USB: use usb_endpoint_maxp() instead of le16_to_cpu()
[deliverable/linux.git] / drivers / usb / gadget / s3c-hsotg.c
1 /* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/spinlock.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/debugfs.h>
25 #include <linux/seq_file.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30
31 #include <linux/usb/ch9.h>
32 #include <linux/usb/gadget.h>
33
34 #include <mach/map.h>
35
36 #include <plat/regs-usb-hsotg-phy.h>
37 #include <plat/regs-usb-hsotg.h>
38 #include <mach/regs-sys.h>
39 #include <plat/udc-hs.h>
40 #include <plat/cpu.h>
41
42 #define DMA_ADDR_INVALID (~((dma_addr_t)0))
43
44 /* EP0_MPS_LIMIT
45 *
46 * Unfortunately there seems to be a limit of the amount of data that can
47 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
48 * packets (which practically means 1 packet and 63 bytes of data) when the
49 * MPS is set to 64.
50 *
51 * This means if we are wanting to move >127 bytes of data, we need to
52 * split the transactions up, but just doing one packet at a time does
53 * not work (this may be an implicit DATA0 PID on first packet of the
54 * transaction) and doing 2 packets is outside the controller's limits.
55 *
56 * If we try to lower the MPS size for EP0, then no transfers work properly
57 * for EP0, and the system will fail basic enumeration. As no cause for this
58 * has currently been found, we cannot support any large IN transfers for
59 * EP0.
60 */
61 #define EP0_MPS_LIMIT 64
62
63 struct s3c_hsotg;
64 struct s3c_hsotg_req;
65
66 /**
67 * struct s3c_hsotg_ep - driver endpoint definition.
68 * @ep: The gadget layer representation of the endpoint.
69 * @name: The driver generated name for the endpoint.
70 * @queue: Queue of requests for this endpoint.
71 * @parent: Reference back to the parent device structure.
72 * @req: The current request that the endpoint is processing. This is
73 * used to indicate an request has been loaded onto the endpoint
74 * and has yet to be completed (maybe due to data move, or simply
75 * awaiting an ack from the core all the data has been completed).
76 * @debugfs: File entry for debugfs file for this endpoint.
77 * @lock: State lock to protect contents of endpoint.
78 * @dir_in: Set to true if this endpoint is of the IN direction, which
79 * means that it is sending data to the Host.
80 * @index: The index for the endpoint registers.
81 * @name: The name array passed to the USB core.
82 * @halted: Set if the endpoint has been halted.
83 * @periodic: Set if this is a periodic ep, such as Interrupt
84 * @sent_zlp: Set if we've sent a zero-length packet.
85 * @total_data: The total number of data bytes done.
86 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
87 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
88 * @last_load: The offset of data for the last start of request.
89 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
90 *
91 * This is the driver's state for each registered enpoint, allowing it
92 * to keep track of transactions that need doing. Each endpoint has a
93 * lock to protect the state, to try and avoid using an overall lock
94 * for the host controller as much as possible.
95 *
96 * For periodic IN endpoints, we have fifo_size and fifo_load to try
97 * and keep track of the amount of data in the periodic FIFO for each
98 * of these as we don't have a status register that tells us how much
99 * is in each of them. (note, this may actually be useless information
100 * as in shared-fifo mode periodic in acts like a single-frame packet
101 * buffer than a fifo)
102 */
103 struct s3c_hsotg_ep {
104 struct usb_ep ep;
105 struct list_head queue;
106 struct s3c_hsotg *parent;
107 struct s3c_hsotg_req *req;
108 struct dentry *debugfs;
109
110 spinlock_t lock;
111
112 unsigned long total_data;
113 unsigned int size_loaded;
114 unsigned int last_load;
115 unsigned int fifo_load;
116 unsigned short fifo_size;
117
118 unsigned char dir_in;
119 unsigned char index;
120
121 unsigned int halted:1;
122 unsigned int periodic:1;
123 unsigned int sent_zlp:1;
124
125 char name[10];
126 };
127
128 #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
129
130 /**
131 * struct s3c_hsotg - driver state.
132 * @dev: The parent device supplied to the probe function
133 * @driver: USB gadget driver
134 * @plat: The platform specific configuration data.
135 * @regs: The memory area mapped for accessing registers.
136 * @regs_res: The resource that was allocated when claiming register space.
137 * @irq: The IRQ number we are using
138 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
139 * @debug_root: root directrory for debugfs.
140 * @debug_file: main status file for debugfs.
141 * @debug_fifo: FIFO status file for debugfs.
142 * @ep0_reply: Request used for ep0 reply.
143 * @ep0_buff: Buffer for EP0 reply data, if needed.
144 * @ctrl_buff: Buffer for EP0 control requests.
145 * @ctrl_req: Request for EP0 control packets.
146 * @eps: The endpoints being supplied to the gadget framework
147 */
148 struct s3c_hsotg {
149 struct device *dev;
150 struct usb_gadget_driver *driver;
151 struct s3c_hsotg_plat *plat;
152
153 void __iomem *regs;
154 struct resource *regs_res;
155 int irq;
156 struct clk *clk;
157
158 unsigned int dedicated_fifos:1;
159
160 struct dentry *debug_root;
161 struct dentry *debug_file;
162 struct dentry *debug_fifo;
163
164 struct usb_request *ep0_reply;
165 struct usb_request *ctrl_req;
166 u8 ep0_buff[8];
167 u8 ctrl_buff[8];
168
169 struct usb_gadget gadget;
170 struct s3c_hsotg_ep eps[];
171 };
172
173 /**
174 * struct s3c_hsotg_req - data transfer request
175 * @req: The USB gadget request
176 * @queue: The list of requests for the endpoint this is queued for.
177 * @in_progress: Has already had size/packets written to core
178 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
179 */
180 struct s3c_hsotg_req {
181 struct usb_request req;
182 struct list_head queue;
183 unsigned char in_progress;
184 unsigned char mapped;
185 };
186
187 /* conversion functions */
188 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
189 {
190 return container_of(req, struct s3c_hsotg_req, req);
191 }
192
193 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
194 {
195 return container_of(ep, struct s3c_hsotg_ep, ep);
196 }
197
198 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
199 {
200 return container_of(gadget, struct s3c_hsotg, gadget);
201 }
202
203 static inline void __orr32(void __iomem *ptr, u32 val)
204 {
205 writel(readl(ptr) | val, ptr);
206 }
207
208 static inline void __bic32(void __iomem *ptr, u32 val)
209 {
210 writel(readl(ptr) & ~val, ptr);
211 }
212
213 /* forward decleration of functions */
214 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
215
216 /**
217 * using_dma - return the DMA status of the driver.
218 * @hsotg: The driver state.
219 *
220 * Return true if we're using DMA.
221 *
222 * Currently, we have the DMA support code worked into everywhere
223 * that needs it, but the AMBA DMA implementation in the hardware can
224 * only DMA from 32bit aligned addresses. This means that gadgets such
225 * as the CDC Ethernet cannot work as they often pass packets which are
226 * not 32bit aligned.
227 *
228 * Unfortunately the choice to use DMA or not is global to the controller
229 * and seems to be only settable when the controller is being put through
230 * a core reset. This means we either need to fix the gadgets to take
231 * account of DMA alignment, or add bounce buffers (yuerk).
232 *
233 * Until this issue is sorted out, we always return 'false'.
234 */
235 static inline bool using_dma(struct s3c_hsotg *hsotg)
236 {
237 return false; /* support is not complete */
238 }
239
240 /**
241 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
242 * @hsotg: The device state
243 * @ints: A bitmask of the interrupts to enable
244 */
245 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
246 {
247 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
248 u32 new_gsintmsk;
249
250 new_gsintmsk = gsintmsk | ints;
251
252 if (new_gsintmsk != gsintmsk) {
253 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
254 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
255 }
256 }
257
258 /**
259 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
260 * @hsotg: The device state
261 * @ints: A bitmask of the interrupts to enable
262 */
263 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
264 {
265 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
266 u32 new_gsintmsk;
267
268 new_gsintmsk = gsintmsk & ~ints;
269
270 if (new_gsintmsk != gsintmsk)
271 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
272 }
273
274 /**
275 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
276 * @hsotg: The device state
277 * @ep: The endpoint index
278 * @dir_in: True if direction is in.
279 * @en: The enable value, true to enable
280 *
281 * Set or clear the mask for an individual endpoint's interrupt
282 * request.
283 */
284 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
285 unsigned int ep, unsigned int dir_in,
286 unsigned int en)
287 {
288 unsigned long flags;
289 u32 bit = 1 << ep;
290 u32 daint;
291
292 if (!dir_in)
293 bit <<= 16;
294
295 local_irq_save(flags);
296 daint = readl(hsotg->regs + S3C_DAINTMSK);
297 if (en)
298 daint |= bit;
299 else
300 daint &= ~bit;
301 writel(daint, hsotg->regs + S3C_DAINTMSK);
302 local_irq_restore(flags);
303 }
304
305 /**
306 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
307 * @hsotg: The device instance.
308 */
309 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
310 {
311 unsigned int ep;
312 unsigned int addr;
313 unsigned int size;
314 int timeout;
315 u32 val;
316
317 /* the ryu 2.6.24 release ahs
318 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
319 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
320 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
321 hsotg->regs + S3C_GNPTXFSIZ);
322 */
323
324 /* set FIFO sizes to 2048/1024 */
325
326 writel(2048, hsotg->regs + S3C_GRXFSIZ);
327 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
328 S3C_GNPTXFSIZ_NPTxFDep(1024),
329 hsotg->regs + S3C_GNPTXFSIZ);
330
331 /* arange all the rest of the TX FIFOs, as some versions of this
332 * block have overlapping default addresses. This also ensures
333 * that if the settings have been changed, then they are set to
334 * known values. */
335
336 /* start at the end of the GNPTXFSIZ, rounded up */
337 addr = 2048 + 1024;
338 size = 768;
339
340 /* currently we allocate TX FIFOs for all possible endpoints,
341 * and assume that they are all the same size. */
342
343 for (ep = 0; ep <= 15; ep++) {
344 val = addr;
345 val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
346 addr += size;
347
348 writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
349 }
350
351 /* according to p428 of the design guide, we need to ensure that
352 * all fifos are flushed before continuing */
353
354 writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
355 S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
356
357 /* wait until the fifos are both flushed */
358 timeout = 100;
359 while (1) {
360 val = readl(hsotg->regs + S3C_GRSTCTL);
361
362 if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
363 break;
364
365 if (--timeout == 0) {
366 dev_err(hsotg->dev,
367 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
368 __func__, val);
369 }
370
371 udelay(1);
372 }
373
374 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375 }
376
377 /**
378 * @ep: USB endpoint to allocate request for.
379 * @flags: Allocation flags
380 *
381 * Allocate a new USB request structure appropriate for the specified endpoint
382 */
383 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
384 gfp_t flags)
385 {
386 struct s3c_hsotg_req *req;
387
388 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
389 if (!req)
390 return NULL;
391
392 INIT_LIST_HEAD(&req->queue);
393
394 req->req.dma = DMA_ADDR_INVALID;
395 return &req->req;
396 }
397
398 /**
399 * is_ep_periodic - return true if the endpoint is in periodic mode.
400 * @hs_ep: The endpoint to query.
401 *
402 * Returns true if the endpoint is in periodic mode, meaning it is being
403 * used for an Interrupt or ISO transfer.
404 */
405 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
406 {
407 return hs_ep->periodic;
408 }
409
410 /**
411 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
412 * @hsotg: The device state.
413 * @hs_ep: The endpoint for the request
414 * @hs_req: The request being processed.
415 *
416 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
417 * of a request to ensure the buffer is ready for access by the caller.
418 */
419 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
420 struct s3c_hsotg_ep *hs_ep,
421 struct s3c_hsotg_req *hs_req)
422 {
423 struct usb_request *req = &hs_req->req;
424 enum dma_data_direction dir;
425
426 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
427
428 /* ignore this if we're not moving any data */
429 if (hs_req->req.length == 0)
430 return;
431
432 if (hs_req->mapped) {
433 /* we mapped this, so unmap and remove the dma */
434
435 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
436
437 req->dma = DMA_ADDR_INVALID;
438 hs_req->mapped = 0;
439 } else {
440 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
441 }
442 }
443
444 /**
445 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
446 * @hsotg: The controller state.
447 * @hs_ep: The endpoint we're going to write for.
448 * @hs_req: The request to write data for.
449 *
450 * This is called when the TxFIFO has some space in it to hold a new
451 * transmission and we have something to give it. The actual setup of
452 * the data size is done elsewhere, so all we have to do is to actually
453 * write the data.
454 *
455 * The return value is zero if there is more space (or nothing was done)
456 * otherwise -ENOSPC is returned if the FIFO space was used up.
457 *
458 * This routine is only needed for PIO
459 */
460 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
461 struct s3c_hsotg_ep *hs_ep,
462 struct s3c_hsotg_req *hs_req)
463 {
464 bool periodic = is_ep_periodic(hs_ep);
465 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
466 int buf_pos = hs_req->req.actual;
467 int to_write = hs_ep->size_loaded;
468 void *data;
469 int can_write;
470 int pkt_round;
471
472 to_write -= (buf_pos - hs_ep->last_load);
473
474 /* if there's nothing to write, get out early */
475 if (to_write == 0)
476 return 0;
477
478 if (periodic && !hsotg->dedicated_fifos) {
479 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
480 int size_left;
481 int size_done;
482
483 /* work out how much data was loaded so we can calculate
484 * how much data is left in the fifo. */
485
486 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
487
488 /* if shared fifo, we cannot write anything until the
489 * previous data has been completely sent.
490 */
491 if (hs_ep->fifo_load != 0) {
492 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
493 return -ENOSPC;
494 }
495
496 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
497 __func__, size_left,
498 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
499
500 /* how much of the data has moved */
501 size_done = hs_ep->size_loaded - size_left;
502
503 /* how much data is left in the fifo */
504 can_write = hs_ep->fifo_load - size_done;
505 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
506 __func__, can_write);
507
508 can_write = hs_ep->fifo_size - can_write;
509 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
510 __func__, can_write);
511
512 if (can_write <= 0) {
513 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
514 return -ENOSPC;
515 }
516 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
517 can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
518
519 can_write &= 0xffff;
520 can_write *= 4;
521 } else {
522 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
523 dev_dbg(hsotg->dev,
524 "%s: no queue slots available (0x%08x)\n",
525 __func__, gnptxsts);
526
527 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
528 return -ENOSPC;
529 }
530
531 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
532 can_write *= 4; /* fifo size is in 32bit quantities. */
533 }
534
535 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
536 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
537
538 /* limit to 512 bytes of data, it seems at least on the non-periodic
539 * FIFO, requests of >512 cause the endpoint to get stuck with a
540 * fragment of the end of the transfer in it.
541 */
542 if (can_write > 512)
543 can_write = 512;
544
545 /* limit the write to one max-packet size worth of data, but allow
546 * the transfer to return that it did not run out of fifo space
547 * doing it. */
548 if (to_write > hs_ep->ep.maxpacket) {
549 to_write = hs_ep->ep.maxpacket;
550
551 s3c_hsotg_en_gsint(hsotg,
552 periodic ? S3C_GINTSTS_PTxFEmp :
553 S3C_GINTSTS_NPTxFEmp);
554 }
555
556 /* see if we can write data */
557
558 if (to_write > can_write) {
559 to_write = can_write;
560 pkt_round = to_write % hs_ep->ep.maxpacket;
561
562 /* Not sure, but we probably shouldn't be writing partial
563 * packets into the FIFO, so round the write down to an
564 * exact number of packets.
565 *
566 * Note, we do not currently check to see if we can ever
567 * write a full packet or not to the FIFO.
568 */
569
570 if (pkt_round)
571 to_write -= pkt_round;
572
573 /* enable correct FIFO interrupt to alert us when there
574 * is more room left. */
575
576 s3c_hsotg_en_gsint(hsotg,
577 periodic ? S3C_GINTSTS_PTxFEmp :
578 S3C_GINTSTS_NPTxFEmp);
579 }
580
581 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
582 to_write, hs_req->req.length, can_write, buf_pos);
583
584 if (to_write <= 0)
585 return -ENOSPC;
586
587 hs_req->req.actual = buf_pos + to_write;
588 hs_ep->total_data += to_write;
589
590 if (periodic)
591 hs_ep->fifo_load += to_write;
592
593 to_write = DIV_ROUND_UP(to_write, 4);
594 data = hs_req->req.buf + buf_pos;
595
596 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
597
598 return (to_write >= can_write) ? -ENOSPC : 0;
599 }
600
601 /**
602 * get_ep_limit - get the maximum data legnth for this endpoint
603 * @hs_ep: The endpoint
604 *
605 * Return the maximum data that can be queued in one go on a given endpoint
606 * so that transfers that are too long can be split.
607 */
608 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
609 {
610 int index = hs_ep->index;
611 unsigned maxsize;
612 unsigned maxpkt;
613
614 if (index != 0) {
615 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
616 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
617 } else {
618 maxsize = 64+64;
619 if (hs_ep->dir_in)
620 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
621 else
622 maxpkt = 2;
623 }
624
625 /* we made the constant loading easier above by using +1 */
626 maxpkt--;
627 maxsize--;
628
629 /* constrain by packet count if maxpkts*pktsize is greater
630 * than the length register size. */
631
632 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
633 maxsize = maxpkt * hs_ep->ep.maxpacket;
634
635 return maxsize;
636 }
637
638 /**
639 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
640 * @hsotg: The controller state.
641 * @hs_ep: The endpoint to process a request for
642 * @hs_req: The request to start.
643 * @continuing: True if we are doing more for the current request.
644 *
645 * Start the given request running by setting the endpoint registers
646 * appropriately, and writing any data to the FIFOs.
647 */
648 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
649 struct s3c_hsotg_ep *hs_ep,
650 struct s3c_hsotg_req *hs_req,
651 bool continuing)
652 {
653 struct usb_request *ureq = &hs_req->req;
654 int index = hs_ep->index;
655 int dir_in = hs_ep->dir_in;
656 u32 epctrl_reg;
657 u32 epsize_reg;
658 u32 epsize;
659 u32 ctrl;
660 unsigned length;
661 unsigned packets;
662 unsigned maxreq;
663
664 if (index != 0) {
665 if (hs_ep->req && !continuing) {
666 dev_err(hsotg->dev, "%s: active request\n", __func__);
667 WARN_ON(1);
668 return;
669 } else if (hs_ep->req != hs_req && continuing) {
670 dev_err(hsotg->dev,
671 "%s: continue different req\n", __func__);
672 WARN_ON(1);
673 return;
674 }
675 }
676
677 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
678 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
679
680 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
681 __func__, readl(hsotg->regs + epctrl_reg), index,
682 hs_ep->dir_in ? "in" : "out");
683
684 /* If endpoint is stalled, we will restart request later */
685 ctrl = readl(hsotg->regs + epctrl_reg);
686
687 if (ctrl & S3C_DxEPCTL_Stall) {
688 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
689 return;
690 }
691
692 length = ureq->length - ureq->actual;
693
694 if (0)
695 dev_dbg(hsotg->dev,
696 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
697 ureq->buf, length, ureq->dma,
698 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
699
700 maxreq = get_ep_limit(hs_ep);
701 if (length > maxreq) {
702 int round = maxreq % hs_ep->ep.maxpacket;
703
704 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
705 __func__, length, maxreq, round);
706
707 /* round down to multiple of packets */
708 if (round)
709 maxreq -= round;
710
711 length = maxreq;
712 }
713
714 if (length)
715 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
716 else
717 packets = 1; /* send one packet if length is zero. */
718
719 if (dir_in && index != 0)
720 epsize = S3C_DxEPTSIZ_MC(1);
721 else
722 epsize = 0;
723
724 if (index != 0 && ureq->zero) {
725 /* test for the packets being exactly right for the
726 * transfer */
727
728 if (length == (packets * hs_ep->ep.maxpacket))
729 packets++;
730 }
731
732 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
733 epsize |= S3C_DxEPTSIZ_XferSize(length);
734
735 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
736 __func__, packets, length, ureq->length, epsize, epsize_reg);
737
738 /* store the request as the current one we're doing */
739 hs_ep->req = hs_req;
740
741 /* write size / packets */
742 writel(epsize, hsotg->regs + epsize_reg);
743
744 if (using_dma(hsotg)) {
745 unsigned int dma_reg;
746
747 /* write DMA address to control register, buffer already
748 * synced by s3c_hsotg_ep_queue(). */
749
750 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
751 writel(ureq->dma, hsotg->regs + dma_reg);
752
753 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
754 __func__, ureq->dma, dma_reg);
755 }
756
757 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
758 ctrl |= S3C_DxEPCTL_USBActEp;
759 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
760
761 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
762 writel(ctrl, hsotg->regs + epctrl_reg);
763
764 /* set these, it seems that DMA support increments past the end
765 * of the packet buffer so we need to calculate the length from
766 * this information. */
767 hs_ep->size_loaded = length;
768 hs_ep->last_load = ureq->actual;
769
770 if (dir_in && !using_dma(hsotg)) {
771 /* set these anyway, we may need them for non-periodic in */
772 hs_ep->fifo_load = 0;
773
774 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
775 }
776
777 /* clear the INTknTXFEmpMsk when we start request, more as a aide
778 * to debugging to see what is going on. */
779 if (dir_in)
780 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
781 hsotg->regs + S3C_DIEPINT(index));
782
783 /* Note, trying to clear the NAK here causes problems with transmit
784 * on the S3C6400 ending up with the TXFIFO becoming full. */
785
786 /* check ep is enabled */
787 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
788 dev_warn(hsotg->dev,
789 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
790 index, readl(hsotg->regs + epctrl_reg));
791
792 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
793 __func__, readl(hsotg->regs + epctrl_reg));
794 }
795
796 /**
797 * s3c_hsotg_map_dma - map the DMA memory being used for the request
798 * @hsotg: The device state.
799 * @hs_ep: The endpoint the request is on.
800 * @req: The request being processed.
801 *
802 * We've been asked to queue a request, so ensure that the memory buffer
803 * is correctly setup for DMA. If we've been passed an extant DMA address
804 * then ensure the buffer has been synced to memory. If our buffer has no
805 * DMA memory, then we map the memory and mark our request to allow us to
806 * cleanup on completion.
807 */
808 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
809 struct s3c_hsotg_ep *hs_ep,
810 struct usb_request *req)
811 {
812 enum dma_data_direction dir;
813 struct s3c_hsotg_req *hs_req = our_req(req);
814
815 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
816
817 /* if the length is zero, ignore the DMA data */
818 if (hs_req->req.length == 0)
819 return 0;
820
821 if (req->dma == DMA_ADDR_INVALID) {
822 dma_addr_t dma;
823
824 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
825
826 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
827 goto dma_error;
828
829 if (dma & 3) {
830 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
831 __func__);
832
833 dma_unmap_single(hsotg->dev, dma, req->length, dir);
834 return -EINVAL;
835 }
836
837 hs_req->mapped = 1;
838 req->dma = dma;
839 } else {
840 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
841 hs_req->mapped = 0;
842 }
843
844 return 0;
845
846 dma_error:
847 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
848 __func__, req->buf, req->length);
849
850 return -EIO;
851 }
852
853 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
854 gfp_t gfp_flags)
855 {
856 struct s3c_hsotg_req *hs_req = our_req(req);
857 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
858 struct s3c_hsotg *hs = hs_ep->parent;
859 unsigned long irqflags;
860 bool first;
861
862 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
863 ep->name, req, req->length, req->buf, req->no_interrupt,
864 req->zero, req->short_not_ok);
865
866 /* initialise status of the request */
867 INIT_LIST_HEAD(&hs_req->queue);
868 req->actual = 0;
869 req->status = -EINPROGRESS;
870
871 /* if we're using DMA, sync the buffers as necessary */
872 if (using_dma(hs)) {
873 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
874 if (ret)
875 return ret;
876 }
877
878 spin_lock_irqsave(&hs_ep->lock, irqflags);
879
880 first = list_empty(&hs_ep->queue);
881 list_add_tail(&hs_req->queue, &hs_ep->queue);
882
883 if (first)
884 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
885
886 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
887
888 return 0;
889 }
890
891 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
892 struct usb_request *req)
893 {
894 struct s3c_hsotg_req *hs_req = our_req(req);
895
896 kfree(hs_req);
897 }
898
899 /**
900 * s3c_hsotg_complete_oursetup - setup completion callback
901 * @ep: The endpoint the request was on.
902 * @req: The request completed.
903 *
904 * Called on completion of any requests the driver itself
905 * submitted that need cleaning up.
906 */
907 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
908 struct usb_request *req)
909 {
910 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
911 struct s3c_hsotg *hsotg = hs_ep->parent;
912
913 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
914
915 s3c_hsotg_ep_free_request(ep, req);
916 }
917
918 /**
919 * ep_from_windex - convert control wIndex value to endpoint
920 * @hsotg: The driver state.
921 * @windex: The control request wIndex field (in host order).
922 *
923 * Convert the given wIndex into a pointer to an driver endpoint
924 * structure, or return NULL if it is not a valid endpoint.
925 */
926 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
927 u32 windex)
928 {
929 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
930 int dir = (windex & USB_DIR_IN) ? 1 : 0;
931 int idx = windex & 0x7F;
932
933 if (windex >= 0x100)
934 return NULL;
935
936 if (idx > S3C_HSOTG_EPS)
937 return NULL;
938
939 if (idx && ep->dir_in != dir)
940 return NULL;
941
942 return ep;
943 }
944
945 /**
946 * s3c_hsotg_send_reply - send reply to control request
947 * @hsotg: The device state
948 * @ep: Endpoint 0
949 * @buff: Buffer for request
950 * @length: Length of reply.
951 *
952 * Create a request and queue it on the given endpoint. This is useful as
953 * an internal method of sending replies to certain control requests, etc.
954 */
955 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
956 struct s3c_hsotg_ep *ep,
957 void *buff,
958 int length)
959 {
960 struct usb_request *req;
961 int ret;
962
963 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
964
965 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
966 hsotg->ep0_reply = req;
967 if (!req) {
968 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
969 return -ENOMEM;
970 }
971
972 req->buf = hsotg->ep0_buff;
973 req->length = length;
974 req->zero = 1; /* always do zero-length final transfer */
975 req->complete = s3c_hsotg_complete_oursetup;
976
977 if (length)
978 memcpy(req->buf, buff, length);
979 else
980 ep->sent_zlp = 1;
981
982 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
983 if (ret) {
984 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
985 return ret;
986 }
987
988 return 0;
989 }
990
991 /**
992 * s3c_hsotg_process_req_status - process request GET_STATUS
993 * @hsotg: The device state
994 * @ctrl: USB control request
995 */
996 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
997 struct usb_ctrlrequest *ctrl)
998 {
999 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1000 struct s3c_hsotg_ep *ep;
1001 __le16 reply;
1002 int ret;
1003
1004 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1005
1006 if (!ep0->dir_in) {
1007 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1008 return -EINVAL;
1009 }
1010
1011 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1012 case USB_RECIP_DEVICE:
1013 reply = cpu_to_le16(0); /* bit 0 => self powered,
1014 * bit 1 => remote wakeup */
1015 break;
1016
1017 case USB_RECIP_INTERFACE:
1018 /* currently, the data result should be zero */
1019 reply = cpu_to_le16(0);
1020 break;
1021
1022 case USB_RECIP_ENDPOINT:
1023 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1024 if (!ep)
1025 return -ENOENT;
1026
1027 reply = cpu_to_le16(ep->halted ? 1 : 0);
1028 break;
1029
1030 default:
1031 return 0;
1032 }
1033
1034 if (le16_to_cpu(ctrl->wLength) != 2)
1035 return -EINVAL;
1036
1037 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1038 if (ret) {
1039 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1040 return ret;
1041 }
1042
1043 return 1;
1044 }
1045
1046 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1047
1048 /**
1049 * get_ep_head - return the first request on the endpoint
1050 * @hs_ep: The controller endpoint to get
1051 *
1052 * Get the first request on the endpoint.
1053 */
1054 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1055 {
1056 if (list_empty(&hs_ep->queue))
1057 return NULL;
1058
1059 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1060 }
1061
1062 /**
1063 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1064 * @hsotg: The device state
1065 * @ctrl: USB control request
1066 */
1067 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1068 struct usb_ctrlrequest *ctrl)
1069 {
1070 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1071 struct s3c_hsotg_req *hs_req;
1072 bool restart;
1073 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1074 struct s3c_hsotg_ep *ep;
1075 int ret;
1076
1077 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1078 __func__, set ? "SET" : "CLEAR");
1079
1080 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1081 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1082 if (!ep) {
1083 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1084 __func__, le16_to_cpu(ctrl->wIndex));
1085 return -ENOENT;
1086 }
1087
1088 switch (le16_to_cpu(ctrl->wValue)) {
1089 case USB_ENDPOINT_HALT:
1090 s3c_hsotg_ep_sethalt(&ep->ep, set);
1091
1092 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1093 if (ret) {
1094 dev_err(hsotg->dev,
1095 "%s: failed to send reply\n", __func__);
1096 return ret;
1097 }
1098
1099 if (!set) {
1100 /*
1101 * If we have request in progress,
1102 * then complete it
1103 */
1104 if (ep->req) {
1105 hs_req = ep->req;
1106 ep->req = NULL;
1107 list_del_init(&hs_req->queue);
1108 hs_req->req.complete(&ep->ep,
1109 &hs_req->req);
1110 }
1111
1112 /* If we have pending request, then start it */
1113 restart = !list_empty(&ep->queue);
1114 if (restart) {
1115 hs_req = get_ep_head(ep);
1116 s3c_hsotg_start_req(hsotg, ep,
1117 hs_req, false);
1118 }
1119 }
1120
1121 break;
1122
1123 default:
1124 return -ENOENT;
1125 }
1126 } else
1127 return -ENOENT; /* currently only deal with endpoint */
1128
1129 return 1;
1130 }
1131
1132 /**
1133 * s3c_hsotg_process_control - process a control request
1134 * @hsotg: The device state
1135 * @ctrl: The control request received
1136 *
1137 * The controller has received the SETUP phase of a control request, and
1138 * needs to work out what to do next (and whether to pass it on to the
1139 * gadget driver).
1140 */
1141 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1142 struct usb_ctrlrequest *ctrl)
1143 {
1144 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1145 int ret = 0;
1146 u32 dcfg;
1147
1148 ep0->sent_zlp = 0;
1149
1150 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1151 ctrl->bRequest, ctrl->bRequestType,
1152 ctrl->wValue, ctrl->wLength);
1153
1154 /* record the direction of the request, for later use when enquing
1155 * packets onto EP0. */
1156
1157 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1158 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1159
1160 /* if we've no data with this request, then the last part of the
1161 * transaction is going to implicitly be IN. */
1162 if (ctrl->wLength == 0)
1163 ep0->dir_in = 1;
1164
1165 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1166 switch (ctrl->bRequest) {
1167 case USB_REQ_SET_ADDRESS:
1168 dcfg = readl(hsotg->regs + S3C_DCFG);
1169 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1170 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1171 writel(dcfg, hsotg->regs + S3C_DCFG);
1172
1173 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1174
1175 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1176 return;
1177
1178 case USB_REQ_GET_STATUS:
1179 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1180 break;
1181
1182 case USB_REQ_CLEAR_FEATURE:
1183 case USB_REQ_SET_FEATURE:
1184 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1185 break;
1186 }
1187 }
1188
1189 /* as a fallback, try delivering it to the driver to deal with */
1190
1191 if (ret == 0 && hsotg->driver) {
1192 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1193 if (ret < 0)
1194 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1195 }
1196
1197 /* the request is either unhandlable, or is not formatted correctly
1198 * so respond with a STALL for the status stage to indicate failure.
1199 */
1200
1201 if (ret < 0) {
1202 u32 reg;
1203 u32 ctrl;
1204
1205 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1206 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1207
1208 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1209 * taken effect, so no need to clear later. */
1210
1211 ctrl = readl(hsotg->regs + reg);
1212 ctrl |= S3C_DxEPCTL_Stall;
1213 ctrl |= S3C_DxEPCTL_CNAK;
1214 writel(ctrl, hsotg->regs + reg);
1215
1216 dev_dbg(hsotg->dev,
1217 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1218 ctrl, reg, readl(hsotg->regs + reg));
1219
1220 /* don't believe we need to anything more to get the EP
1221 * to reply with a STALL packet */
1222 }
1223 }
1224
1225 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1226
1227 /**
1228 * s3c_hsotg_complete_setup - completion of a setup transfer
1229 * @ep: The endpoint the request was on.
1230 * @req: The request completed.
1231 *
1232 * Called on completion of any requests the driver itself submitted for
1233 * EP0 setup packets
1234 */
1235 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1236 struct usb_request *req)
1237 {
1238 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1239 struct s3c_hsotg *hsotg = hs_ep->parent;
1240
1241 if (req->status < 0) {
1242 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1243 return;
1244 }
1245
1246 if (req->actual == 0)
1247 s3c_hsotg_enqueue_setup(hsotg);
1248 else
1249 s3c_hsotg_process_control(hsotg, req->buf);
1250 }
1251
1252 /**
1253 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1254 * @hsotg: The device state.
1255 *
1256 * Enqueue a request on EP0 if necessary to received any SETUP packets
1257 * received from the host.
1258 */
1259 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1260 {
1261 struct usb_request *req = hsotg->ctrl_req;
1262 struct s3c_hsotg_req *hs_req = our_req(req);
1263 int ret;
1264
1265 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1266
1267 req->zero = 0;
1268 req->length = 8;
1269 req->buf = hsotg->ctrl_buff;
1270 req->complete = s3c_hsotg_complete_setup;
1271
1272 if (!list_empty(&hs_req->queue)) {
1273 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1274 return;
1275 }
1276
1277 hsotg->eps[0].dir_in = 0;
1278
1279 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1280 if (ret < 0) {
1281 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1282 /* Don't think there's much we can do other than watch the
1283 * driver fail. */
1284 }
1285 }
1286
1287 /**
1288 * s3c_hsotg_complete_request - complete a request given to us
1289 * @hsotg: The device state.
1290 * @hs_ep: The endpoint the request was on.
1291 * @hs_req: The request to complete.
1292 * @result: The result code (0 => Ok, otherwise errno)
1293 *
1294 * The given request has finished, so call the necessary completion
1295 * if it has one and then look to see if we can start a new request
1296 * on the endpoint.
1297 *
1298 * Note, expects the ep to already be locked as appropriate.
1299 */
1300 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1301 struct s3c_hsotg_ep *hs_ep,
1302 struct s3c_hsotg_req *hs_req,
1303 int result)
1304 {
1305 bool restart;
1306
1307 if (!hs_req) {
1308 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1309 return;
1310 }
1311
1312 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1313 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1314
1315 /* only replace the status if we've not already set an error
1316 * from a previous transaction */
1317
1318 if (hs_req->req.status == -EINPROGRESS)
1319 hs_req->req.status = result;
1320
1321 hs_ep->req = NULL;
1322 list_del_init(&hs_req->queue);
1323
1324 if (using_dma(hsotg))
1325 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1326
1327 /* call the complete request with the locks off, just in case the
1328 * request tries to queue more work for this endpoint. */
1329
1330 if (hs_req->req.complete) {
1331 spin_unlock(&hs_ep->lock);
1332 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1333 spin_lock(&hs_ep->lock);
1334 }
1335
1336 /* Look to see if there is anything else to do. Note, the completion
1337 * of the previous request may have caused a new request to be started
1338 * so be careful when doing this. */
1339
1340 if (!hs_ep->req && result >= 0) {
1341 restart = !list_empty(&hs_ep->queue);
1342 if (restart) {
1343 hs_req = get_ep_head(hs_ep);
1344 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1345 }
1346 }
1347 }
1348
1349 /**
1350 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1351 * @hsotg: The device state.
1352 * @hs_ep: The endpoint the request was on.
1353 * @hs_req: The request to complete.
1354 * @result: The result code (0 => Ok, otherwise errno)
1355 *
1356 * See s3c_hsotg_complete_request(), but called with the endpoint's
1357 * lock held.
1358 */
1359 static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1360 struct s3c_hsotg_ep *hs_ep,
1361 struct s3c_hsotg_req *hs_req,
1362 int result)
1363 {
1364 unsigned long flags;
1365
1366 spin_lock_irqsave(&hs_ep->lock, flags);
1367 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1368 spin_unlock_irqrestore(&hs_ep->lock, flags);
1369 }
1370
1371 /**
1372 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1373 * @hsotg: The device state.
1374 * @ep_idx: The endpoint index for the data
1375 * @size: The size of data in the fifo, in bytes
1376 *
1377 * The FIFO status shows there is data to read from the FIFO for a given
1378 * endpoint, so sort out whether we need to read the data into a request
1379 * that has been made for that endpoint.
1380 */
1381 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1382 {
1383 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1384 struct s3c_hsotg_req *hs_req = hs_ep->req;
1385 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1386 int to_read;
1387 int max_req;
1388 int read_ptr;
1389
1390 if (!hs_req) {
1391 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1392 int ptr;
1393
1394 dev_warn(hsotg->dev,
1395 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1396 __func__, size, ep_idx, epctl);
1397
1398 /* dump the data from the FIFO, we've nothing we can do */
1399 for (ptr = 0; ptr < size; ptr += 4)
1400 (void)readl(fifo);
1401
1402 return;
1403 }
1404
1405 spin_lock(&hs_ep->lock);
1406
1407 to_read = size;
1408 read_ptr = hs_req->req.actual;
1409 max_req = hs_req->req.length - read_ptr;
1410
1411 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1412 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1413
1414 if (to_read > max_req) {
1415 /* more data appeared than we where willing
1416 * to deal with in this request.
1417 */
1418
1419 /* currently we don't deal this */
1420 WARN_ON_ONCE(1);
1421 }
1422
1423 hs_ep->total_data += to_read;
1424 hs_req->req.actual += to_read;
1425 to_read = DIV_ROUND_UP(to_read, 4);
1426
1427 /* note, we might over-write the buffer end by 3 bytes depending on
1428 * alignment of the data. */
1429 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1430
1431 spin_unlock(&hs_ep->lock);
1432 }
1433
1434 /**
1435 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1436 * @hsotg: The device instance
1437 * @req: The request currently on this endpoint
1438 *
1439 * Generate a zero-length IN packet request for terminating a SETUP
1440 * transaction.
1441 *
1442 * Note, since we don't write any data to the TxFIFO, then it is
1443 * currently believed that we do not need to wait for any space in
1444 * the TxFIFO.
1445 */
1446 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1447 struct s3c_hsotg_req *req)
1448 {
1449 u32 ctrl;
1450
1451 if (!req) {
1452 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1453 return;
1454 }
1455
1456 if (req->req.length == 0) {
1457 hsotg->eps[0].sent_zlp = 1;
1458 s3c_hsotg_enqueue_setup(hsotg);
1459 return;
1460 }
1461
1462 hsotg->eps[0].dir_in = 1;
1463 hsotg->eps[0].sent_zlp = 1;
1464
1465 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1466
1467 /* issue a zero-sized packet to terminate this */
1468 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1469 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1470
1471 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1472 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1473 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1474 ctrl |= S3C_DxEPCTL_USBActEp;
1475 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1476 }
1477
1478 /**
1479 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1480 * @hsotg: The device instance
1481 * @epnum: The endpoint received from
1482 * @was_setup: Set if processing a SetupDone event.
1483 *
1484 * The RXFIFO has delivered an OutDone event, which means that the data
1485 * transfer for an OUT endpoint has been completed, either by a short
1486 * packet or by the finish of a transfer.
1487 */
1488 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1489 int epnum, bool was_setup)
1490 {
1491 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1492 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1493 struct s3c_hsotg_req *hs_req = hs_ep->req;
1494 struct usb_request *req = &hs_req->req;
1495 unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1496 int result = 0;
1497
1498 if (!hs_req) {
1499 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1500 return;
1501 }
1502
1503 if (using_dma(hsotg)) {
1504 unsigned size_done;
1505
1506 /* Calculate the size of the transfer by checking how much
1507 * is left in the endpoint size register and then working it
1508 * out from the amount we loaded for the transfer.
1509 *
1510 * We need to do this as DMA pointers are always 32bit aligned
1511 * so may overshoot/undershoot the transfer.
1512 */
1513
1514 size_done = hs_ep->size_loaded - size_left;
1515 size_done += hs_ep->last_load;
1516
1517 req->actual = size_done;
1518 }
1519
1520 /* if there is more request to do, schedule new transfer */
1521 if (req->actual < req->length && size_left == 0) {
1522 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1523 return;
1524 }
1525
1526 if (req->actual < req->length && req->short_not_ok) {
1527 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1528 __func__, req->actual, req->length);
1529
1530 /* todo - what should we return here? there's no one else
1531 * even bothering to check the status. */
1532 }
1533
1534 if (epnum == 0) {
1535 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1536 s3c_hsotg_send_zlp(hsotg, hs_req);
1537 }
1538
1539 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1540 }
1541
1542 /**
1543 * s3c_hsotg_read_frameno - read current frame number
1544 * @hsotg: The device instance
1545 *
1546 * Return the current frame number
1547 */
1548 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1549 {
1550 u32 dsts;
1551
1552 dsts = readl(hsotg->regs + S3C_DSTS);
1553 dsts &= S3C_DSTS_SOFFN_MASK;
1554 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1555
1556 return dsts;
1557 }
1558
1559 /**
1560 * s3c_hsotg_handle_rx - RX FIFO has data
1561 * @hsotg: The device instance
1562 *
1563 * The IRQ handler has detected that the RX FIFO has some data in it
1564 * that requires processing, so find out what is in there and do the
1565 * appropriate read.
1566 *
1567 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1568 * chunks, so if you have x packets received on an endpoint you'll get x
1569 * FIFO events delivered, each with a packet's worth of data in it.
1570 *
1571 * When using DMA, we should not be processing events from the RXFIFO
1572 * as the actual data should be sent to the memory directly and we turn
1573 * on the completion interrupts to get notifications of transfer completion.
1574 */
1575 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1576 {
1577 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1578 u32 epnum, status, size;
1579
1580 WARN_ON(using_dma(hsotg));
1581
1582 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1583 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1584
1585 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1586 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1587
1588 if (1)
1589 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1590 __func__, grxstsr, size, epnum);
1591
1592 #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1593
1594 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1595 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1596 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1597 break;
1598
1599 case __status(S3C_GRXSTS_PktSts_OutDone):
1600 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1601 s3c_hsotg_read_frameno(hsotg));
1602
1603 if (!using_dma(hsotg))
1604 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1605 break;
1606
1607 case __status(S3C_GRXSTS_PktSts_SetupDone):
1608 dev_dbg(hsotg->dev,
1609 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1610 s3c_hsotg_read_frameno(hsotg),
1611 readl(hsotg->regs + S3C_DOEPCTL(0)));
1612
1613 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1614 break;
1615
1616 case __status(S3C_GRXSTS_PktSts_OutRX):
1617 s3c_hsotg_rx_data(hsotg, epnum, size);
1618 break;
1619
1620 case __status(S3C_GRXSTS_PktSts_SetupRX):
1621 dev_dbg(hsotg->dev,
1622 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1623 s3c_hsotg_read_frameno(hsotg),
1624 readl(hsotg->regs + S3C_DOEPCTL(0)));
1625
1626 s3c_hsotg_rx_data(hsotg, epnum, size);
1627 break;
1628
1629 default:
1630 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1631 __func__, grxstsr);
1632
1633 s3c_hsotg_dump(hsotg);
1634 break;
1635 }
1636 }
1637
1638 /**
1639 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1640 * @mps: The maximum packet size in bytes.
1641 */
1642 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1643 {
1644 switch (mps) {
1645 case 64:
1646 return S3C_D0EPCTL_MPS_64;
1647 case 32:
1648 return S3C_D0EPCTL_MPS_32;
1649 case 16:
1650 return S3C_D0EPCTL_MPS_16;
1651 case 8:
1652 return S3C_D0EPCTL_MPS_8;
1653 }
1654
1655 /* bad max packet size, warn and return invalid result */
1656 WARN_ON(1);
1657 return (u32)-1;
1658 }
1659
1660 /**
1661 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1662 * @hsotg: The driver state.
1663 * @ep: The index number of the endpoint
1664 * @mps: The maximum packet size in bytes
1665 *
1666 * Configure the maximum packet size for the given endpoint, updating
1667 * the hardware control registers to reflect this.
1668 */
1669 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1670 unsigned int ep, unsigned int mps)
1671 {
1672 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1673 void __iomem *regs = hsotg->regs;
1674 u32 mpsval;
1675 u32 reg;
1676
1677 if (ep == 0) {
1678 /* EP0 is a special case */
1679 mpsval = s3c_hsotg_ep0_mps(mps);
1680 if (mpsval > 3)
1681 goto bad_mps;
1682 } else {
1683 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1684 goto bad_mps;
1685
1686 mpsval = mps;
1687 }
1688
1689 hs_ep->ep.maxpacket = mps;
1690
1691 /* update both the in and out endpoint controldir_ registers, even
1692 * if one of the directions may not be in use. */
1693
1694 reg = readl(regs + S3C_DIEPCTL(ep));
1695 reg &= ~S3C_DxEPCTL_MPS_MASK;
1696 reg |= mpsval;
1697 writel(reg, regs + S3C_DIEPCTL(ep));
1698
1699 reg = readl(regs + S3C_DOEPCTL(ep));
1700 reg &= ~S3C_DxEPCTL_MPS_MASK;
1701 reg |= mpsval;
1702 writel(reg, regs + S3C_DOEPCTL(ep));
1703
1704 return;
1705
1706 bad_mps:
1707 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1708 }
1709
1710 /**
1711 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1712 * @hsotg: The driver state
1713 * @idx: The index for the endpoint (0..15)
1714 */
1715 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1716 {
1717 int timeout;
1718 int val;
1719
1720 writel(S3C_GRSTCTL_TxFNum(idx) | S3C_GRSTCTL_TxFFlsh,
1721 hsotg->regs + S3C_GRSTCTL);
1722
1723 /* wait until the fifo is flushed */
1724 timeout = 100;
1725
1726 while (1) {
1727 val = readl(hsotg->regs + S3C_GRSTCTL);
1728
1729 if ((val & (S3C_GRSTCTL_TxFFlsh)) == 0)
1730 break;
1731
1732 if (--timeout == 0) {
1733 dev_err(hsotg->dev,
1734 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1735 __func__, val);
1736 }
1737
1738 udelay(1);
1739 }
1740 }
1741
1742 /**
1743 * s3c_hsotg_trytx - check to see if anything needs transmitting
1744 * @hsotg: The driver state
1745 * @hs_ep: The driver endpoint to check.
1746 *
1747 * Check to see if there is a request that has data to send, and if so
1748 * make an attempt to write data into the FIFO.
1749 */
1750 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1751 struct s3c_hsotg_ep *hs_ep)
1752 {
1753 struct s3c_hsotg_req *hs_req = hs_ep->req;
1754
1755 if (!hs_ep->dir_in || !hs_req)
1756 return 0;
1757
1758 if (hs_req->req.actual < hs_req->req.length) {
1759 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1760 hs_ep->index);
1761 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1762 }
1763
1764 return 0;
1765 }
1766
1767 /**
1768 * s3c_hsotg_complete_in - complete IN transfer
1769 * @hsotg: The device state.
1770 * @hs_ep: The endpoint that has just completed.
1771 *
1772 * An IN transfer has been completed, update the transfer's state and then
1773 * call the relevant completion routines.
1774 */
1775 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1776 struct s3c_hsotg_ep *hs_ep)
1777 {
1778 struct s3c_hsotg_req *hs_req = hs_ep->req;
1779 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1780 int size_left, size_done;
1781
1782 if (!hs_req) {
1783 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1784 return;
1785 }
1786
1787 /* Calculate the size of the transfer by checking how much is left
1788 * in the endpoint size register and then working it out from
1789 * the amount we loaded for the transfer.
1790 *
1791 * We do this even for DMA, as the transfer may have incremented
1792 * past the end of the buffer (DMA transfers are always 32bit
1793 * aligned).
1794 */
1795
1796 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1797
1798 size_done = hs_ep->size_loaded - size_left;
1799 size_done += hs_ep->last_load;
1800
1801 if (hs_req->req.actual != size_done)
1802 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1803 __func__, hs_req->req.actual, size_done);
1804
1805 hs_req->req.actual = size_done;
1806
1807 /* if we did all of the transfer, and there is more data left
1808 * around, then try restarting the rest of the request */
1809
1810 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1811 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1812 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1813 } else
1814 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1815 }
1816
1817 /**
1818 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1819 * @hsotg: The driver state
1820 * @idx: The index for the endpoint (0..15)
1821 * @dir_in: Set if this is an IN endpoint
1822 *
1823 * Process and clear any interrupt pending for an individual endpoint
1824 */
1825 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1826 int dir_in)
1827 {
1828 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1829 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1830 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1831 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1832 u32 ints;
1833
1834 ints = readl(hsotg->regs + epint_reg);
1835
1836 /* Clear endpoint interrupts */
1837 writel(ints, hsotg->regs + epint_reg);
1838
1839 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1840 __func__, idx, dir_in ? "in" : "out", ints);
1841
1842 if (ints & S3C_DxEPINT_XferCompl) {
1843 dev_dbg(hsotg->dev,
1844 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1845 __func__, readl(hsotg->regs + epctl_reg),
1846 readl(hsotg->regs + epsiz_reg));
1847
1848 /* we get OutDone from the FIFO, so we only need to look
1849 * at completing IN requests here */
1850 if (dir_in) {
1851 s3c_hsotg_complete_in(hsotg, hs_ep);
1852
1853 if (idx == 0 && !hs_ep->req)
1854 s3c_hsotg_enqueue_setup(hsotg);
1855 } else if (using_dma(hsotg)) {
1856 /* We're using DMA, we need to fire an OutDone here
1857 * as we ignore the RXFIFO. */
1858
1859 s3c_hsotg_handle_outdone(hsotg, idx, false);
1860 }
1861 }
1862
1863 if (ints & S3C_DxEPINT_EPDisbld) {
1864 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1865
1866 if (dir_in) {
1867 int epctl = readl(hsotg->regs + epctl_reg);
1868
1869 s3c_hsotg_txfifo_flush(hsotg, idx);
1870
1871 if ((epctl & S3C_DxEPCTL_Stall) &&
1872 (epctl & S3C_DxEPCTL_EPType_Bulk)) {
1873 int dctl = readl(hsotg->regs + S3C_DCTL);
1874
1875 dctl |= S3C_DCTL_CGNPInNAK;
1876 writel(dctl, hsotg->regs + S3C_DCTL);
1877 }
1878 }
1879 }
1880
1881 if (ints & S3C_DxEPINT_AHBErr)
1882 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1883
1884 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1885 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1886
1887 if (using_dma(hsotg) && idx == 0) {
1888 /* this is the notification we've received a
1889 * setup packet. In non-DMA mode we'd get this
1890 * from the RXFIFO, instead we need to process
1891 * the setup here. */
1892
1893 if (dir_in)
1894 WARN_ON_ONCE(1);
1895 else
1896 s3c_hsotg_handle_outdone(hsotg, 0, true);
1897 }
1898 }
1899
1900 if (ints & S3C_DxEPINT_Back2BackSetup)
1901 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1902
1903 if (dir_in) {
1904 /* not sure if this is important, but we'll clear it anyway
1905 */
1906 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1907 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1908 __func__, idx);
1909 }
1910
1911 /* this probably means something bad is happening */
1912 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1913 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1914 __func__, idx);
1915 }
1916
1917 /* FIFO has space or is empty (see GAHBCFG) */
1918 if (hsotg->dedicated_fifos &&
1919 ints & S3C_DIEPMSK_TxFIFOEmpty) {
1920 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1921 __func__, idx);
1922 s3c_hsotg_trytx(hsotg, hs_ep);
1923 }
1924 }
1925 }
1926
1927 /**
1928 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1929 * @hsotg: The device state.
1930 *
1931 * Handle updating the device settings after the enumeration phase has
1932 * been completed.
1933 */
1934 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1935 {
1936 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1937 int ep0_mps = 0, ep_mps;
1938
1939 /* This should signal the finish of the enumeration phase
1940 * of the USB handshaking, so we should now know what rate
1941 * we connected at. */
1942
1943 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1944
1945 /* note, since we're limited by the size of transfer on EP0, and
1946 * it seems IN transfers must be a even number of packets we do
1947 * not advertise a 64byte MPS on EP0. */
1948
1949 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1950 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1951 case S3C_DSTS_EnumSpd_FS:
1952 case S3C_DSTS_EnumSpd_FS48:
1953 hsotg->gadget.speed = USB_SPEED_FULL;
1954 dev_info(hsotg->dev, "new device is full-speed\n");
1955
1956 ep0_mps = EP0_MPS_LIMIT;
1957 ep_mps = 64;
1958 break;
1959
1960 case S3C_DSTS_EnumSpd_HS:
1961 dev_info(hsotg->dev, "new device is high-speed\n");
1962 hsotg->gadget.speed = USB_SPEED_HIGH;
1963
1964 ep0_mps = EP0_MPS_LIMIT;
1965 ep_mps = 512;
1966 break;
1967
1968 case S3C_DSTS_EnumSpd_LS:
1969 hsotg->gadget.speed = USB_SPEED_LOW;
1970 dev_info(hsotg->dev, "new device is low-speed\n");
1971
1972 /* note, we don't actually support LS in this driver at the
1973 * moment, and the documentation seems to imply that it isn't
1974 * supported by the PHYs on some of the devices.
1975 */
1976 break;
1977 }
1978
1979 /* we should now know the maximum packet size for an
1980 * endpoint, so set the endpoints to a default value. */
1981
1982 if (ep0_mps) {
1983 int i;
1984 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1985 for (i = 1; i < S3C_HSOTG_EPS; i++)
1986 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1987 }
1988
1989 /* ensure after enumeration our EP0 is active */
1990
1991 s3c_hsotg_enqueue_setup(hsotg);
1992
1993 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1994 readl(hsotg->regs + S3C_DIEPCTL0),
1995 readl(hsotg->regs + S3C_DOEPCTL0));
1996 }
1997
1998 /**
1999 * kill_all_requests - remove all requests from the endpoint's queue
2000 * @hsotg: The device state.
2001 * @ep: The endpoint the requests may be on.
2002 * @result: The result code to use.
2003 * @force: Force removal of any current requests
2004 *
2005 * Go through the requests on the given endpoint and mark them
2006 * completed with the given result code.
2007 */
2008 static void kill_all_requests(struct s3c_hsotg *hsotg,
2009 struct s3c_hsotg_ep *ep,
2010 int result, bool force)
2011 {
2012 struct s3c_hsotg_req *req, *treq;
2013 unsigned long flags;
2014
2015 spin_lock_irqsave(&ep->lock, flags);
2016
2017 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2018 /* currently, we can't do much about an already
2019 * running request on an in endpoint */
2020
2021 if (ep->req == req && ep->dir_in && !force)
2022 continue;
2023
2024 s3c_hsotg_complete_request(hsotg, ep, req,
2025 result);
2026 }
2027
2028 spin_unlock_irqrestore(&ep->lock, flags);
2029 }
2030
2031 #define call_gadget(_hs, _entry) \
2032 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
2033 (_hs)->driver && (_hs)->driver->_entry) \
2034 (_hs)->driver->_entry(&(_hs)->gadget);
2035
2036 /**
2037 * s3c_hsotg_disconnect_irq - disconnect irq service
2038 * @hsotg: The device state.
2039 *
2040 * A disconnect IRQ has been received, meaning that the host has
2041 * lost contact with the bus. Remove all current transactions
2042 * and signal the gadget driver that this has happened.
2043 */
2044 static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
2045 {
2046 unsigned ep;
2047
2048 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2049 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2050
2051 call_gadget(hsotg, disconnect);
2052 }
2053
2054 /**
2055 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2056 * @hsotg: The device state:
2057 * @periodic: True if this is a periodic FIFO interrupt
2058 */
2059 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2060 {
2061 struct s3c_hsotg_ep *ep;
2062 int epno, ret;
2063
2064 /* look through for any more data to transmit */
2065
2066 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
2067 ep = &hsotg->eps[epno];
2068
2069 if (!ep->dir_in)
2070 continue;
2071
2072 if ((periodic && !ep->periodic) ||
2073 (!periodic && ep->periodic))
2074 continue;
2075
2076 ret = s3c_hsotg_trytx(hsotg, ep);
2077 if (ret < 0)
2078 break;
2079 }
2080 }
2081
2082 static struct s3c_hsotg *our_hsotg;
2083
2084 /* IRQ flags which will trigger a retry around the IRQ loop */
2085 #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2086 S3C_GINTSTS_PTxFEmp | \
2087 S3C_GINTSTS_RxFLvl)
2088
2089 /**
2090 * s3c_hsotg_irq - handle device interrupt
2091 * @irq: The IRQ number triggered
2092 * @pw: The pw value when registered the handler.
2093 */
2094 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2095 {
2096 struct s3c_hsotg *hsotg = pw;
2097 int retry_count = 8;
2098 u32 gintsts;
2099 u32 gintmsk;
2100
2101 irq_retry:
2102 gintsts = readl(hsotg->regs + S3C_GINTSTS);
2103 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2104
2105 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2106 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2107
2108 gintsts &= gintmsk;
2109
2110 if (gintsts & S3C_GINTSTS_OTGInt) {
2111 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2112
2113 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2114
2115 writel(otgint, hsotg->regs + S3C_GOTGINT);
2116 }
2117
2118 if (gintsts & S3C_GINTSTS_DisconnInt) {
2119 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2120 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2121
2122 s3c_hsotg_disconnect_irq(hsotg);
2123 }
2124
2125 if (gintsts & S3C_GINTSTS_SessReqInt) {
2126 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2127 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2128 }
2129
2130 if (gintsts & S3C_GINTSTS_EnumDone) {
2131 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2132
2133 s3c_hsotg_irq_enumdone(hsotg);
2134 }
2135
2136 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2137 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2138 readl(hsotg->regs + S3C_DSTS),
2139 readl(hsotg->regs + S3C_GOTGCTL));
2140
2141 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2142 }
2143
2144 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2145 u32 daint = readl(hsotg->regs + S3C_DAINT);
2146 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2147 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2148 int ep;
2149
2150 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2151
2152 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2153 if (daint_out & 1)
2154 s3c_hsotg_epint(hsotg, ep, 0);
2155 }
2156
2157 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2158 if (daint_in & 1)
2159 s3c_hsotg_epint(hsotg, ep, 1);
2160 }
2161 }
2162
2163 if (gintsts & S3C_GINTSTS_USBRst) {
2164 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2165 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2166 readl(hsotg->regs + S3C_GNPTXSTS));
2167
2168 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2169
2170 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2171
2172 /* it seems after a reset we can end up with a situation
2173 * where the TXFIFO still has data in it... the docs
2174 * suggest resetting all the fifos, so use the init_fifo
2175 * code to relayout and flush the fifos.
2176 */
2177
2178 s3c_hsotg_init_fifo(hsotg);
2179
2180 s3c_hsotg_enqueue_setup(hsotg);
2181 }
2182
2183 /* check both FIFOs */
2184
2185 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2186 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2187
2188 /* Disable the interrupt to stop it happening again
2189 * unless one of these endpoint routines decides that
2190 * it needs re-enabling */
2191
2192 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2193 s3c_hsotg_irq_fifoempty(hsotg, false);
2194 }
2195
2196 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2197 dev_dbg(hsotg->dev, "PTxFEmp\n");
2198
2199 /* See note in S3C_GINTSTS_NPTxFEmp */
2200
2201 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2202 s3c_hsotg_irq_fifoempty(hsotg, true);
2203 }
2204
2205 if (gintsts & S3C_GINTSTS_RxFLvl) {
2206 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2207 * we need to retry s3c_hsotg_handle_rx if this is still
2208 * set. */
2209
2210 s3c_hsotg_handle_rx(hsotg);
2211 }
2212
2213 if (gintsts & S3C_GINTSTS_ModeMis) {
2214 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2215 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2216 }
2217
2218 if (gintsts & S3C_GINTSTS_USBSusp) {
2219 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2220 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2221
2222 call_gadget(hsotg, suspend);
2223 }
2224
2225 if (gintsts & S3C_GINTSTS_WkUpInt) {
2226 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2227 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2228
2229 call_gadget(hsotg, resume);
2230 }
2231
2232 if (gintsts & S3C_GINTSTS_ErlySusp) {
2233 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2234 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2235 }
2236
2237 /* these next two seem to crop-up occasionally causing the core
2238 * to shutdown the USB transfer, so try clearing them and logging
2239 * the occurrence. */
2240
2241 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2242 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2243
2244 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2245
2246 s3c_hsotg_dump(hsotg);
2247 }
2248
2249 if (gintsts & S3C_GINTSTS_GINNakEff) {
2250 dev_info(hsotg->dev, "GINNakEff triggered\n");
2251
2252 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2253
2254 s3c_hsotg_dump(hsotg);
2255 }
2256
2257 /* if we've had fifo events, we should try and go around the
2258 * loop again to see if there's any point in returning yet. */
2259
2260 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2261 goto irq_retry;
2262
2263 return IRQ_HANDLED;
2264 }
2265
2266 /**
2267 * s3c_hsotg_ep_enable - enable the given endpoint
2268 * @ep: The USB endpint to configure
2269 * @desc: The USB endpoint descriptor to configure with.
2270 *
2271 * This is called from the USB gadget code's usb_ep_enable().
2272 */
2273 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2274 const struct usb_endpoint_descriptor *desc)
2275 {
2276 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2277 struct s3c_hsotg *hsotg = hs_ep->parent;
2278 unsigned long flags;
2279 int index = hs_ep->index;
2280 u32 epctrl_reg;
2281 u32 epctrl;
2282 u32 mps;
2283 int dir_in;
2284 int ret = 0;
2285
2286 dev_dbg(hsotg->dev,
2287 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2288 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2289 desc->wMaxPacketSize, desc->bInterval);
2290
2291 /* not to be called for EP0 */
2292 WARN_ON(index == 0);
2293
2294 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2295 if (dir_in != hs_ep->dir_in) {
2296 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2297 return -EINVAL;
2298 }
2299
2300 mps = usb_endpoint_maxp(desc);
2301
2302 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2303
2304 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2305 epctrl = readl(hsotg->regs + epctrl_reg);
2306
2307 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2308 __func__, epctrl, epctrl_reg);
2309
2310 spin_lock_irqsave(&hs_ep->lock, flags);
2311
2312 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2313 epctrl |= S3C_DxEPCTL_MPS(mps);
2314
2315 /* mark the endpoint as active, otherwise the core may ignore
2316 * transactions entirely for this endpoint */
2317 epctrl |= S3C_DxEPCTL_USBActEp;
2318
2319 /* set the NAK status on the endpoint, otherwise we might try and
2320 * do something with data that we've yet got a request to process
2321 * since the RXFIFO will take data for an endpoint even if the
2322 * size register hasn't been set.
2323 */
2324
2325 epctrl |= S3C_DxEPCTL_SNAK;
2326
2327 /* update the endpoint state */
2328 hs_ep->ep.maxpacket = mps;
2329
2330 /* default, set to non-periodic */
2331 hs_ep->periodic = 0;
2332
2333 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2334 case USB_ENDPOINT_XFER_ISOC:
2335 dev_err(hsotg->dev, "no current ISOC support\n");
2336 ret = -EINVAL;
2337 goto out;
2338
2339 case USB_ENDPOINT_XFER_BULK:
2340 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2341 break;
2342
2343 case USB_ENDPOINT_XFER_INT:
2344 if (dir_in) {
2345 /* Allocate our TxFNum by simply using the index
2346 * of the endpoint for the moment. We could do
2347 * something better if the host indicates how
2348 * many FIFOs we are expecting to use. */
2349
2350 hs_ep->periodic = 1;
2351 epctrl |= S3C_DxEPCTL_TxFNum(index);
2352 }
2353
2354 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2355 break;
2356
2357 case USB_ENDPOINT_XFER_CONTROL:
2358 epctrl |= S3C_DxEPCTL_EPType_Control;
2359 break;
2360 }
2361
2362 /* if the hardware has dedicated fifos, we must give each IN EP
2363 * a unique tx-fifo even if it is non-periodic.
2364 */
2365 if (dir_in && hsotg->dedicated_fifos)
2366 epctrl |= S3C_DxEPCTL_TxFNum(index);
2367
2368 /* for non control endpoints, set PID to D0 */
2369 if (index)
2370 epctrl |= S3C_DxEPCTL_SetD0PID;
2371
2372 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2373 __func__, epctrl);
2374
2375 writel(epctrl, hsotg->regs + epctrl_reg);
2376 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2377 __func__, readl(hsotg->regs + epctrl_reg));
2378
2379 /* enable the endpoint interrupt */
2380 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2381
2382 out:
2383 spin_unlock_irqrestore(&hs_ep->lock, flags);
2384 return ret;
2385 }
2386
2387 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2388 {
2389 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2390 struct s3c_hsotg *hsotg = hs_ep->parent;
2391 int dir_in = hs_ep->dir_in;
2392 int index = hs_ep->index;
2393 unsigned long flags;
2394 u32 epctrl_reg;
2395 u32 ctrl;
2396
2397 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2398
2399 if (ep == &hsotg->eps[0].ep) {
2400 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2401 return -EINVAL;
2402 }
2403
2404 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2405
2406 /* terminate all requests with shutdown */
2407 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2408
2409 spin_lock_irqsave(&hs_ep->lock, flags);
2410
2411 ctrl = readl(hsotg->regs + epctrl_reg);
2412 ctrl &= ~S3C_DxEPCTL_EPEna;
2413 ctrl &= ~S3C_DxEPCTL_USBActEp;
2414 ctrl |= S3C_DxEPCTL_SNAK;
2415
2416 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2417 writel(ctrl, hsotg->regs + epctrl_reg);
2418
2419 /* disable endpoint interrupts */
2420 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2421
2422 spin_unlock_irqrestore(&hs_ep->lock, flags);
2423 return 0;
2424 }
2425
2426 /**
2427 * on_list - check request is on the given endpoint
2428 * @ep: The endpoint to check.
2429 * @test: The request to test if it is on the endpoint.
2430 */
2431 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2432 {
2433 struct s3c_hsotg_req *req, *treq;
2434
2435 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2436 if (req == test)
2437 return true;
2438 }
2439
2440 return false;
2441 }
2442
2443 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2444 {
2445 struct s3c_hsotg_req *hs_req = our_req(req);
2446 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2447 struct s3c_hsotg *hs = hs_ep->parent;
2448 unsigned long flags;
2449
2450 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2451
2452 spin_lock_irqsave(&hs_ep->lock, flags);
2453
2454 if (!on_list(hs_ep, hs_req)) {
2455 spin_unlock_irqrestore(&hs_ep->lock, flags);
2456 return -EINVAL;
2457 }
2458
2459 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2460 spin_unlock_irqrestore(&hs_ep->lock, flags);
2461
2462 return 0;
2463 }
2464
2465 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2466 {
2467 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2468 struct s3c_hsotg *hs = hs_ep->parent;
2469 int index = hs_ep->index;
2470 unsigned long irqflags;
2471 u32 epreg;
2472 u32 epctl;
2473 u32 xfertype;
2474
2475 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2476
2477 spin_lock_irqsave(&hs_ep->lock, irqflags);
2478
2479 /* write both IN and OUT control registers */
2480
2481 epreg = S3C_DIEPCTL(index);
2482 epctl = readl(hs->regs + epreg);
2483
2484 if (value) {
2485 epctl |= S3C_DxEPCTL_Stall + S3C_DxEPCTL_SNAK;
2486 if (epctl & S3C_DxEPCTL_EPEna)
2487 epctl |= S3C_DxEPCTL_EPDis;
2488 } else {
2489 epctl &= ~S3C_DxEPCTL_Stall;
2490 xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2491 if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2492 xfertype == S3C_DxEPCTL_EPType_Intterupt)
2493 epctl |= S3C_DxEPCTL_SetD0PID;
2494 }
2495
2496 writel(epctl, hs->regs + epreg);
2497
2498 epreg = S3C_DOEPCTL(index);
2499 epctl = readl(hs->regs + epreg);
2500
2501 if (value)
2502 epctl |= S3C_DxEPCTL_Stall;
2503 else {
2504 epctl &= ~S3C_DxEPCTL_Stall;
2505 xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
2506 if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
2507 xfertype == S3C_DxEPCTL_EPType_Intterupt)
2508 epctl |= S3C_DxEPCTL_SetD0PID;
2509 }
2510
2511 writel(epctl, hs->regs + epreg);
2512
2513 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2514
2515 return 0;
2516 }
2517
2518 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2519 .enable = s3c_hsotg_ep_enable,
2520 .disable = s3c_hsotg_ep_disable,
2521 .alloc_request = s3c_hsotg_ep_alloc_request,
2522 .free_request = s3c_hsotg_ep_free_request,
2523 .queue = s3c_hsotg_ep_queue,
2524 .dequeue = s3c_hsotg_ep_dequeue,
2525 .set_halt = s3c_hsotg_ep_sethalt,
2526 /* note, don't believe we have any call for the fifo routines */
2527 };
2528
2529 /**
2530 * s3c_hsotg_corereset - issue softreset to the core
2531 * @hsotg: The device state
2532 *
2533 * Issue a soft reset to the core, and await the core finishing it.
2534 */
2535 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2536 {
2537 int timeout;
2538 u32 grstctl;
2539
2540 dev_dbg(hsotg->dev, "resetting core\n");
2541
2542 /* issue soft reset */
2543 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2544
2545 timeout = 1000;
2546 do {
2547 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2548 } while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2549
2550 if (grstctl & S3C_GRSTCTL_CSftRst) {
2551 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2552 return -EINVAL;
2553 }
2554
2555 timeout = 1000;
2556
2557 while (1) {
2558 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2559
2560 if (timeout-- < 0) {
2561 dev_info(hsotg->dev,
2562 "%s: reset failed, GRSTCTL=%08x\n",
2563 __func__, grstctl);
2564 return -ETIMEDOUT;
2565 }
2566
2567 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2568 continue;
2569
2570 break; /* reset done */
2571 }
2572
2573 dev_dbg(hsotg->dev, "reset successful\n");
2574 return 0;
2575 }
2576
2577 static int s3c_hsotg_start(struct usb_gadget_driver *driver,
2578 int (*bind)(struct usb_gadget *))
2579 {
2580 struct s3c_hsotg *hsotg = our_hsotg;
2581 int ret;
2582
2583 if (!hsotg) {
2584 printk(KERN_ERR "%s: called with no device\n", __func__);
2585 return -ENODEV;
2586 }
2587
2588 if (!driver) {
2589 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2590 return -EINVAL;
2591 }
2592
2593 if (driver->speed != USB_SPEED_HIGH &&
2594 driver->speed != USB_SPEED_FULL) {
2595 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2596 }
2597
2598 if (!bind || !driver->setup) {
2599 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2600 return -EINVAL;
2601 }
2602
2603 WARN_ON(hsotg->driver);
2604
2605 driver->driver.bus = NULL;
2606 hsotg->driver = driver;
2607 hsotg->gadget.dev.driver = &driver->driver;
2608 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2609 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2610
2611 ret = device_add(&hsotg->gadget.dev);
2612 if (ret) {
2613 dev_err(hsotg->dev, "failed to register gadget device\n");
2614 goto err;
2615 }
2616
2617 ret = bind(&hsotg->gadget);
2618 if (ret) {
2619 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2620
2621 hsotg->gadget.dev.driver = NULL;
2622 hsotg->driver = NULL;
2623 goto err;
2624 }
2625
2626 /* we must now enable ep0 ready for host detection and then
2627 * set configuration. */
2628
2629 s3c_hsotg_corereset(hsotg);
2630
2631 /* set the PLL on, remove the HNP/SRP and set the PHY */
2632 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2633 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2634
2635 /* looks like soft-reset changes state of FIFOs */
2636 s3c_hsotg_init_fifo(hsotg);
2637
2638 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2639
2640 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2641
2642 /* Clear any pending OTG interrupts */
2643 writel(0xffffffff, hsotg->regs + S3C_GOTGINT);
2644
2645 /* Clear any pending interrupts */
2646 writel(0xffffffff, hsotg->regs + S3C_GINTSTS);
2647
2648 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2649 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2650 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2651 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2652 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2653 S3C_GINTSTS_ErlySusp,
2654 hsotg->regs + S3C_GINTMSK);
2655
2656 if (using_dma(hsotg))
2657 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2658 S3C_GAHBCFG_HBstLen_Incr4,
2659 hsotg->regs + S3C_GAHBCFG);
2660 else
2661 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2662
2663 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2664 * up being flooded with interrupts if the host is polling the
2665 * endpoint to try and read data. */
2666
2667 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2668 S3C_DIEPMSK_INTknEPMisMsk |
2669 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2670 ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
2671 hsotg->regs + S3C_DIEPMSK);
2672
2673 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2674 * DMA mode we may need this. */
2675 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2676 S3C_DOEPMSK_EPDisbldMsk |
2677 (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2678 S3C_DIEPMSK_TimeOUTMsk) : 0),
2679 hsotg->regs + S3C_DOEPMSK);
2680
2681 writel(0, hsotg->regs + S3C_DAINTMSK);
2682
2683 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2684 readl(hsotg->regs + S3C_DIEPCTL0),
2685 readl(hsotg->regs + S3C_DOEPCTL0));
2686
2687 /* enable in and out endpoint interrupts */
2688 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2689
2690 /* Enable the RXFIFO when in slave mode, as this is how we collect
2691 * the data. In DMA mode, we get events from the FIFO but also
2692 * things we cannot process, so do not use it. */
2693 if (!using_dma(hsotg))
2694 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2695
2696 /* Enable interrupts for EP0 in and out */
2697 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2698 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2699
2700 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2701 udelay(10); /* see openiboot */
2702 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2703
2704 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2705
2706 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2707 writing to the EPCTL register.. */
2708
2709 /* set to read 1 8byte packet */
2710 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2711 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2712
2713 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2714 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2715 S3C_DxEPCTL_USBActEp,
2716 hsotg->regs + S3C_DOEPCTL0);
2717
2718 /* enable, but don't activate EP0in */
2719 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2720 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2721
2722 s3c_hsotg_enqueue_setup(hsotg);
2723
2724 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2725 readl(hsotg->regs + S3C_DIEPCTL0),
2726 readl(hsotg->regs + S3C_DOEPCTL0));
2727
2728 /* clear global NAKs */
2729 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2730 hsotg->regs + S3C_DCTL);
2731
2732 /* must be at-least 3ms to allow bus to see disconnect */
2733 msleep(3);
2734
2735 /* remove the soft-disconnect and let's go */
2736 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2737
2738 /* report to the user, and return */
2739
2740 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2741 return 0;
2742
2743 err:
2744 hsotg->driver = NULL;
2745 hsotg->gadget.dev.driver = NULL;
2746 return ret;
2747 }
2748
2749 static int s3c_hsotg_stop(struct usb_gadget_driver *driver)
2750 {
2751 struct s3c_hsotg *hsotg = our_hsotg;
2752 int ep;
2753
2754 if (!hsotg)
2755 return -ENODEV;
2756
2757 if (!driver || driver != hsotg->driver || !driver->unbind)
2758 return -EINVAL;
2759
2760 /* all endpoints should be shutdown */
2761 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2762 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2763
2764 call_gadget(hsotg, disconnect);
2765
2766 driver->unbind(&hsotg->gadget);
2767 hsotg->driver = NULL;
2768 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2769
2770 device_del(&hsotg->gadget.dev);
2771
2772 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2773 driver->driver.name);
2774
2775 return 0;
2776 }
2777
2778 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2779 {
2780 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2781 }
2782
2783 static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2784 .get_frame = s3c_hsotg_gadget_getframe,
2785 .start = s3c_hsotg_start,
2786 .stop = s3c_hsotg_stop,
2787 };
2788
2789 /**
2790 * s3c_hsotg_initep - initialise a single endpoint
2791 * @hsotg: The device state.
2792 * @hs_ep: The endpoint to be initialised.
2793 * @epnum: The endpoint number
2794 *
2795 * Initialise the given endpoint (as part of the probe and device state
2796 * creation) to give to the gadget driver. Setup the endpoint name, any
2797 * direction information and other state that may be required.
2798 */
2799 static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2800 struct s3c_hsotg_ep *hs_ep,
2801 int epnum)
2802 {
2803 u32 ptxfifo;
2804 char *dir;
2805
2806 if (epnum == 0)
2807 dir = "";
2808 else if ((epnum % 2) == 0) {
2809 dir = "out";
2810 } else {
2811 dir = "in";
2812 hs_ep->dir_in = 1;
2813 }
2814
2815 hs_ep->index = epnum;
2816
2817 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2818
2819 INIT_LIST_HEAD(&hs_ep->queue);
2820 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2821
2822 spin_lock_init(&hs_ep->lock);
2823
2824 /* add to the list of endpoints known by the gadget driver */
2825 if (epnum)
2826 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2827
2828 hs_ep->parent = hsotg;
2829 hs_ep->ep.name = hs_ep->name;
2830 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2831 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2832
2833 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2834 * an OUT endpoint, we may as well do this if in future the
2835 * code is changed to make each endpoint's direction changeable.
2836 */
2837
2838 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2839 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
2840
2841 /* if we're using dma, we need to set the next-endpoint pointer
2842 * to be something valid.
2843 */
2844
2845 if (using_dma(hsotg)) {
2846 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2847 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2848 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2849 }
2850 }
2851
2852 /**
2853 * s3c_hsotg_otgreset - reset the OtG phy block
2854 * @hsotg: The host state.
2855 *
2856 * Power up the phy, set the basic configuration and start the PHY.
2857 */
2858 static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2859 {
2860 struct clk *xusbxti;
2861 u32 pwr, osc;
2862
2863 pwr = readl(S3C_PHYPWR);
2864 pwr &= ~0x19;
2865 writel(pwr, S3C_PHYPWR);
2866 mdelay(1);
2867
2868 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2869
2870 xusbxti = clk_get(hsotg->dev, "xusbxti");
2871 if (xusbxti && !IS_ERR(xusbxti)) {
2872 switch (clk_get_rate(xusbxti)) {
2873 case 12*MHZ:
2874 osc |= S3C_PHYCLK_CLKSEL_12M;
2875 break;
2876 case 24*MHZ:
2877 osc |= S3C_PHYCLK_CLKSEL_24M;
2878 break;
2879 default:
2880 case 48*MHZ:
2881 /* default reference clock */
2882 break;
2883 }
2884 clk_put(xusbxti);
2885 }
2886
2887 writel(osc | 0x10, S3C_PHYCLK);
2888
2889 /* issue a full set of resets to the otg and core */
2890
2891 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2892 udelay(20); /* at-least 10uS */
2893 writel(0, S3C_RSTCON);
2894 }
2895
2896
2897 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2898 {
2899 u32 cfg4;
2900
2901 /* unmask subset of endpoint interrupts */
2902
2903 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2904 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2905 hsotg->regs + S3C_DIEPMSK);
2906
2907 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2908 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2909 hsotg->regs + S3C_DOEPMSK);
2910
2911 writel(0, hsotg->regs + S3C_DAINTMSK);
2912
2913 /* Be in disconnected state until gadget is registered */
2914 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2915
2916 if (0) {
2917 /* post global nak until we're ready */
2918 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2919 hsotg->regs + S3C_DCTL);
2920 }
2921
2922 /* setup fifos */
2923
2924 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2925 readl(hsotg->regs + S3C_GRXFSIZ),
2926 readl(hsotg->regs + S3C_GNPTXFSIZ));
2927
2928 s3c_hsotg_init_fifo(hsotg);
2929
2930 /* set the PLL on, remove the HNP/SRP and set the PHY */
2931 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2932 hsotg->regs + S3C_GUSBCFG);
2933
2934 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2935 hsotg->regs + S3C_GAHBCFG);
2936
2937 /* check hardware configuration */
2938
2939 cfg4 = readl(hsotg->regs + 0x50);
2940 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2941
2942 dev_info(hsotg->dev, "%s fifos\n",
2943 hsotg->dedicated_fifos ? "dedicated" : "shared");
2944 }
2945
2946 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2947 {
2948 #ifdef DEBUG
2949 struct device *dev = hsotg->dev;
2950 void __iomem *regs = hsotg->regs;
2951 u32 val;
2952 int idx;
2953
2954 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2955 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2956 readl(regs + S3C_DIEPMSK));
2957
2958 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2959 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2960
2961 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2962 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2963
2964 /* show periodic fifo settings */
2965
2966 for (idx = 1; idx <= 15; idx++) {
2967 val = readl(regs + S3C_DPTXFSIZn(idx));
2968 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2969 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2970 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2971 }
2972
2973 for (idx = 0; idx < 15; idx++) {
2974 dev_info(dev,
2975 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2976 readl(regs + S3C_DIEPCTL(idx)),
2977 readl(regs + S3C_DIEPTSIZ(idx)),
2978 readl(regs + S3C_DIEPDMA(idx)));
2979
2980 val = readl(regs + S3C_DOEPCTL(idx));
2981 dev_info(dev,
2982 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2983 idx, readl(regs + S3C_DOEPCTL(idx)),
2984 readl(regs + S3C_DOEPTSIZ(idx)),
2985 readl(regs + S3C_DOEPDMA(idx)));
2986
2987 }
2988
2989 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2990 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2991 #endif
2992 }
2993
2994
2995 /**
2996 * state_show - debugfs: show overall driver and device state.
2997 * @seq: The seq file to write to.
2998 * @v: Unused parameter.
2999 *
3000 * This debugfs entry shows the overall state of the hardware and
3001 * some general information about each of the endpoints available
3002 * to the system.
3003 */
3004 static int state_show(struct seq_file *seq, void *v)
3005 {
3006 struct s3c_hsotg *hsotg = seq->private;
3007 void __iomem *regs = hsotg->regs;
3008 int idx;
3009
3010 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3011 readl(regs + S3C_DCFG),
3012 readl(regs + S3C_DCTL),
3013 readl(regs + S3C_DSTS));
3014
3015 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3016 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
3017
3018 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3019 readl(regs + S3C_GINTMSK),
3020 readl(regs + S3C_GINTSTS));
3021
3022 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3023 readl(regs + S3C_DAINTMSK),
3024 readl(regs + S3C_DAINT));
3025
3026 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3027 readl(regs + S3C_GNPTXSTS),
3028 readl(regs + S3C_GRXSTSR));
3029
3030 seq_printf(seq, "\nEndpoint status:\n");
3031
3032 for (idx = 0; idx < 15; idx++) {
3033 u32 in, out;
3034
3035 in = readl(regs + S3C_DIEPCTL(idx));
3036 out = readl(regs + S3C_DOEPCTL(idx));
3037
3038 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3039 idx, in, out);
3040
3041 in = readl(regs + S3C_DIEPTSIZ(idx));
3042 out = readl(regs + S3C_DOEPTSIZ(idx));
3043
3044 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3045 in, out);
3046
3047 seq_printf(seq, "\n");
3048 }
3049
3050 return 0;
3051 }
3052
3053 static int state_open(struct inode *inode, struct file *file)
3054 {
3055 return single_open(file, state_show, inode->i_private);
3056 }
3057
3058 static const struct file_operations state_fops = {
3059 .owner = THIS_MODULE,
3060 .open = state_open,
3061 .read = seq_read,
3062 .llseek = seq_lseek,
3063 .release = single_release,
3064 };
3065
3066 /**
3067 * fifo_show - debugfs: show the fifo information
3068 * @seq: The seq_file to write data to.
3069 * @v: Unused parameter.
3070 *
3071 * Show the FIFO information for the overall fifo and all the
3072 * periodic transmission FIFOs.
3073 */
3074 static int fifo_show(struct seq_file *seq, void *v)
3075 {
3076 struct s3c_hsotg *hsotg = seq->private;
3077 void __iomem *regs = hsotg->regs;
3078 u32 val;
3079 int idx;
3080
3081 seq_printf(seq, "Non-periodic FIFOs:\n");
3082 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3083
3084 val = readl(regs + S3C_GNPTXFSIZ);
3085 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3086 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3087 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3088
3089 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3090
3091 for (idx = 1; idx <= 15; idx++) {
3092 val = readl(regs + S3C_DPTXFSIZn(idx));
3093
3094 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3095 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3096 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3097 }
3098
3099 return 0;
3100 }
3101
3102 static int fifo_open(struct inode *inode, struct file *file)
3103 {
3104 return single_open(file, fifo_show, inode->i_private);
3105 }
3106
3107 static const struct file_operations fifo_fops = {
3108 .owner = THIS_MODULE,
3109 .open = fifo_open,
3110 .read = seq_read,
3111 .llseek = seq_lseek,
3112 .release = single_release,
3113 };
3114
3115
3116 static const char *decode_direction(int is_in)
3117 {
3118 return is_in ? "in" : "out";
3119 }
3120
3121 /**
3122 * ep_show - debugfs: show the state of an endpoint.
3123 * @seq: The seq_file to write data to.
3124 * @v: Unused parameter.
3125 *
3126 * This debugfs entry shows the state of the given endpoint (one is
3127 * registered for each available).
3128 */
3129 static int ep_show(struct seq_file *seq, void *v)
3130 {
3131 struct s3c_hsotg_ep *ep = seq->private;
3132 struct s3c_hsotg *hsotg = ep->parent;
3133 struct s3c_hsotg_req *req;
3134 void __iomem *regs = hsotg->regs;
3135 int index = ep->index;
3136 int show_limit = 15;
3137 unsigned long flags;
3138
3139 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3140 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3141
3142 /* first show the register state */
3143
3144 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3145 readl(regs + S3C_DIEPCTL(index)),
3146 readl(regs + S3C_DOEPCTL(index)));
3147
3148 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3149 readl(regs + S3C_DIEPDMA(index)),
3150 readl(regs + S3C_DOEPDMA(index)));
3151
3152 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3153 readl(regs + S3C_DIEPINT(index)),
3154 readl(regs + S3C_DOEPINT(index)));
3155
3156 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3157 readl(regs + S3C_DIEPTSIZ(index)),
3158 readl(regs + S3C_DOEPTSIZ(index)));
3159
3160 seq_printf(seq, "\n");
3161 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3162 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3163
3164 seq_printf(seq, "request list (%p,%p):\n",
3165 ep->queue.next, ep->queue.prev);
3166
3167 spin_lock_irqsave(&ep->lock, flags);
3168
3169 list_for_each_entry(req, &ep->queue, queue) {
3170 if (--show_limit < 0) {
3171 seq_printf(seq, "not showing more requests...\n");
3172 break;
3173 }
3174
3175 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3176 req == ep->req ? '*' : ' ',
3177 req, req->req.length, req->req.buf);
3178 seq_printf(seq, "%d done, res %d\n",
3179 req->req.actual, req->req.status);
3180 }
3181
3182 spin_unlock_irqrestore(&ep->lock, flags);
3183
3184 return 0;
3185 }
3186
3187 static int ep_open(struct inode *inode, struct file *file)
3188 {
3189 return single_open(file, ep_show, inode->i_private);
3190 }
3191
3192 static const struct file_operations ep_fops = {
3193 .owner = THIS_MODULE,
3194 .open = ep_open,
3195 .read = seq_read,
3196 .llseek = seq_lseek,
3197 .release = single_release,
3198 };
3199
3200 /**
3201 * s3c_hsotg_create_debug - create debugfs directory and files
3202 * @hsotg: The driver state
3203 *
3204 * Create the debugfs files to allow the user to get information
3205 * about the state of the system. The directory name is created
3206 * with the same name as the device itself, in case we end up
3207 * with multiple blocks in future systems.
3208 */
3209 static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3210 {
3211 struct dentry *root;
3212 unsigned epidx;
3213
3214 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3215 hsotg->debug_root = root;
3216 if (IS_ERR(root)) {
3217 dev_err(hsotg->dev, "cannot create debug root\n");
3218 return;
3219 }
3220
3221 /* create general state file */
3222
3223 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3224 hsotg, &state_fops);
3225
3226 if (IS_ERR(hsotg->debug_file))
3227 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3228
3229 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3230 hsotg, &fifo_fops);
3231
3232 if (IS_ERR(hsotg->debug_fifo))
3233 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3234
3235 /* create one file for each endpoint */
3236
3237 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3238 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3239
3240 ep->debugfs = debugfs_create_file(ep->name, 0444,
3241 root, ep, &ep_fops);
3242
3243 if (IS_ERR(ep->debugfs))
3244 dev_err(hsotg->dev, "failed to create %s debug file\n",
3245 ep->name);
3246 }
3247 }
3248
3249 /**
3250 * s3c_hsotg_delete_debug - cleanup debugfs entries
3251 * @hsotg: The driver state
3252 *
3253 * Cleanup (remove) the debugfs files for use on module exit.
3254 */
3255 static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3256 {
3257 unsigned epidx;
3258
3259 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3260 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3261 debugfs_remove(ep->debugfs);
3262 }
3263
3264 debugfs_remove(hsotg->debug_file);
3265 debugfs_remove(hsotg->debug_fifo);
3266 debugfs_remove(hsotg->debug_root);
3267 }
3268
3269 /**
3270 * s3c_hsotg_gate - set the hardware gate for the block
3271 * @pdev: The device we bound to
3272 * @on: On or off.
3273 *
3274 * Set the hardware gate setting into the block. If we end up on
3275 * something other than an S3C64XX, then we might need to change this
3276 * to using a platform data callback, or some other mechanism.
3277 */
3278 static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3279 {
3280 unsigned long flags;
3281 u32 others;
3282
3283 local_irq_save(flags);
3284
3285 others = __raw_readl(S3C64XX_OTHERS);
3286 if (on)
3287 others |= S3C64XX_OTHERS_USBMASK;
3288 else
3289 others &= ~S3C64XX_OTHERS_USBMASK;
3290 __raw_writel(others, S3C64XX_OTHERS);
3291
3292 local_irq_restore(flags);
3293 }
3294
3295 static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3296
3297 static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3298 {
3299 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3300 struct device *dev = &pdev->dev;
3301 struct s3c_hsotg *hsotg;
3302 struct resource *res;
3303 int epnum;
3304 int ret;
3305
3306 if (!plat)
3307 plat = &s3c_hsotg_default_pdata;
3308
3309 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3310 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3311 GFP_KERNEL);
3312 if (!hsotg) {
3313 dev_err(dev, "cannot get memory\n");
3314 return -ENOMEM;
3315 }
3316
3317 hsotg->dev = dev;
3318 hsotg->plat = plat;
3319
3320 hsotg->clk = clk_get(&pdev->dev, "otg");
3321 if (IS_ERR(hsotg->clk)) {
3322 dev_err(dev, "cannot get otg clock\n");
3323 ret = PTR_ERR(hsotg->clk);
3324 goto err_mem;
3325 }
3326
3327 platform_set_drvdata(pdev, hsotg);
3328
3329 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3330 if (!res) {
3331 dev_err(dev, "cannot find register resource 0\n");
3332 ret = -EINVAL;
3333 goto err_clk;
3334 }
3335
3336 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3337 dev_name(dev));
3338 if (!hsotg->regs_res) {
3339 dev_err(dev, "cannot reserve registers\n");
3340 ret = -ENOENT;
3341 goto err_clk;
3342 }
3343
3344 hsotg->regs = ioremap(res->start, resource_size(res));
3345 if (!hsotg->regs) {
3346 dev_err(dev, "cannot map registers\n");
3347 ret = -ENXIO;
3348 goto err_regs_res;
3349 }
3350
3351 ret = platform_get_irq(pdev, 0);
3352 if (ret < 0) {
3353 dev_err(dev, "cannot find IRQ\n");
3354 goto err_regs;
3355 }
3356
3357 hsotg->irq = ret;
3358
3359 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3360 if (ret < 0) {
3361 dev_err(dev, "cannot claim IRQ\n");
3362 goto err_regs;
3363 }
3364
3365 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3366
3367 device_initialize(&hsotg->gadget.dev);
3368
3369 dev_set_name(&hsotg->gadget.dev, "gadget");
3370
3371 hsotg->gadget.is_dualspeed = 1;
3372 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3373 hsotg->gadget.name = dev_name(dev);
3374
3375 hsotg->gadget.dev.parent = dev;
3376 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3377
3378 /* setup endpoint information */
3379
3380 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3381 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3382
3383 /* allocate EP0 request */
3384
3385 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3386 GFP_KERNEL);
3387 if (!hsotg->ctrl_req) {
3388 dev_err(dev, "failed to allocate ctrl req\n");
3389 goto err_regs;
3390 }
3391
3392 /* reset the system */
3393
3394 clk_enable(hsotg->clk);
3395
3396 s3c_hsotg_gate(pdev, true);
3397
3398 s3c_hsotg_otgreset(hsotg);
3399 s3c_hsotg_corereset(hsotg);
3400 s3c_hsotg_init(hsotg);
3401
3402 /* initialise the endpoints now the core has been initialised */
3403 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3404 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3405
3406 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3407 if (ret)
3408 goto err_add_udc;
3409
3410 s3c_hsotg_create_debug(hsotg);
3411
3412 s3c_hsotg_dump(hsotg);
3413
3414 our_hsotg = hsotg;
3415 return 0;
3416
3417 err_add_udc:
3418 s3c_hsotg_gate(pdev, false);
3419 clk_disable(hsotg->clk);
3420 clk_put(hsotg->clk);
3421
3422 err_regs:
3423 iounmap(hsotg->regs);
3424
3425 err_regs_res:
3426 release_resource(hsotg->regs_res);
3427 kfree(hsotg->regs_res);
3428 err_clk:
3429 clk_put(hsotg->clk);
3430 err_mem:
3431 kfree(hsotg);
3432 return ret;
3433 }
3434
3435 static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3436 {
3437 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3438
3439 usb_del_gadget_udc(&hsotg->gadget);
3440
3441 s3c_hsotg_delete_debug(hsotg);
3442
3443 usb_gadget_unregister_driver(hsotg->driver);
3444
3445 free_irq(hsotg->irq, hsotg);
3446 iounmap(hsotg->regs);
3447
3448 release_resource(hsotg->regs_res);
3449 kfree(hsotg->regs_res);
3450
3451 s3c_hsotg_gate(pdev, false);
3452
3453 clk_disable(hsotg->clk);
3454 clk_put(hsotg->clk);
3455
3456 kfree(hsotg);
3457 return 0;
3458 }
3459
3460 #if 1
3461 #define s3c_hsotg_suspend NULL
3462 #define s3c_hsotg_resume NULL
3463 #endif
3464
3465 static struct platform_driver s3c_hsotg_driver = {
3466 .driver = {
3467 .name = "s3c-hsotg",
3468 .owner = THIS_MODULE,
3469 },
3470 .probe = s3c_hsotg_probe,
3471 .remove = __devexit_p(s3c_hsotg_remove),
3472 .suspend = s3c_hsotg_suspend,
3473 .resume = s3c_hsotg_resume,
3474 };
3475
3476 static int __init s3c_hsotg_modinit(void)
3477 {
3478 return platform_driver_register(&s3c_hsotg_driver);
3479 }
3480
3481 static void __exit s3c_hsotg_modexit(void)
3482 {
3483 platform_driver_unregister(&s3c_hsotg_driver);
3484 }
3485
3486 module_init(s3c_hsotg_modinit);
3487 module_exit(s3c_hsotg_modexit);
3488
3489 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3490 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3491 MODULE_LICENSE("GPL");
3492 MODULE_ALIAS("platform:s3c-hsotg");
This page took 0.1075 seconds and 5 git commands to generate.