc->lock);
1731 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1732 }
1733 }
1734 }
1735
1736 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1737 static void ep0_req_complete(struct mv_udc *udc,
1738 struct mv_ep *ep0, struct mv_req *req)
1739 {
1740 u32 new_addr;
1741
1742 if (udc->usb_state == USB_STATE_ADDRESS) {
1743 /* set the new address */
1744 new_addr = (u32)udc->dev_addr;
1745 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1746 &udc->op_regs->deviceaddr);
1747 }
1748
1749 done(ep0, req, 0);
1750
1751 switch (udc->ep0_state) {
1752 case DATA_STATE_XMIT:
1753 /* receive status phase */
1754 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1755 ep0_stall(udc);
1756 break;
1757 case DATA_STATE_RECV:
1758 /* send status phase */
1759 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1760 ep0_stall(udc);
1761 break;
1762 case WAIT_FOR_OUT_STATUS:
1763 udc->ep0_state = WAIT_FOR_SETUP;
1764 break;
1765 case WAIT_FOR_SETUP:
1766 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1767 break;
1768 default:
1769 ep0_stall(udc);
1770 break;
1771 }
1772 }
1773
1774 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1775 {
1776 u32 temp;
1777 struct mv_dqh *dqh;
1778
1779 dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1780
1781 /* Clear bit in ENDPTSETUPSTAT */
1782 writel((1 << ep_num), &udc->op_regs->epsetupstat);
1783
1784 /* while a hazard exists when setup package arrives */
1785 do {
1786 /* Set Setup Tripwire */
1787 temp = readl(&udc->op_regs->usbcmd);
1788 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1789
1790 /* Copy the setup packet to local buffer */
1791 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1792 } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1793
1794 /* Clear Setup Tripwire */
1795 temp = readl(&udc->op_regs->usbcmd);
1796 writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1797 }
1798
1799 static void irq_process_tr_complete(struct mv_udc *udc)
1800 {
1801 u32 tmp, bit_pos;
1802 int i, ep_num = 0, direction = 0;
1803 struct mv_ep *curr_ep;
1804 struct mv_req *curr_req, *temp_req;
1805 int status;
1806
1807 /*
1808 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1809 * because the setup packets are to be read ASAP
1810 */
1811
1812 /* Process all Setup packet received interrupts */
1813 tmp = readl(&udc->op_regs->epsetupstat);
1814
1815 if (tmp) {
1816 for (i = 0; i < udc->max_eps; i++) {
1817 if (tmp & (1 << i)) {
1818 get_setup_data(udc, i,
1819 (u8 *)(&udc->local_setup_buff));
1820 handle_setup_packet(udc, i,
1821 &udc->local_setup_buff);
1822 }
1823 }
1824 }
1825
1826 /* Don't clear the endpoint setup status register here.
1827 * It is cleared as a setup packet is read out of the buffer
1828 */
1829
1830 /* Process non-setup transaction complete interrupts */
1831 tmp = readl(&udc->op_regs->epcomplete);
1832
1833 if (!tmp)
1834 return;
1835
1836 writel(tmp, &udc->op_regs->epcomplete);
1837
1838 for (i = 0; i < udc->max_eps * 2; i++) {
1839 ep_num = i >> 1;
1840 direction = i % 2;
1841
1842 bit_pos = 1 << (ep_num + 16 * direction);
1843
1844 if (!(bit_pos & tmp))
1845 continue;
1846
1847 if (i == 1)
1848 curr_ep = &udc->eps[0];
1849 else
1850 curr_ep = &udc->eps[i];
1851 /* process the req queue until an uncomplete request */
1852 list_for_each_entry_safe(curr_req, temp_req,
1853 &curr_ep->queue, queue) {
1854 status = process_ep_req(udc, i, curr_req);
1855 if (status)
1856 break;
1857
1858 /* write back status to req */
1859 curr_req->req.status = status;
1860
1861 /* ep0 request completion */
1862 if (ep_num == 0) {
1863 ep0_req_complete(udc, curr_ep, curr_req);
1864 break;
1865 } else {
1866 done(curr_ep, curr_req, status);
1867 }
1868 }
1869 }
1870 }
1871
1872 void irq_process_reset(struct mv_udc *udc)
1873 {
1874 u32 tmp;
1875 unsigned int loops;
1876
1877 udc->ep0_dir = EP_DIR_OUT;
1878 udc->ep0_state = WAIT_FOR_SETUP;
1879 udc->remote_wakeup = 0; /* default to 0 on reset */
1880
1881 /* The address bits are past bit 25-31. Set the address */
1882 tmp = readl(&udc->op_regs->deviceaddr);
1883 tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1884 writel(tmp, &udc->op_regs->deviceaddr);
1885
1886 /* Clear all the setup token semaphores */
1887 tmp = readl(&udc->op_regs->epsetupstat);
1888 writel(tmp, &udc->op_regs->epsetupstat);
1889
1890 /* Clear all the endpoint complete status bits */
1891 tmp = readl(&udc->op_regs->epcomplete);
1892 writel(tmp, &udc->op_regs->epcomplete);
1893
1894 /* wait until all endptprime bits cleared */
1895 loops = LOOPS(PRIME_TIMEOUT);
1896 while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1897 if (loops == 0) {
1898 dev_err(&udc->dev->dev,
1899 "Timeout for ENDPTPRIME = 0x%x\n",
1900 readl(&udc->op_regs->epprime));
1901 break;
1902 }
1903 loops--;
1904 udelay(LOOPS_USEC);
1905 }
1906
1907 /* Write 1s to the Flush register */
1908 writel((u32)~0, &udc->op_regs->epflush);
1909
1910 if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1911 dev_info(&udc->dev->dev, "usb bus reset\n");
1912 udc->usb_state = USB_STATE_DEFAULT;
1913 /* reset all the queues, stop all USB activities */
1914 stop_activity(udc, udc->driver);
1915 } else {
1916 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1917 readl(&udc->op_regs->portsc));
1918
1919 /*
1920 * re-initialize
1921 * controller reset
1922 */
1923 udc_reset(udc);
1924
1925 /* reset all the queues, stop all USB activities */
1926 stop_activity(udc, udc->driver);
1927
1928 /* reset ep0 dQH and endptctrl */
1929 ep0_reset(udc);
1930
1931 /* enable interrupt and set controller to run state */
1932 udc_start(udc);
1933
1934 udc->usb_state = USB_STATE_ATTACHED;
1935 }
1936 }
1937
1938 static void handle_bus_resume(struct mv_udc *udc)
1939 {
1940 udc->usb_state = udc->resume_state;
1941 udc->resume_state = 0;
1942
1943 /* report resume to the driver */
1944 if (udc->driver) {
1945 if (udc->driver->resume) {
1946 spin_unlock(&udc->lock);
1947 udc->driver->resume(&udc->gadget);
1948 spin_lock(&udc->lock);
1949 }
1950 }
1951 }
1952
1953 static void irq_process_suspend(struct mv_udc *udc)
1954 {
1955 udc->resume_state = udc->usb_state;
1956 udc->usb_state = USB_STATE_SUSPENDED;
1957
1958 if (udc->driver->suspend) {
1959 spin_unlock(&udc->lock);
1960 udc->driver->suspend(&udc->gadget);
1961 spin_lock(&udc->lock);
1962 }
1963 }
1964
1965 static void irq_process_port_change(struct mv_udc *udc)
1966 {
1967 u32 portsc;
1968
1969 portsc = readl(&udc->op_regs->portsc[0]);
1970 if (!(portsc & PORTSCX_PORT_RESET)) {
1971 /* Get the speed */
1972 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1973 switch (speed) {
1974 case PORTSCX_PORT_SPEED_HIGH:
1975 udc->gadget.speed = USB_SPEED_HIGH;
1976 break;
1977 case PORTSCX_PORT_SPEED_FULL:
1978 udc->gadget.speed = USB_SPEED_FULL;
1979 break;
1980 case PORTSCX_PORT_SPEED_LOW:
1981 udc->gadget.speed = USB_SPEED_LOW;
1982 break;
1983 default:
1984 udc->gadget.speed = USB_SPEED_UNKNOWN;
1985 break;
1986 }
1987 }
1988
1989 if (portsc & PORTSCX_PORT_SUSPEND) {
1990 udc->resume_state = udc->usb_state;
1991 udc->usb_state = USB_STATE_SUSPENDED;
1992 if (udc->driver->suspend) {
1993 spin_unlock(&udc->lock);
1994 udc->driver->suspend(&udc->gadget);
1995 spin_lock(&udc->lock);
1996 }
1997 }
1998
1999 if (!(portsc & PORTSCX_PORT_SUSPEND)
2000 && udc->usb_state == USB_STATE_SUSPENDED) {
2001 handle_bus_resume(udc);
2002 }
2003
2004 if (!udc->resume_state)
2005 udc->usb_state = USB_STATE_DEFAULT;
2006 }
2007
2008 static void irq_process_error(struct mv_udc *udc)
2009 {
2010 /* Increment the error count */
2011 udc->errors++;
2012 }
2013
2014 static irqreturn_t mv_udc_irq(int irq, void *dev)
2015 {
2016 struct mv_udc *udc = (struct mv_udc *)dev;
2017 u32 status, intr;
2018
2019 /* Disable ISR when stopped bit is set */
2020 if (udc->stopped)
2021 return IRQ_NONE;
2022
2023 spin_lock(&udc->lock);
2024
2025 status = readl(&udc->op_regs->usbsts);
2026 intr = readl(&udc->op_regs->usbintr);
2027 status &= intr;
2028
2029 if (status == 0) {
2030 spin_unlock(&udc->lock);
2031 return IRQ_NONE;
2032 }
2033
2034 /* Clear all the interrupts occurred */
2035 writel(status, &udc->op_regs->usbsts);
2036
2037 if (status & USBSTS_ERR)
2038 irq_process_error(udc);
2039
2040 if (status & USBSTS_RESET)
2041 irq_process_reset(udc);
2042
2043 if (status & USBSTS_PORT_CHANGE)
2044 irq_process_port_change(udc);
2045
2046 if (status & USBSTS_INT)
2047 irq_process_tr_complete(udc);
2048
2049 if (status & USBSTS_SUSPEND)
2050 irq_process_suspend(udc);
2051
2052 spin_unlock(&udc->lock);
2053
2054 return IRQ_HANDLED;
2055 }
2056
2057 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2058 {
2059 struct mv_udc *udc = (struct mv_udc *)dev;
2060
2061 /* polling VBUS and init phy may cause too much time*/
2062 if (udc->qwork)
2063 queue_work(udc->qwork, &udc->vbus_work);
2064
2065 return IRQ_HANDLED;
2066 }
2067
2068 static void mv_udc_vbus_work(struct work_struct *work)
2069 {
2070 struct mv_udc *udc;
2071 unsigned int vbus;
2072
2073 udc = container_of(work, struct mv_udc, vbus_work);
2074 if (!udc->pdata->vbus)
2075 return;
2076
2077 vbus = udc->pdata->vbus->poll();
2078 dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2079
2080 if (vbus == VBUS_HIGH)
2081 mv_udc_vbus_session(&udc->gadget, 1);
2082 else if (vbus == VBUS_LOW)
2083 mv_udc_vbus_session(&udc->gadget, 0);
2084 }
2085
2086 /* release device structure */
2087 static void gadget_release(struct device *_dev)
2088 {
2089 struct mv_udc *udc = the_controller;
2090
2091 complete(udc->done);
2092 }
2093
2094 static int __devexit mv_udc_remove(struct platform_device *dev)
2095 {
2096 struct mv_udc *udc = the_controller;
2097 int clk_i;
2098
2099 usb_del_gadget_udc(&udc->gadget);
2100
2101 if (udc->qwork) {
2102 flush_workqueue(udc->qwork);
2103 destroy_workqueue(udc->qwork);
2104 }
2105
2106 /*
2107 * If we have transceiver inited,
2108 * then vbus irq will not be requested in udc driver.
2109 */
2110 if (udc->pdata && udc->pdata->vbus
2111 && udc->clock_gating && IS_ERR_OR_NULL(udc->transceiver))
2112 free_irq(udc->pdata->vbus->irq, &dev->dev);
2113
2114 /* free memory allocated in probe */
2115 if (udc->dtd_pool)
2116 dma_pool_destroy(udc->dtd_pool);
2117
2118 if (udc->ep_dqh)
2119 dma_free_coherent(&dev->dev, udc->ep_dqh_size,
2120 udc->ep_dqh, udc->ep_dqh_dma);
2121
2122 kfree(udc->eps);
2123
2124 if (udc->irq)
2125 free_irq(udc->irq, &dev->dev);
2126
2127 mv_udc_disable(udc);
2128
2129 if (udc->cap_regs)
2130 iounmap(udc->cap_regs);
2131
2132 if (udc->phy_regs)
2133 iounmap(udc->phy_regs);
2134
2135 if (udc->status_req) {
2136 kfree(udc->status_req->req.buf);
2137 kfree(udc->status_req);
2138 }
2139
2140 for (clk_i = 0; clk_i <= udc->clknum; clk_i++)
2141 clk_put(udc->clk[clk_i]);
2142
2143 device_unregister(&udc->gadget.dev);
2144
2145 /* free dev, wait for the release() finished */
2146 wait_for_completion(udc->done);
2147 kfree(udc);
2148
2149 the_controller = NULL;
2150
2151 return 0;
2152 }
2153
2154 static int __devinit mv_udc_probe(struct platform_device *dev)
2155 {
2156 struct mv_usb_platform_data *pdata = dev->dev.platform_data;
2157 struct mv_udc *udc;
2158 int retval = 0;
2159 int clk_i = 0;
2160 struct resource *r;
2161 size_t size;
2162
2163 if (pdata == NULL) {
2164 dev_err(&dev->dev, "missing platform_data\n");
2165 return -ENODEV;
2166 }
2167
2168 size = sizeof(*udc) + sizeof(struct clk *) * pdata->clknum;
2169 udc = kzalloc(size, GFP_KERNEL);
2170 if (udc == NULL) {
2171 dev_err(&dev->dev, "failed to allocate memory for udc\n");
2172 return -ENOMEM;
2173 }
2174
2175 the_controller = udc;
2176 udc->done = &release_done;
2177 udc->pdata = dev->dev.platform_data;
2178 spin_lock_init(&udc->lock);
2179
2180 udc->dev = dev;
2181
2182 #ifdef CONFIG_USB_OTG_UTILS
2183 if (pdata->mode == MV_USB_MODE_OTG)
2184 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2185 #endif
2186
2187 udc->clknum = pdata->clknum;
2188 for (clk_i = 0; clk_i < udc->clknum; clk_i++) {
2189 udc->clk[clk_i] = clk_get(&dev->dev, pdata->clkname[clk_i]);
2190 if (IS_ERR(udc->clk[clk_i])) {
2191 retval = PTR_ERR(udc->clk[clk_i]);
2192 goto err_put_clk;
2193 }
2194 }
2195
2196 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2197 if (r == NULL) {
2198 dev_err(&dev->dev, "no I/O memory resource defined\n");
2199 retval = -ENODEV;
2200 goto err_put_clk;
2201 }
2202
2203 udc->cap_regs = (struct mv_cap_regs __iomem *)
2204 ioremap(r->start, resource_size(r));
2205 if (udc->cap_regs == NULL) {
2206 dev_err(&dev->dev, "failed to map I/O memory\n");
2207 retval = -EBUSY;
2208 goto err_put_clk;
2209 }
2210
2211 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2212 if (r == NULL) {
2213 dev_err(&dev->dev, "no phy I/O memory resource defined\n");
2214 retval = -ENODEV;
2215 goto err_iounmap_capreg;
2216 }
2217
2218 udc->phy_regs = ioremap(r->start, resource_size(r));
2219 if (udc->phy_regs == NULL) {
2220 dev_err(&dev->dev, "failed to map phy I/O memory\n");
2221 retval = -EBUSY;
2222 goto err_iounmap_capreg;
2223 }
2224
2225 /* we will acces controller register, so enable the clk */
2226 retval = mv_udc_enable_internal(udc);
2227 if (retval)
2228 goto err_iounmap_phyreg;
2229
2230 udc->op_regs =
2231 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2232 + (readl(&udc->cap_regs->caplength_hciversion)
2233 & CAPLENGTH_MASK));
2234 udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2235
2236 /*
2237 * some platform will use usb to download image, it may not disconnect
2238 * usb gadget before loading kernel. So first stop udc here.
2239 */
2240 udc_stop(udc);
2241 writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2242
2243 size = udc->max_eps * sizeof(struct mv_dqh) *2;
2244 size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2245 udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
2246 &udc->ep_dqh_dma, GFP_KERNEL);
2247
2248 if (udc->ep_dqh == NULL) {
2249 dev_err(&dev->dev, "allocate dQH memory failed\n");
2250 retval = -ENOMEM;
2251 goto err_disable_clock;
2252 }
2253 udc->ep_dqh_size = size;
2254
2255 /* create dTD dma_pool resource */
2256 udc->dtd_pool = dma_pool_create("mv_dtd",
2257 &dev->dev,
2258 sizeof(struct mv_dtd),
2259 DTD_ALIGNMENT,
2260 DMA_BOUNDARY);
2261
2262 if (!udc->dtd_pool) {
2263 retval = -ENOMEM;
2264 goto err_free_dma;
2265 }
2266
2267 size = udc->max_eps * sizeof(struct mv_ep) *2;
2268 udc->eps = kzalloc(size, GFP_KERNEL);
2269 if (udc->eps == NULL) {
2270 dev_err(&dev->dev, "allocate ep memory failed\n");
2271 retval = -ENOMEM;
2272 goto err_destroy_dma;
2273 }
2274
2275 /* initialize ep0 status request structure */
2276 udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
2277 if (!udc->status_req) {
2278 dev_err(&dev->dev, "allocate status_req memory failed\n");
2279 retval = -ENOMEM;
2280 goto err_free_eps;
2281 }
2282 INIT_LIST_HEAD(&udc->status_req->queue);
2283
2284 /* allocate a small amount of memory to get valid address */
2285 udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2286 udc->status_req->req.dma = DMA_ADDR_INVALID;
2287
2288 udc->resume_state = USB_STATE_NOTATTACHED;
2289 udc->usb_state = USB_STATE_POWERED;
2290 udc->ep0_dir = EP_DIR_OUT;
2291 udc->remote_wakeup = 0;
2292
2293 r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2294 if (r == NULL) {
2295 dev_err(&dev->dev, "no IRQ resource defined\n");
2296 retval = -ENODEV;
2297 goto err_free_status_req;
2298 }
2299 udc->irq = r->start;
2300 if (request_irq(udc->irq, mv_udc_irq,
2301 IRQF_SHARED, driver_name, udc)) {
2302 dev_err(&dev->dev, "Request irq %d for UDC failed\n",
2303 udc->irq);
2304 retval = -ENODEV;
2305 goto err_free_status_req;
2306 }
2307
2308 /* initialize gadget structure */
2309 udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
2310 udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
2311 INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
2312 udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
2313 udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2314
2315 /* the "gadget" abstracts/virtualizes the controller */
2316 dev_set_name(&udc->gadget.dev, "gadget");
2317 udc->gadget.dev.parent = &dev->dev;
2318 udc->gadget.dev.dma_mask = dev->dev.dma_mask;
2319 udc->gadget.dev.release = gadget_release;
2320 udc->gadget.name = driver_name; /* gadget name */
2321
2322 retval = device_register(&udc->gadget.dev);
2323 if (retval)
2324 goto err_free_irq;
2325
2326 eps_init(udc);
2327
2328 /* VBUS detect: we can disable/enable clock on demand.*/
2329 if (!IS_ERR_OR_NULL(udc->transceiver))
2330 udc->clock_gating = 1;
2331 else if (pdata->vbus) {
2332 udc->clock_gating = 1;
2333 retval = request_threaded_irq(pdata->vbus->irq, NULL,
2334 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2335 if (retval) {
2336 dev_info(&dev->dev,
2337 "Can not request irq for VBUS, "
2338 "disable clock gating\n");
2339 udc->clock_gating = 0;
2340 }
2341
2342 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2343 if (!udc->qwork) {
2344 dev_err(&dev->dev, "cannot create workqueue\n");
2345 retval = -ENOMEM;
2346 goto err_unregister;
2347 }
2348
2349 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2350 }
2351
2352 /*
2353 * When clock gating is supported, we can disable clk and phy.
2354 * If not, it means that VBUS detection is not supported, we
2355 * have to enable vbus active all the time to let controller work.
2356 */
2357 if (udc->clock_gating)
2358 mv_udc_disable_internal(udc);
2359 else
2360 udc->vbus_active = 1;
2361
2362 retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
2363 if (retval)
2364 goto err_unregister;
2365
2366 dev_info(&dev->dev, "successful probe UDC device %s clock gating.\n",
2367 udc->clock_gating ? "with" : "without");
2368
2369 return 0;
2370
2371 err_unregister:
2372 if (udc->pdata && udc->pdata->vbus
2373 && udc->clock_gating && IS_ERR_OR_NULL(udc->transceiver))
2374 free_irq(pdata->vbus->irq, &dev->dev);
2375 device_unregister(&udc->gadget.dev);
2376 err_free_irq:
2377 free_irq(udc->irq, &dev->dev);
2378 err_free_status_req:
2379 kfree(udc->status_req->req.buf);
2380 kfree(udc->status_req);
2381 err_free_eps:
2382 kfree(udc->eps);
2383 err_destroy_dma:
2384 dma_pool_destroy(udc->dtd_pool);
2385 err_free_dma:
2386 dma_free_coherent(&dev->dev, udc->ep_dqh_size,
2387 udc->ep_dqh, udc->ep_dqh_dma);
2388 err_disable_clock:
2389 mv_udc_disable_internal(udc);
2390 err_iounmap_phyreg:
2391 iounmap(udc->phy_regs);
2392 err_iounmap_capreg:
2393 iounmap(udc->cap_regs);
2394 err_put_clk:
2395 for (clk_i--; clk_i >= 0; clk_i--)
2396 clk_put(udc->clk[clk_i]);
2397 the_controller = NULL;
2398 kfree(udc);
2399 return retval;
2400 }
2401
2402 #ifdef CONFIG_PM
2403 static int mv_udc_suspend(struct device *_dev)
2404 {
2405 struct mv_udc *udc = the_controller;
2406
2407 /* if OTG is enabled, the following will be done in OTG driver*/
2408 if (!IS_ERR_OR_NULL(udc->transceiver))
2409 return 0;
2410
2411 if (udc->pdata->vbus && udc->pdata->vbus->poll)
2412 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2413 dev_info(&udc->dev->dev, "USB cable is connected!\n");
2414 return -EAGAIN;
2415 }
2416
2417 /*
2418 * only cable is unplugged, udc can suspend.
2419 * So do not care about clock_gating == 1.
2420 */
2421 if (!udc->clock_gating) {
2422 udc_stop(udc);
2423
2424 spin_lock_irq(&udc->lock);
2425 /* stop all usb activities */
2426 stop_activity(udc, udc->driver);
2427 spin_unlock_irq(&udc->lock);
2428
2429 mv_udc_disable_internal(udc);
2430 }
2431
2432 return 0;
2433 }
2434
2435 static int mv_udc_resume(struct device *_dev)
2436 {
2437 struct mv_udc *udc = the_controller;
2438 int retval;
2439
2440 /* if OTG is enabled, the following will be done in OTG driver*/
2441 if (!IS_ERR_OR_NULL(udc->transceiver))
2442 return 0;
2443
2444 if (!udc->clock_gating) {
2445 retval = mv_udc_enable_internal(udc);
2446 if (retval)
2447 return retval;
2448
2449 if (udc->driver && udc->softconnect) {
2450 udc_reset(udc);
2451 ep0_reset(udc);
2452 udc_start(udc);
2453 }
2454 }
2455
2456 return 0;
2457 }
2458
2459 static const struct dev_pm_ops mv_udc_pm_ops = {
2460 .suspend = mv_udc_suspend,
2461 .resume = mv_udc_resume,
2462 };
2463 #endif
2464
2465 static void mv_udc_shutdown(struct platform_device *dev)
2466 {
2467 struct mv_udc *udc = the_controller;
2468 u32 mode;
2469
2470 /* reset controller mode to IDLE */
2471 mode = readl(&udc->op_regs->usbmode);
2472 mode &= ~3;
2473 writel(mode, &udc->op_regs->usbmode);
2474 }
2475
2476 static struct platform_driver udc_driver = {
2477 .probe = mv_udc_probe,
2478 .remove = __exit_p(mv_udc_remove),
2479 .shutdown = mv_udc_shutdown,
2480 .driver = {
2481 .owner = THIS_MODULE,
2482 .name = "mv-udc",
2483 #ifdef CONFIG_PM
2484 .pm = &mv_udc_pm_ops,
2485 #endif
2486 },
2487 };
2488
2489 module_platform_driver(udc_driver);
2490 MODULE_ALIAS("platform:mv-udc");
2491 MODULE_DESCRIPTION(DRIVER_DESC);
2492 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2493 MODULE_VERSION(DRIVER_VERSION);
2494 MODULE_LICENSE("GPL");
This page took 0.083697 seconds and 5 git commands to generate.