Merge tag 'clk-for-linus-3.14-part2' of git://git.linaro.org/people/mike.turquette...
[deliverable/linux.git] / drivers / usb / gadget / s3c-hsotg.c
1 /**
2 * linux/drivers/usb/gadget/s3c-hsotg.c
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
6 *
7 * Copyright 2008 Openmoko, Inc.
8 * Copyright 2008 Simtec Electronics
9 * Ben Dooks <ben@simtec.co.uk>
10 * http://armlinux.simtec.co.uk/
11 *
12 * S3C USB2.0 High-speed / OtG driver
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/delay.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/of_platform.h>
33 #include <linux/phy/phy.h>
34
35 #include <linux/usb/ch9.h>
36 #include <linux/usb/gadget.h>
37 #include <linux/usb/phy.h>
38 #include <linux/platform_data/s3c-hsotg.h>
39
40 #include "s3c-hsotg.h"
41
42 static const char * const s3c_hsotg_supply_names[] = {
43 "vusb_d", /* digital USB supply, 1.2V */
44 "vusb_a", /* analog USB supply, 1.1V */
45 };
46
47 /*
48 * EP0_MPS_LIMIT
49 *
50 * Unfortunately there seems to be a limit of the amount of data that can
51 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
52 * packets (which practically means 1 packet and 63 bytes of data) when the
53 * MPS is set to 64.
54 *
55 * This means if we are wanting to move >127 bytes of data, we need to
56 * split the transactions up, but just doing one packet at a time does
57 * not work (this may be an implicit DATA0 PID on first packet of the
58 * transaction) and doing 2 packets is outside the controller's limits.
59 *
60 * If we try to lower the MPS size for EP0, then no transfers work properly
61 * for EP0, and the system will fail basic enumeration. As no cause for this
62 * has currently been found, we cannot support any large IN transfers for
63 * EP0.
64 */
65 #define EP0_MPS_LIMIT 64
66
67 struct s3c_hsotg;
68 struct s3c_hsotg_req;
69
70 /**
71 * struct s3c_hsotg_ep - driver endpoint definition.
72 * @ep: The gadget layer representation of the endpoint.
73 * @name: The driver generated name for the endpoint.
74 * @queue: Queue of requests for this endpoint.
75 * @parent: Reference back to the parent device structure.
76 * @req: The current request that the endpoint is processing. This is
77 * used to indicate an request has been loaded onto the endpoint
78 * and has yet to be completed (maybe due to data move, or simply
79 * awaiting an ack from the core all the data has been completed).
80 * @debugfs: File entry for debugfs file for this endpoint.
81 * @lock: State lock to protect contents of endpoint.
82 * @dir_in: Set to true if this endpoint is of the IN direction, which
83 * means that it is sending data to the Host.
84 * @index: The index for the endpoint registers.
85 * @mc: Multi Count - number of transactions per microframe
86 * @interval - Interval for periodic endpoints
87 * @name: The name array passed to the USB core.
88 * @halted: Set if the endpoint has been halted.
89 * @periodic: Set if this is a periodic ep, such as Interrupt
90 * @isochronous: Set if this is a isochronous ep
91 * @sent_zlp: Set if we've sent a zero-length packet.
92 * @total_data: The total number of data bytes done.
93 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
94 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
95 * @last_load: The offset of data for the last start of request.
96 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
97 *
98 * This is the driver's state for each registered enpoint, allowing it
99 * to keep track of transactions that need doing. Each endpoint has a
100 * lock to protect the state, to try and avoid using an overall lock
101 * for the host controller as much as possible.
102 *
103 * For periodic IN endpoints, we have fifo_size and fifo_load to try
104 * and keep track of the amount of data in the periodic FIFO for each
105 * of these as we don't have a status register that tells us how much
106 * is in each of them. (note, this may actually be useless information
107 * as in shared-fifo mode periodic in acts like a single-frame packet
108 * buffer than a fifo)
109 */
110 struct s3c_hsotg_ep {
111 struct usb_ep ep;
112 struct list_head queue;
113 struct s3c_hsotg *parent;
114 struct s3c_hsotg_req *req;
115 struct dentry *debugfs;
116
117
118 unsigned long total_data;
119 unsigned int size_loaded;
120 unsigned int last_load;
121 unsigned int fifo_load;
122 unsigned short fifo_size;
123
124 unsigned char dir_in;
125 unsigned char index;
126 unsigned char mc;
127 unsigned char interval;
128
129 unsigned int halted:1;
130 unsigned int periodic:1;
131 unsigned int isochronous:1;
132 unsigned int sent_zlp:1;
133
134 char name[10];
135 };
136
137 /**
138 * struct s3c_hsotg - driver state.
139 * @dev: The parent device supplied to the probe function
140 * @driver: USB gadget driver
141 * @phy: The otg phy transceiver structure for phy control.
142 * @uphy: The otg phy transceiver structure for old USB phy control.
143 * @plat: The platform specific configuration data. This can be removed once
144 * all SoCs support usb transceiver.
145 * @regs: The memory area mapped for accessing registers.
146 * @irq: The IRQ number we are using
147 * @supplies: Definition of USB power supplies
148 * @phyif: PHY interface width
149 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
150 * @num_of_eps: Number of available EPs (excluding EP0)
151 * @debug_root: root directrory for debugfs.
152 * @debug_file: main status file for debugfs.
153 * @debug_fifo: FIFO status file for debugfs.
154 * @ep0_reply: Request used for ep0 reply.
155 * @ep0_buff: Buffer for EP0 reply data, if needed.
156 * @ctrl_buff: Buffer for EP0 control requests.
157 * @ctrl_req: Request for EP0 control packets.
158 * @setup: NAK management for EP0 SETUP
159 * @last_rst: Time of last reset
160 * @eps: The endpoints being supplied to the gadget framework
161 */
162 struct s3c_hsotg {
163 struct device *dev;
164 struct usb_gadget_driver *driver;
165 struct phy *phy;
166 struct usb_phy *uphy;
167 struct s3c_hsotg_plat *plat;
168
169 spinlock_t lock;
170
171 void __iomem *regs;
172 int irq;
173 struct clk *clk;
174
175 struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
176
177 u32 phyif;
178 unsigned int dedicated_fifos:1;
179 unsigned char num_of_eps;
180
181 struct dentry *debug_root;
182 struct dentry *debug_file;
183 struct dentry *debug_fifo;
184
185 struct usb_request *ep0_reply;
186 struct usb_request *ctrl_req;
187 u8 ep0_buff[8];
188 u8 ctrl_buff[8];
189
190 struct usb_gadget gadget;
191 unsigned int setup;
192 unsigned long last_rst;
193 struct s3c_hsotg_ep *eps;
194 };
195
196 /**
197 * struct s3c_hsotg_req - data transfer request
198 * @req: The USB gadget request
199 * @queue: The list of requests for the endpoint this is queued for.
200 * @in_progress: Has already had size/packets written to core
201 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
202 */
203 struct s3c_hsotg_req {
204 struct usb_request req;
205 struct list_head queue;
206 unsigned char in_progress;
207 unsigned char mapped;
208 };
209
210 /* conversion functions */
211 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
212 {
213 return container_of(req, struct s3c_hsotg_req, req);
214 }
215
216 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
217 {
218 return container_of(ep, struct s3c_hsotg_ep, ep);
219 }
220
221 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
222 {
223 return container_of(gadget, struct s3c_hsotg, gadget);
224 }
225
226 static inline void __orr32(void __iomem *ptr, u32 val)
227 {
228 writel(readl(ptr) | val, ptr);
229 }
230
231 static inline void __bic32(void __iomem *ptr, u32 val)
232 {
233 writel(readl(ptr) & ~val, ptr);
234 }
235
236 /* forward decleration of functions */
237 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
238
239 /**
240 * using_dma - return the DMA status of the driver.
241 * @hsotg: The driver state.
242 *
243 * Return true if we're using DMA.
244 *
245 * Currently, we have the DMA support code worked into everywhere
246 * that needs it, but the AMBA DMA implementation in the hardware can
247 * only DMA from 32bit aligned addresses. This means that gadgets such
248 * as the CDC Ethernet cannot work as they often pass packets which are
249 * not 32bit aligned.
250 *
251 * Unfortunately the choice to use DMA or not is global to the controller
252 * and seems to be only settable when the controller is being put through
253 * a core reset. This means we either need to fix the gadgets to take
254 * account of DMA alignment, or add bounce buffers (yuerk).
255 *
256 * Until this issue is sorted out, we always return 'false'.
257 */
258 static inline bool using_dma(struct s3c_hsotg *hsotg)
259 {
260 return false; /* support is not complete */
261 }
262
263 /**
264 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
265 * @hsotg: The device state
266 * @ints: A bitmask of the interrupts to enable
267 */
268 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
269 {
270 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
271 u32 new_gsintmsk;
272
273 new_gsintmsk = gsintmsk | ints;
274
275 if (new_gsintmsk != gsintmsk) {
276 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
277 writel(new_gsintmsk, hsotg->regs + GINTMSK);
278 }
279 }
280
281 /**
282 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
283 * @hsotg: The device state
284 * @ints: A bitmask of the interrupts to enable
285 */
286 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
287 {
288 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
289 u32 new_gsintmsk;
290
291 new_gsintmsk = gsintmsk & ~ints;
292
293 if (new_gsintmsk != gsintmsk)
294 writel(new_gsintmsk, hsotg->regs + GINTMSK);
295 }
296
297 /**
298 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
299 * @hsotg: The device state
300 * @ep: The endpoint index
301 * @dir_in: True if direction is in.
302 * @en: The enable value, true to enable
303 *
304 * Set or clear the mask for an individual endpoint's interrupt
305 * request.
306 */
307 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
308 unsigned int ep, unsigned int dir_in,
309 unsigned int en)
310 {
311 unsigned long flags;
312 u32 bit = 1 << ep;
313 u32 daint;
314
315 if (!dir_in)
316 bit <<= 16;
317
318 local_irq_save(flags);
319 daint = readl(hsotg->regs + DAINTMSK);
320 if (en)
321 daint |= bit;
322 else
323 daint &= ~bit;
324 writel(daint, hsotg->regs + DAINTMSK);
325 local_irq_restore(flags);
326 }
327
328 /**
329 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
330 * @hsotg: The device instance.
331 */
332 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
333 {
334 unsigned int ep;
335 unsigned int addr;
336 unsigned int size;
337 int timeout;
338 u32 val;
339
340 /* set FIFO sizes to 2048/1024 */
341
342 writel(2048, hsotg->regs + GRXFSIZ);
343 writel(GNPTXFSIZ_NPTxFStAddr(2048) |
344 GNPTXFSIZ_NPTxFDep(1024),
345 hsotg->regs + GNPTXFSIZ);
346
347 /*
348 * arange all the rest of the TX FIFOs, as some versions of this
349 * block have overlapping default addresses. This also ensures
350 * that if the settings have been changed, then they are set to
351 * known values.
352 */
353
354 /* start at the end of the GNPTXFSIZ, rounded up */
355 addr = 2048 + 1024;
356 size = 768;
357
358 /*
359 * currently we allocate TX FIFOs for all possible endpoints,
360 * and assume that they are all the same size.
361 */
362
363 for (ep = 1; ep <= 15; ep++) {
364 val = addr;
365 val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
366 addr += size;
367
368 writel(val, hsotg->regs + DPTXFSIZn(ep));
369 }
370
371 /*
372 * according to p428 of the design guide, we need to ensure that
373 * all fifos are flushed before continuing
374 */
375
376 writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
377 GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
378
379 /* wait until the fifos are both flushed */
380 timeout = 100;
381 while (1) {
382 val = readl(hsotg->regs + GRSTCTL);
383
384 if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
385 break;
386
387 if (--timeout == 0) {
388 dev_err(hsotg->dev,
389 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
390 __func__, val);
391 }
392
393 udelay(1);
394 }
395
396 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
397 }
398
399 /**
400 * @ep: USB endpoint to allocate request for.
401 * @flags: Allocation flags
402 *
403 * Allocate a new USB request structure appropriate for the specified endpoint
404 */
405 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
406 gfp_t flags)
407 {
408 struct s3c_hsotg_req *req;
409
410 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
411 if (!req)
412 return NULL;
413
414 INIT_LIST_HEAD(&req->queue);
415
416 return &req->req;
417 }
418
419 /**
420 * is_ep_periodic - return true if the endpoint is in periodic mode.
421 * @hs_ep: The endpoint to query.
422 *
423 * Returns true if the endpoint is in periodic mode, meaning it is being
424 * used for an Interrupt or ISO transfer.
425 */
426 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
427 {
428 return hs_ep->periodic;
429 }
430
431 /**
432 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
433 * @hsotg: The device state.
434 * @hs_ep: The endpoint for the request
435 * @hs_req: The request being processed.
436 *
437 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
438 * of a request to ensure the buffer is ready for access by the caller.
439 */
440 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
441 struct s3c_hsotg_ep *hs_ep,
442 struct s3c_hsotg_req *hs_req)
443 {
444 struct usb_request *req = &hs_req->req;
445
446 /* ignore this if we're not moving any data */
447 if (hs_req->req.length == 0)
448 return;
449
450 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
451 }
452
453 /**
454 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
455 * @hsotg: The controller state.
456 * @hs_ep: The endpoint we're going to write for.
457 * @hs_req: The request to write data for.
458 *
459 * This is called when the TxFIFO has some space in it to hold a new
460 * transmission and we have something to give it. The actual setup of
461 * the data size is done elsewhere, so all we have to do is to actually
462 * write the data.
463 *
464 * The return value is zero if there is more space (or nothing was done)
465 * otherwise -ENOSPC is returned if the FIFO space was used up.
466 *
467 * This routine is only needed for PIO
468 */
469 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
470 struct s3c_hsotg_ep *hs_ep,
471 struct s3c_hsotg_req *hs_req)
472 {
473 bool periodic = is_ep_periodic(hs_ep);
474 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
475 int buf_pos = hs_req->req.actual;
476 int to_write = hs_ep->size_loaded;
477 void *data;
478 int can_write;
479 int pkt_round;
480 int max_transfer;
481
482 to_write -= (buf_pos - hs_ep->last_load);
483
484 /* if there's nothing to write, get out early */
485 if (to_write == 0)
486 return 0;
487
488 if (periodic && !hsotg->dedicated_fifos) {
489 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
490 int size_left;
491 int size_done;
492
493 /*
494 * work out how much data was loaded so we can calculate
495 * how much data is left in the fifo.
496 */
497
498 size_left = DxEPTSIZ_XferSize_GET(epsize);
499
500 /*
501 * if shared fifo, we cannot write anything until the
502 * previous data has been completely sent.
503 */
504 if (hs_ep->fifo_load != 0) {
505 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
506 return -ENOSPC;
507 }
508
509 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
510 __func__, size_left,
511 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
512
513 /* how much of the data has moved */
514 size_done = hs_ep->size_loaded - size_left;
515
516 /* how much data is left in the fifo */
517 can_write = hs_ep->fifo_load - size_done;
518 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
519 __func__, can_write);
520
521 can_write = hs_ep->fifo_size - can_write;
522 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
523 __func__, can_write);
524
525 if (can_write <= 0) {
526 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
527 return -ENOSPC;
528 }
529 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
530 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
531
532 can_write &= 0xffff;
533 can_write *= 4;
534 } else {
535 if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
536 dev_dbg(hsotg->dev,
537 "%s: no queue slots available (0x%08x)\n",
538 __func__, gnptxsts);
539
540 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
541 return -ENOSPC;
542 }
543
544 can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
545 can_write *= 4; /* fifo size is in 32bit quantities. */
546 }
547
548 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
549
550 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
551 __func__, gnptxsts, can_write, to_write, max_transfer);
552
553 /*
554 * limit to 512 bytes of data, it seems at least on the non-periodic
555 * FIFO, requests of >512 cause the endpoint to get stuck with a
556 * fragment of the end of the transfer in it.
557 */
558 if (can_write > 512 && !periodic)
559 can_write = 512;
560
561 /*
562 * limit the write to one max-packet size worth of data, but allow
563 * the transfer to return that it did not run out of fifo space
564 * doing it.
565 */
566 if (to_write > max_transfer) {
567 to_write = max_transfer;
568
569 /* it's needed only when we do not use dedicated fifos */
570 if (!hsotg->dedicated_fifos)
571 s3c_hsotg_en_gsint(hsotg,
572 periodic ? GINTSTS_PTxFEmp :
573 GINTSTS_NPTxFEmp);
574 }
575
576 /* see if we can write data */
577
578 if (to_write > can_write) {
579 to_write = can_write;
580 pkt_round = to_write % max_transfer;
581
582 /*
583 * Round the write down to an
584 * exact number of packets.
585 *
586 * Note, we do not currently check to see if we can ever
587 * write a full packet or not to the FIFO.
588 */
589
590 if (pkt_round)
591 to_write -= pkt_round;
592
593 /*
594 * enable correct FIFO interrupt to alert us when there
595 * is more room left.
596 */
597
598 /* it's needed only when we do not use dedicated fifos */
599 if (!hsotg->dedicated_fifos)
600 s3c_hsotg_en_gsint(hsotg,
601 periodic ? GINTSTS_PTxFEmp :
602 GINTSTS_NPTxFEmp);
603 }
604
605 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
606 to_write, hs_req->req.length, can_write, buf_pos);
607
608 if (to_write <= 0)
609 return -ENOSPC;
610
611 hs_req->req.actual = buf_pos + to_write;
612 hs_ep->total_data += to_write;
613
614 if (periodic)
615 hs_ep->fifo_load += to_write;
616
617 to_write = DIV_ROUND_UP(to_write, 4);
618 data = hs_req->req.buf + buf_pos;
619
620 writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
621
622 return (to_write >= can_write) ? -ENOSPC : 0;
623 }
624
625 /**
626 * get_ep_limit - get the maximum data legnth for this endpoint
627 * @hs_ep: The endpoint
628 *
629 * Return the maximum data that can be queued in one go on a given endpoint
630 * so that transfers that are too long can be split.
631 */
632 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
633 {
634 int index = hs_ep->index;
635 unsigned maxsize;
636 unsigned maxpkt;
637
638 if (index != 0) {
639 maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
640 maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
641 } else {
642 maxsize = 64+64;
643 if (hs_ep->dir_in)
644 maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
645 else
646 maxpkt = 2;
647 }
648
649 /* we made the constant loading easier above by using +1 */
650 maxpkt--;
651 maxsize--;
652
653 /*
654 * constrain by packet count if maxpkts*pktsize is greater
655 * than the length register size.
656 */
657
658 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
659 maxsize = maxpkt * hs_ep->ep.maxpacket;
660
661 return maxsize;
662 }
663
664 /**
665 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
666 * @hsotg: The controller state.
667 * @hs_ep: The endpoint to process a request for
668 * @hs_req: The request to start.
669 * @continuing: True if we are doing more for the current request.
670 *
671 * Start the given request running by setting the endpoint registers
672 * appropriately, and writing any data to the FIFOs.
673 */
674 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
675 struct s3c_hsotg_ep *hs_ep,
676 struct s3c_hsotg_req *hs_req,
677 bool continuing)
678 {
679 struct usb_request *ureq = &hs_req->req;
680 int index = hs_ep->index;
681 int dir_in = hs_ep->dir_in;
682 u32 epctrl_reg;
683 u32 epsize_reg;
684 u32 epsize;
685 u32 ctrl;
686 unsigned length;
687 unsigned packets;
688 unsigned maxreq;
689
690 if (index != 0) {
691 if (hs_ep->req && !continuing) {
692 dev_err(hsotg->dev, "%s: active request\n", __func__);
693 WARN_ON(1);
694 return;
695 } else if (hs_ep->req != hs_req && continuing) {
696 dev_err(hsotg->dev,
697 "%s: continue different req\n", __func__);
698 WARN_ON(1);
699 return;
700 }
701 }
702
703 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
704 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
705
706 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
707 __func__, readl(hsotg->regs + epctrl_reg), index,
708 hs_ep->dir_in ? "in" : "out");
709
710 /* If endpoint is stalled, we will restart request later */
711 ctrl = readl(hsotg->regs + epctrl_reg);
712
713 if (ctrl & DxEPCTL_Stall) {
714 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
715 return;
716 }
717
718 length = ureq->length - ureq->actual;
719 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
720 ureq->length, ureq->actual);
721 if (0)
722 dev_dbg(hsotg->dev,
723 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
724 ureq->buf, length, ureq->dma,
725 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
726
727 maxreq = get_ep_limit(hs_ep);
728 if (length > maxreq) {
729 int round = maxreq % hs_ep->ep.maxpacket;
730
731 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
732 __func__, length, maxreq, round);
733
734 /* round down to multiple of packets */
735 if (round)
736 maxreq -= round;
737
738 length = maxreq;
739 }
740
741 if (length)
742 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
743 else
744 packets = 1; /* send one packet if length is zero. */
745
746 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
747 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
748 return;
749 }
750
751 if (dir_in && index != 0)
752 if (hs_ep->isochronous)
753 epsize = DxEPTSIZ_MC(packets);
754 else
755 epsize = DxEPTSIZ_MC(1);
756 else
757 epsize = 0;
758
759 if (index != 0 && ureq->zero) {
760 /*
761 * test for the packets being exactly right for the
762 * transfer
763 */
764
765 if (length == (packets * hs_ep->ep.maxpacket))
766 packets++;
767 }
768
769 epsize |= DxEPTSIZ_PktCnt(packets);
770 epsize |= DxEPTSIZ_XferSize(length);
771
772 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
773 __func__, packets, length, ureq->length, epsize, epsize_reg);
774
775 /* store the request as the current one we're doing */
776 hs_ep->req = hs_req;
777
778 /* write size / packets */
779 writel(epsize, hsotg->regs + epsize_reg);
780
781 if (using_dma(hsotg) && !continuing) {
782 unsigned int dma_reg;
783
784 /*
785 * write DMA address to control register, buffer already
786 * synced by s3c_hsotg_ep_queue().
787 */
788
789 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
790 writel(ureq->dma, hsotg->regs + dma_reg);
791
792 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
793 __func__, ureq->dma, dma_reg);
794 }
795
796 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
797 ctrl |= DxEPCTL_USBActEp;
798
799 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
800
801 /* For Setup request do not clear NAK */
802 if (hsotg->setup && index == 0)
803 hsotg->setup = 0;
804 else
805 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
806
807
808 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
809 writel(ctrl, hsotg->regs + epctrl_reg);
810
811 /*
812 * set these, it seems that DMA support increments past the end
813 * of the packet buffer so we need to calculate the length from
814 * this information.
815 */
816 hs_ep->size_loaded = length;
817 hs_ep->last_load = ureq->actual;
818
819 if (dir_in && !using_dma(hsotg)) {
820 /* set these anyway, we may need them for non-periodic in */
821 hs_ep->fifo_load = 0;
822
823 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
824 }
825
826 /*
827 * clear the INTknTXFEmpMsk when we start request, more as a aide
828 * to debugging to see what is going on.
829 */
830 if (dir_in)
831 writel(DIEPMSK_INTknTXFEmpMsk,
832 hsotg->regs + DIEPINT(index));
833
834 /*
835 * Note, trying to clear the NAK here causes problems with transmit
836 * on the S3C6400 ending up with the TXFIFO becoming full.
837 */
838
839 /* check ep is enabled */
840 if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
841 dev_warn(hsotg->dev,
842 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
843 index, readl(hsotg->regs + epctrl_reg));
844
845 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
846 __func__, readl(hsotg->regs + epctrl_reg));
847
848 /* enable ep interrupts */
849 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
850 }
851
852 /**
853 * s3c_hsotg_map_dma - map the DMA memory being used for the request
854 * @hsotg: The device state.
855 * @hs_ep: The endpoint the request is on.
856 * @req: The request being processed.
857 *
858 * We've been asked to queue a request, so ensure that the memory buffer
859 * is correctly setup for DMA. If we've been passed an extant DMA address
860 * then ensure the buffer has been synced to memory. If our buffer has no
861 * DMA memory, then we map the memory and mark our request to allow us to
862 * cleanup on completion.
863 */
864 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
865 struct s3c_hsotg_ep *hs_ep,
866 struct usb_request *req)
867 {
868 struct s3c_hsotg_req *hs_req = our_req(req);
869 int ret;
870
871 /* if the length is zero, ignore the DMA data */
872 if (hs_req->req.length == 0)
873 return 0;
874
875 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
876 if (ret)
877 goto dma_error;
878
879 return 0;
880
881 dma_error:
882 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
883 __func__, req->buf, req->length);
884
885 return -EIO;
886 }
887
888 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
889 gfp_t gfp_flags)
890 {
891 struct s3c_hsotg_req *hs_req = our_req(req);
892 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
893 struct s3c_hsotg *hs = hs_ep->parent;
894 bool first;
895
896 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
897 ep->name, req, req->length, req->buf, req->no_interrupt,
898 req->zero, req->short_not_ok);
899
900 /* initialise status of the request */
901 INIT_LIST_HEAD(&hs_req->queue);
902 req->actual = 0;
903 req->status = -EINPROGRESS;
904
905 /* if we're using DMA, sync the buffers as necessary */
906 if (using_dma(hs)) {
907 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
908 if (ret)
909 return ret;
910 }
911
912 first = list_empty(&hs_ep->queue);
913 list_add_tail(&hs_req->queue, &hs_ep->queue);
914
915 if (first)
916 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
917
918 return 0;
919 }
920
921 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
922 gfp_t gfp_flags)
923 {
924 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
925 struct s3c_hsotg *hs = hs_ep->parent;
926 unsigned long flags = 0;
927 int ret = 0;
928
929 spin_lock_irqsave(&hs->lock, flags);
930 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
931 spin_unlock_irqrestore(&hs->lock, flags);
932
933 return ret;
934 }
935
936 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
937 struct usb_request *req)
938 {
939 struct s3c_hsotg_req *hs_req = our_req(req);
940
941 kfree(hs_req);
942 }
943
944 /**
945 * s3c_hsotg_complete_oursetup - setup completion callback
946 * @ep: The endpoint the request was on.
947 * @req: The request completed.
948 *
949 * Called on completion of any requests the driver itself
950 * submitted that need cleaning up.
951 */
952 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
953 struct usb_request *req)
954 {
955 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
956 struct s3c_hsotg *hsotg = hs_ep->parent;
957
958 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
959
960 s3c_hsotg_ep_free_request(ep, req);
961 }
962
963 /**
964 * ep_from_windex - convert control wIndex value to endpoint
965 * @hsotg: The driver state.
966 * @windex: The control request wIndex field (in host order).
967 *
968 * Convert the given wIndex into a pointer to an driver endpoint
969 * structure, or return NULL if it is not a valid endpoint.
970 */
971 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
972 u32 windex)
973 {
974 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
975 int dir = (windex & USB_DIR_IN) ? 1 : 0;
976 int idx = windex & 0x7F;
977
978 if (windex >= 0x100)
979 return NULL;
980
981 if (idx > hsotg->num_of_eps)
982 return NULL;
983
984 if (idx && ep->dir_in != dir)
985 return NULL;
986
987 return ep;
988 }
989
990 /**
991 * s3c_hsotg_send_reply - send reply to control request
992 * @hsotg: The device state
993 * @ep: Endpoint 0
994 * @buff: Buffer for request
995 * @length: Length of reply.
996 *
997 * Create a request and queue it on the given endpoint. This is useful as
998 * an internal method of sending replies to certain control requests, etc.
999 */
1000 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
1001 struct s3c_hsotg_ep *ep,
1002 void *buff,
1003 int length)
1004 {
1005 struct usb_request *req;
1006 int ret;
1007
1008 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1009
1010 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1011 hsotg->ep0_reply = req;
1012 if (!req) {
1013 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1014 return -ENOMEM;
1015 }
1016
1017 req->buf = hsotg->ep0_buff;
1018 req->length = length;
1019 req->zero = 1; /* always do zero-length final transfer */
1020 req->complete = s3c_hsotg_complete_oursetup;
1021
1022 if (length)
1023 memcpy(req->buf, buff, length);
1024 else
1025 ep->sent_zlp = 1;
1026
1027 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1028 if (ret) {
1029 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1030 return ret;
1031 }
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * s3c_hsotg_process_req_status - process request GET_STATUS
1038 * @hsotg: The device state
1039 * @ctrl: USB control request
1040 */
1041 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1042 struct usb_ctrlrequest *ctrl)
1043 {
1044 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1045 struct s3c_hsotg_ep *ep;
1046 __le16 reply;
1047 int ret;
1048
1049 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1050
1051 if (!ep0->dir_in) {
1052 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1053 return -EINVAL;
1054 }
1055
1056 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1057 case USB_RECIP_DEVICE:
1058 reply = cpu_to_le16(0); /* bit 0 => self powered,
1059 * bit 1 => remote wakeup */
1060 break;
1061
1062 case USB_RECIP_INTERFACE:
1063 /* currently, the data result should be zero */
1064 reply = cpu_to_le16(0);
1065 break;
1066
1067 case USB_RECIP_ENDPOINT:
1068 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1069 if (!ep)
1070 return -ENOENT;
1071
1072 reply = cpu_to_le16(ep->halted ? 1 : 0);
1073 break;
1074
1075 default:
1076 return 0;
1077 }
1078
1079 if (le16_to_cpu(ctrl->wLength) != 2)
1080 return -EINVAL;
1081
1082 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1083 if (ret) {
1084 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1085 return ret;
1086 }
1087
1088 return 1;
1089 }
1090
1091 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1092
1093 /**
1094 * get_ep_head - return the first request on the endpoint
1095 * @hs_ep: The controller endpoint to get
1096 *
1097 * Get the first request on the endpoint.
1098 */
1099 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1100 {
1101 if (list_empty(&hs_ep->queue))
1102 return NULL;
1103
1104 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1105 }
1106
1107 /**
1108 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1109 * @hsotg: The device state
1110 * @ctrl: USB control request
1111 */
1112 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1113 struct usb_ctrlrequest *ctrl)
1114 {
1115 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1116 struct s3c_hsotg_req *hs_req;
1117 bool restart;
1118 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1119 struct s3c_hsotg_ep *ep;
1120 int ret;
1121 bool halted;
1122
1123 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1124 __func__, set ? "SET" : "CLEAR");
1125
1126 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1127 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1128 if (!ep) {
1129 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1130 __func__, le16_to_cpu(ctrl->wIndex));
1131 return -ENOENT;
1132 }
1133
1134 switch (le16_to_cpu(ctrl->wValue)) {
1135 case USB_ENDPOINT_HALT:
1136 halted = ep->halted;
1137
1138 s3c_hsotg_ep_sethalt(&ep->ep, set);
1139
1140 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1141 if (ret) {
1142 dev_err(hsotg->dev,
1143 "%s: failed to send reply\n", __func__);
1144 return ret;
1145 }
1146
1147 /*
1148 * we have to complete all requests for ep if it was
1149 * halted, and the halt was cleared by CLEAR_FEATURE
1150 */
1151
1152 if (!set && halted) {
1153 /*
1154 * If we have request in progress,
1155 * then complete it
1156 */
1157 if (ep->req) {
1158 hs_req = ep->req;
1159 ep->req = NULL;
1160 list_del_init(&hs_req->queue);
1161 hs_req->req.complete(&ep->ep,
1162 &hs_req->req);
1163 }
1164
1165 /* If we have pending request, then start it */
1166 restart = !list_empty(&ep->queue);
1167 if (restart) {
1168 hs_req = get_ep_head(ep);
1169 s3c_hsotg_start_req(hsotg, ep,
1170 hs_req, false);
1171 }
1172 }
1173
1174 break;
1175
1176 default:
1177 return -ENOENT;
1178 }
1179 } else
1180 return -ENOENT; /* currently only deal with endpoint */
1181
1182 return 1;
1183 }
1184
1185 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1186 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1187
1188 /**
1189 * s3c_hsotg_process_control - process a control request
1190 * @hsotg: The device state
1191 * @ctrl: The control request received
1192 *
1193 * The controller has received the SETUP phase of a control request, and
1194 * needs to work out what to do next (and whether to pass it on to the
1195 * gadget driver).
1196 */
1197 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1198 struct usb_ctrlrequest *ctrl)
1199 {
1200 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1201 int ret = 0;
1202 u32 dcfg;
1203
1204 ep0->sent_zlp = 0;
1205
1206 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1207 ctrl->bRequest, ctrl->bRequestType,
1208 ctrl->wValue, ctrl->wLength);
1209
1210 /*
1211 * record the direction of the request, for later use when enquing
1212 * packets onto EP0.
1213 */
1214
1215 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1216 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1217
1218 /*
1219 * if we've no data with this request, then the last part of the
1220 * transaction is going to implicitly be IN.
1221 */
1222 if (ctrl->wLength == 0)
1223 ep0->dir_in = 1;
1224
1225 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1226 switch (ctrl->bRequest) {
1227 case USB_REQ_SET_ADDRESS:
1228 s3c_hsotg_disconnect(hsotg);
1229 dcfg = readl(hsotg->regs + DCFG);
1230 dcfg &= ~DCFG_DevAddr_MASK;
1231 dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
1232 writel(dcfg, hsotg->regs + DCFG);
1233
1234 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1235
1236 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1237 return;
1238
1239 case USB_REQ_GET_STATUS:
1240 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1241 break;
1242
1243 case USB_REQ_CLEAR_FEATURE:
1244 case USB_REQ_SET_FEATURE:
1245 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1246 break;
1247 }
1248 }
1249
1250 /* as a fallback, try delivering it to the driver to deal with */
1251
1252 if (ret == 0 && hsotg->driver) {
1253 spin_unlock(&hsotg->lock);
1254 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1255 spin_lock(&hsotg->lock);
1256 if (ret < 0)
1257 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1258 }
1259
1260 /*
1261 * the request is either unhandlable, or is not formatted correctly
1262 * so respond with a STALL for the status stage to indicate failure.
1263 */
1264
1265 if (ret < 0) {
1266 u32 reg;
1267 u32 ctrl;
1268
1269 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1270 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1271
1272 /*
1273 * DxEPCTL_Stall will be cleared by EP once it has
1274 * taken effect, so no need to clear later.
1275 */
1276
1277 ctrl = readl(hsotg->regs + reg);
1278 ctrl |= DxEPCTL_Stall;
1279 ctrl |= DxEPCTL_CNAK;
1280 writel(ctrl, hsotg->regs + reg);
1281
1282 dev_dbg(hsotg->dev,
1283 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1284 ctrl, reg, readl(hsotg->regs + reg));
1285
1286 /*
1287 * don't believe we need to anything more to get the EP
1288 * to reply with a STALL packet
1289 */
1290
1291 /*
1292 * complete won't be called, so we enqueue
1293 * setup request here
1294 */
1295 s3c_hsotg_enqueue_setup(hsotg);
1296 }
1297 }
1298
1299 /**
1300 * s3c_hsotg_complete_setup - completion of a setup transfer
1301 * @ep: The endpoint the request was on.
1302 * @req: The request completed.
1303 *
1304 * Called on completion of any requests the driver itself submitted for
1305 * EP0 setup packets
1306 */
1307 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1308 struct usb_request *req)
1309 {
1310 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1311 struct s3c_hsotg *hsotg = hs_ep->parent;
1312
1313 if (req->status < 0) {
1314 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1315 return;
1316 }
1317
1318 spin_lock(&hsotg->lock);
1319 if (req->actual == 0)
1320 s3c_hsotg_enqueue_setup(hsotg);
1321 else
1322 s3c_hsotg_process_control(hsotg, req->buf);
1323 spin_unlock(&hsotg->lock);
1324 }
1325
1326 /**
1327 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1328 * @hsotg: The device state.
1329 *
1330 * Enqueue a request on EP0 if necessary to received any SETUP packets
1331 * received from the host.
1332 */
1333 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1334 {
1335 struct usb_request *req = hsotg->ctrl_req;
1336 struct s3c_hsotg_req *hs_req = our_req(req);
1337 int ret;
1338
1339 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1340
1341 req->zero = 0;
1342 req->length = 8;
1343 req->buf = hsotg->ctrl_buff;
1344 req->complete = s3c_hsotg_complete_setup;
1345
1346 if (!list_empty(&hs_req->queue)) {
1347 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1348 return;
1349 }
1350
1351 hsotg->eps[0].dir_in = 0;
1352
1353 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1354 if (ret < 0) {
1355 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1356 /*
1357 * Don't think there's much we can do other than watch the
1358 * driver fail.
1359 */
1360 }
1361 }
1362
1363 /**
1364 * s3c_hsotg_complete_request - complete a request given to us
1365 * @hsotg: The device state.
1366 * @hs_ep: The endpoint the request was on.
1367 * @hs_req: The request to complete.
1368 * @result: The result code (0 => Ok, otherwise errno)
1369 *
1370 * The given request has finished, so call the necessary completion
1371 * if it has one and then look to see if we can start a new request
1372 * on the endpoint.
1373 *
1374 * Note, expects the ep to already be locked as appropriate.
1375 */
1376 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1377 struct s3c_hsotg_ep *hs_ep,
1378 struct s3c_hsotg_req *hs_req,
1379 int result)
1380 {
1381 bool restart;
1382
1383 if (!hs_req) {
1384 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1385 return;
1386 }
1387
1388 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1389 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1390
1391 /*
1392 * only replace the status if we've not already set an error
1393 * from a previous transaction
1394 */
1395
1396 if (hs_req->req.status == -EINPROGRESS)
1397 hs_req->req.status = result;
1398
1399 hs_ep->req = NULL;
1400 list_del_init(&hs_req->queue);
1401
1402 if (using_dma(hsotg))
1403 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1404
1405 /*
1406 * call the complete request with the locks off, just in case the
1407 * request tries to queue more work for this endpoint.
1408 */
1409
1410 if (hs_req->req.complete) {
1411 spin_unlock(&hsotg->lock);
1412 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1413 spin_lock(&hsotg->lock);
1414 }
1415
1416 /*
1417 * Look to see if there is anything else to do. Note, the completion
1418 * of the previous request may have caused a new request to be started
1419 * so be careful when doing this.
1420 */
1421
1422 if (!hs_ep->req && result >= 0) {
1423 restart = !list_empty(&hs_ep->queue);
1424 if (restart) {
1425 hs_req = get_ep_head(hs_ep);
1426 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1427 }
1428 }
1429 }
1430
1431 /**
1432 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1433 * @hsotg: The device state.
1434 * @ep_idx: The endpoint index for the data
1435 * @size: The size of data in the fifo, in bytes
1436 *
1437 * The FIFO status shows there is data to read from the FIFO for a given
1438 * endpoint, so sort out whether we need to read the data into a request
1439 * that has been made for that endpoint.
1440 */
1441 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1442 {
1443 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1444 struct s3c_hsotg_req *hs_req = hs_ep->req;
1445 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1446 int to_read;
1447 int max_req;
1448 int read_ptr;
1449
1450
1451 if (!hs_req) {
1452 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1453 int ptr;
1454
1455 dev_warn(hsotg->dev,
1456 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1457 __func__, size, ep_idx, epctl);
1458
1459 /* dump the data from the FIFO, we've nothing we can do */
1460 for (ptr = 0; ptr < size; ptr += 4)
1461 (void)readl(fifo);
1462
1463 return;
1464 }
1465
1466 to_read = size;
1467 read_ptr = hs_req->req.actual;
1468 max_req = hs_req->req.length - read_ptr;
1469
1470 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1471 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1472
1473 if (to_read > max_req) {
1474 /*
1475 * more data appeared than we where willing
1476 * to deal with in this request.
1477 */
1478
1479 /* currently we don't deal this */
1480 WARN_ON_ONCE(1);
1481 }
1482
1483 hs_ep->total_data += to_read;
1484 hs_req->req.actual += to_read;
1485 to_read = DIV_ROUND_UP(to_read, 4);
1486
1487 /*
1488 * note, we might over-write the buffer end by 3 bytes depending on
1489 * alignment of the data.
1490 */
1491 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1492 }
1493
1494 /**
1495 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1496 * @hsotg: The device instance
1497 * @req: The request currently on this endpoint
1498 *
1499 * Generate a zero-length IN packet request for terminating a SETUP
1500 * transaction.
1501 *
1502 * Note, since we don't write any data to the TxFIFO, then it is
1503 * currently believed that we do not need to wait for any space in
1504 * the TxFIFO.
1505 */
1506 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1507 struct s3c_hsotg_req *req)
1508 {
1509 u32 ctrl;
1510
1511 if (!req) {
1512 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1513 return;
1514 }
1515
1516 if (req->req.length == 0) {
1517 hsotg->eps[0].sent_zlp = 1;
1518 s3c_hsotg_enqueue_setup(hsotg);
1519 return;
1520 }
1521
1522 hsotg->eps[0].dir_in = 1;
1523 hsotg->eps[0].sent_zlp = 1;
1524
1525 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1526
1527 /* issue a zero-sized packet to terminate this */
1528 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
1529 DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1530
1531 ctrl = readl(hsotg->regs + DIEPCTL0);
1532 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
1533 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
1534 ctrl |= DxEPCTL_USBActEp;
1535 writel(ctrl, hsotg->regs + DIEPCTL0);
1536 }
1537
1538 /**
1539 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1540 * @hsotg: The device instance
1541 * @epnum: The endpoint received from
1542 * @was_setup: Set if processing a SetupDone event.
1543 *
1544 * The RXFIFO has delivered an OutDone event, which means that the data
1545 * transfer for an OUT endpoint has been completed, either by a short
1546 * packet or by the finish of a transfer.
1547 */
1548 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1549 int epnum, bool was_setup)
1550 {
1551 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1552 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1553 struct s3c_hsotg_req *hs_req = hs_ep->req;
1554 struct usb_request *req = &hs_req->req;
1555 unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1556 int result = 0;
1557
1558 if (!hs_req) {
1559 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1560 return;
1561 }
1562
1563 if (using_dma(hsotg)) {
1564 unsigned size_done;
1565
1566 /*
1567 * Calculate the size of the transfer by checking how much
1568 * is left in the endpoint size register and then working it
1569 * out from the amount we loaded for the transfer.
1570 *
1571 * We need to do this as DMA pointers are always 32bit aligned
1572 * so may overshoot/undershoot the transfer.
1573 */
1574
1575 size_done = hs_ep->size_loaded - size_left;
1576 size_done += hs_ep->last_load;
1577
1578 req->actual = size_done;
1579 }
1580
1581 /* if there is more request to do, schedule new transfer */
1582 if (req->actual < req->length && size_left == 0) {
1583 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1584 return;
1585 } else if (epnum == 0) {
1586 /*
1587 * After was_setup = 1 =>
1588 * set CNAK for non Setup requests
1589 */
1590 hsotg->setup = was_setup ? 0 : 1;
1591 }
1592
1593 if (req->actual < req->length && req->short_not_ok) {
1594 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1595 __func__, req->actual, req->length);
1596
1597 /*
1598 * todo - what should we return here? there's no one else
1599 * even bothering to check the status.
1600 */
1601 }
1602
1603 if (epnum == 0) {
1604 /*
1605 * Condition req->complete != s3c_hsotg_complete_setup says:
1606 * send ZLP when we have an asynchronous request from gadget
1607 */
1608 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1609 s3c_hsotg_send_zlp(hsotg, hs_req);
1610 }
1611
1612 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1613 }
1614
1615 /**
1616 * s3c_hsotg_read_frameno - read current frame number
1617 * @hsotg: The device instance
1618 *
1619 * Return the current frame number
1620 */
1621 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1622 {
1623 u32 dsts;
1624
1625 dsts = readl(hsotg->regs + DSTS);
1626 dsts &= DSTS_SOFFN_MASK;
1627 dsts >>= DSTS_SOFFN_SHIFT;
1628
1629 return dsts;
1630 }
1631
1632 /**
1633 * s3c_hsotg_handle_rx - RX FIFO has data
1634 * @hsotg: The device instance
1635 *
1636 * The IRQ handler has detected that the RX FIFO has some data in it
1637 * that requires processing, so find out what is in there and do the
1638 * appropriate read.
1639 *
1640 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1641 * chunks, so if you have x packets received on an endpoint you'll get x
1642 * FIFO events delivered, each with a packet's worth of data in it.
1643 *
1644 * When using DMA, we should not be processing events from the RXFIFO
1645 * as the actual data should be sent to the memory directly and we turn
1646 * on the completion interrupts to get notifications of transfer completion.
1647 */
1648 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1649 {
1650 u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1651 u32 epnum, status, size;
1652
1653 WARN_ON(using_dma(hsotg));
1654
1655 epnum = grxstsr & GRXSTS_EPNum_MASK;
1656 status = grxstsr & GRXSTS_PktSts_MASK;
1657
1658 size = grxstsr & GRXSTS_ByteCnt_MASK;
1659 size >>= GRXSTS_ByteCnt_SHIFT;
1660
1661 if (1)
1662 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1663 __func__, grxstsr, size, epnum);
1664
1665 #define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1666
1667 switch (status >> GRXSTS_PktSts_SHIFT) {
1668 case __status(GRXSTS_PktSts_GlobalOutNAK):
1669 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1670 break;
1671
1672 case __status(GRXSTS_PktSts_OutDone):
1673 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1674 s3c_hsotg_read_frameno(hsotg));
1675
1676 if (!using_dma(hsotg))
1677 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1678 break;
1679
1680 case __status(GRXSTS_PktSts_SetupDone):
1681 dev_dbg(hsotg->dev,
1682 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1683 s3c_hsotg_read_frameno(hsotg),
1684 readl(hsotg->regs + DOEPCTL(0)));
1685
1686 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1687 break;
1688
1689 case __status(GRXSTS_PktSts_OutRX):
1690 s3c_hsotg_rx_data(hsotg, epnum, size);
1691 break;
1692
1693 case __status(GRXSTS_PktSts_SetupRX):
1694 dev_dbg(hsotg->dev,
1695 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1696 s3c_hsotg_read_frameno(hsotg),
1697 readl(hsotg->regs + DOEPCTL(0)));
1698
1699 s3c_hsotg_rx_data(hsotg, epnum, size);
1700 break;
1701
1702 default:
1703 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1704 __func__, grxstsr);
1705
1706 s3c_hsotg_dump(hsotg);
1707 break;
1708 }
1709 }
1710
1711 /**
1712 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1713 * @mps: The maximum packet size in bytes.
1714 */
1715 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1716 {
1717 switch (mps) {
1718 case 64:
1719 return D0EPCTL_MPS_64;
1720 case 32:
1721 return D0EPCTL_MPS_32;
1722 case 16:
1723 return D0EPCTL_MPS_16;
1724 case 8:
1725 return D0EPCTL_MPS_8;
1726 }
1727
1728 /* bad max packet size, warn and return invalid result */
1729 WARN_ON(1);
1730 return (u32)-1;
1731 }
1732
1733 /**
1734 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1735 * @hsotg: The driver state.
1736 * @ep: The index number of the endpoint
1737 * @mps: The maximum packet size in bytes
1738 *
1739 * Configure the maximum packet size for the given endpoint, updating
1740 * the hardware control registers to reflect this.
1741 */
1742 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1743 unsigned int ep, unsigned int mps)
1744 {
1745 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1746 void __iomem *regs = hsotg->regs;
1747 u32 mpsval;
1748 u32 mcval;
1749 u32 reg;
1750
1751 if (ep == 0) {
1752 /* EP0 is a special case */
1753 mpsval = s3c_hsotg_ep0_mps(mps);
1754 if (mpsval > 3)
1755 goto bad_mps;
1756 hs_ep->ep.maxpacket = mps;
1757 hs_ep->mc = 1;
1758 } else {
1759 mpsval = mps & DxEPCTL_MPS_MASK;
1760 if (mpsval > 1024)
1761 goto bad_mps;
1762 mcval = ((mps >> 11) & 0x3) + 1;
1763 hs_ep->mc = mcval;
1764 if (mcval > 3)
1765 goto bad_mps;
1766 hs_ep->ep.maxpacket = mpsval;
1767 }
1768
1769 /*
1770 * update both the in and out endpoint controldir_ registers, even
1771 * if one of the directions may not be in use.
1772 */
1773
1774 reg = readl(regs + DIEPCTL(ep));
1775 reg &= ~DxEPCTL_MPS_MASK;
1776 reg |= mpsval;
1777 writel(reg, regs + DIEPCTL(ep));
1778
1779 if (ep) {
1780 reg = readl(regs + DOEPCTL(ep));
1781 reg &= ~DxEPCTL_MPS_MASK;
1782 reg |= mpsval;
1783 writel(reg, regs + DOEPCTL(ep));
1784 }
1785
1786 return;
1787
1788 bad_mps:
1789 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1790 }
1791
1792 /**
1793 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1794 * @hsotg: The driver state
1795 * @idx: The index for the endpoint (0..15)
1796 */
1797 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1798 {
1799 int timeout;
1800 int val;
1801
1802 writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
1803 hsotg->regs + GRSTCTL);
1804
1805 /* wait until the fifo is flushed */
1806 timeout = 100;
1807
1808 while (1) {
1809 val = readl(hsotg->regs + GRSTCTL);
1810
1811 if ((val & (GRSTCTL_TxFFlsh)) == 0)
1812 break;
1813
1814 if (--timeout == 0) {
1815 dev_err(hsotg->dev,
1816 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1817 __func__, val);
1818 }
1819
1820 udelay(1);
1821 }
1822 }
1823
1824 /**
1825 * s3c_hsotg_trytx - check to see if anything needs transmitting
1826 * @hsotg: The driver state
1827 * @hs_ep: The driver endpoint to check.
1828 *
1829 * Check to see if there is a request that has data to send, and if so
1830 * make an attempt to write data into the FIFO.
1831 */
1832 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1833 struct s3c_hsotg_ep *hs_ep)
1834 {
1835 struct s3c_hsotg_req *hs_req = hs_ep->req;
1836
1837 if (!hs_ep->dir_in || !hs_req) {
1838 /**
1839 * if request is not enqueued, we disable interrupts
1840 * for endpoints, excepting ep0
1841 */
1842 if (hs_ep->index != 0)
1843 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1844 hs_ep->dir_in, 0);
1845 return 0;
1846 }
1847
1848 if (hs_req->req.actual < hs_req->req.length) {
1849 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1850 hs_ep->index);
1851 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1852 }
1853
1854 return 0;
1855 }
1856
1857 /**
1858 * s3c_hsotg_complete_in - complete IN transfer
1859 * @hsotg: The device state.
1860 * @hs_ep: The endpoint that has just completed.
1861 *
1862 * An IN transfer has been completed, update the transfer's state and then
1863 * call the relevant completion routines.
1864 */
1865 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1866 struct s3c_hsotg_ep *hs_ep)
1867 {
1868 struct s3c_hsotg_req *hs_req = hs_ep->req;
1869 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1870 int size_left, size_done;
1871
1872 if (!hs_req) {
1873 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1874 return;
1875 }
1876
1877 /* Finish ZLP handling for IN EP0 transactions */
1878 if (hsotg->eps[0].sent_zlp) {
1879 dev_dbg(hsotg->dev, "zlp packet received\n");
1880 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1881 return;
1882 }
1883
1884 /*
1885 * Calculate the size of the transfer by checking how much is left
1886 * in the endpoint size register and then working it out from
1887 * the amount we loaded for the transfer.
1888 *
1889 * We do this even for DMA, as the transfer may have incremented
1890 * past the end of the buffer (DMA transfers are always 32bit
1891 * aligned).
1892 */
1893
1894 size_left = DxEPTSIZ_XferSize_GET(epsize);
1895
1896 size_done = hs_ep->size_loaded - size_left;
1897 size_done += hs_ep->last_load;
1898
1899 if (hs_req->req.actual != size_done)
1900 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1901 __func__, hs_req->req.actual, size_done);
1902
1903 hs_req->req.actual = size_done;
1904 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1905 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1906
1907 /*
1908 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1909 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1910 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1911 * inform the host that no more data is available.
1912 * The state of req.zero member is checked to be sure that the value to
1913 * send is smaller than wValue expected from host.
1914 * Check req.length to NOT send another ZLP when the current one is
1915 * under completion (the one for which this completion has been called).
1916 */
1917 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1918 hs_req->req.length == hs_req->req.actual &&
1919 !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1920
1921 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1922 s3c_hsotg_send_zlp(hsotg, hs_req);
1923
1924 return;
1925 }
1926
1927 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1928 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1929 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1930 } else
1931 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1932 }
1933
1934 /**
1935 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1936 * @hsotg: The driver state
1937 * @idx: The index for the endpoint (0..15)
1938 * @dir_in: Set if this is an IN endpoint
1939 *
1940 * Process and clear any interrupt pending for an individual endpoint
1941 */
1942 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1943 int dir_in)
1944 {
1945 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1946 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1947 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1948 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1949 u32 ints;
1950 u32 ctrl;
1951
1952 ints = readl(hsotg->regs + epint_reg);
1953 ctrl = readl(hsotg->regs + epctl_reg);
1954
1955 /* Clear endpoint interrupts */
1956 writel(ints, hsotg->regs + epint_reg);
1957
1958 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1959 __func__, idx, dir_in ? "in" : "out", ints);
1960
1961 if (ints & DxEPINT_XferCompl) {
1962 if (hs_ep->isochronous && hs_ep->interval == 1) {
1963 if (ctrl & DxEPCTL_EOFrNum)
1964 ctrl |= DxEPCTL_SetEvenFr;
1965 else
1966 ctrl |= DxEPCTL_SetOddFr;
1967 writel(ctrl, hsotg->regs + epctl_reg);
1968 }
1969
1970 dev_dbg(hsotg->dev,
1971 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1972 __func__, readl(hsotg->regs + epctl_reg),
1973 readl(hsotg->regs + epsiz_reg));
1974
1975 /*
1976 * we get OutDone from the FIFO, so we only need to look
1977 * at completing IN requests here
1978 */
1979 if (dir_in) {
1980 s3c_hsotg_complete_in(hsotg, hs_ep);
1981
1982 if (idx == 0 && !hs_ep->req)
1983 s3c_hsotg_enqueue_setup(hsotg);
1984 } else if (using_dma(hsotg)) {
1985 /*
1986 * We're using DMA, we need to fire an OutDone here
1987 * as we ignore the RXFIFO.
1988 */
1989
1990 s3c_hsotg_handle_outdone(hsotg, idx, false);
1991 }
1992 }
1993
1994 if (ints & DxEPINT_EPDisbld) {
1995 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1996
1997 if (dir_in) {
1998 int epctl = readl(hsotg->regs + epctl_reg);
1999
2000 s3c_hsotg_txfifo_flush(hsotg, idx);
2001
2002 if ((epctl & DxEPCTL_Stall) &&
2003 (epctl & DxEPCTL_EPType_Bulk)) {
2004 int dctl = readl(hsotg->regs + DCTL);
2005
2006 dctl |= DCTL_CGNPInNAK;
2007 writel(dctl, hsotg->regs + DCTL);
2008 }
2009 }
2010 }
2011
2012 if (ints & DxEPINT_AHBErr)
2013 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2014
2015 if (ints & DxEPINT_Setup) { /* Setup or Timeout */
2016 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2017
2018 if (using_dma(hsotg) && idx == 0) {
2019 /*
2020 * this is the notification we've received a
2021 * setup packet. In non-DMA mode we'd get this
2022 * from the RXFIFO, instead we need to process
2023 * the setup here.
2024 */
2025
2026 if (dir_in)
2027 WARN_ON_ONCE(1);
2028 else
2029 s3c_hsotg_handle_outdone(hsotg, 0, true);
2030 }
2031 }
2032
2033 if (ints & DxEPINT_Back2BackSetup)
2034 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2035
2036 if (dir_in && !hs_ep->isochronous) {
2037 /* not sure if this is important, but we'll clear it anyway */
2038 if (ints & DIEPMSK_INTknTXFEmpMsk) {
2039 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2040 __func__, idx);
2041 }
2042
2043 /* this probably means something bad is happening */
2044 if (ints & DIEPMSK_INTknEPMisMsk) {
2045 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2046 __func__, idx);
2047 }
2048
2049 /* FIFO has space or is empty (see GAHBCFG) */
2050 if (hsotg->dedicated_fifos &&
2051 ints & DIEPMSK_TxFIFOEmpty) {
2052 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2053 __func__, idx);
2054 if (!using_dma(hsotg))
2055 s3c_hsotg_trytx(hsotg, hs_ep);
2056 }
2057 }
2058 }
2059
2060 /**
2061 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2062 * @hsotg: The device state.
2063 *
2064 * Handle updating the device settings after the enumeration phase has
2065 * been completed.
2066 */
2067 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
2068 {
2069 u32 dsts = readl(hsotg->regs + DSTS);
2070 int ep0_mps = 0, ep_mps;
2071
2072 /*
2073 * This should signal the finish of the enumeration phase
2074 * of the USB handshaking, so we should now know what rate
2075 * we connected at.
2076 */
2077
2078 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2079
2080 /*
2081 * note, since we're limited by the size of transfer on EP0, and
2082 * it seems IN transfers must be a even number of packets we do
2083 * not advertise a 64byte MPS on EP0.
2084 */
2085
2086 /* catch both EnumSpd_FS and EnumSpd_FS48 */
2087 switch (dsts & DSTS_EnumSpd_MASK) {
2088 case DSTS_EnumSpd_FS:
2089 case DSTS_EnumSpd_FS48:
2090 hsotg->gadget.speed = USB_SPEED_FULL;
2091 ep0_mps = EP0_MPS_LIMIT;
2092 ep_mps = 1023;
2093 break;
2094
2095 case DSTS_EnumSpd_HS:
2096 hsotg->gadget.speed = USB_SPEED_HIGH;
2097 ep0_mps = EP0_MPS_LIMIT;
2098 ep_mps = 1024;
2099 break;
2100
2101 case DSTS_EnumSpd_LS:
2102 hsotg->gadget.speed = USB_SPEED_LOW;
2103 /*
2104 * note, we don't actually support LS in this driver at the
2105 * moment, and the documentation seems to imply that it isn't
2106 * supported by the PHYs on some of the devices.
2107 */
2108 break;
2109 }
2110 dev_info(hsotg->dev, "new device is %s\n",
2111 usb_speed_string(hsotg->gadget.speed));
2112
2113 /*
2114 * we should now know the maximum packet size for an
2115 * endpoint, so set the endpoints to a default value.
2116 */
2117
2118 if (ep0_mps) {
2119 int i;
2120 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2121 for (i = 1; i < hsotg->num_of_eps; i++)
2122 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
2123 }
2124
2125 /* ensure after enumeration our EP0 is active */
2126
2127 s3c_hsotg_enqueue_setup(hsotg);
2128
2129 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2130 readl(hsotg->regs + DIEPCTL0),
2131 readl(hsotg->regs + DOEPCTL0));
2132 }
2133
2134 /**
2135 * kill_all_requests - remove all requests from the endpoint's queue
2136 * @hsotg: The device state.
2137 * @ep: The endpoint the requests may be on.
2138 * @result: The result code to use.
2139 * @force: Force removal of any current requests
2140 *
2141 * Go through the requests on the given endpoint and mark them
2142 * completed with the given result code.
2143 */
2144 static void kill_all_requests(struct s3c_hsotg *hsotg,
2145 struct s3c_hsotg_ep *ep,
2146 int result, bool force)
2147 {
2148 struct s3c_hsotg_req *req, *treq;
2149
2150 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2151 /*
2152 * currently, we can't do much about an already
2153 * running request on an in endpoint
2154 */
2155
2156 if (ep->req == req && ep->dir_in && !force)
2157 continue;
2158
2159 s3c_hsotg_complete_request(hsotg, ep, req,
2160 result);
2161 }
2162 if(hsotg->dedicated_fifos)
2163 if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
2164 s3c_hsotg_txfifo_flush(hsotg, ep->index);
2165 }
2166
2167 #define call_gadget(_hs, _entry) \
2168 do { \
2169 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
2170 (_hs)->driver && (_hs)->driver->_entry) { \
2171 spin_unlock(&_hs->lock); \
2172 (_hs)->driver->_entry(&(_hs)->gadget); \
2173 spin_lock(&_hs->lock); \
2174 } \
2175 } while (0)
2176
2177 /**
2178 * s3c_hsotg_disconnect - disconnect service
2179 * @hsotg: The device state.
2180 *
2181 * The device has been disconnected. Remove all current
2182 * transactions and signal the gadget driver that this
2183 * has happened.
2184 */
2185 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2186 {
2187 unsigned ep;
2188
2189 for (ep = 0; ep < hsotg->num_of_eps; ep++)
2190 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2191
2192 call_gadget(hsotg, disconnect);
2193 }
2194
2195 /**
2196 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2197 * @hsotg: The device state:
2198 * @periodic: True if this is a periodic FIFO interrupt
2199 */
2200 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2201 {
2202 struct s3c_hsotg_ep *ep;
2203 int epno, ret;
2204
2205 /* look through for any more data to transmit */
2206
2207 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2208 ep = &hsotg->eps[epno];
2209
2210 if (!ep->dir_in)
2211 continue;
2212
2213 if ((periodic && !ep->periodic) ||
2214 (!periodic && ep->periodic))
2215 continue;
2216
2217 ret = s3c_hsotg_trytx(hsotg, ep);
2218 if (ret < 0)
2219 break;
2220 }
2221 }
2222
2223 /* IRQ flags which will trigger a retry around the IRQ loop */
2224 #define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
2225 GINTSTS_PTxFEmp | \
2226 GINTSTS_RxFLvl)
2227
2228 /**
2229 * s3c_hsotg_corereset - issue softreset to the core
2230 * @hsotg: The device state
2231 *
2232 * Issue a soft reset to the core, and await the core finishing it.
2233 */
2234 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2235 {
2236 int timeout;
2237 u32 grstctl;
2238
2239 dev_dbg(hsotg->dev, "resetting core\n");
2240
2241 /* issue soft reset */
2242 writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2243
2244 timeout = 10000;
2245 do {
2246 grstctl = readl(hsotg->regs + GRSTCTL);
2247 } while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2248
2249 if (grstctl & GRSTCTL_CSftRst) {
2250 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2251 return -EINVAL;
2252 }
2253
2254 timeout = 10000;
2255
2256 while (1) {
2257 u32 grstctl = readl(hsotg->regs + GRSTCTL);
2258
2259 if (timeout-- < 0) {
2260 dev_info(hsotg->dev,
2261 "%s: reset failed, GRSTCTL=%08x\n",
2262 __func__, grstctl);
2263 return -ETIMEDOUT;
2264 }
2265
2266 if (!(grstctl & GRSTCTL_AHBIdle))
2267 continue;
2268
2269 break; /* reset done */
2270 }
2271
2272 dev_dbg(hsotg->dev, "reset successful\n");
2273 return 0;
2274 }
2275
2276 /**
2277 * s3c_hsotg_core_init - issue softreset to the core
2278 * @hsotg: The device state
2279 *
2280 * Issue a soft reset to the core, and await the core finishing it.
2281 */
2282 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2283 {
2284 s3c_hsotg_corereset(hsotg);
2285
2286 /*
2287 * we must now enable ep0 ready for host detection and then
2288 * set configuration.
2289 */
2290
2291 /* set the PLL on, remove the HNP/SRP and set the PHY */
2292 writel(hsotg->phyif | GUSBCFG_TOutCal(7) |
2293 (0x5 << 10), hsotg->regs + GUSBCFG);
2294
2295 s3c_hsotg_init_fifo(hsotg);
2296
2297 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2298
2299 writel(1 << 18 | DCFG_DevSpd_HS, hsotg->regs + DCFG);
2300
2301 /* Clear any pending OTG interrupts */
2302 writel(0xffffffff, hsotg->regs + GOTGINT);
2303
2304 /* Clear any pending interrupts */
2305 writel(0xffffffff, hsotg->regs + GINTSTS);
2306
2307 writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
2308 GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
2309 GINTSTS_ConIDStsChng | GINTSTS_USBRst |
2310 GINTSTS_EnumDone | GINTSTS_OTGInt |
2311 GINTSTS_USBSusp | GINTSTS_WkUpInt,
2312 hsotg->regs + GINTMSK);
2313
2314 if (using_dma(hsotg))
2315 writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
2316 GAHBCFG_HBstLen_Incr4,
2317 hsotg->regs + GAHBCFG);
2318 else
2319 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NPTxFEmpLvl |
2320 GAHBCFG_PTxFEmpLvl) : 0) |
2321 GAHBCFG_GlblIntrEn,
2322 hsotg->regs + GAHBCFG);
2323
2324 /*
2325 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2326 * when we have no data to transfer. Otherwise we get being flooded by
2327 * interrupts.
2328 */
2329
2330 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty |
2331 DIEPMSK_INTknTXFEmpMsk : 0) |
2332 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
2333 DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2334 DIEPMSK_INTknEPMisMsk,
2335 hsotg->regs + DIEPMSK);
2336
2337 /*
2338 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2339 * DMA mode we may need this.
2340 */
2341 writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
2342 DIEPMSK_TimeOUTMsk) : 0) |
2343 DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
2344 DOEPMSK_SetupMsk,
2345 hsotg->regs + DOEPMSK);
2346
2347 writel(0, hsotg->regs + DAINTMSK);
2348
2349 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2350 readl(hsotg->regs + DIEPCTL0),
2351 readl(hsotg->regs + DOEPCTL0));
2352
2353 /* enable in and out endpoint interrupts */
2354 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2355
2356 /*
2357 * Enable the RXFIFO when in slave mode, as this is how we collect
2358 * the data. In DMA mode, we get events from the FIFO but also
2359 * things we cannot process, so do not use it.
2360 */
2361 if (!using_dma(hsotg))
2362 s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2363
2364 /* Enable interrupts for EP0 in and out */
2365 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2366 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2367
2368 __orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2369 udelay(10); /* see openiboot */
2370 __bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2371
2372 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2373
2374 /*
2375 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2376 * writing to the EPCTL register..
2377 */
2378
2379 /* set to read 1 8byte packet */
2380 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
2381 DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2382
2383 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2384 DxEPCTL_CNAK | DxEPCTL_EPEna |
2385 DxEPCTL_USBActEp,
2386 hsotg->regs + DOEPCTL0);
2387
2388 /* enable, but don't activate EP0in */
2389 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2390 DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2391
2392 s3c_hsotg_enqueue_setup(hsotg);
2393
2394 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2395 readl(hsotg->regs + DIEPCTL0),
2396 readl(hsotg->regs + DOEPCTL0));
2397
2398 /* clear global NAKs */
2399 writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
2400 hsotg->regs + DCTL);
2401
2402 /* must be at-least 3ms to allow bus to see disconnect */
2403 mdelay(3);
2404
2405 /* remove the soft-disconnect and let's go */
2406 __bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2407 }
2408
2409 /**
2410 * s3c_hsotg_irq - handle device interrupt
2411 * @irq: The IRQ number triggered
2412 * @pw: The pw value when registered the handler.
2413 */
2414 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2415 {
2416 struct s3c_hsotg *hsotg = pw;
2417 int retry_count = 8;
2418 u32 gintsts;
2419 u32 gintmsk;
2420
2421 spin_lock(&hsotg->lock);
2422 irq_retry:
2423 gintsts = readl(hsotg->regs + GINTSTS);
2424 gintmsk = readl(hsotg->regs + GINTMSK);
2425
2426 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2427 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2428
2429 gintsts &= gintmsk;
2430
2431 if (gintsts & GINTSTS_OTGInt) {
2432 u32 otgint = readl(hsotg->regs + GOTGINT);
2433
2434 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2435
2436 writel(otgint, hsotg->regs + GOTGINT);
2437 }
2438
2439 if (gintsts & GINTSTS_SessReqInt) {
2440 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2441 writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2442 }
2443
2444 if (gintsts & GINTSTS_EnumDone) {
2445 writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2446
2447 s3c_hsotg_irq_enumdone(hsotg);
2448 }
2449
2450 if (gintsts & GINTSTS_ConIDStsChng) {
2451 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2452 readl(hsotg->regs + DSTS),
2453 readl(hsotg->regs + GOTGCTL));
2454
2455 writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2456 }
2457
2458 if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
2459 u32 daint = readl(hsotg->regs + DAINT);
2460 u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2461 u32 daint_out, daint_in;
2462 int ep;
2463
2464 daint &= daintmsk;
2465 daint_out = daint >> DAINT_OutEP_SHIFT;
2466 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2467
2468 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2469
2470 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2471 if (daint_out & 1)
2472 s3c_hsotg_epint(hsotg, ep, 0);
2473 }
2474
2475 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2476 if (daint_in & 1)
2477 s3c_hsotg_epint(hsotg, ep, 1);
2478 }
2479 }
2480
2481 if (gintsts & GINTSTS_USBRst) {
2482
2483 u32 usb_status = readl(hsotg->regs + GOTGCTL);
2484
2485 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2486 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2487 readl(hsotg->regs + GNPTXSTS));
2488
2489 writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2490
2491 if (usb_status & GOTGCTL_BSESVLD) {
2492 if (time_after(jiffies, hsotg->last_rst +
2493 msecs_to_jiffies(200))) {
2494
2495 kill_all_requests(hsotg, &hsotg->eps[0],
2496 -ECONNRESET, true);
2497
2498 s3c_hsotg_core_init(hsotg);
2499 hsotg->last_rst = jiffies;
2500 }
2501 }
2502 }
2503
2504 /* check both FIFOs */
2505
2506 if (gintsts & GINTSTS_NPTxFEmp) {
2507 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2508
2509 /*
2510 * Disable the interrupt to stop it happening again
2511 * unless one of these endpoint routines decides that
2512 * it needs re-enabling
2513 */
2514
2515 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2516 s3c_hsotg_irq_fifoempty(hsotg, false);
2517 }
2518
2519 if (gintsts & GINTSTS_PTxFEmp) {
2520 dev_dbg(hsotg->dev, "PTxFEmp\n");
2521
2522 /* See note in GINTSTS_NPTxFEmp */
2523
2524 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2525 s3c_hsotg_irq_fifoempty(hsotg, true);
2526 }
2527
2528 if (gintsts & GINTSTS_RxFLvl) {
2529 /*
2530 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2531 * we need to retry s3c_hsotg_handle_rx if this is still
2532 * set.
2533 */
2534
2535 s3c_hsotg_handle_rx(hsotg);
2536 }
2537
2538 if (gintsts & GINTSTS_ModeMis) {
2539 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2540 writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2541 }
2542
2543 if (gintsts & GINTSTS_USBSusp) {
2544 dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2545 writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2546
2547 call_gadget(hsotg, suspend);
2548 }
2549
2550 if (gintsts & GINTSTS_WkUpInt) {
2551 dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2552 writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2553
2554 call_gadget(hsotg, resume);
2555 }
2556
2557 if (gintsts & GINTSTS_ErlySusp) {
2558 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2559 writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2560 }
2561
2562 /*
2563 * these next two seem to crop-up occasionally causing the core
2564 * to shutdown the USB transfer, so try clearing them and logging
2565 * the occurrence.
2566 */
2567
2568 if (gintsts & GINTSTS_GOUTNakEff) {
2569 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2570
2571 writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2572
2573 s3c_hsotg_dump(hsotg);
2574 }
2575
2576 if (gintsts & GINTSTS_GINNakEff) {
2577 dev_info(hsotg->dev, "GINNakEff triggered\n");
2578
2579 writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2580
2581 s3c_hsotg_dump(hsotg);
2582 }
2583
2584 /*
2585 * if we've had fifo events, we should try and go around the
2586 * loop again to see if there's any point in returning yet.
2587 */
2588
2589 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2590 goto irq_retry;
2591
2592 spin_unlock(&hsotg->lock);
2593
2594 return IRQ_HANDLED;
2595 }
2596
2597 /**
2598 * s3c_hsotg_ep_enable - enable the given endpoint
2599 * @ep: The USB endpint to configure
2600 * @desc: The USB endpoint descriptor to configure with.
2601 *
2602 * This is called from the USB gadget code's usb_ep_enable().
2603 */
2604 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2605 const struct usb_endpoint_descriptor *desc)
2606 {
2607 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2608 struct s3c_hsotg *hsotg = hs_ep->parent;
2609 unsigned long flags;
2610 int index = hs_ep->index;
2611 u32 epctrl_reg;
2612 u32 epctrl;
2613 u32 mps;
2614 int dir_in;
2615 int ret = 0;
2616
2617 dev_dbg(hsotg->dev,
2618 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2619 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2620 desc->wMaxPacketSize, desc->bInterval);
2621
2622 /* not to be called for EP0 */
2623 WARN_ON(index == 0);
2624
2625 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2626 if (dir_in != hs_ep->dir_in) {
2627 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2628 return -EINVAL;
2629 }
2630
2631 mps = usb_endpoint_maxp(desc);
2632
2633 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2634
2635 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2636 epctrl = readl(hsotg->regs + epctrl_reg);
2637
2638 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2639 __func__, epctrl, epctrl_reg);
2640
2641 spin_lock_irqsave(&hsotg->lock, flags);
2642
2643 epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
2644 epctrl |= DxEPCTL_MPS(mps);
2645
2646 /*
2647 * mark the endpoint as active, otherwise the core may ignore
2648 * transactions entirely for this endpoint
2649 */
2650 epctrl |= DxEPCTL_USBActEp;
2651
2652 /*
2653 * set the NAK status on the endpoint, otherwise we might try and
2654 * do something with data that we've yet got a request to process
2655 * since the RXFIFO will take data for an endpoint even if the
2656 * size register hasn't been set.
2657 */
2658
2659 epctrl |= DxEPCTL_SNAK;
2660
2661 /* update the endpoint state */
2662 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2663
2664 /* default, set to non-periodic */
2665 hs_ep->isochronous = 0;
2666 hs_ep->periodic = 0;
2667 hs_ep->halted = 0;
2668 hs_ep->interval = desc->bInterval;
2669
2670 if (hs_ep->interval > 1 && hs_ep->mc > 1)
2671 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2672
2673 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2674 case USB_ENDPOINT_XFER_ISOC:
2675 epctrl |= DxEPCTL_EPType_Iso;
2676 epctrl |= DxEPCTL_SetEvenFr;
2677 hs_ep->isochronous = 1;
2678 if (dir_in)
2679 hs_ep->periodic = 1;
2680 break;
2681
2682 case USB_ENDPOINT_XFER_BULK:
2683 epctrl |= DxEPCTL_EPType_Bulk;
2684 break;
2685
2686 case USB_ENDPOINT_XFER_INT:
2687 if (dir_in) {
2688 /*
2689 * Allocate our TxFNum by simply using the index
2690 * of the endpoint for the moment. We could do
2691 * something better if the host indicates how
2692 * many FIFOs we are expecting to use.
2693 */
2694
2695 hs_ep->periodic = 1;
2696 epctrl |= DxEPCTL_TxFNum(index);
2697 }
2698
2699 epctrl |= DxEPCTL_EPType_Intterupt;
2700 break;
2701
2702 case USB_ENDPOINT_XFER_CONTROL:
2703 epctrl |= DxEPCTL_EPType_Control;
2704 break;
2705 }
2706
2707 /*
2708 * if the hardware has dedicated fifos, we must give each IN EP
2709 * a unique tx-fifo even if it is non-periodic.
2710 */
2711 if (dir_in && hsotg->dedicated_fifos)
2712 epctrl |= DxEPCTL_TxFNum(index);
2713
2714 /* for non control endpoints, set PID to D0 */
2715 if (index)
2716 epctrl |= DxEPCTL_SetD0PID;
2717
2718 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2719 __func__, epctrl);
2720
2721 writel(epctrl, hsotg->regs + epctrl_reg);
2722 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2723 __func__, readl(hsotg->regs + epctrl_reg));
2724
2725 /* enable the endpoint interrupt */
2726 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2727
2728 spin_unlock_irqrestore(&hsotg->lock, flags);
2729 return ret;
2730 }
2731
2732 /**
2733 * s3c_hsotg_ep_disable - disable given endpoint
2734 * @ep: The endpoint to disable.
2735 */
2736 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2737 {
2738 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2739 struct s3c_hsotg *hsotg = hs_ep->parent;
2740 int dir_in = hs_ep->dir_in;
2741 int index = hs_ep->index;
2742 unsigned long flags;
2743 u32 epctrl_reg;
2744 u32 ctrl;
2745
2746 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2747
2748 if (ep == &hsotg->eps[0].ep) {
2749 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2750 return -EINVAL;
2751 }
2752
2753 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2754
2755 spin_lock_irqsave(&hsotg->lock, flags);
2756 /* terminate all requests with shutdown */
2757 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2758
2759
2760 ctrl = readl(hsotg->regs + epctrl_reg);
2761 ctrl &= ~DxEPCTL_EPEna;
2762 ctrl &= ~DxEPCTL_USBActEp;
2763 ctrl |= DxEPCTL_SNAK;
2764
2765 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2766 writel(ctrl, hsotg->regs + epctrl_reg);
2767
2768 /* disable endpoint interrupts */
2769 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2770
2771 spin_unlock_irqrestore(&hsotg->lock, flags);
2772 return 0;
2773 }
2774
2775 /**
2776 * on_list - check request is on the given endpoint
2777 * @ep: The endpoint to check.
2778 * @test: The request to test if it is on the endpoint.
2779 */
2780 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2781 {
2782 struct s3c_hsotg_req *req, *treq;
2783
2784 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2785 if (req == test)
2786 return true;
2787 }
2788
2789 return false;
2790 }
2791
2792 /**
2793 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2794 * @ep: The endpoint to dequeue.
2795 * @req: The request to be removed from a queue.
2796 */
2797 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2798 {
2799 struct s3c_hsotg_req *hs_req = our_req(req);
2800 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2801 struct s3c_hsotg *hs = hs_ep->parent;
2802 unsigned long flags;
2803
2804 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2805
2806 spin_lock_irqsave(&hs->lock, flags);
2807
2808 if (!on_list(hs_ep, hs_req)) {
2809 spin_unlock_irqrestore(&hs->lock, flags);
2810 return -EINVAL;
2811 }
2812
2813 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2814 spin_unlock_irqrestore(&hs->lock, flags);
2815
2816 return 0;
2817 }
2818
2819 /**
2820 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2821 * @ep: The endpoint to set halt.
2822 * @value: Set or unset the halt.
2823 */
2824 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2825 {
2826 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2827 struct s3c_hsotg *hs = hs_ep->parent;
2828 int index = hs_ep->index;
2829 u32 epreg;
2830 u32 epctl;
2831 u32 xfertype;
2832
2833 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2834
2835 /* write both IN and OUT control registers */
2836
2837 epreg = DIEPCTL(index);
2838 epctl = readl(hs->regs + epreg);
2839
2840 if (value) {
2841 epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
2842 if (epctl & DxEPCTL_EPEna)
2843 epctl |= DxEPCTL_EPDis;
2844 } else {
2845 epctl &= ~DxEPCTL_Stall;
2846 xfertype = epctl & DxEPCTL_EPType_MASK;
2847 if (xfertype == DxEPCTL_EPType_Bulk ||
2848 xfertype == DxEPCTL_EPType_Intterupt)
2849 epctl |= DxEPCTL_SetD0PID;
2850 }
2851
2852 writel(epctl, hs->regs + epreg);
2853
2854 epreg = DOEPCTL(index);
2855 epctl = readl(hs->regs + epreg);
2856
2857 if (value)
2858 epctl |= DxEPCTL_Stall;
2859 else {
2860 epctl &= ~DxEPCTL_Stall;
2861 xfertype = epctl & DxEPCTL_EPType_MASK;
2862 if (xfertype == DxEPCTL_EPType_Bulk ||
2863 xfertype == DxEPCTL_EPType_Intterupt)
2864 epctl |= DxEPCTL_SetD0PID;
2865 }
2866
2867 writel(epctl, hs->regs + epreg);
2868
2869 hs_ep->halted = value;
2870
2871 return 0;
2872 }
2873
2874 /**
2875 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2876 * @ep: The endpoint to set halt.
2877 * @value: Set or unset the halt.
2878 */
2879 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2880 {
2881 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2882 struct s3c_hsotg *hs = hs_ep->parent;
2883 unsigned long flags = 0;
2884 int ret = 0;
2885
2886 spin_lock_irqsave(&hs->lock, flags);
2887 ret = s3c_hsotg_ep_sethalt(ep, value);
2888 spin_unlock_irqrestore(&hs->lock, flags);
2889
2890 return ret;
2891 }
2892
2893 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2894 .enable = s3c_hsotg_ep_enable,
2895 .disable = s3c_hsotg_ep_disable,
2896 .alloc_request = s3c_hsotg_ep_alloc_request,
2897 .free_request = s3c_hsotg_ep_free_request,
2898 .queue = s3c_hsotg_ep_queue_lock,
2899 .dequeue = s3c_hsotg_ep_dequeue,
2900 .set_halt = s3c_hsotg_ep_sethalt_lock,
2901 /* note, don't believe we have any call for the fifo routines */
2902 };
2903
2904 /**
2905 * s3c_hsotg_phy_enable - enable platform phy dev
2906 * @hsotg: The driver state
2907 *
2908 * A wrapper for platform code responsible for controlling
2909 * low-level USB code
2910 */
2911 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2912 {
2913 struct platform_device *pdev = to_platform_device(hsotg->dev);
2914
2915 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2916
2917 if (hsotg->phy) {
2918 phy_init(hsotg->phy);
2919 phy_power_on(hsotg->phy);
2920 } else if (hsotg->uphy)
2921 usb_phy_init(hsotg->uphy);
2922 else if (hsotg->plat->phy_init)
2923 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2924 }
2925
2926 /**
2927 * s3c_hsotg_phy_disable - disable platform phy dev
2928 * @hsotg: The driver state
2929 *
2930 * A wrapper for platform code responsible for controlling
2931 * low-level USB code
2932 */
2933 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2934 {
2935 struct platform_device *pdev = to_platform_device(hsotg->dev);
2936
2937 if (hsotg->phy) {
2938 phy_power_off(hsotg->phy);
2939 phy_exit(hsotg->phy);
2940 } else if (hsotg->uphy)
2941 usb_phy_shutdown(hsotg->uphy);
2942 else if (hsotg->plat->phy_exit)
2943 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2944 }
2945
2946 /**
2947 * s3c_hsotg_init - initalize the usb core
2948 * @hsotg: The driver state
2949 */
2950 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2951 {
2952 /* unmask subset of endpoint interrupts */
2953
2954 writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2955 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
2956 hsotg->regs + DIEPMSK);
2957
2958 writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
2959 DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
2960 hsotg->regs + DOEPMSK);
2961
2962 writel(0, hsotg->regs + DAINTMSK);
2963
2964 /* Be in disconnected state until gadget is registered */
2965 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2966
2967 if (0) {
2968 /* post global nak until we're ready */
2969 writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
2970 hsotg->regs + DCTL);
2971 }
2972
2973 /* setup fifos */
2974
2975 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2976 readl(hsotg->regs + GRXFSIZ),
2977 readl(hsotg->regs + GNPTXFSIZ));
2978
2979 s3c_hsotg_init_fifo(hsotg);
2980
2981 /* set the PLL on, remove the HNP/SRP and set the PHY */
2982 writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
2983 hsotg->regs + GUSBCFG);
2984
2985 writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
2986 hsotg->regs + GAHBCFG);
2987 }
2988
2989 /**
2990 * s3c_hsotg_udc_start - prepare the udc for work
2991 * @gadget: The usb gadget state
2992 * @driver: The usb gadget driver
2993 *
2994 * Perform initialization to prepare udc device and driver
2995 * to work.
2996 */
2997 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2998 struct usb_gadget_driver *driver)
2999 {
3000 struct s3c_hsotg *hsotg = to_hsotg(gadget);
3001 int ret;
3002
3003 if (!hsotg) {
3004 pr_err("%s: called with no device\n", __func__);
3005 return -ENODEV;
3006 }
3007
3008 if (!driver) {
3009 dev_err(hsotg->dev, "%s: no driver\n", __func__);
3010 return -EINVAL;
3011 }
3012
3013 if (driver->max_speed < USB_SPEED_FULL)
3014 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3015
3016 if (!driver->setup) {
3017 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3018 return -EINVAL;
3019 }
3020
3021 WARN_ON(hsotg->driver);
3022
3023 driver->driver.bus = NULL;
3024 hsotg->driver = driver;
3025 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3026 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3027
3028 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3029 hsotg->supplies);
3030 if (ret) {
3031 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3032 goto err;
3033 }
3034
3035 hsotg->last_rst = jiffies;
3036 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3037 return 0;
3038
3039 err:
3040 hsotg->driver = NULL;
3041 return ret;
3042 }
3043
3044 /**
3045 * s3c_hsotg_udc_stop - stop the udc
3046 * @gadget: The usb gadget state
3047 * @driver: The usb gadget driver
3048 *
3049 * Stop udc hw block and stay tunned for future transmissions
3050 */
3051 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
3052 struct usb_gadget_driver *driver)
3053 {
3054 struct s3c_hsotg *hsotg = to_hsotg(gadget);
3055 unsigned long flags = 0;
3056 int ep;
3057
3058 if (!hsotg)
3059 return -ENODEV;
3060
3061 /* all endpoints should be shutdown */
3062 for (ep = 0; ep < hsotg->num_of_eps; ep++)
3063 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3064
3065 spin_lock_irqsave(&hsotg->lock, flags);
3066
3067 s3c_hsotg_phy_disable(hsotg);
3068
3069 if (!driver)
3070 hsotg->driver = NULL;
3071
3072 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3073
3074 spin_unlock_irqrestore(&hsotg->lock, flags);
3075
3076 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3077
3078 return 0;
3079 }
3080
3081 /**
3082 * s3c_hsotg_gadget_getframe - read the frame number
3083 * @gadget: The usb gadget state
3084 *
3085 * Read the {micro} frame number
3086 */
3087 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
3088 {
3089 return s3c_hsotg_read_frameno(to_hsotg(gadget));
3090 }
3091
3092 /**
3093 * s3c_hsotg_pullup - connect/disconnect the USB PHY
3094 * @gadget: The usb gadget state
3095 * @is_on: Current state of the USB PHY
3096 *
3097 * Connect/Disconnect the USB PHY pullup
3098 */
3099 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3100 {
3101 struct s3c_hsotg *hsotg = to_hsotg(gadget);
3102 unsigned long flags = 0;
3103
3104 dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
3105
3106 spin_lock_irqsave(&hsotg->lock, flags);
3107 if (is_on) {
3108 s3c_hsotg_phy_enable(hsotg);
3109 s3c_hsotg_core_init(hsotg);
3110 } else {
3111 s3c_hsotg_disconnect(hsotg);
3112 s3c_hsotg_phy_disable(hsotg);
3113 }
3114
3115 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3116 spin_unlock_irqrestore(&hsotg->lock, flags);
3117
3118 return 0;
3119 }
3120
3121 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3122 .get_frame = s3c_hsotg_gadget_getframe,
3123 .udc_start = s3c_hsotg_udc_start,
3124 .udc_stop = s3c_hsotg_udc_stop,
3125 .pullup = s3c_hsotg_pullup,
3126 };
3127
3128 /**
3129 * s3c_hsotg_initep - initialise a single endpoint
3130 * @hsotg: The device state.
3131 * @hs_ep: The endpoint to be initialised.
3132 * @epnum: The endpoint number
3133 *
3134 * Initialise the given endpoint (as part of the probe and device state
3135 * creation) to give to the gadget driver. Setup the endpoint name, any
3136 * direction information and other state that may be required.
3137 */
3138 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3139 struct s3c_hsotg_ep *hs_ep,
3140 int epnum)
3141 {
3142 u32 ptxfifo;
3143 char *dir;
3144
3145 if (epnum == 0)
3146 dir = "";
3147 else if ((epnum % 2) == 0) {
3148 dir = "out";
3149 } else {
3150 dir = "in";
3151 hs_ep->dir_in = 1;
3152 }
3153
3154 hs_ep->index = epnum;
3155
3156 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3157
3158 INIT_LIST_HEAD(&hs_ep->queue);
3159 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3160
3161 /* add to the list of endpoints known by the gadget driver */
3162 if (epnum)
3163 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3164
3165 hs_ep->parent = hsotg;
3166 hs_ep->ep.name = hs_ep->name;
3167 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3168 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3169
3170 /*
3171 * Read the FIFO size for the Periodic TX FIFO, even if we're
3172 * an OUT endpoint, we may as well do this if in future the
3173 * code is changed to make each endpoint's direction changeable.
3174 */
3175
3176 ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
3177 hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3178
3179 /*
3180 * if we're using dma, we need to set the next-endpoint pointer
3181 * to be something valid.
3182 */
3183
3184 if (using_dma(hsotg)) {
3185 u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
3186 writel(next, hsotg->regs + DIEPCTL(epnum));
3187 writel(next, hsotg->regs + DOEPCTL(epnum));
3188 }
3189 }
3190
3191 /**
3192 * s3c_hsotg_hw_cfg - read HW configuration registers
3193 * @param: The device state
3194 *
3195 * Read the USB core HW configuration registers
3196 */
3197 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3198 {
3199 u32 cfg2, cfg4;
3200 /* check hardware configuration */
3201
3202 cfg2 = readl(hsotg->regs + 0x48);
3203 hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3204
3205 dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3206
3207 cfg4 = readl(hsotg->regs + 0x50);
3208 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3209
3210 dev_info(hsotg->dev, "%s fifos\n",
3211 hsotg->dedicated_fifos ? "dedicated" : "shared");
3212 }
3213
3214 /**
3215 * s3c_hsotg_dump - dump state of the udc
3216 * @param: The device state
3217 */
3218 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3219 {
3220 #ifdef DEBUG
3221 struct device *dev = hsotg->dev;
3222 void __iomem *regs = hsotg->regs;
3223 u32 val;
3224 int idx;
3225
3226 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3227 readl(regs + DCFG), readl(regs + DCTL),
3228 readl(regs + DIEPMSK));
3229
3230 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3231 readl(regs + GAHBCFG), readl(regs + 0x44));
3232
3233 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3234 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3235
3236 /* show periodic fifo settings */
3237
3238 for (idx = 1; idx <= 15; idx++) {
3239 val = readl(regs + DPTXFSIZn(idx));
3240 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3241 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3242 val & DPTXFSIZn_DPTxFStAddr_MASK);
3243 }
3244
3245 for (idx = 0; idx < 15; idx++) {
3246 dev_info(dev,
3247 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3248 readl(regs + DIEPCTL(idx)),
3249 readl(regs + DIEPTSIZ(idx)),
3250 readl(regs + DIEPDMA(idx)));
3251
3252 val = readl(regs + DOEPCTL(idx));
3253 dev_info(dev,
3254 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3255 idx, readl(regs + DOEPCTL(idx)),
3256 readl(regs + DOEPTSIZ(idx)),
3257 readl(regs + DOEPDMA(idx)));
3258
3259 }
3260
3261 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3262 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3263 #endif
3264 }
3265
3266 /**
3267 * state_show - debugfs: show overall driver and device state.
3268 * @seq: The seq file to write to.
3269 * @v: Unused parameter.
3270 *
3271 * This debugfs entry shows the overall state of the hardware and
3272 * some general information about each of the endpoints available
3273 * to the system.
3274 */
3275 static int state_show(struct seq_file *seq, void *v)
3276 {
3277 struct s3c_hsotg *hsotg = seq->private;
3278 void __iomem *regs = hsotg->regs;
3279 int idx;
3280
3281 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3282 readl(regs + DCFG),
3283 readl(regs + DCTL),
3284 readl(regs + DSTS));
3285
3286 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3287 readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3288
3289 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3290 readl(regs + GINTMSK),
3291 readl(regs + GINTSTS));
3292
3293 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3294 readl(regs + DAINTMSK),
3295 readl(regs + DAINT));
3296
3297 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3298 readl(regs + GNPTXSTS),
3299 readl(regs + GRXSTSR));
3300
3301 seq_puts(seq, "\nEndpoint status:\n");
3302
3303 for (idx = 0; idx < 15; idx++) {
3304 u32 in, out;
3305
3306 in = readl(regs + DIEPCTL(idx));
3307 out = readl(regs + DOEPCTL(idx));
3308
3309 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3310 idx, in, out);
3311
3312 in = readl(regs + DIEPTSIZ(idx));
3313 out = readl(regs + DOEPTSIZ(idx));
3314
3315 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3316 in, out);
3317
3318 seq_puts(seq, "\n");
3319 }
3320
3321 return 0;
3322 }
3323
3324 static int state_open(struct inode *inode, struct file *file)
3325 {
3326 return single_open(file, state_show, inode->i_private);
3327 }
3328
3329 static const struct file_operations state_fops = {
3330 .owner = THIS_MODULE,
3331 .open = state_open,
3332 .read = seq_read,
3333 .llseek = seq_lseek,
3334 .release = single_release,
3335 };
3336
3337 /**
3338 * fifo_show - debugfs: show the fifo information
3339 * @seq: The seq_file to write data to.
3340 * @v: Unused parameter.
3341 *
3342 * Show the FIFO information for the overall fifo and all the
3343 * periodic transmission FIFOs.
3344 */
3345 static int fifo_show(struct seq_file *seq, void *v)
3346 {
3347 struct s3c_hsotg *hsotg = seq->private;
3348 void __iomem *regs = hsotg->regs;
3349 u32 val;
3350 int idx;
3351
3352 seq_puts(seq, "Non-periodic FIFOs:\n");
3353 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3354
3355 val = readl(regs + GNPTXFSIZ);
3356 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3357 val >> GNPTXFSIZ_NPTxFDep_SHIFT,
3358 val & GNPTXFSIZ_NPTxFStAddr_MASK);
3359
3360 seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3361
3362 for (idx = 1; idx <= 15; idx++) {
3363 val = readl(regs + DPTXFSIZn(idx));
3364
3365 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3366 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3367 val & DPTXFSIZn_DPTxFStAddr_MASK);
3368 }
3369
3370 return 0;
3371 }
3372
3373 static int fifo_open(struct inode *inode, struct file *file)
3374 {
3375 return single_open(file, fifo_show, inode->i_private);
3376 }
3377
3378 static const struct file_operations fifo_fops = {
3379 .owner = THIS_MODULE,
3380 .open = fifo_open,
3381 .read = seq_read,
3382 .llseek = seq_lseek,
3383 .release = single_release,
3384 };
3385
3386
3387 static const char *decode_direction(int is_in)
3388 {
3389 return is_in ? "in" : "out";
3390 }
3391
3392 /**
3393 * ep_show - debugfs: show the state of an endpoint.
3394 * @seq: The seq_file to write data to.
3395 * @v: Unused parameter.
3396 *
3397 * This debugfs entry shows the state of the given endpoint (one is
3398 * registered for each available).
3399 */
3400 static int ep_show(struct seq_file *seq, void *v)
3401 {
3402 struct s3c_hsotg_ep *ep = seq->private;
3403 struct s3c_hsotg *hsotg = ep->parent;
3404 struct s3c_hsotg_req *req;
3405 void __iomem *regs = hsotg->regs;
3406 int index = ep->index;
3407 int show_limit = 15;
3408 unsigned long flags;
3409
3410 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3411 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3412
3413 /* first show the register state */
3414
3415 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3416 readl(regs + DIEPCTL(index)),
3417 readl(regs + DOEPCTL(index)));
3418
3419 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3420 readl(regs + DIEPDMA(index)),
3421 readl(regs + DOEPDMA(index)));
3422
3423 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3424 readl(regs + DIEPINT(index)),
3425 readl(regs + DOEPINT(index)));
3426
3427 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3428 readl(regs + DIEPTSIZ(index)),
3429 readl(regs + DOEPTSIZ(index)));
3430
3431 seq_puts(seq, "\n");
3432 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3433 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3434
3435 seq_printf(seq, "request list (%p,%p):\n",
3436 ep->queue.next, ep->queue.prev);
3437
3438 spin_lock_irqsave(&hsotg->lock, flags);
3439
3440 list_for_each_entry(req, &ep->queue, queue) {
3441 if (--show_limit < 0) {
3442 seq_puts(seq, "not showing more requests...\n");
3443 break;
3444 }
3445
3446 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3447 req == ep->req ? '*' : ' ',
3448 req, req->req.length, req->req.buf);
3449 seq_printf(seq, "%d done, res %d\n",
3450 req->req.actual, req->req.status);
3451 }
3452
3453 spin_unlock_irqrestore(&hsotg->lock, flags);
3454
3455 return 0;
3456 }
3457
3458 static int ep_open(struct inode *inode, struct file *file)
3459 {
3460 return single_open(file, ep_show, inode->i_private);
3461 }
3462
3463 static const struct file_operations ep_fops = {
3464 .owner = THIS_MODULE,
3465 .open = ep_open,
3466 .read = seq_read,
3467 .llseek = seq_lseek,
3468 .release = single_release,
3469 };
3470
3471 /**
3472 * s3c_hsotg_create_debug - create debugfs directory and files
3473 * @hsotg: The driver state
3474 *
3475 * Create the debugfs files to allow the user to get information
3476 * about the state of the system. The directory name is created
3477 * with the same name as the device itself, in case we end up
3478 * with multiple blocks in future systems.
3479 */
3480 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3481 {
3482 struct dentry *root;
3483 unsigned epidx;
3484
3485 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3486 hsotg->debug_root = root;
3487 if (IS_ERR(root)) {
3488 dev_err(hsotg->dev, "cannot create debug root\n");
3489 return;
3490 }
3491
3492 /* create general state file */
3493
3494 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3495 hsotg, &state_fops);
3496
3497 if (IS_ERR(hsotg->debug_file))
3498 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3499
3500 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3501 hsotg, &fifo_fops);
3502
3503 if (IS_ERR(hsotg->debug_fifo))
3504 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3505
3506 /* create one file for each endpoint */
3507
3508 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3509 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3510
3511 ep->debugfs = debugfs_create_file(ep->name, 0444,
3512 root, ep, &ep_fops);
3513
3514 if (IS_ERR(ep->debugfs))
3515 dev_err(hsotg->dev, "failed to create %s debug file\n",
3516 ep->name);
3517 }
3518 }
3519
3520 /**
3521 * s3c_hsotg_delete_debug - cleanup debugfs entries
3522 * @hsotg: The driver state
3523 *
3524 * Cleanup (remove) the debugfs files for use on module exit.
3525 */
3526 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3527 {
3528 unsigned epidx;
3529
3530 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3531 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3532 debugfs_remove(ep->debugfs);
3533 }
3534
3535 debugfs_remove(hsotg->debug_file);
3536 debugfs_remove(hsotg->debug_fifo);
3537 debugfs_remove(hsotg->debug_root);
3538 }
3539
3540 /**
3541 * s3c_hsotg_probe - probe function for hsotg driver
3542 * @pdev: The platform information for the driver
3543 */
3544
3545 static int s3c_hsotg_probe(struct platform_device *pdev)
3546 {
3547 struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3548 struct phy *phy;
3549 struct usb_phy *uphy;
3550 struct device *dev = &pdev->dev;
3551 struct s3c_hsotg_ep *eps;
3552 struct s3c_hsotg *hsotg;
3553 struct resource *res;
3554 int epnum;
3555 int ret;
3556 int i;
3557
3558 hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3559 if (!hsotg) {
3560 dev_err(dev, "cannot get memory\n");
3561 return -ENOMEM;
3562 }
3563
3564 /*
3565 * Attempt to find a generic PHY, then look for an old style
3566 * USB PHY, finally fall back to pdata
3567 */
3568 phy = devm_phy_get(&pdev->dev, "usb2-phy");
3569 if (IS_ERR(phy)) {
3570 uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3571 if (IS_ERR(uphy)) {
3572 /* Fallback for pdata */
3573 plat = dev_get_platdata(&pdev->dev);
3574 if (!plat) {
3575 dev_err(&pdev->dev,
3576 "no platform data or transceiver defined\n");
3577 return -EPROBE_DEFER;
3578 }
3579 hsotg->plat = plat;
3580 } else
3581 hsotg->uphy = uphy;
3582 } else
3583 hsotg->phy = phy;
3584
3585 hsotg->dev = dev;
3586
3587 hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3588 if (IS_ERR(hsotg->clk)) {
3589 dev_err(dev, "cannot get otg clock\n");
3590 return PTR_ERR(hsotg->clk);
3591 }
3592
3593 platform_set_drvdata(pdev, hsotg);
3594
3595 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3596
3597 hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3598 if (IS_ERR(hsotg->regs)) {
3599 ret = PTR_ERR(hsotg->regs);
3600 goto err_clk;
3601 }
3602
3603 ret = platform_get_irq(pdev, 0);
3604 if (ret < 0) {
3605 dev_err(dev, "cannot find IRQ\n");
3606 goto err_clk;
3607 }
3608
3609 spin_lock_init(&hsotg->lock);
3610
3611 hsotg->irq = ret;
3612
3613 ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3614 dev_name(dev), hsotg);
3615 if (ret < 0) {
3616 dev_err(dev, "cannot claim IRQ\n");
3617 goto err_clk;
3618 }
3619
3620 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3621
3622 hsotg->gadget.max_speed = USB_SPEED_HIGH;
3623 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3624 hsotg->gadget.name = dev_name(dev);
3625
3626 /* reset the system */
3627
3628 clk_prepare_enable(hsotg->clk);
3629
3630 /* regulators */
3631
3632 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3633 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3634
3635 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3636 hsotg->supplies);
3637 if (ret) {
3638 dev_err(dev, "failed to request supplies: %d\n", ret);
3639 goto err_clk;
3640 }
3641
3642 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3643 hsotg->supplies);
3644
3645 if (ret) {
3646 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3647 goto err_supplies;
3648 }
3649
3650 /* Set default UTMI width */
3651 hsotg->phyif = GUSBCFG_PHYIf16;
3652
3653 /*
3654 * If using the generic PHY framework, check if the PHY bus
3655 * width is 8-bit and set the phyif appropriately.
3656 */
3657 if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3658 hsotg->phyif = GUSBCFG_PHYIf8;
3659
3660 if (hsotg->phy)
3661 phy_init(hsotg->phy);
3662
3663 /* usb phy enable */
3664 s3c_hsotg_phy_enable(hsotg);
3665
3666 s3c_hsotg_corereset(hsotg);
3667 s3c_hsotg_init(hsotg);
3668 s3c_hsotg_hw_cfg(hsotg);
3669
3670 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3671
3672 if (hsotg->num_of_eps == 0) {
3673 dev_err(dev, "wrong number of EPs (zero)\n");
3674 ret = -EINVAL;
3675 goto err_supplies;
3676 }
3677
3678 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3679 GFP_KERNEL);
3680 if (!eps) {
3681 dev_err(dev, "cannot get memory\n");
3682 ret = -ENOMEM;
3683 goto err_supplies;
3684 }
3685
3686 hsotg->eps = eps;
3687
3688 /* setup endpoint information */
3689
3690 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3691 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3692
3693 /* allocate EP0 request */
3694
3695 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3696 GFP_KERNEL);
3697 if (!hsotg->ctrl_req) {
3698 dev_err(dev, "failed to allocate ctrl req\n");
3699 ret = -ENOMEM;
3700 goto err_ep_mem;
3701 }
3702
3703 /* initialise the endpoints now the core has been initialised */
3704 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3705 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3706
3707 /* disable power and clock */
3708
3709 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3710 hsotg->supplies);
3711 if (ret) {
3712 dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3713 goto err_ep_mem;
3714 }
3715
3716 s3c_hsotg_phy_disable(hsotg);
3717
3718 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3719 if (ret)
3720 goto err_ep_mem;
3721
3722 s3c_hsotg_create_debug(hsotg);
3723
3724 s3c_hsotg_dump(hsotg);
3725
3726 return 0;
3727
3728 err_ep_mem:
3729 kfree(eps);
3730 err_supplies:
3731 s3c_hsotg_phy_disable(hsotg);
3732 err_clk:
3733 clk_disable_unprepare(hsotg->clk);
3734
3735 return ret;
3736 }
3737
3738 /**
3739 * s3c_hsotg_remove - remove function for hsotg driver
3740 * @pdev: The platform information for the driver
3741 */
3742 static int s3c_hsotg_remove(struct platform_device *pdev)
3743 {
3744 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3745
3746 usb_del_gadget_udc(&hsotg->gadget);
3747
3748 s3c_hsotg_delete_debug(hsotg);
3749
3750 if (hsotg->driver) {
3751 /* should have been done already by driver model core */
3752 usb_gadget_unregister_driver(hsotg->driver);
3753 }
3754
3755 s3c_hsotg_phy_disable(hsotg);
3756 if (hsotg->phy)
3757 phy_exit(hsotg->phy);
3758 clk_disable_unprepare(hsotg->clk);
3759
3760 return 0;
3761 }
3762
3763 #if 1
3764 #define s3c_hsotg_suspend NULL
3765 #define s3c_hsotg_resume NULL
3766 #endif
3767
3768 #ifdef CONFIG_OF
3769 static const struct of_device_id s3c_hsotg_of_ids[] = {
3770 { .compatible = "samsung,s3c6400-hsotg", },
3771 { .compatible = "snps,dwc2", },
3772 { /* sentinel */ }
3773 };
3774 MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3775 #endif
3776
3777 static struct platform_driver s3c_hsotg_driver = {
3778 .driver = {
3779 .name = "s3c-hsotg",
3780 .owner = THIS_MODULE,
3781 .of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3782 },
3783 .probe = s3c_hsotg_probe,
3784 .remove = s3c_hsotg_remove,
3785 .suspend = s3c_hsotg_suspend,
3786 .resume = s3c_hsotg_resume,
3787 };
3788
3789 module_platform_driver(s3c_hsotg_driver);
3790
3791 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3792 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3793 MODULE_LICENSE("GPL");
3794 MODULE_ALIAS("platform:s3c-hsotg");
This page took 0.123679 seconds and 6 git commands to generate.