Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / drivers / usb / gadget / udc / mv_udc_core.c
1 /*
2 * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3 * Author: Chao Xie <chao.xie@marvell.com>
4 * Neil Zhang <zhangwm@marvell.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/timer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/moduleparam.h>
27 #include <linux/device.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/pm.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/clk.h>
36 #include <linux/platform_data/mv_usb.h>
37 #include <asm/unaligned.h>
38
39 #include "mv_udc.h"
40
41 #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
42 #define DRIVER_VERSION "8 Nov 2010"
43
44 #define ep_dir(ep) (((ep)->ep_num == 0) ? \
45 ((ep)->udc->ep0_dir) : ((ep)->direction))
46
47 /* timeout value -- usec */
48 #define RESET_TIMEOUT 10000
49 #define FLUSH_TIMEOUT 10000
50 #define EPSTATUS_TIMEOUT 10000
51 #define PRIME_TIMEOUT 10000
52 #define READSAFE_TIMEOUT 1000
53
54 #define LOOPS_USEC_SHIFT 1
55 #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
56 #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
57
58 static DECLARE_COMPLETION(release_done);
59
60 static const char driver_name[] = "mv_udc";
61 static const char driver_desc[] = DRIVER_DESC;
62
63 static void nuke(struct mv_ep *ep, int status);
64 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
65
66 /* for endpoint 0 operations */
67 static const struct usb_endpoint_descriptor mv_ep0_desc = {
68 .bLength = USB_DT_ENDPOINT_SIZE,
69 .bDescriptorType = USB_DT_ENDPOINT,
70 .bEndpointAddress = 0,
71 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
72 .wMaxPacketSize = EP0_MAX_PKT_SIZE,
73 };
74
75 static void ep0_reset(struct mv_udc *udc)
76 {
77 struct mv_ep *ep;
78 u32 epctrlx;
79 int i = 0;
80
81 /* ep0 in and out */
82 for (i = 0; i < 2; i++) {
83 ep = &udc->eps[i];
84 ep->udc = udc;
85
86 /* ep0 dQH */
87 ep->dqh = &udc->ep_dqh[i];
88
89 /* configure ep0 endpoint capabilities in dQH */
90 ep->dqh->max_packet_length =
91 (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
92 | EP_QUEUE_HEAD_IOS;
93
94 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
95
96 epctrlx = readl(&udc->op_regs->epctrlx[0]);
97 if (i) { /* TX */
98 epctrlx |= EPCTRL_TX_ENABLE
99 | (USB_ENDPOINT_XFER_CONTROL
100 << EPCTRL_TX_EP_TYPE_SHIFT);
101
102 } else { /* RX */
103 epctrlx |= EPCTRL_RX_ENABLE
104 | (USB_ENDPOINT_XFER_CONTROL
105 << EPCTRL_RX_EP_TYPE_SHIFT);
106 }
107
108 writel(epctrlx, &udc->op_regs->epctrlx[0]);
109 }
110 }
111
112 /* protocol ep0 stall, will automatically be cleared on new transaction */
113 static void ep0_stall(struct mv_udc *udc)
114 {
115 u32 epctrlx;
116
117 /* set TX and RX to stall */
118 epctrlx = readl(&udc->op_regs->epctrlx[0]);
119 epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
120 writel(epctrlx, &udc->op_regs->epctrlx[0]);
121
122 /* update ep0 state */
123 udc->ep0_state = WAIT_FOR_SETUP;
124 udc->ep0_dir = EP_DIR_OUT;
125 }
126
127 static int process_ep_req(struct mv_udc *udc, int index,
128 struct mv_req *curr_req)
129 {
130 struct mv_dtd *curr_dtd;
131 struct mv_dqh *curr_dqh;
132 int td_complete, actual, remaining_length;
133 int i, direction;
134 int retval = 0;
135 u32 errors;
136 u32 bit_pos;
137
138 curr_dqh = &udc->ep_dqh[index];
139 direction = index % 2;
140
141 curr_dtd = curr_req->head;
142 td_complete = 0;
143 actual = curr_req->req.length;
144
145 for (i = 0; i < curr_req->dtd_count; i++) {
146 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
147 dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
148 udc->eps[index].name);
149 return 1;
150 }
151
152 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
153 if (!errors) {
154 remaining_length =
155 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
156 >> DTD_LENGTH_BIT_POS;
157 actual -= remaining_length;
158
159 if (remaining_length) {
160 if (direction) {
161 dev_dbg(&udc->dev->dev,
162 "TX dTD remains data\n");
163 retval = -EPROTO;
164 break;
165 } else
166 break;
167 }
168 } else {
169 dev_info(&udc->dev->dev,
170 "complete_tr error: ep=%d %s: error = 0x%x\n",
171 index >> 1, direction ? "SEND" : "RECV",
172 errors);
173 if (errors & DTD_STATUS_HALTED) {
174 /* Clear the errors and Halt condition */
175 curr_dqh->size_ioc_int_sts &= ~errors;
176 retval = -EPIPE;
177 } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
178 retval = -EPROTO;
179 } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
180 retval = -EILSEQ;
181 }
182 }
183 if (i != curr_req->dtd_count - 1)
184 curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
185 }
186 if (retval)
187 return retval;
188
189 if (direction == EP_DIR_OUT)
190 bit_pos = 1 << curr_req->ep->ep_num;
191 else
192 bit_pos = 1 << (16 + curr_req->ep->ep_num);
193
194 while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
195 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
196 while (readl(&udc->op_regs->epstatus) & bit_pos)
197 udelay(1);
198 break;
199 }
200 udelay(1);
201 }
202
203 curr_req->req.actual = actual;
204
205 return 0;
206 }
207
208 /*
209 * done() - retire a request; caller blocked irqs
210 * @status : request status to be set, only works when
211 * request is still in progress.
212 */
213 static void done(struct mv_ep *ep, struct mv_req *req, int status)
214 __releases(&ep->udc->lock)
215 __acquires(&ep->udc->lock)
216 {
217 struct mv_udc *udc = NULL;
218 unsigned char stopped = ep->stopped;
219 struct mv_dtd *curr_td, *next_td;
220 int j;
221
222 udc = (struct mv_udc *)ep->udc;
223 /* Removed the req from fsl_ep->queue */
224 list_del_init(&req->queue);
225
226 /* req.status should be set as -EINPROGRESS in ep_queue() */
227 if (req->req.status == -EINPROGRESS)
228 req->req.status = status;
229 else
230 status = req->req.status;
231
232 /* Free dtd for the request */
233 next_td = req->head;
234 for (j = 0; j < req->dtd_count; j++) {
235 curr_td = next_td;
236 if (j != req->dtd_count - 1)
237 next_td = curr_td->next_dtd_virt;
238 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
239 }
240
241 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
242
243 if (status && (status != -ESHUTDOWN))
244 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
245 ep->ep.name, &req->req, status,
246 req->req.actual, req->req.length);
247
248 ep->stopped = 1;
249
250 spin_unlock(&ep->udc->lock);
251
252 usb_gadget_giveback_request(&ep->ep, &req->req);
253
254 spin_lock(&ep->udc->lock);
255 ep->stopped = stopped;
256 }
257
258 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
259 {
260 struct mv_udc *udc;
261 struct mv_dqh *dqh;
262 u32 bit_pos, direction;
263 u32 usbcmd, epstatus;
264 unsigned int loops;
265 int retval = 0;
266
267 udc = ep->udc;
268 direction = ep_dir(ep);
269 dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
270 bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
271
272 /* check if the pipe is empty */
273 if (!(list_empty(&ep->queue))) {
274 struct mv_req *lastreq;
275 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
276 lastreq->tail->dtd_next =
277 req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
278
279 wmb();
280
281 if (readl(&udc->op_regs->epprime) & bit_pos)
282 goto done;
283
284 loops = LOOPS(READSAFE_TIMEOUT);
285 while (1) {
286 /* start with setting the semaphores */
287 usbcmd = readl(&udc->op_regs->usbcmd);
288 usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
289 writel(usbcmd, &udc->op_regs->usbcmd);
290
291 /* read the endpoint status */
292 epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
293
294 /*
295 * Reread the ATDTW semaphore bit to check if it is
296 * cleared. When hardware see a hazard, it will clear
297 * the bit or else we remain set to 1 and we can
298 * proceed with priming of endpoint if not already
299 * primed.
300 */
301 if (readl(&udc->op_regs->usbcmd)
302 & USBCMD_ATDTW_TRIPWIRE_SET)
303 break;
304
305 loops--;
306 if (loops == 0) {
307 dev_err(&udc->dev->dev,
308 "Timeout for ATDTW_TRIPWIRE...\n");
309 retval = -ETIME;
310 goto done;
311 }
312 udelay(LOOPS_USEC);
313 }
314
315 /* Clear the semaphore */
316 usbcmd = readl(&udc->op_regs->usbcmd);
317 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
318 writel(usbcmd, &udc->op_regs->usbcmd);
319
320 if (epstatus)
321 goto done;
322 }
323
324 /* Write dQH next pointer and terminate bit to 0 */
325 dqh->next_dtd_ptr = req->head->td_dma
326 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
327
328 /* clear active and halt bit, in case set from a previous error */
329 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
330
331 /* Ensure that updates to the QH will occur before priming. */
332 wmb();
333
334 /* Prime the Endpoint */
335 writel(bit_pos, &udc->op_regs->epprime);
336
337 done:
338 return retval;
339 }
340
341 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
342 dma_addr_t *dma, int *is_last)
343 {
344 struct mv_dtd *dtd;
345 struct mv_udc *udc;
346 struct mv_dqh *dqh;
347 u32 temp, mult = 0;
348
349 /* how big will this transfer be? */
350 if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
351 dqh = req->ep->dqh;
352 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
353 & 0x3;
354 *length = min(req->req.length - req->req.actual,
355 (unsigned)(mult * req->ep->ep.maxpacket));
356 } else
357 *length = min(req->req.length - req->req.actual,
358 (unsigned)EP_MAX_LENGTH_TRANSFER);
359
360 udc = req->ep->udc;
361
362 /*
363 * Be careful that no _GFP_HIGHMEM is set,
364 * or we can not use dma_to_virt
365 */
366 dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
367 if (dtd == NULL)
368 return dtd;
369
370 dtd->td_dma = *dma;
371 /* initialize buffer page pointers */
372 temp = (u32)(req->req.dma + req->req.actual);
373 dtd->buff_ptr0 = cpu_to_le32(temp);
374 temp &= ~0xFFF;
375 dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
376 dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
377 dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
378 dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
379
380 req->req.actual += *length;
381
382 /* zlp is needed if req->req.zero is set */
383 if (req->req.zero) {
384 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
385 *is_last = 1;
386 else
387 *is_last = 0;
388 } else if (req->req.length == req->req.actual)
389 *is_last = 1;
390 else
391 *is_last = 0;
392
393 /* Fill in the transfer size; set active bit */
394 temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
395
396 /* Enable interrupt for the last dtd of a request */
397 if (*is_last && !req->req.no_interrupt)
398 temp |= DTD_IOC;
399
400 temp |= mult << 10;
401
402 dtd->size_ioc_sts = temp;
403
404 mb();
405
406 return dtd;
407 }
408
409 /* generate dTD linked list for a request */
410 static int req_to_dtd(struct mv_req *req)
411 {
412 unsigned count;
413 int is_last, is_first = 1;
414 struct mv_dtd *dtd, *last_dtd = NULL;
415 struct mv_udc *udc;
416 dma_addr_t dma;
417
418 udc = req->ep->udc;
419
420 do {
421 dtd = build_dtd(req, &count, &dma, &is_last);
422 if (dtd == NULL)
423 return -ENOMEM;
424
425 if (is_first) {
426 is_first = 0;
427 req->head = dtd;
428 } else {
429 last_dtd->dtd_next = dma;
430 last_dtd->next_dtd_virt = dtd;
431 }
432 last_dtd = dtd;
433 req->dtd_count++;
434 } while (!is_last);
435
436 /* set terminate bit to 1 for the last dTD */
437 dtd->dtd_next = DTD_NEXT_TERMINATE;
438
439 req->tail = dtd;
440
441 return 0;
442 }
443
444 static int mv_ep_enable(struct usb_ep *_ep,
445 const struct usb_endpoint_descriptor *desc)
446 {
447 struct mv_udc *udc;
448 struct mv_ep *ep;
449 struct mv_dqh *dqh;
450 u16 max = 0;
451 u32 bit_pos, epctrlx, direction;
452 unsigned char zlt = 0, ios = 0, mult = 0;
453 unsigned long flags;
454
455 ep = container_of(_ep, struct mv_ep, ep);
456 udc = ep->udc;
457
458 if (!_ep || !desc
459 || desc->bDescriptorType != USB_DT_ENDPOINT)
460 return -EINVAL;
461
462 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
463 return -ESHUTDOWN;
464
465 direction = ep_dir(ep);
466 max = usb_endpoint_maxp(desc);
467
468 /*
469 * disable HW zero length termination select
470 * driver handles zero length packet through req->req.zero
471 */
472 zlt = 1;
473
474 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
475
476 /* Check if the Endpoint is Primed */
477 if ((readl(&udc->op_regs->epprime) & bit_pos)
478 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
479 dev_info(&udc->dev->dev,
480 "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
481 " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
482 (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
483 (unsigned)readl(&udc->op_regs->epprime),
484 (unsigned)readl(&udc->op_regs->epstatus),
485 (unsigned)bit_pos);
486 goto en_done;
487 }
488 /* Set the max packet length, interrupt on Setup and Mult fields */
489 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
490 case USB_ENDPOINT_XFER_BULK:
491 zlt = 1;
492 mult = 0;
493 break;
494 case USB_ENDPOINT_XFER_CONTROL:
495 ios = 1;
496 case USB_ENDPOINT_XFER_INT:
497 mult = 0;
498 break;
499 case USB_ENDPOINT_XFER_ISOC:
500 /* Calculate transactions needed for high bandwidth iso */
501 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
502 max = max & 0x7ff; /* bit 0~10 */
503 /* 3 transactions at most */
504 if (mult > 3)
505 goto en_done;
506 break;
507 default:
508 goto en_done;
509 }
510
511 spin_lock_irqsave(&udc->lock, flags);
512 /* Get the endpoint queue head address */
513 dqh = ep->dqh;
514 dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
515 | (mult << EP_QUEUE_HEAD_MULT_POS)
516 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
517 | (ios ? EP_QUEUE_HEAD_IOS : 0);
518 dqh->next_dtd_ptr = 1;
519 dqh->size_ioc_int_sts = 0;
520
521 ep->ep.maxpacket = max;
522 ep->ep.desc = desc;
523 ep->stopped = 0;
524
525 /* Enable the endpoint for Rx or Tx and set the endpoint type */
526 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
527 if (direction == EP_DIR_IN) {
528 epctrlx &= ~EPCTRL_TX_ALL_MASK;
529 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
530 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
531 << EPCTRL_TX_EP_TYPE_SHIFT);
532 } else {
533 epctrlx &= ~EPCTRL_RX_ALL_MASK;
534 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
535 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
536 << EPCTRL_RX_EP_TYPE_SHIFT);
537 }
538 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
539
540 /*
541 * Implement Guideline (GL# USB-7) The unused endpoint type must
542 * be programmed to bulk.
543 */
544 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
545 if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
546 epctrlx |= (USB_ENDPOINT_XFER_BULK
547 << EPCTRL_RX_EP_TYPE_SHIFT);
548 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
549 }
550
551 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
552 if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
553 epctrlx |= (USB_ENDPOINT_XFER_BULK
554 << EPCTRL_TX_EP_TYPE_SHIFT);
555 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
556 }
557
558 spin_unlock_irqrestore(&udc->lock, flags);
559
560 return 0;
561 en_done:
562 return -EINVAL;
563 }
564
565 static int mv_ep_disable(struct usb_ep *_ep)
566 {
567 struct mv_udc *udc;
568 struct mv_ep *ep;
569 struct mv_dqh *dqh;
570 u32 bit_pos, epctrlx, direction;
571 unsigned long flags;
572
573 ep = container_of(_ep, struct mv_ep, ep);
574 if ((_ep == NULL) || !ep->ep.desc)
575 return -EINVAL;
576
577 udc = ep->udc;
578
579 /* Get the endpoint queue head address */
580 dqh = ep->dqh;
581
582 spin_lock_irqsave(&udc->lock, flags);
583
584 direction = ep_dir(ep);
585 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
586
587 /* Reset the max packet length and the interrupt on Setup */
588 dqh->max_packet_length = 0;
589
590 /* Disable the endpoint for Rx or Tx and reset the endpoint type */
591 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
592 epctrlx &= ~((direction == EP_DIR_IN)
593 ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
594 : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
595 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
596
597 /* nuke all pending requests (does flush) */
598 nuke(ep, -ESHUTDOWN);
599
600 ep->ep.desc = NULL;
601 ep->stopped = 1;
602
603 spin_unlock_irqrestore(&udc->lock, flags);
604
605 return 0;
606 }
607
608 static struct usb_request *
609 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
610 {
611 struct mv_req *req = NULL;
612
613 req = kzalloc(sizeof *req, gfp_flags);
614 if (!req)
615 return NULL;
616
617 req->req.dma = DMA_ADDR_INVALID;
618 INIT_LIST_HEAD(&req->queue);
619
620 return &req->req;
621 }
622
623 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
624 {
625 struct mv_req *req = NULL;
626
627 req = container_of(_req, struct mv_req, req);
628
629 if (_req)
630 kfree(req);
631 }
632
633 static void mv_ep_fifo_flush(struct usb_ep *_ep)
634 {
635 struct mv_udc *udc;
636 u32 bit_pos, direction;
637 struct mv_ep *ep;
638 unsigned int loops;
639
640 if (!_ep)
641 return;
642
643 ep = container_of(_ep, struct mv_ep, ep);
644 if (!ep->ep.desc)
645 return;
646
647 udc = ep->udc;
648 direction = ep_dir(ep);
649
650 if (ep->ep_num == 0)
651 bit_pos = (1 << 16) | 1;
652 else if (direction == EP_DIR_OUT)
653 bit_pos = 1 << ep->ep_num;
654 else
655 bit_pos = 1 << (16 + ep->ep_num);
656
657 loops = LOOPS(EPSTATUS_TIMEOUT);
658 do {
659 unsigned int inter_loops;
660
661 if (loops == 0) {
662 dev_err(&udc->dev->dev,
663 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
664 (unsigned)readl(&udc->op_regs->epstatus),
665 (unsigned)bit_pos);
666 return;
667 }
668 /* Write 1 to the Flush register */
669 writel(bit_pos, &udc->op_regs->epflush);
670
671 /* Wait until flushing completed */
672 inter_loops = LOOPS(FLUSH_TIMEOUT);
673 while (readl(&udc->op_regs->epflush)) {
674 /*
675 * ENDPTFLUSH bit should be cleared to indicate this
676 * operation is complete
677 */
678 if (inter_loops == 0) {
679 dev_err(&udc->dev->dev,
680 "TIMEOUT for ENDPTFLUSH=0x%x,"
681 "bit_pos=0x%x\n",
682 (unsigned)readl(&udc->op_regs->epflush),
683 (unsigned)bit_pos);
684 return;
685 }
686 inter_loops--;
687 udelay(LOOPS_USEC);
688 }
689 loops--;
690 } while (readl(&udc->op_regs->epstatus) & bit_pos);
691 }
692
693 /* queues (submits) an I/O request to an endpoint */
694 static int
695 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
696 {
697 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
698 struct mv_req *req = container_of(_req, struct mv_req, req);
699 struct mv_udc *udc = ep->udc;
700 unsigned long flags;
701 int retval;
702
703 /* catch various bogus parameters */
704 if (!_req || !req->req.complete || !req->req.buf
705 || !list_empty(&req->queue)) {
706 dev_err(&udc->dev->dev, "%s, bad params", __func__);
707 return -EINVAL;
708 }
709 if (unlikely(!_ep || !ep->ep.desc)) {
710 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
711 return -EINVAL;
712 }
713
714 udc = ep->udc;
715 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
716 return -ESHUTDOWN;
717
718 req->ep = ep;
719
720 /* map virtual address to hardware */
721 retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
722 if (retval)
723 return retval;
724
725 req->req.status = -EINPROGRESS;
726 req->req.actual = 0;
727 req->dtd_count = 0;
728
729 spin_lock_irqsave(&udc->lock, flags);
730
731 /* build dtds and push them to device queue */
732 if (!req_to_dtd(req)) {
733 retval = queue_dtd(ep, req);
734 if (retval) {
735 spin_unlock_irqrestore(&udc->lock, flags);
736 dev_err(&udc->dev->dev, "Failed to queue dtd\n");
737 goto err_unmap_dma;
738 }
739 } else {
740 spin_unlock_irqrestore(&udc->lock, flags);
741 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
742 retval = -ENOMEM;
743 goto err_unmap_dma;
744 }
745
746 /* Update ep0 state */
747 if (ep->ep_num == 0)
748 udc->ep0_state = DATA_STATE_XMIT;
749
750 /* irq handler advances the queue */
751 list_add_tail(&req->queue, &ep->queue);
752 spin_unlock_irqrestore(&udc->lock, flags);
753
754 return 0;
755
756 err_unmap_dma:
757 usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
758
759 return retval;
760 }
761
762 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
763 {
764 struct mv_dqh *dqh = ep->dqh;
765 u32 bit_pos;
766
767 /* Write dQH next pointer and terminate bit to 0 */
768 dqh->next_dtd_ptr = req->head->td_dma
769 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
770
771 /* clear active and halt bit, in case set from a previous error */
772 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
773
774 /* Ensure that updates to the QH will occure before priming. */
775 wmb();
776
777 bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
778
779 /* Prime the Endpoint */
780 writel(bit_pos, &ep->udc->op_regs->epprime);
781 }
782
783 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
784 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
785 {
786 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
787 struct mv_req *req;
788 struct mv_udc *udc = ep->udc;
789 unsigned long flags;
790 int stopped, ret = 0;
791 u32 epctrlx;
792
793 if (!_ep || !_req)
794 return -EINVAL;
795
796 spin_lock_irqsave(&ep->udc->lock, flags);
797 stopped = ep->stopped;
798
799 /* Stop the ep before we deal with the queue */
800 ep->stopped = 1;
801 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
802 if (ep_dir(ep) == EP_DIR_IN)
803 epctrlx &= ~EPCTRL_TX_ENABLE;
804 else
805 epctrlx &= ~EPCTRL_RX_ENABLE;
806 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
807
808 /* make sure it's actually queued on this endpoint */
809 list_for_each_entry(req, &ep->queue, queue) {
810 if (&req->req == _req)
811 break;
812 }
813 if (&req->req != _req) {
814 ret = -EINVAL;
815 goto out;
816 }
817
818 /* The request is in progress, or completed but not dequeued */
819 if (ep->queue.next == &req->queue) {
820 _req->status = -ECONNRESET;
821 mv_ep_fifo_flush(_ep); /* flush current transfer */
822
823 /* The request isn't the last request in this ep queue */
824 if (req->queue.next != &ep->queue) {
825 struct mv_req *next_req;
826
827 next_req = list_entry(req->queue.next,
828 struct mv_req, queue);
829
830 /* Point the QH to the first TD of next request */
831 mv_prime_ep(ep, next_req);
832 } else {
833 struct mv_dqh *qh;
834
835 qh = ep->dqh;
836 qh->next_dtd_ptr = 1;
837 qh->size_ioc_int_sts = 0;
838 }
839
840 /* The request hasn't been processed, patch up the TD chain */
841 } else {
842 struct mv_req *prev_req;
843
844 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
845 writel(readl(&req->tail->dtd_next),
846 &prev_req->tail->dtd_next);
847
848 }
849
850 done(ep, req, -ECONNRESET);
851
852 /* Enable EP */
853 out:
854 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
855 if (ep_dir(ep) == EP_DIR_IN)
856 epctrlx |= EPCTRL_TX_ENABLE;
857 else
858 epctrlx |= EPCTRL_RX_ENABLE;
859 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
860 ep->stopped = stopped;
861
862 spin_unlock_irqrestore(&ep->udc->lock, flags);
863 return ret;
864 }
865
866 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
867 {
868 u32 epctrlx;
869
870 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
871
872 if (stall) {
873 if (direction == EP_DIR_IN)
874 epctrlx |= EPCTRL_TX_EP_STALL;
875 else
876 epctrlx |= EPCTRL_RX_EP_STALL;
877 } else {
878 if (direction == EP_DIR_IN) {
879 epctrlx &= ~EPCTRL_TX_EP_STALL;
880 epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
881 } else {
882 epctrlx &= ~EPCTRL_RX_EP_STALL;
883 epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
884 }
885 }
886 writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
887 }
888
889 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
890 {
891 u32 epctrlx;
892
893 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
894
895 if (direction == EP_DIR_OUT)
896 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
897 else
898 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
899 }
900
901 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
902 {
903 struct mv_ep *ep;
904 unsigned long flags = 0;
905 int status = 0;
906 struct mv_udc *udc;
907
908 ep = container_of(_ep, struct mv_ep, ep);
909 udc = ep->udc;
910 if (!_ep || !ep->ep.desc) {
911 status = -EINVAL;
912 goto out;
913 }
914
915 if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
916 status = -EOPNOTSUPP;
917 goto out;
918 }
919
920 /*
921 * Attempt to halt IN ep will fail if any transfer requests
922 * are still queue
923 */
924 if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
925 status = -EAGAIN;
926 goto out;
927 }
928
929 spin_lock_irqsave(&ep->udc->lock, flags);
930 ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
931 if (halt && wedge)
932 ep->wedge = 1;
933 else if (!halt)
934 ep->wedge = 0;
935 spin_unlock_irqrestore(&ep->udc->lock, flags);
936
937 if (ep->ep_num == 0) {
938 udc->ep0_state = WAIT_FOR_SETUP;
939 udc->ep0_dir = EP_DIR_OUT;
940 }
941 out:
942 return status;
943 }
944
945 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
946 {
947 return mv_ep_set_halt_wedge(_ep, halt, 0);
948 }
949
950 static int mv_ep_set_wedge(struct usb_ep *_ep)
951 {
952 return mv_ep_set_halt_wedge(_ep, 1, 1);
953 }
954
955 static struct usb_ep_ops mv_ep_ops = {
956 .enable = mv_ep_enable,
957 .disable = mv_ep_disable,
958
959 .alloc_request = mv_alloc_request,
960 .free_request = mv_free_request,
961
962 .queue = mv_ep_queue,
963 .dequeue = mv_ep_dequeue,
964
965 .set_wedge = mv_ep_set_wedge,
966 .set_halt = mv_ep_set_halt,
967 .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
968 };
969
970 static void udc_clock_enable(struct mv_udc *udc)
971 {
972 clk_prepare_enable(udc->clk);
973 }
974
975 static void udc_clock_disable(struct mv_udc *udc)
976 {
977 clk_disable_unprepare(udc->clk);
978 }
979
980 static void udc_stop(struct mv_udc *udc)
981 {
982 u32 tmp;
983
984 /* Disable interrupts */
985 tmp = readl(&udc->op_regs->usbintr);
986 tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
987 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
988 writel(tmp, &udc->op_regs->usbintr);
989
990 udc->stopped = 1;
991
992 /* Reset the Run the bit in the command register to stop VUSB */
993 tmp = readl(&udc->op_regs->usbcmd);
994 tmp &= ~USBCMD_RUN_STOP;
995 writel(tmp, &udc->op_regs->usbcmd);
996 }
997
998 static void udc_start(struct mv_udc *udc)
999 {
1000 u32 usbintr;
1001
1002 usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1003 | USBINTR_PORT_CHANGE_DETECT_EN
1004 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1005 /* Enable interrupts */
1006 writel(usbintr, &udc->op_regs->usbintr);
1007
1008 udc->stopped = 0;
1009
1010 /* Set the Run bit in the command register */
1011 writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1012 }
1013
1014 static int udc_reset(struct mv_udc *udc)
1015 {
1016 unsigned int loops;
1017 u32 tmp, portsc;
1018
1019 /* Stop the controller */
1020 tmp = readl(&udc->op_regs->usbcmd);
1021 tmp &= ~USBCMD_RUN_STOP;
1022 writel(tmp, &udc->op_regs->usbcmd);
1023
1024 /* Reset the controller to get default values */
1025 writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1026
1027 /* wait for reset to complete */
1028 loops = LOOPS(RESET_TIMEOUT);
1029 while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1030 if (loops == 0) {
1031 dev_err(&udc->dev->dev,
1032 "Wait for RESET completed TIMEOUT\n");
1033 return -ETIMEDOUT;
1034 }
1035 loops--;
1036 udelay(LOOPS_USEC);
1037 }
1038
1039 /* set controller to device mode */
1040 tmp = readl(&udc->op_regs->usbmode);
1041 tmp |= USBMODE_CTRL_MODE_DEVICE;
1042
1043 /* turn setup lockout off, require setup tripwire in usbcmd */
1044 tmp |= USBMODE_SETUP_LOCK_OFF;
1045
1046 writel(tmp, &udc->op_regs->usbmode);
1047
1048 writel(0x0, &udc->op_regs->epsetupstat);
1049
1050 /* Configure the Endpoint List Address */
1051 writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1052 &udc->op_regs->eplistaddr);
1053
1054 portsc = readl(&udc->op_regs->portsc[0]);
1055 if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1056 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1057
1058 if (udc->force_fs)
1059 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1060 else
1061 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1062
1063 writel(portsc, &udc->op_regs->portsc[0]);
1064
1065 tmp = readl(&udc->op_regs->epctrlx[0]);
1066 tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1067 writel(tmp, &udc->op_regs->epctrlx[0]);
1068
1069 return 0;
1070 }
1071
1072 static int mv_udc_enable_internal(struct mv_udc *udc)
1073 {
1074 int retval;
1075
1076 if (udc->active)
1077 return 0;
1078
1079 dev_dbg(&udc->dev->dev, "enable udc\n");
1080 udc_clock_enable(udc);
1081 if (udc->pdata->phy_init) {
1082 retval = udc->pdata->phy_init(udc->phy_regs);
1083 if (retval) {
1084 dev_err(&udc->dev->dev,
1085 "init phy error %d\n", retval);
1086 udc_clock_disable(udc);
1087 return retval;
1088 }
1089 }
1090 udc->active = 1;
1091
1092 return 0;
1093 }
1094
1095 static int mv_udc_enable(struct mv_udc *udc)
1096 {
1097 if (udc->clock_gating)
1098 return mv_udc_enable_internal(udc);
1099
1100 return 0;
1101 }
1102
1103 static void mv_udc_disable_internal(struct mv_udc *udc)
1104 {
1105 if (udc->active) {
1106 dev_dbg(&udc->dev->dev, "disable udc\n");
1107 if (udc->pdata->phy_deinit)
1108 udc->pdata->phy_deinit(udc->phy_regs);
1109 udc_clock_disable(udc);
1110 udc->active = 0;
1111 }
1112 }
1113
1114 static void mv_udc_disable(struct mv_udc *udc)
1115 {
1116 if (udc->clock_gating)
1117 mv_udc_disable_internal(udc);
1118 }
1119
1120 static int mv_udc_get_frame(struct usb_gadget *gadget)
1121 {
1122 struct mv_udc *udc;
1123 u16 retval;
1124
1125 if (!gadget)
1126 return -ENODEV;
1127
1128 udc = container_of(gadget, struct mv_udc, gadget);
1129
1130 retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1131
1132 return retval;
1133 }
1134
1135 /* Tries to wake up the host connected to this gadget */
1136 static int mv_udc_wakeup(struct usb_gadget *gadget)
1137 {
1138 struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1139 u32 portsc;
1140
1141 /* Remote wakeup feature not enabled by host */
1142 if (!udc->remote_wakeup)
1143 return -ENOTSUPP;
1144
1145 portsc = readl(&udc->op_regs->portsc);
1146 /* not suspended? */
1147 if (!(portsc & PORTSCX_PORT_SUSPEND))
1148 return 0;
1149 /* trigger force resume */
1150 portsc |= PORTSCX_PORT_FORCE_RESUME;
1151 writel(portsc, &udc->op_regs->portsc[0]);
1152 return 0;
1153 }
1154
1155 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1156 {
1157 struct mv_udc *udc;
1158 unsigned long flags;
1159 int retval = 0;
1160
1161 udc = container_of(gadget, struct mv_udc, gadget);
1162 spin_lock_irqsave(&udc->lock, flags);
1163
1164 udc->vbus_active = (is_active != 0);
1165
1166 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1167 __func__, udc->softconnect, udc->vbus_active);
1168
1169 if (udc->driver && udc->softconnect && udc->vbus_active) {
1170 retval = mv_udc_enable(udc);
1171 if (retval == 0) {
1172 /* Clock is disabled, need re-init registers */
1173 udc_reset(udc);
1174 ep0_reset(udc);
1175 udc_start(udc);
1176 }
1177 } else if (udc->driver && udc->softconnect) {
1178 if (!udc->active)
1179 goto out;
1180
1181 /* stop all the transfer in queue*/
1182 stop_activity(udc, udc->driver);
1183 udc_stop(udc);
1184 mv_udc_disable(udc);
1185 }
1186
1187 out:
1188 spin_unlock_irqrestore(&udc->lock, flags);
1189 return retval;
1190 }
1191
1192 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1193 {
1194 struct mv_udc *udc;
1195 unsigned long flags;
1196 int retval = 0;
1197
1198 udc = container_of(gadget, struct mv_udc, gadget);
1199 spin_lock_irqsave(&udc->lock, flags);
1200
1201 udc->softconnect = (is_on != 0);
1202
1203 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1204 __func__, udc->softconnect, udc->vbus_active);
1205
1206 if (udc->driver && udc->softconnect && udc->vbus_active) {
1207 retval = mv_udc_enable(udc);
1208 if (retval == 0) {
1209 /* Clock is disabled, need re-init registers */
1210 udc_reset(udc);
1211 ep0_reset(udc);
1212 udc_start(udc);
1213 }
1214 } else if (udc->driver && udc->vbus_active) {
1215 /* stop all the transfer in queue*/
1216 stop_activity(udc, udc->driver);
1217 udc_stop(udc);
1218 mv_udc_disable(udc);
1219 }
1220
1221 spin_unlock_irqrestore(&udc->lock, flags);
1222 return retval;
1223 }
1224
1225 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1226 static int mv_udc_stop(struct usb_gadget *);
1227 /* device controller usb_gadget_ops structure */
1228 static const struct usb_gadget_ops mv_ops = {
1229
1230 /* returns the current frame number */
1231 .get_frame = mv_udc_get_frame,
1232
1233 /* tries to wake up the host connected to this gadget */
1234 .wakeup = mv_udc_wakeup,
1235
1236 /* notify controller that VBUS is powered or not */
1237 .vbus_session = mv_udc_vbus_session,
1238
1239 /* D+ pullup, software-controlled connect/disconnect to USB host */
1240 .pullup = mv_udc_pullup,
1241 .udc_start = mv_udc_start,
1242 .udc_stop = mv_udc_stop,
1243 };
1244
1245 static int eps_init(struct mv_udc *udc)
1246 {
1247 struct mv_ep *ep;
1248 char name[14];
1249 int i;
1250
1251 /* initialize ep0 */
1252 ep = &udc->eps[0];
1253 ep->udc = udc;
1254 strncpy(ep->name, "ep0", sizeof(ep->name));
1255 ep->ep.name = ep->name;
1256 ep->ep.ops = &mv_ep_ops;
1257 ep->wedge = 0;
1258 ep->stopped = 0;
1259 usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1260 ep->ep_num = 0;
1261 ep->ep.desc = &mv_ep0_desc;
1262 INIT_LIST_HEAD(&ep->queue);
1263
1264 ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1265
1266 /* initialize other endpoints */
1267 for (i = 2; i < udc->max_eps * 2; i++) {
1268 ep = &udc->eps[i];
1269 if (i % 2) {
1270 snprintf(name, sizeof(name), "ep%din", i / 2);
1271 ep->direction = EP_DIR_IN;
1272 } else {
1273 snprintf(name, sizeof(name), "ep%dout", i / 2);
1274 ep->direction = EP_DIR_OUT;
1275 }
1276 ep->udc = udc;
1277 strncpy(ep->name, name, sizeof(ep->name));
1278 ep->ep.name = ep->name;
1279
1280 ep->ep.ops = &mv_ep_ops;
1281 ep->stopped = 0;
1282 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1283 ep->ep_num = i / 2;
1284
1285 INIT_LIST_HEAD(&ep->queue);
1286 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1287
1288 ep->dqh = &udc->ep_dqh[i];
1289 }
1290
1291 return 0;
1292 }
1293
1294 /* delete all endpoint requests, called with spinlock held */
1295 static void nuke(struct mv_ep *ep, int status)
1296 {
1297 /* called with spinlock held */
1298 ep->stopped = 1;
1299
1300 /* endpoint fifo flush */
1301 mv_ep_fifo_flush(&ep->ep);
1302
1303 while (!list_empty(&ep->queue)) {
1304 struct mv_req *req = NULL;
1305 req = list_entry(ep->queue.next, struct mv_req, queue);
1306 done(ep, req, status);
1307 }
1308 }
1309
1310 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1311 {
1312 struct mv_ep *ep;
1313
1314 nuke(&udc->eps[0], -ESHUTDOWN);
1315
1316 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1317 nuke(ep, -ESHUTDOWN);
1318 }
1319
1320 /* report reset; the driver is already quiesced */
1321 if (driver) {
1322 spin_unlock(&udc->lock);
1323 usb_gadget_udc_reset(&udc->gadget, driver);
1324 spin_lock(&udc->lock);
1325 }
1326 }
1327 /* stop all USB activities */
1328 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1329 {
1330 struct mv_ep *ep;
1331
1332 nuke(&udc->eps[0], -ESHUTDOWN);
1333
1334 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1335 nuke(ep, -ESHUTDOWN);
1336 }
1337
1338 /* report disconnect; the driver is already quiesced */
1339 if (driver) {
1340 spin_unlock(&udc->lock);
1341 driver->disconnect(&udc->gadget);
1342 spin_lock(&udc->lock);
1343 }
1344 }
1345
1346 static int mv_udc_start(struct usb_gadget *gadget,
1347 struct usb_gadget_driver *driver)
1348 {
1349 struct mv_udc *udc;
1350 int retval = 0;
1351 unsigned long flags;
1352
1353 udc = container_of(gadget, struct mv_udc, gadget);
1354
1355 if (udc->driver)
1356 return -EBUSY;
1357
1358 spin_lock_irqsave(&udc->lock, flags);
1359
1360 /* hook up the driver ... */
1361 driver->driver.bus = NULL;
1362 udc->driver = driver;
1363
1364 udc->usb_state = USB_STATE_ATTACHED;
1365 udc->ep0_state = WAIT_FOR_SETUP;
1366 udc->ep0_dir = EP_DIR_OUT;
1367
1368 spin_unlock_irqrestore(&udc->lock, flags);
1369
1370 if (udc->transceiver) {
1371 retval = otg_set_peripheral(udc->transceiver->otg,
1372 &udc->gadget);
1373 if (retval) {
1374 dev_err(&udc->dev->dev,
1375 "unable to register peripheral to otg\n");
1376 udc->driver = NULL;
1377 return retval;
1378 }
1379 }
1380
1381 /* When boot with cable attached, there will be no vbus irq occurred */
1382 if (udc->qwork)
1383 queue_work(udc->qwork, &udc->vbus_work);
1384
1385 return 0;
1386 }
1387
1388 static int mv_udc_stop(struct usb_gadget *gadget)
1389 {
1390 struct mv_udc *udc;
1391 unsigned long flags;
1392
1393 udc = container_of(gadget, struct mv_udc, gadget);
1394
1395 spin_lock_irqsave(&udc->lock, flags);
1396
1397 mv_udc_enable(udc);
1398 udc_stop(udc);
1399
1400 /* stop all usb activities */
1401 udc->gadget.speed = USB_SPEED_UNKNOWN;
1402 stop_activity(udc, NULL);
1403 mv_udc_disable(udc);
1404
1405 spin_unlock_irqrestore(&udc->lock, flags);
1406
1407 /* unbind gadget driver */
1408 udc->driver = NULL;
1409
1410 return 0;
1411 }
1412
1413 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1414 {
1415 u32 portsc;
1416
1417 portsc = readl(&udc->op_regs->portsc[0]);
1418 portsc |= mode << 16;
1419 writel(portsc, &udc->op_regs->portsc[0]);
1420 }
1421
1422 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1423 {
1424 struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1425 struct mv_req *req = container_of(_req, struct mv_req, req);
1426 struct mv_udc *udc;
1427 unsigned long flags;
1428
1429 udc = mvep->udc;
1430
1431 dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1432
1433 spin_lock_irqsave(&udc->lock, flags);
1434 if (req->test_mode) {
1435 mv_set_ptc(udc, req->test_mode);
1436 req->test_mode = 0;
1437 }
1438 spin_unlock_irqrestore(&udc->lock, flags);
1439 }
1440
1441 static int
1442 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1443 {
1444 int retval = 0;
1445 struct mv_req *req;
1446 struct mv_ep *ep;
1447
1448 ep = &udc->eps[0];
1449 udc->ep0_dir = direction;
1450 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1451
1452 req = udc->status_req;
1453
1454 /* fill in the reqest structure */
1455 if (empty == false) {
1456 *((u16 *) req->req.buf) = cpu_to_le16(status);
1457 req->req.length = 2;
1458 } else
1459 req->req.length = 0;
1460
1461 req->ep = ep;
1462 req->req.status = -EINPROGRESS;
1463 req->req.actual = 0;
1464 if (udc->test_mode) {
1465 req->req.complete = prime_status_complete;
1466 req->test_mode = udc->test_mode;
1467 udc->test_mode = 0;
1468 } else
1469 req->req.complete = NULL;
1470 req->dtd_count = 0;
1471
1472 if (req->req.dma == DMA_ADDR_INVALID) {
1473 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1474 req->req.buf, req->req.length,
1475 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1476 req->mapped = 1;
1477 }
1478
1479 /* prime the data phase */
1480 if (!req_to_dtd(req)) {
1481 retval = queue_dtd(ep, req);
1482 if (retval) {
1483 dev_err(&udc->dev->dev,
1484 "Failed to queue dtd when prime status\n");
1485 goto out;
1486 }
1487 } else{ /* no mem */
1488 retval = -ENOMEM;
1489 dev_err(&udc->dev->dev,
1490 "Failed to dma_pool_alloc when prime status\n");
1491 goto out;
1492 }
1493
1494 list_add_tail(&req->queue, &ep->queue);
1495
1496 return 0;
1497 out:
1498 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1499
1500 return retval;
1501 }
1502
1503 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1504 {
1505 if (index <= TEST_FORCE_EN) {
1506 udc->test_mode = index;
1507 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1508 ep0_stall(udc);
1509 } else
1510 dev_err(&udc->dev->dev,
1511 "This test mode(%d) is not supported\n", index);
1512 }
1513
1514 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1515 {
1516 udc->dev_addr = (u8)setup->wValue;
1517
1518 /* update usb state */
1519 udc->usb_state = USB_STATE_ADDRESS;
1520
1521 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1522 ep0_stall(udc);
1523 }
1524
1525 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1526 struct usb_ctrlrequest *setup)
1527 {
1528 u16 status = 0;
1529 int retval;
1530
1531 if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1532 != (USB_DIR_IN | USB_TYPE_STANDARD))
1533 return;
1534
1535 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1536 status = 1 << USB_DEVICE_SELF_POWERED;
1537 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1538 } else if ((setup->bRequestType & USB_RECIP_MASK)
1539 == USB_RECIP_INTERFACE) {
1540 /* get interface status */
1541 status = 0;
1542 } else if ((setup->bRequestType & USB_RECIP_MASK)
1543 == USB_RECIP_ENDPOINT) {
1544 u8 ep_num, direction;
1545
1546 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1547 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1548 ? EP_DIR_IN : EP_DIR_OUT;
1549 status = ep_is_stall(udc, ep_num, direction)
1550 << USB_ENDPOINT_HALT;
1551 }
1552
1553 retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1554 if (retval)
1555 ep0_stall(udc);
1556 else
1557 udc->ep0_state = DATA_STATE_XMIT;
1558 }
1559
1560 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1561 {
1562 u8 ep_num;
1563 u8 direction;
1564 struct mv_ep *ep;
1565
1566 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1567 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1568 switch (setup->wValue) {
1569 case USB_DEVICE_REMOTE_WAKEUP:
1570 udc->remote_wakeup = 0;
1571 break;
1572 default:
1573 goto out;
1574 }
1575 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1576 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1577 switch (setup->wValue) {
1578 case USB_ENDPOINT_HALT:
1579 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1580 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1581 ? EP_DIR_IN : EP_DIR_OUT;
1582 if (setup->wValue != 0 || setup->wLength != 0
1583 || ep_num > udc->max_eps)
1584 goto out;
1585 ep = &udc->eps[ep_num * 2 + direction];
1586 if (ep->wedge == 1)
1587 break;
1588 spin_unlock(&udc->lock);
1589 ep_set_stall(udc, ep_num, direction, 0);
1590 spin_lock(&udc->lock);
1591 break;
1592 default:
1593 goto out;
1594 }
1595 } else
1596 goto out;
1597
1598 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1599 ep0_stall(udc);
1600 out:
1601 return;
1602 }
1603
1604 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1605 {
1606 u8 ep_num;
1607 u8 direction;
1608
1609 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1610 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1611 switch (setup->wValue) {
1612 case USB_DEVICE_REMOTE_WAKEUP:
1613 udc->remote_wakeup = 1;
1614 break;
1615 case USB_DEVICE_TEST_MODE:
1616 if (setup->wIndex & 0xFF
1617 || udc->gadget.speed != USB_SPEED_HIGH)
1618 ep0_stall(udc);
1619
1620 if (udc->usb_state != USB_STATE_CONFIGURED
1621 && udc->usb_state != USB_STATE_ADDRESS
1622 && udc->usb_state != USB_STATE_DEFAULT)
1623 ep0_stall(udc);
1624
1625 mv_udc_testmode(udc, (setup->wIndex >> 8));
1626 goto out;
1627 default:
1628 goto out;
1629 }
1630 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1631 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1632 switch (setup->wValue) {
1633 case USB_ENDPOINT_HALT:
1634 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1635 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1636 ? EP_DIR_IN : EP_DIR_OUT;
1637 if (setup->wValue != 0 || setup->wLength != 0
1638 || ep_num > udc->max_eps)
1639 goto out;
1640 spin_unlock(&udc->lock);
1641 ep_set_stall(udc, ep_num, direction, 1);
1642 spin_lock(&udc->lock);
1643 break;
1644 default:
1645 goto out;
1646 }
1647 } else
1648 goto out;
1649
1650 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1651 ep0_stall(udc);
1652 out:
1653 return;
1654 }
1655
1656 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1657 struct usb_ctrlrequest *setup)
1658 __releases(&ep->udc->lock)
1659 __acquires(&ep->udc->lock)
1660 {
1661 bool delegate = false;
1662
1663 nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1664
1665 dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1666 setup->bRequestType, setup->bRequest,
1667 setup->wValue, setup->wIndex, setup->wLength);
1668 /* We process some standard setup requests here */
1669 if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1670 switch (setup->bRequest) {
1671 case USB_REQ_GET_STATUS:
1672 ch9getstatus(udc, ep_num, setup);
1673 break;
1674
1675 case USB_REQ_SET_ADDRESS:
1676 ch9setaddress(udc, setup);
1677 break;
1678
1679 case USB_REQ_CLEAR_FEATURE:
1680 ch9clearfeature(udc, setup);
1681 break;
1682
1683 case USB_REQ_SET_FEATURE:
1684 ch9setfeature(udc, setup);
1685 break;
1686
1687 default:
1688 delegate = true;
1689 }
1690 } else
1691 delegate = true;
1692
1693 /* delegate USB standard requests to the gadget driver */
1694 if (delegate == true) {
1695 /* USB requests handled by gadget */
1696 if (setup->wLength) {
1697 /* DATA phase from gadget, STATUS phase from udc */
1698 udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1699 ? EP_DIR_IN : EP_DIR_OUT;
1700 spin_unlock(&udc->lock);
1701 if (udc->driver->setup(&udc->gadget,
1702 &udc->local_setup_buff) < 0)
1703 ep0_stall(udc);
1704 spin_lock(&udc->lock);
1705 udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1706 ? DATA_STATE_XMIT : DATA_STATE_RECV;
1707 } else {
1708 /* no DATA phase, IN STATUS phase from gadget */
1709 udc->ep0_dir = EP_DIR_IN;
1710 spin_unlock(&udc->lock);
1711 if (udc->driver->setup(&udc->gadget,
1712 &udc->local_setup_buff) < 0)
1713 ep0_stall(udc);
1714 spin_lock(&udc->lock);
1715 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1716 }
1717 }
1718 }
1719
1720 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1721 static void ep0_req_complete(struct mv_udc *udc,
1722 struct mv_ep *ep0, struct mv_req *req)
1723 {
1724 u32 new_addr;
1725
1726 if (udc->usb_state == USB_STATE_ADDRESS) {
1727 /* set the new address */
1728 new_addr = (u32)udc->dev_addr;
1729 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1730 &udc->op_regs->deviceaddr);
1731 }
1732
1733 done(ep0, req, 0);
1734
1735 switch (udc->ep0_state) {
1736 case DATA_STATE_XMIT:
1737 /* receive status phase */
1738 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1739 ep0_stall(udc);
1740 break;
1741 case DATA_STATE_RECV:
1742 /* send status phase */
1743 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1744 ep0_stall(udc);
1745 break;
1746 case WAIT_FOR_OUT_STATUS:
1747 udc->ep0_state = WAIT_FOR_SETUP;
1748 break;
1749 case WAIT_FOR_SETUP:
1750 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1751 break;
1752 default:
1753 ep0_stall(udc);
1754 break;
1755 }
1756 }
1757
1758 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1759 {
1760 u32 temp;
1761 struct mv_dqh *dqh;
1762
1763 dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1764
1765 /* Clear bit in ENDPTSETUPSTAT */
1766 writel((1 << ep_num), &udc->op_regs->epsetupstat);
1767
1768 /* while a hazard exists when setup package arrives */
1769 do {
1770 /* Set Setup Tripwire */
1771 temp = readl(&udc->op_regs->usbcmd);
1772 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1773
1774 /* Copy the setup packet to local buffer */
1775 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1776 } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1777
1778 /* Clear Setup Tripwire */
1779 temp = readl(&udc->op_regs->usbcmd);
1780 writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1781 }
1782
1783 static void irq_process_tr_complete(struct mv_udc *udc)
1784 {
1785 u32 tmp, bit_pos;
1786 int i, ep_num = 0, direction = 0;
1787 struct mv_ep *curr_ep;
1788 struct mv_req *curr_req, *temp_req;
1789 int status;
1790
1791 /*
1792 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1793 * because the setup packets are to be read ASAP
1794 */
1795
1796 /* Process all Setup packet received interrupts */
1797 tmp = readl(&udc->op_regs->epsetupstat);
1798
1799 if (tmp) {
1800 for (i = 0; i < udc->max_eps; i++) {
1801 if (tmp & (1 << i)) {
1802 get_setup_data(udc, i,
1803 (u8 *)(&udc->local_setup_buff));
1804 handle_setup_packet(udc, i,
1805 &udc->local_setup_buff);
1806 }
1807 }
1808 }
1809
1810 /* Don't clear the endpoint setup status register here.
1811 * It is cleared as a setup packet is read out of the buffer
1812 */
1813
1814 /* Process non-setup transaction complete interrupts */
1815 tmp = readl(&udc->op_regs->epcomplete);
1816
1817 if (!tmp)
1818 return;
1819
1820 writel(tmp, &udc->op_regs->epcomplete);
1821
1822 for (i = 0; i < udc->max_eps * 2; i++) {
1823 ep_num = i >> 1;
1824 direction = i % 2;
1825
1826 bit_pos = 1 << (ep_num + 16 * direction);
1827
1828 if (!(bit_pos & tmp))
1829 continue;
1830
1831 if (i == 1)
1832 curr_ep = &udc->eps[0];
1833 else
1834 curr_ep = &udc->eps[i];
1835 /* process the req queue until an uncomplete request */
1836 list_for_each_entry_safe(curr_req, temp_req,
1837 &curr_ep->queue, queue) {
1838 status = process_ep_req(udc, i, curr_req);
1839 if (status)
1840 break;
1841
1842 /* write back status to req */
1843 curr_req->req.status = status;
1844
1845 /* ep0 request completion */
1846 if (ep_num == 0) {
1847 ep0_req_complete(udc, curr_ep, curr_req);
1848 break;
1849 } else {
1850 done(curr_ep, curr_req, status);
1851 }
1852 }
1853 }
1854 }
1855
1856 static void irq_process_reset(struct mv_udc *udc)
1857 {
1858 u32 tmp;
1859 unsigned int loops;
1860
1861 udc->ep0_dir = EP_DIR_OUT;
1862 udc->ep0_state = WAIT_FOR_SETUP;
1863 udc->remote_wakeup = 0; /* default to 0 on reset */
1864
1865 /* The address bits are past bit 25-31. Set the address */
1866 tmp = readl(&udc->op_regs->deviceaddr);
1867 tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1868 writel(tmp, &udc->op_regs->deviceaddr);
1869
1870 /* Clear all the setup token semaphores */
1871 tmp = readl(&udc->op_regs->epsetupstat);
1872 writel(tmp, &udc->op_regs->epsetupstat);
1873
1874 /* Clear all the endpoint complete status bits */
1875 tmp = readl(&udc->op_regs->epcomplete);
1876 writel(tmp, &udc->op_regs->epcomplete);
1877
1878 /* wait until all endptprime bits cleared */
1879 loops = LOOPS(PRIME_TIMEOUT);
1880 while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1881 if (loops == 0) {
1882 dev_err(&udc->dev->dev,
1883 "Timeout for ENDPTPRIME = 0x%x\n",
1884 readl(&udc->op_regs->epprime));
1885 break;
1886 }
1887 loops--;
1888 udelay(LOOPS_USEC);
1889 }
1890
1891 /* Write 1s to the Flush register */
1892 writel((u32)~0, &udc->op_regs->epflush);
1893
1894 if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1895 dev_info(&udc->dev->dev, "usb bus reset\n");
1896 udc->usb_state = USB_STATE_DEFAULT;
1897 /* reset all the queues, stop all USB activities */
1898 gadget_reset(udc, udc->driver);
1899 } else {
1900 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1901 readl(&udc->op_regs->portsc));
1902
1903 /*
1904 * re-initialize
1905 * controller reset
1906 */
1907 udc_reset(udc);
1908
1909 /* reset all the queues, stop all USB activities */
1910 stop_activity(udc, udc->driver);
1911
1912 /* reset ep0 dQH and endptctrl */
1913 ep0_reset(udc);
1914
1915 /* enable interrupt and set controller to run state */
1916 udc_start(udc);
1917
1918 udc->usb_state = USB_STATE_ATTACHED;
1919 }
1920 }
1921
1922 static void handle_bus_resume(struct mv_udc *udc)
1923 {
1924 udc->usb_state = udc->resume_state;
1925 udc->resume_state = 0;
1926
1927 /* report resume to the driver */
1928 if (udc->driver) {
1929 if (udc->driver->resume) {
1930 spin_unlock(&udc->lock);
1931 udc->driver->resume(&udc->gadget);
1932 spin_lock(&udc->lock);
1933 }
1934 }
1935 }
1936
1937 static void irq_process_suspend(struct mv_udc *udc)
1938 {
1939 udc->resume_state = udc->usb_state;
1940 udc->usb_state = USB_STATE_SUSPENDED;
1941
1942 if (udc->driver->suspend) {
1943 spin_unlock(&udc->lock);
1944 udc->driver->suspend(&udc->gadget);
1945 spin_lock(&udc->lock);
1946 }
1947 }
1948
1949 static void irq_process_port_change(struct mv_udc *udc)
1950 {
1951 u32 portsc;
1952
1953 portsc = readl(&udc->op_regs->portsc[0]);
1954 if (!(portsc & PORTSCX_PORT_RESET)) {
1955 /* Get the speed */
1956 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1957 switch (speed) {
1958 case PORTSCX_PORT_SPEED_HIGH:
1959 udc->gadget.speed = USB_SPEED_HIGH;
1960 break;
1961 case PORTSCX_PORT_SPEED_FULL:
1962 udc->gadget.speed = USB_SPEED_FULL;
1963 break;
1964 case PORTSCX_PORT_SPEED_LOW:
1965 udc->gadget.speed = USB_SPEED_LOW;
1966 break;
1967 default:
1968 udc->gadget.speed = USB_SPEED_UNKNOWN;
1969 break;
1970 }
1971 }
1972
1973 if (portsc & PORTSCX_PORT_SUSPEND) {
1974 udc->resume_state = udc->usb_state;
1975 udc->usb_state = USB_STATE_SUSPENDED;
1976 if (udc->driver->suspend) {
1977 spin_unlock(&udc->lock);
1978 udc->driver->suspend(&udc->gadget);
1979 spin_lock(&udc->lock);
1980 }
1981 }
1982
1983 if (!(portsc & PORTSCX_PORT_SUSPEND)
1984 && udc->usb_state == USB_STATE_SUSPENDED) {
1985 handle_bus_resume(udc);
1986 }
1987
1988 if (!udc->resume_state)
1989 udc->usb_state = USB_STATE_DEFAULT;
1990 }
1991
1992 static void irq_process_error(struct mv_udc *udc)
1993 {
1994 /* Increment the error count */
1995 udc->errors++;
1996 }
1997
1998 static irqreturn_t mv_udc_irq(int irq, void *dev)
1999 {
2000 struct mv_udc *udc = (struct mv_udc *)dev;
2001 u32 status, intr;
2002
2003 /* Disable ISR when stopped bit is set */
2004 if (udc->stopped)
2005 return IRQ_NONE;
2006
2007 spin_lock(&udc->lock);
2008
2009 status = readl(&udc->op_regs->usbsts);
2010 intr = readl(&udc->op_regs->usbintr);
2011 status &= intr;
2012
2013 if (status == 0) {
2014 spin_unlock(&udc->lock);
2015 return IRQ_NONE;
2016 }
2017
2018 /* Clear all the interrupts occurred */
2019 writel(status, &udc->op_regs->usbsts);
2020
2021 if (status & USBSTS_ERR)
2022 irq_process_error(udc);
2023
2024 if (status & USBSTS_RESET)
2025 irq_process_reset(udc);
2026
2027 if (status & USBSTS_PORT_CHANGE)
2028 irq_process_port_change(udc);
2029
2030 if (status & USBSTS_INT)
2031 irq_process_tr_complete(udc);
2032
2033 if (status & USBSTS_SUSPEND)
2034 irq_process_suspend(udc);
2035
2036 spin_unlock(&udc->lock);
2037
2038 return IRQ_HANDLED;
2039 }
2040
2041 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2042 {
2043 struct mv_udc *udc = (struct mv_udc *)dev;
2044
2045 /* polling VBUS and init phy may cause too much time*/
2046 if (udc->qwork)
2047 queue_work(udc->qwork, &udc->vbus_work);
2048
2049 return IRQ_HANDLED;
2050 }
2051
2052 static void mv_udc_vbus_work(struct work_struct *work)
2053 {
2054 struct mv_udc *udc;
2055 unsigned int vbus;
2056
2057 udc = container_of(work, struct mv_udc, vbus_work);
2058 if (!udc->pdata->vbus)
2059 return;
2060
2061 vbus = udc->pdata->vbus->poll();
2062 dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2063
2064 if (vbus == VBUS_HIGH)
2065 mv_udc_vbus_session(&udc->gadget, 1);
2066 else if (vbus == VBUS_LOW)
2067 mv_udc_vbus_session(&udc->gadget, 0);
2068 }
2069
2070 /* release device structure */
2071 static void gadget_release(struct device *_dev)
2072 {
2073 struct mv_udc *udc;
2074
2075 udc = dev_get_drvdata(_dev);
2076
2077 complete(udc->done);
2078 }
2079
2080 static int mv_udc_remove(struct platform_device *pdev)
2081 {
2082 struct mv_udc *udc;
2083
2084 udc = platform_get_drvdata(pdev);
2085
2086 usb_del_gadget_udc(&udc->gadget);
2087
2088 if (udc->qwork) {
2089 flush_workqueue(udc->qwork);
2090 destroy_workqueue(udc->qwork);
2091 }
2092
2093 /* free memory allocated in probe */
2094 if (udc->dtd_pool)
2095 dma_pool_destroy(udc->dtd_pool);
2096
2097 if (udc->ep_dqh)
2098 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2099 udc->ep_dqh, udc->ep_dqh_dma);
2100
2101 mv_udc_disable(udc);
2102
2103 /* free dev, wait for the release() finished */
2104 wait_for_completion(udc->done);
2105
2106 return 0;
2107 }
2108
2109 static int mv_udc_probe(struct platform_device *pdev)
2110 {
2111 struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2112 struct mv_udc *udc;
2113 int retval = 0;
2114 struct resource *r;
2115 size_t size;
2116
2117 if (pdata == NULL) {
2118 dev_err(&pdev->dev, "missing platform_data\n");
2119 return -ENODEV;
2120 }
2121
2122 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2123 if (udc == NULL)
2124 return -ENOMEM;
2125
2126 udc->done = &release_done;
2127 udc->pdata = dev_get_platdata(&pdev->dev);
2128 spin_lock_init(&udc->lock);
2129
2130 udc->dev = pdev;
2131
2132 if (pdata->mode == MV_USB_MODE_OTG) {
2133 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2134 USB_PHY_TYPE_USB2);
2135 if (IS_ERR(udc->transceiver)) {
2136 retval = PTR_ERR(udc->transceiver);
2137
2138 if (retval == -ENXIO)
2139 return retval;
2140
2141 udc->transceiver = NULL;
2142 return -EPROBE_DEFER;
2143 }
2144 }
2145
2146 /* udc only have one sysclk. */
2147 udc->clk = devm_clk_get(&pdev->dev, NULL);
2148 if (IS_ERR(udc->clk))
2149 return PTR_ERR(udc->clk);
2150
2151 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2152 if (r == NULL) {
2153 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2154 return -ENODEV;
2155 }
2156
2157 udc->cap_regs = (struct mv_cap_regs __iomem *)
2158 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2159 if (udc->cap_regs == NULL) {
2160 dev_err(&pdev->dev, "failed to map I/O memory\n");
2161 return -EBUSY;
2162 }
2163
2164 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2165 if (r == NULL) {
2166 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2167 return -ENODEV;
2168 }
2169
2170 udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2171 if (udc->phy_regs == NULL) {
2172 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2173 return -EBUSY;
2174 }
2175
2176 /* we will acces controller register, so enable the clk */
2177 retval = mv_udc_enable_internal(udc);
2178 if (retval)
2179 return retval;
2180
2181 udc->op_regs =
2182 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2183 + (readl(&udc->cap_regs->caplength_hciversion)
2184 & CAPLENGTH_MASK));
2185 udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2186
2187 /*
2188 * some platform will use usb to download image, it may not disconnect
2189 * usb gadget before loading kernel. So first stop udc here.
2190 */
2191 udc_stop(udc);
2192 writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2193
2194 size = udc->max_eps * sizeof(struct mv_dqh) *2;
2195 size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2196 udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2197 &udc->ep_dqh_dma, GFP_KERNEL);
2198
2199 if (udc->ep_dqh == NULL) {
2200 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2201 retval = -ENOMEM;
2202 goto err_disable_clock;
2203 }
2204 udc->ep_dqh_size = size;
2205
2206 /* create dTD dma_pool resource */
2207 udc->dtd_pool = dma_pool_create("mv_dtd",
2208 &pdev->dev,
2209 sizeof(struct mv_dtd),
2210 DTD_ALIGNMENT,
2211 DMA_BOUNDARY);
2212
2213 if (!udc->dtd_pool) {
2214 retval = -ENOMEM;
2215 goto err_free_dma;
2216 }
2217
2218 size = udc->max_eps * sizeof(struct mv_ep) *2;
2219 udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2220 if (udc->eps == NULL) {
2221 retval = -ENOMEM;
2222 goto err_destroy_dma;
2223 }
2224
2225 /* initialize ep0 status request structure */
2226 udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2227 GFP_KERNEL);
2228 if (!udc->status_req) {
2229 retval = -ENOMEM;
2230 goto err_destroy_dma;
2231 }
2232 INIT_LIST_HEAD(&udc->status_req->queue);
2233
2234 /* allocate a small amount of memory to get valid address */
2235 udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2236 udc->status_req->req.dma = DMA_ADDR_INVALID;
2237
2238 udc->resume_state = USB_STATE_NOTATTACHED;
2239 udc->usb_state = USB_STATE_POWERED;
2240 udc->ep0_dir = EP_DIR_OUT;
2241 udc->remote_wakeup = 0;
2242
2243 r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2244 if (r == NULL) {
2245 dev_err(&pdev->dev, "no IRQ resource defined\n");
2246 retval = -ENODEV;
2247 goto err_destroy_dma;
2248 }
2249 udc->irq = r->start;
2250 if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2251 IRQF_SHARED, driver_name, udc)) {
2252 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2253 udc->irq);
2254 retval = -ENODEV;
2255 goto err_destroy_dma;
2256 }
2257
2258 /* initialize gadget structure */
2259 udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
2260 udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
2261 INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
2262 udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
2263 udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2264
2265 /* the "gadget" abstracts/virtualizes the controller */
2266 udc->gadget.name = driver_name; /* gadget name */
2267
2268 eps_init(udc);
2269
2270 /* VBUS detect: we can disable/enable clock on demand.*/
2271 if (udc->transceiver)
2272 udc->clock_gating = 1;
2273 else if (pdata->vbus) {
2274 udc->clock_gating = 1;
2275 retval = devm_request_threaded_irq(&pdev->dev,
2276 pdata->vbus->irq, NULL,
2277 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2278 if (retval) {
2279 dev_info(&pdev->dev,
2280 "Can not request irq for VBUS, "
2281 "disable clock gating\n");
2282 udc->clock_gating = 0;
2283 }
2284
2285 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2286 if (!udc->qwork) {
2287 dev_err(&pdev->dev, "cannot create workqueue\n");
2288 retval = -ENOMEM;
2289 goto err_destroy_dma;
2290 }
2291
2292 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2293 }
2294
2295 /*
2296 * When clock gating is supported, we can disable clk and phy.
2297 * If not, it means that VBUS detection is not supported, we
2298 * have to enable vbus active all the time to let controller work.
2299 */
2300 if (udc->clock_gating)
2301 mv_udc_disable_internal(udc);
2302 else
2303 udc->vbus_active = 1;
2304
2305 retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2306 gadget_release);
2307 if (retval)
2308 goto err_create_workqueue;
2309
2310 platform_set_drvdata(pdev, udc);
2311 dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2312 udc->clock_gating ? "with" : "without");
2313
2314 return 0;
2315
2316 err_create_workqueue:
2317 destroy_workqueue(udc->qwork);
2318 err_destroy_dma:
2319 dma_pool_destroy(udc->dtd_pool);
2320 err_free_dma:
2321 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2322 udc->ep_dqh, udc->ep_dqh_dma);
2323 err_disable_clock:
2324 mv_udc_disable_internal(udc);
2325
2326 return retval;
2327 }
2328
2329 #ifdef CONFIG_PM
2330 static int mv_udc_suspend(struct device *dev)
2331 {
2332 struct mv_udc *udc;
2333
2334 udc = dev_get_drvdata(dev);
2335
2336 /* if OTG is enabled, the following will be done in OTG driver*/
2337 if (udc->transceiver)
2338 return 0;
2339
2340 if (udc->pdata->vbus && udc->pdata->vbus->poll)
2341 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2342 dev_info(&udc->dev->dev, "USB cable is connected!\n");
2343 return -EAGAIN;
2344 }
2345
2346 /*
2347 * only cable is unplugged, udc can suspend.
2348 * So do not care about clock_gating == 1.
2349 */
2350 if (!udc->clock_gating) {
2351 udc_stop(udc);
2352
2353 spin_lock_irq(&udc->lock);
2354 /* stop all usb activities */
2355 stop_activity(udc, udc->driver);
2356 spin_unlock_irq(&udc->lock);
2357
2358 mv_udc_disable_internal(udc);
2359 }
2360
2361 return 0;
2362 }
2363
2364 static int mv_udc_resume(struct device *dev)
2365 {
2366 struct mv_udc *udc;
2367 int retval;
2368
2369 udc = dev_get_drvdata(dev);
2370
2371 /* if OTG is enabled, the following will be done in OTG driver*/
2372 if (udc->transceiver)
2373 return 0;
2374
2375 if (!udc->clock_gating) {
2376 retval = mv_udc_enable_internal(udc);
2377 if (retval)
2378 return retval;
2379
2380 if (udc->driver && udc->softconnect) {
2381 udc_reset(udc);
2382 ep0_reset(udc);
2383 udc_start(udc);
2384 }
2385 }
2386
2387 return 0;
2388 }
2389
2390 static const struct dev_pm_ops mv_udc_pm_ops = {
2391 .suspend = mv_udc_suspend,
2392 .resume = mv_udc_resume,
2393 };
2394 #endif
2395
2396 static void mv_udc_shutdown(struct platform_device *pdev)
2397 {
2398 struct mv_udc *udc;
2399 u32 mode;
2400
2401 udc = platform_get_drvdata(pdev);
2402 /* reset controller mode to IDLE */
2403 mv_udc_enable(udc);
2404 mode = readl(&udc->op_regs->usbmode);
2405 mode &= ~3;
2406 writel(mode, &udc->op_regs->usbmode);
2407 mv_udc_disable(udc);
2408 }
2409
2410 static struct platform_driver udc_driver = {
2411 .probe = mv_udc_probe,
2412 .remove = mv_udc_remove,
2413 .shutdown = mv_udc_shutdown,
2414 .driver = {
2415 .name = "mv-udc",
2416 #ifdef CONFIG_PM
2417 .pm = &mv_udc_pm_ops,
2418 #endif
2419 },
2420 };
2421
2422 module_platform_driver(udc_driver);
2423 MODULE_ALIAS("platform:mv-udc");
2424 MODULE_DESCRIPTION(DRIVER_DESC);
2425 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2426 MODULE_VERSION(DRIVER_VERSION);
2427 MODULE_LICENSE("GPL");
This page took 0.289171 seconds and 6 git commands to generate.