Merge tag 'sound-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[deliverable/linux.git] / drivers / usb / host / ehci-sched.c
1 /*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 /* this file is part of ehci-hcd.c */
21
22 /*-------------------------------------------------------------------------*/
23
24 /*
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
27 *
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
31 *
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
35 */
36
37 static int ehci_get_frame (struct usb_hcd *hcd);
38
39 #ifdef CONFIG_PCI
40
41 static unsigned ehci_read_frame_index(struct ehci_hcd *ehci)
42 {
43 unsigned uf;
44
45 /*
46 * The MosChip MCS9990 controller updates its microframe counter
47 * a little before the frame counter, and occasionally we will read
48 * the invalid intermediate value. Avoid problems by checking the
49 * microframe number (the low-order 3 bits); if they are 0 then
50 * re-read the register to get the correct value.
51 */
52 uf = ehci_readl(ehci, &ehci->regs->frame_index);
53 if (unlikely(ehci->frame_index_bug && ((uf & 7) == 0)))
54 uf = ehci_readl(ehci, &ehci->regs->frame_index);
55 return uf;
56 }
57
58 #endif
59
60 /*-------------------------------------------------------------------------*/
61
62 /*
63 * periodic_next_shadow - return "next" pointer on shadow list
64 * @periodic: host pointer to qh/itd/sitd
65 * @tag: hardware tag for type of this record
66 */
67 static union ehci_shadow *
68 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
69 __hc32 tag)
70 {
71 switch (hc32_to_cpu(ehci, tag)) {
72 case Q_TYPE_QH:
73 return &periodic->qh->qh_next;
74 case Q_TYPE_FSTN:
75 return &periodic->fstn->fstn_next;
76 case Q_TYPE_ITD:
77 return &periodic->itd->itd_next;
78 // case Q_TYPE_SITD:
79 default:
80 return &periodic->sitd->sitd_next;
81 }
82 }
83
84 static __hc32 *
85 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
86 __hc32 tag)
87 {
88 switch (hc32_to_cpu(ehci, tag)) {
89 /* our ehci_shadow.qh is actually software part */
90 case Q_TYPE_QH:
91 return &periodic->qh->hw->hw_next;
92 /* others are hw parts */
93 default:
94 return periodic->hw_next;
95 }
96 }
97
98 /* caller must hold ehci->lock */
99 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
100 {
101 union ehci_shadow *prev_p = &ehci->pshadow[frame];
102 __hc32 *hw_p = &ehci->periodic[frame];
103 union ehci_shadow here = *prev_p;
104
105 /* find predecessor of "ptr"; hw and shadow lists are in sync */
106 while (here.ptr && here.ptr != ptr) {
107 prev_p = periodic_next_shadow(ehci, prev_p,
108 Q_NEXT_TYPE(ehci, *hw_p));
109 hw_p = shadow_next_periodic(ehci, &here,
110 Q_NEXT_TYPE(ehci, *hw_p));
111 here = *prev_p;
112 }
113 /* an interrupt entry (at list end) could have been shared */
114 if (!here.ptr)
115 return;
116
117 /* update shadow and hardware lists ... the old "next" pointers
118 * from ptr may still be in use, the caller updates them.
119 */
120 *prev_p = *periodic_next_shadow(ehci, &here,
121 Q_NEXT_TYPE(ehci, *hw_p));
122
123 if (!ehci->use_dummy_qh ||
124 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
125 != EHCI_LIST_END(ehci))
126 *hw_p = *shadow_next_periodic(ehci, &here,
127 Q_NEXT_TYPE(ehci, *hw_p));
128 else
129 *hw_p = ehci->dummy->qh_dma;
130 }
131
132 /* how many of the uframe's 125 usecs are allocated? */
133 static unsigned short
134 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
135 {
136 __hc32 *hw_p = &ehci->periodic [frame];
137 union ehci_shadow *q = &ehci->pshadow [frame];
138 unsigned usecs = 0;
139 struct ehci_qh_hw *hw;
140
141 while (q->ptr) {
142 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
143 case Q_TYPE_QH:
144 hw = q->qh->hw;
145 /* is it in the S-mask? */
146 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
147 usecs += q->qh->usecs;
148 /* ... or C-mask? */
149 if (hw->hw_info2 & cpu_to_hc32(ehci,
150 1 << (8 + uframe)))
151 usecs += q->qh->c_usecs;
152 hw_p = &hw->hw_next;
153 q = &q->qh->qh_next;
154 break;
155 // case Q_TYPE_FSTN:
156 default:
157 /* for "save place" FSTNs, count the relevant INTR
158 * bandwidth from the previous frame
159 */
160 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
161 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
162 }
163 hw_p = &q->fstn->hw_next;
164 q = &q->fstn->fstn_next;
165 break;
166 case Q_TYPE_ITD:
167 if (q->itd->hw_transaction[uframe])
168 usecs += q->itd->stream->usecs;
169 hw_p = &q->itd->hw_next;
170 q = &q->itd->itd_next;
171 break;
172 case Q_TYPE_SITD:
173 /* is it in the S-mask? (count SPLIT, DATA) */
174 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
175 1 << uframe)) {
176 if (q->sitd->hw_fullspeed_ep &
177 cpu_to_hc32(ehci, 1<<31))
178 usecs += q->sitd->stream->usecs;
179 else /* worst case for OUT start-split */
180 usecs += HS_USECS_ISO (188);
181 }
182
183 /* ... C-mask? (count CSPLIT, DATA) */
184 if (q->sitd->hw_uframe &
185 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
186 /* worst case for IN complete-split */
187 usecs += q->sitd->stream->c_usecs;
188 }
189
190 hw_p = &q->sitd->hw_next;
191 q = &q->sitd->sitd_next;
192 break;
193 }
194 }
195 #ifdef DEBUG
196 if (usecs > ehci->uframe_periodic_max)
197 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
198 frame * 8 + uframe, usecs);
199 #endif
200 return usecs;
201 }
202
203 /*-------------------------------------------------------------------------*/
204
205 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
206 {
207 if (!dev1->tt || !dev2->tt)
208 return 0;
209 if (dev1->tt != dev2->tt)
210 return 0;
211 if (dev1->tt->multi)
212 return dev1->ttport == dev2->ttport;
213 else
214 return 1;
215 }
216
217 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
218
219 /* Which uframe does the low/fullspeed transfer start in?
220 *
221 * The parameter is the mask of ssplits in "H-frame" terms
222 * and this returns the transfer start uframe in "B-frame" terms,
223 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
224 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
225 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
226 */
227 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
228 {
229 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
230 if (!smask) {
231 ehci_err(ehci, "invalid empty smask!\n");
232 /* uframe 7 can't have bw so this will indicate failure */
233 return 7;
234 }
235 return ffs(smask) - 1;
236 }
237
238 static const unsigned char
239 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
240
241 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
242 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
243 {
244 int i;
245 for (i=0; i<7; i++) {
246 if (max_tt_usecs[i] < tt_usecs[i]) {
247 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
248 tt_usecs[i] = max_tt_usecs[i];
249 }
250 }
251 }
252
253 /* How many of the tt's periodic downstream 1000 usecs are allocated?
254 *
255 * While this measures the bandwidth in terms of usecs/uframe,
256 * the low/fullspeed bus has no notion of uframes, so any particular
257 * low/fullspeed transfer can "carry over" from one uframe to the next,
258 * since the TT just performs downstream transfers in sequence.
259 *
260 * For example two separate 100 usec transfers can start in the same uframe,
261 * and the second one would "carry over" 75 usecs into the next uframe.
262 */
263 static void
264 periodic_tt_usecs (
265 struct ehci_hcd *ehci,
266 struct usb_device *dev,
267 unsigned frame,
268 unsigned short tt_usecs[8]
269 )
270 {
271 __hc32 *hw_p = &ehci->periodic [frame];
272 union ehci_shadow *q = &ehci->pshadow [frame];
273 unsigned char uf;
274
275 memset(tt_usecs, 0, 16);
276
277 while (q->ptr) {
278 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
279 case Q_TYPE_ITD:
280 hw_p = &q->itd->hw_next;
281 q = &q->itd->itd_next;
282 continue;
283 case Q_TYPE_QH:
284 if (same_tt(dev, q->qh->dev)) {
285 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
286 tt_usecs[uf] += q->qh->tt_usecs;
287 }
288 hw_p = &q->qh->hw->hw_next;
289 q = &q->qh->qh_next;
290 continue;
291 case Q_TYPE_SITD:
292 if (same_tt(dev, q->sitd->urb->dev)) {
293 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
294 tt_usecs[uf] += q->sitd->stream->tt_usecs;
295 }
296 hw_p = &q->sitd->hw_next;
297 q = &q->sitd->sitd_next;
298 continue;
299 // case Q_TYPE_FSTN:
300 default:
301 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
302 frame);
303 hw_p = &q->fstn->hw_next;
304 q = &q->fstn->fstn_next;
305 }
306 }
307
308 carryover_tt_bandwidth(tt_usecs);
309
310 if (max_tt_usecs[7] < tt_usecs[7])
311 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
312 frame, tt_usecs[7] - max_tt_usecs[7]);
313 }
314
315 /*
316 * Return true if the device's tt's downstream bus is available for a
317 * periodic transfer of the specified length (usecs), starting at the
318 * specified frame/uframe. Note that (as summarized in section 11.19
319 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
320 * uframe.
321 *
322 * The uframe parameter is when the fullspeed/lowspeed transfer
323 * should be executed in "B-frame" terms, which is the same as the
324 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
325 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
326 * See the EHCI spec sec 4.5 and fig 4.7.
327 *
328 * This checks if the full/lowspeed bus, at the specified starting uframe,
329 * has the specified bandwidth available, according to rules listed
330 * in USB 2.0 spec section 11.18.1 fig 11-60.
331 *
332 * This does not check if the transfer would exceed the max ssplit
333 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
334 * since proper scheduling limits ssplits to less than 16 per uframe.
335 */
336 static int tt_available (
337 struct ehci_hcd *ehci,
338 unsigned period,
339 struct usb_device *dev,
340 unsigned frame,
341 unsigned uframe,
342 u16 usecs
343 )
344 {
345 if ((period == 0) || (uframe >= 7)) /* error */
346 return 0;
347
348 for (; frame < ehci->periodic_size; frame += period) {
349 unsigned short tt_usecs[8];
350
351 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
352
353 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
354 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
355 frame, usecs, uframe,
356 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
357 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
358
359 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
360 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
361 frame, uframe);
362 return 0;
363 }
364
365 /* special case for isoc transfers larger than 125us:
366 * the first and each subsequent fully used uframe
367 * must be empty, so as to not illegally delay
368 * already scheduled transactions
369 */
370 if (125 < usecs) {
371 int ufs = (usecs / 125);
372 int i;
373 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
374 if (0 < tt_usecs[i]) {
375 ehci_vdbg(ehci,
376 "multi-uframe xfer can't fit "
377 "in frame %d uframe %d\n",
378 frame, i);
379 return 0;
380 }
381 }
382
383 tt_usecs[uframe] += usecs;
384
385 carryover_tt_bandwidth(tt_usecs);
386
387 /* fail if the carryover pushed bw past the last uframe's limit */
388 if (max_tt_usecs[7] < tt_usecs[7]) {
389 ehci_vdbg(ehci,
390 "tt unavailable usecs %d frame %d uframe %d\n",
391 usecs, frame, uframe);
392 return 0;
393 }
394 }
395
396 return 1;
397 }
398
399 #else
400
401 /* return true iff the device's transaction translator is available
402 * for a periodic transfer starting at the specified frame, using
403 * all the uframes in the mask.
404 */
405 static int tt_no_collision (
406 struct ehci_hcd *ehci,
407 unsigned period,
408 struct usb_device *dev,
409 unsigned frame,
410 u32 uf_mask
411 )
412 {
413 if (period == 0) /* error */
414 return 0;
415
416 /* note bandwidth wastage: split never follows csplit
417 * (different dev or endpoint) until the next uframe.
418 * calling convention doesn't make that distinction.
419 */
420 for (; frame < ehci->periodic_size; frame += period) {
421 union ehci_shadow here;
422 __hc32 type;
423 struct ehci_qh_hw *hw;
424
425 here = ehci->pshadow [frame];
426 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
427 while (here.ptr) {
428 switch (hc32_to_cpu(ehci, type)) {
429 case Q_TYPE_ITD:
430 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
431 here = here.itd->itd_next;
432 continue;
433 case Q_TYPE_QH:
434 hw = here.qh->hw;
435 if (same_tt (dev, here.qh->dev)) {
436 u32 mask;
437
438 mask = hc32_to_cpu(ehci,
439 hw->hw_info2);
440 /* "knows" no gap is needed */
441 mask |= mask >> 8;
442 if (mask & uf_mask)
443 break;
444 }
445 type = Q_NEXT_TYPE(ehci, hw->hw_next);
446 here = here.qh->qh_next;
447 continue;
448 case Q_TYPE_SITD:
449 if (same_tt (dev, here.sitd->urb->dev)) {
450 u16 mask;
451
452 mask = hc32_to_cpu(ehci, here.sitd
453 ->hw_uframe);
454 /* FIXME assumes no gap for IN! */
455 mask |= mask >> 8;
456 if (mask & uf_mask)
457 break;
458 }
459 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
460 here = here.sitd->sitd_next;
461 continue;
462 // case Q_TYPE_FSTN:
463 default:
464 ehci_dbg (ehci,
465 "periodic frame %d bogus type %d\n",
466 frame, type);
467 }
468
469 /* collision or error */
470 return 0;
471 }
472 }
473
474 /* no collision */
475 return 1;
476 }
477
478 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
479
480 /*-------------------------------------------------------------------------*/
481
482 static void enable_periodic(struct ehci_hcd *ehci)
483 {
484 if (ehci->periodic_count++)
485 return;
486
487 /* Stop waiting to turn off the periodic schedule */
488 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
489
490 /* Don't start the schedule until PSS is 0 */
491 ehci_poll_PSS(ehci);
492 turn_on_io_watchdog(ehci);
493 }
494
495 static void disable_periodic(struct ehci_hcd *ehci)
496 {
497 if (--ehci->periodic_count)
498 return;
499
500 /* Don't turn off the schedule until PSS is 1 */
501 ehci_poll_PSS(ehci);
502 }
503
504 /*-------------------------------------------------------------------------*/
505
506 /* periodic schedule slots have iso tds (normal or split) first, then a
507 * sparse tree for active interrupt transfers.
508 *
509 * this just links in a qh; caller guarantees uframe masks are set right.
510 * no FSTN support (yet; ehci 0.96+)
511 */
512 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
513 {
514 unsigned i;
515 unsigned period = qh->period;
516
517 dev_dbg (&qh->dev->dev,
518 "link qh%d-%04x/%p start %d [%d/%d us]\n",
519 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
520 & (QH_CMASK | QH_SMASK),
521 qh, qh->start, qh->usecs, qh->c_usecs);
522
523 /* high bandwidth, or otherwise every microframe */
524 if (period == 0)
525 period = 1;
526
527 for (i = qh->start; i < ehci->periodic_size; i += period) {
528 union ehci_shadow *prev = &ehci->pshadow[i];
529 __hc32 *hw_p = &ehci->periodic[i];
530 union ehci_shadow here = *prev;
531 __hc32 type = 0;
532
533 /* skip the iso nodes at list head */
534 while (here.ptr) {
535 type = Q_NEXT_TYPE(ehci, *hw_p);
536 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
537 break;
538 prev = periodic_next_shadow(ehci, prev, type);
539 hw_p = shadow_next_periodic(ehci, &here, type);
540 here = *prev;
541 }
542
543 /* sorting each branch by period (slow-->fast)
544 * enables sharing interior tree nodes
545 */
546 while (here.ptr && qh != here.qh) {
547 if (qh->period > here.qh->period)
548 break;
549 prev = &here.qh->qh_next;
550 hw_p = &here.qh->hw->hw_next;
551 here = *prev;
552 }
553 /* link in this qh, unless some earlier pass did that */
554 if (qh != here.qh) {
555 qh->qh_next = here;
556 if (here.qh)
557 qh->hw->hw_next = *hw_p;
558 wmb ();
559 prev->qh = qh;
560 *hw_p = QH_NEXT (ehci, qh->qh_dma);
561 }
562 }
563 qh->qh_state = QH_STATE_LINKED;
564 qh->xacterrs = 0;
565
566 /* update per-qh bandwidth for usbfs */
567 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
568 ? ((qh->usecs + qh->c_usecs) / qh->period)
569 : (qh->usecs * 8);
570
571 list_add(&qh->intr_node, &ehci->intr_qh_list);
572
573 /* maybe enable periodic schedule processing */
574 ++ehci->intr_count;
575 enable_periodic(ehci);
576 }
577
578 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
579 {
580 unsigned i;
581 unsigned period;
582
583 /*
584 * If qh is for a low/full-speed device, simply unlinking it
585 * could interfere with an ongoing split transaction. To unlink
586 * it safely would require setting the QH_INACTIVATE bit and
587 * waiting at least one frame, as described in EHCI 4.12.2.5.
588 *
589 * We won't bother with any of this. Instead, we assume that the
590 * only reason for unlinking an interrupt QH while the current URB
591 * is still active is to dequeue all the URBs (flush the whole
592 * endpoint queue).
593 *
594 * If rebalancing the periodic schedule is ever implemented, this
595 * approach will no longer be valid.
596 */
597
598 /* high bandwidth, or otherwise part of every microframe */
599 if ((period = qh->period) == 0)
600 period = 1;
601
602 for (i = qh->start; i < ehci->periodic_size; i += period)
603 periodic_unlink (ehci, i, qh);
604
605 /* update per-qh bandwidth for usbfs */
606 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
607 ? ((qh->usecs + qh->c_usecs) / qh->period)
608 : (qh->usecs * 8);
609
610 dev_dbg (&qh->dev->dev,
611 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
612 qh->period,
613 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
614 qh, qh->start, qh->usecs, qh->c_usecs);
615
616 /* qh->qh_next still "live" to HC */
617 qh->qh_state = QH_STATE_UNLINK;
618 qh->qh_next.ptr = NULL;
619
620 if (ehci->qh_scan_next == qh)
621 ehci->qh_scan_next = list_entry(qh->intr_node.next,
622 struct ehci_qh, intr_node);
623 list_del(&qh->intr_node);
624 }
625
626 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
627 {
628 /* If the QH isn't linked then there's nothing we can do
629 * unless we were called during a giveback, in which case
630 * qh_completions() has to deal with it.
631 */
632 if (qh->qh_state != QH_STATE_LINKED) {
633 if (qh->qh_state == QH_STATE_COMPLETING)
634 qh->needs_rescan = 1;
635 return;
636 }
637
638 qh_unlink_periodic (ehci, qh);
639
640 /* Make sure the unlinks are visible before starting the timer */
641 wmb();
642
643 /*
644 * The EHCI spec doesn't say how long it takes the controller to
645 * stop accessing an unlinked interrupt QH. The timer delay is
646 * 9 uframes; presumably that will be long enough.
647 */
648 qh->unlink_cycle = ehci->intr_unlink_cycle;
649
650 /* New entries go at the end of the intr_unlink list */
651 if (ehci->intr_unlink)
652 ehci->intr_unlink_last->unlink_next = qh;
653 else
654 ehci->intr_unlink = qh;
655 ehci->intr_unlink_last = qh;
656
657 if (ehci->intr_unlinking)
658 ; /* Avoid recursive calls */
659 else if (ehci->rh_state < EHCI_RH_RUNNING)
660 ehci_handle_intr_unlinks(ehci);
661 else if (ehci->intr_unlink == qh) {
662 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
663 ++ehci->intr_unlink_cycle;
664 }
665 }
666
667 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
668 {
669 struct ehci_qh_hw *hw = qh->hw;
670 int rc;
671
672 qh->qh_state = QH_STATE_IDLE;
673 hw->hw_next = EHCI_LIST_END(ehci);
674
675 qh_completions(ehci, qh);
676
677 /* reschedule QH iff another request is queued */
678 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
679 rc = qh_schedule(ehci, qh);
680
681 /* An error here likely indicates handshake failure
682 * or no space left in the schedule. Neither fault
683 * should happen often ...
684 *
685 * FIXME kill the now-dysfunctional queued urbs
686 */
687 if (rc != 0)
688 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
689 qh, rc);
690 }
691
692 /* maybe turn off periodic schedule */
693 --ehci->intr_count;
694 disable_periodic(ehci);
695 }
696
697 /*-------------------------------------------------------------------------*/
698
699 static int check_period (
700 struct ehci_hcd *ehci,
701 unsigned frame,
702 unsigned uframe,
703 unsigned period,
704 unsigned usecs
705 ) {
706 int claimed;
707
708 /* complete split running into next frame?
709 * given FSTN support, we could sometimes check...
710 */
711 if (uframe >= 8)
712 return 0;
713
714 /* convert "usecs we need" to "max already claimed" */
715 usecs = ehci->uframe_periodic_max - usecs;
716
717 /* we "know" 2 and 4 uframe intervals were rejected; so
718 * for period 0, check _every_ microframe in the schedule.
719 */
720 if (unlikely (period == 0)) {
721 do {
722 for (uframe = 0; uframe < 7; uframe++) {
723 claimed = periodic_usecs (ehci, frame, uframe);
724 if (claimed > usecs)
725 return 0;
726 }
727 } while ((frame += 1) < ehci->periodic_size);
728
729 /* just check the specified uframe, at that period */
730 } else {
731 do {
732 claimed = periodic_usecs (ehci, frame, uframe);
733 if (claimed > usecs)
734 return 0;
735 } while ((frame += period) < ehci->periodic_size);
736 }
737
738 // success!
739 return 1;
740 }
741
742 static int check_intr_schedule (
743 struct ehci_hcd *ehci,
744 unsigned frame,
745 unsigned uframe,
746 const struct ehci_qh *qh,
747 __hc32 *c_maskp
748 )
749 {
750 int retval = -ENOSPC;
751 u8 mask = 0;
752
753 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
754 goto done;
755
756 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
757 goto done;
758 if (!qh->c_usecs) {
759 retval = 0;
760 *c_maskp = 0;
761 goto done;
762 }
763
764 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
765 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
766 qh->tt_usecs)) {
767 unsigned i;
768
769 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
770 for (i=uframe+1; i<8 && i<uframe+4; i++)
771 if (!check_period (ehci, frame, i,
772 qh->period, qh->c_usecs))
773 goto done;
774 else
775 mask |= 1 << i;
776
777 retval = 0;
778
779 *c_maskp = cpu_to_hc32(ehci, mask << 8);
780 }
781 #else
782 /* Make sure this tt's buffer is also available for CSPLITs.
783 * We pessimize a bit; probably the typical full speed case
784 * doesn't need the second CSPLIT.
785 *
786 * NOTE: both SPLIT and CSPLIT could be checked in just
787 * one smart pass...
788 */
789 mask = 0x03 << (uframe + qh->gap_uf);
790 *c_maskp = cpu_to_hc32(ehci, mask << 8);
791
792 mask |= 1 << uframe;
793 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
794 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
795 qh->period, qh->c_usecs))
796 goto done;
797 if (!check_period (ehci, frame, uframe + qh->gap_uf,
798 qh->period, qh->c_usecs))
799 goto done;
800 retval = 0;
801 }
802 #endif
803 done:
804 return retval;
805 }
806
807 /* "first fit" scheduling policy used the first time through,
808 * or when the previous schedule slot can't be re-used.
809 */
810 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
811 {
812 int status;
813 unsigned uframe;
814 __hc32 c_mask;
815 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
816 struct ehci_qh_hw *hw = qh->hw;
817
818 qh_refresh(ehci, qh);
819 hw->hw_next = EHCI_LIST_END(ehci);
820 frame = qh->start;
821
822 /* reuse the previous schedule slots, if we can */
823 if (frame < qh->period) {
824 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
825 status = check_intr_schedule (ehci, frame, --uframe,
826 qh, &c_mask);
827 } else {
828 uframe = 0;
829 c_mask = 0;
830 status = -ENOSPC;
831 }
832
833 /* else scan the schedule to find a group of slots such that all
834 * uframes have enough periodic bandwidth available.
835 */
836 if (status) {
837 /* "normal" case, uframing flexible except with splits */
838 if (qh->period) {
839 int i;
840
841 for (i = qh->period; status && i > 0; --i) {
842 frame = ++ehci->random_frame % qh->period;
843 for (uframe = 0; uframe < 8; uframe++) {
844 status = check_intr_schedule (ehci,
845 frame, uframe, qh,
846 &c_mask);
847 if (status == 0)
848 break;
849 }
850 }
851
852 /* qh->period == 0 means every uframe */
853 } else {
854 frame = 0;
855 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
856 }
857 if (status)
858 goto done;
859 qh->start = frame;
860
861 /* reset S-frame and (maybe) C-frame masks */
862 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
863 hw->hw_info2 |= qh->period
864 ? cpu_to_hc32(ehci, 1 << uframe)
865 : cpu_to_hc32(ehci, QH_SMASK);
866 hw->hw_info2 |= c_mask;
867 } else
868 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
869
870 /* stuff into the periodic schedule */
871 qh_link_periodic(ehci, qh);
872 done:
873 return status;
874 }
875
876 static int intr_submit (
877 struct ehci_hcd *ehci,
878 struct urb *urb,
879 struct list_head *qtd_list,
880 gfp_t mem_flags
881 ) {
882 unsigned epnum;
883 unsigned long flags;
884 struct ehci_qh *qh;
885 int status;
886 struct list_head empty;
887
888 /* get endpoint and transfer/schedule data */
889 epnum = urb->ep->desc.bEndpointAddress;
890
891 spin_lock_irqsave (&ehci->lock, flags);
892
893 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
894 status = -ESHUTDOWN;
895 goto done_not_linked;
896 }
897 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
898 if (unlikely(status))
899 goto done_not_linked;
900
901 /* get qh and force any scheduling errors */
902 INIT_LIST_HEAD (&empty);
903 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
904 if (qh == NULL) {
905 status = -ENOMEM;
906 goto done;
907 }
908 if (qh->qh_state == QH_STATE_IDLE) {
909 if ((status = qh_schedule (ehci, qh)) != 0)
910 goto done;
911 }
912
913 /* then queue the urb's tds to the qh */
914 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
915 BUG_ON (qh == NULL);
916
917 /* ... update usbfs periodic stats */
918 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
919
920 done:
921 if (unlikely(status))
922 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
923 done_not_linked:
924 spin_unlock_irqrestore (&ehci->lock, flags);
925 if (status)
926 qtd_list_free (ehci, urb, qtd_list);
927
928 return status;
929 }
930
931 static void scan_intr(struct ehci_hcd *ehci)
932 {
933 struct ehci_qh *qh;
934
935 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
936 intr_node) {
937 rescan:
938 /* clean any finished work for this qh */
939 if (!list_empty(&qh->qtd_list)) {
940 int temp;
941
942 /*
943 * Unlinks could happen here; completion reporting
944 * drops the lock. That's why ehci->qh_scan_next
945 * always holds the next qh to scan; if the next qh
946 * gets unlinked then ehci->qh_scan_next is adjusted
947 * in qh_unlink_periodic().
948 */
949 temp = qh_completions(ehci, qh);
950 if (unlikely(qh->needs_rescan ||
951 (list_empty(&qh->qtd_list) &&
952 qh->qh_state == QH_STATE_LINKED)))
953 start_unlink_intr(ehci, qh);
954 else if (temp != 0)
955 goto rescan;
956 }
957 }
958 }
959
960 /*-------------------------------------------------------------------------*/
961
962 /* ehci_iso_stream ops work with both ITD and SITD */
963
964 static struct ehci_iso_stream *
965 iso_stream_alloc (gfp_t mem_flags)
966 {
967 struct ehci_iso_stream *stream;
968
969 stream = kzalloc(sizeof *stream, mem_flags);
970 if (likely (stream != NULL)) {
971 INIT_LIST_HEAD(&stream->td_list);
972 INIT_LIST_HEAD(&stream->free_list);
973 stream->next_uframe = -1;
974 }
975 return stream;
976 }
977
978 static void
979 iso_stream_init (
980 struct ehci_hcd *ehci,
981 struct ehci_iso_stream *stream,
982 struct usb_device *dev,
983 int pipe,
984 unsigned interval
985 )
986 {
987 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
988
989 u32 buf1;
990 unsigned epnum, maxp;
991 int is_input;
992 long bandwidth;
993
994 /*
995 * this might be a "high bandwidth" highspeed endpoint,
996 * as encoded in the ep descriptor's wMaxPacket field
997 */
998 epnum = usb_pipeendpoint (pipe);
999 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
1000 maxp = usb_maxpacket(dev, pipe, !is_input);
1001 if (is_input) {
1002 buf1 = (1 << 11);
1003 } else {
1004 buf1 = 0;
1005 }
1006
1007 /* knows about ITD vs SITD */
1008 if (dev->speed == USB_SPEED_HIGH) {
1009 unsigned multi = hb_mult(maxp);
1010
1011 stream->highspeed = 1;
1012
1013 maxp = max_packet(maxp);
1014 buf1 |= maxp;
1015 maxp *= multi;
1016
1017 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1018 stream->buf1 = cpu_to_hc32(ehci, buf1);
1019 stream->buf2 = cpu_to_hc32(ehci, multi);
1020
1021 /* usbfs wants to report the average usecs per frame tied up
1022 * when transfers on this endpoint are scheduled ...
1023 */
1024 stream->usecs = HS_USECS_ISO (maxp);
1025 bandwidth = stream->usecs * 8;
1026 bandwidth /= interval;
1027
1028 } else {
1029 u32 addr;
1030 int think_time;
1031 int hs_transfers;
1032
1033 addr = dev->ttport << 24;
1034 if (!ehci_is_TDI(ehci)
1035 || (dev->tt->hub !=
1036 ehci_to_hcd(ehci)->self.root_hub))
1037 addr |= dev->tt->hub->devnum << 16;
1038 addr |= epnum << 8;
1039 addr |= dev->devnum;
1040 stream->usecs = HS_USECS_ISO (maxp);
1041 think_time = dev->tt ? dev->tt->think_time : 0;
1042 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1043 dev->speed, is_input, 1, maxp));
1044 hs_transfers = max (1u, (maxp + 187) / 188);
1045 if (is_input) {
1046 u32 tmp;
1047
1048 addr |= 1 << 31;
1049 stream->c_usecs = stream->usecs;
1050 stream->usecs = HS_USECS_ISO (1);
1051 stream->raw_mask = 1;
1052
1053 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1054 tmp = (1 << (hs_transfers + 2)) - 1;
1055 stream->raw_mask |= tmp << (8 + 2);
1056 } else
1057 stream->raw_mask = smask_out [hs_transfers - 1];
1058 bandwidth = stream->usecs + stream->c_usecs;
1059 bandwidth /= interval << 3;
1060
1061 /* stream->splits gets created from raw_mask later */
1062 stream->address = cpu_to_hc32(ehci, addr);
1063 }
1064 stream->bandwidth = bandwidth;
1065
1066 stream->udev = dev;
1067
1068 stream->bEndpointAddress = is_input | epnum;
1069 stream->interval = interval;
1070 stream->maxp = maxp;
1071 }
1072
1073 static struct ehci_iso_stream *
1074 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1075 {
1076 unsigned epnum;
1077 struct ehci_iso_stream *stream;
1078 struct usb_host_endpoint *ep;
1079 unsigned long flags;
1080
1081 epnum = usb_pipeendpoint (urb->pipe);
1082 if (usb_pipein(urb->pipe))
1083 ep = urb->dev->ep_in[epnum];
1084 else
1085 ep = urb->dev->ep_out[epnum];
1086
1087 spin_lock_irqsave (&ehci->lock, flags);
1088 stream = ep->hcpriv;
1089
1090 if (unlikely (stream == NULL)) {
1091 stream = iso_stream_alloc(GFP_ATOMIC);
1092 if (likely (stream != NULL)) {
1093 ep->hcpriv = stream;
1094 stream->ep = ep;
1095 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1096 urb->interval);
1097 }
1098
1099 /* if dev->ep [epnum] is a QH, hw is set */
1100 } else if (unlikely (stream->hw != NULL)) {
1101 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1102 urb->dev->devpath, epnum,
1103 usb_pipein(urb->pipe) ? "in" : "out");
1104 stream = NULL;
1105 }
1106
1107 spin_unlock_irqrestore (&ehci->lock, flags);
1108 return stream;
1109 }
1110
1111 /*-------------------------------------------------------------------------*/
1112
1113 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1114
1115 static struct ehci_iso_sched *
1116 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1117 {
1118 struct ehci_iso_sched *iso_sched;
1119 int size = sizeof *iso_sched;
1120
1121 size += packets * sizeof (struct ehci_iso_packet);
1122 iso_sched = kzalloc(size, mem_flags);
1123 if (likely (iso_sched != NULL)) {
1124 INIT_LIST_HEAD (&iso_sched->td_list);
1125 }
1126 return iso_sched;
1127 }
1128
1129 static inline void
1130 itd_sched_init(
1131 struct ehci_hcd *ehci,
1132 struct ehci_iso_sched *iso_sched,
1133 struct ehci_iso_stream *stream,
1134 struct urb *urb
1135 )
1136 {
1137 unsigned i;
1138 dma_addr_t dma = urb->transfer_dma;
1139
1140 /* how many uframes are needed for these transfers */
1141 iso_sched->span = urb->number_of_packets * stream->interval;
1142
1143 /* figure out per-uframe itd fields that we'll need later
1144 * when we fit new itds into the schedule.
1145 */
1146 for (i = 0; i < urb->number_of_packets; i++) {
1147 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1148 unsigned length;
1149 dma_addr_t buf;
1150 u32 trans;
1151
1152 length = urb->iso_frame_desc [i].length;
1153 buf = dma + urb->iso_frame_desc [i].offset;
1154
1155 trans = EHCI_ISOC_ACTIVE;
1156 trans |= buf & 0x0fff;
1157 if (unlikely (((i + 1) == urb->number_of_packets))
1158 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1159 trans |= EHCI_ITD_IOC;
1160 trans |= length << 16;
1161 uframe->transaction = cpu_to_hc32(ehci, trans);
1162
1163 /* might need to cross a buffer page within a uframe */
1164 uframe->bufp = (buf & ~(u64)0x0fff);
1165 buf += length;
1166 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1167 uframe->cross = 1;
1168 }
1169 }
1170
1171 static void
1172 iso_sched_free (
1173 struct ehci_iso_stream *stream,
1174 struct ehci_iso_sched *iso_sched
1175 )
1176 {
1177 if (!iso_sched)
1178 return;
1179 // caller must hold ehci->lock!
1180 list_splice (&iso_sched->td_list, &stream->free_list);
1181 kfree (iso_sched);
1182 }
1183
1184 static int
1185 itd_urb_transaction (
1186 struct ehci_iso_stream *stream,
1187 struct ehci_hcd *ehci,
1188 struct urb *urb,
1189 gfp_t mem_flags
1190 )
1191 {
1192 struct ehci_itd *itd;
1193 dma_addr_t itd_dma;
1194 int i;
1195 unsigned num_itds;
1196 struct ehci_iso_sched *sched;
1197 unsigned long flags;
1198
1199 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1200 if (unlikely (sched == NULL))
1201 return -ENOMEM;
1202
1203 itd_sched_init(ehci, sched, stream, urb);
1204
1205 if (urb->interval < 8)
1206 num_itds = 1 + (sched->span + 7) / 8;
1207 else
1208 num_itds = urb->number_of_packets;
1209
1210 /* allocate/init ITDs */
1211 spin_lock_irqsave (&ehci->lock, flags);
1212 for (i = 0; i < num_itds; i++) {
1213
1214 /*
1215 * Use iTDs from the free list, but not iTDs that may
1216 * still be in use by the hardware.
1217 */
1218 if (likely(!list_empty(&stream->free_list))) {
1219 itd = list_first_entry(&stream->free_list,
1220 struct ehci_itd, itd_list);
1221 if (itd->frame == ehci->now_frame)
1222 goto alloc_itd;
1223 list_del (&itd->itd_list);
1224 itd_dma = itd->itd_dma;
1225 } else {
1226 alloc_itd:
1227 spin_unlock_irqrestore (&ehci->lock, flags);
1228 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1229 &itd_dma);
1230 spin_lock_irqsave (&ehci->lock, flags);
1231 if (!itd) {
1232 iso_sched_free(stream, sched);
1233 spin_unlock_irqrestore(&ehci->lock, flags);
1234 return -ENOMEM;
1235 }
1236 }
1237
1238 memset (itd, 0, sizeof *itd);
1239 itd->itd_dma = itd_dma;
1240 list_add (&itd->itd_list, &sched->td_list);
1241 }
1242 spin_unlock_irqrestore (&ehci->lock, flags);
1243
1244 /* temporarily store schedule info in hcpriv */
1245 urb->hcpriv = sched;
1246 urb->error_count = 0;
1247 return 0;
1248 }
1249
1250 /*-------------------------------------------------------------------------*/
1251
1252 static inline int
1253 itd_slot_ok (
1254 struct ehci_hcd *ehci,
1255 u32 mod,
1256 u32 uframe,
1257 u8 usecs,
1258 u32 period
1259 )
1260 {
1261 uframe %= period;
1262 do {
1263 /* can't commit more than uframe_periodic_max usec */
1264 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1265 > (ehci->uframe_periodic_max - usecs))
1266 return 0;
1267
1268 /* we know urb->interval is 2^N uframes */
1269 uframe += period;
1270 } while (uframe < mod);
1271 return 1;
1272 }
1273
1274 static inline int
1275 sitd_slot_ok (
1276 struct ehci_hcd *ehci,
1277 u32 mod,
1278 struct ehci_iso_stream *stream,
1279 u32 uframe,
1280 struct ehci_iso_sched *sched,
1281 u32 period_uframes
1282 )
1283 {
1284 u32 mask, tmp;
1285 u32 frame, uf;
1286
1287 mask = stream->raw_mask << (uframe & 7);
1288
1289 /* for IN, don't wrap CSPLIT into the next frame */
1290 if (mask & ~0xffff)
1291 return 0;
1292
1293 /* check bandwidth */
1294 uframe %= period_uframes;
1295 frame = uframe >> 3;
1296
1297 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1298 /* The tt's fullspeed bus bandwidth must be available.
1299 * tt_available scheduling guarantees 10+% for control/bulk.
1300 */
1301 uf = uframe & 7;
1302 if (!tt_available(ehci, period_uframes >> 3,
1303 stream->udev, frame, uf, stream->tt_usecs))
1304 return 0;
1305 #else
1306 /* tt must be idle for start(s), any gap, and csplit.
1307 * assume scheduling slop leaves 10+% for control/bulk.
1308 */
1309 if (!tt_no_collision(ehci, period_uframes >> 3,
1310 stream->udev, frame, mask))
1311 return 0;
1312 #endif
1313
1314 /* this multi-pass logic is simple, but performance may
1315 * suffer when the schedule data isn't cached.
1316 */
1317 do {
1318 u32 max_used;
1319
1320 frame = uframe >> 3;
1321 uf = uframe & 7;
1322
1323 /* check starts (OUT uses more than one) */
1324 max_used = ehci->uframe_periodic_max - stream->usecs;
1325 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1326 if (periodic_usecs (ehci, frame, uf) > max_used)
1327 return 0;
1328 }
1329
1330 /* for IN, check CSPLIT */
1331 if (stream->c_usecs) {
1332 uf = uframe & 7;
1333 max_used = ehci->uframe_periodic_max - stream->c_usecs;
1334 do {
1335 tmp = 1 << uf;
1336 tmp <<= 8;
1337 if ((stream->raw_mask & tmp) == 0)
1338 continue;
1339 if (periodic_usecs (ehci, frame, uf)
1340 > max_used)
1341 return 0;
1342 } while (++uf < 8);
1343 }
1344
1345 /* we know urb->interval is 2^N uframes */
1346 uframe += period_uframes;
1347 } while (uframe < mod);
1348
1349 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1350 return 1;
1351 }
1352
1353 /*
1354 * This scheduler plans almost as far into the future as it has actual
1355 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1356 * "as small as possible" to be cache-friendlier.) That limits the size
1357 * transfers you can stream reliably; avoid more than 64 msec per urb.
1358 * Also avoid queue depths of less than ehci's worst irq latency (affected
1359 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1360 * and other factors); or more than about 230 msec total (for portability,
1361 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1362 */
1363
1364 #define SCHEDULE_SLOP 80 /* microframes */
1365
1366 static int
1367 iso_stream_schedule (
1368 struct ehci_hcd *ehci,
1369 struct urb *urb,
1370 struct ehci_iso_stream *stream
1371 )
1372 {
1373 u32 now, next, start, period, span;
1374 int status;
1375 unsigned mod = ehci->periodic_size << 3;
1376 struct ehci_iso_sched *sched = urb->hcpriv;
1377
1378 period = urb->interval;
1379 span = sched->span;
1380 if (!stream->highspeed) {
1381 period <<= 3;
1382 span <<= 3;
1383 }
1384
1385 if (span > mod - SCHEDULE_SLOP) {
1386 ehci_dbg (ehci, "iso request %p too long\n", urb);
1387 status = -EFBIG;
1388 goto fail;
1389 }
1390
1391 now = ehci_read_frame_index(ehci) & (mod - 1);
1392
1393 /* Typical case: reuse current schedule, stream is still active.
1394 * Hopefully there are no gaps from the host falling behind
1395 * (irq delays etc), but if there are we'll take the next
1396 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1397 */
1398 if (likely (!list_empty (&stream->td_list))) {
1399 u32 excess;
1400
1401 /* For high speed devices, allow scheduling within the
1402 * isochronous scheduling threshold. For full speed devices
1403 * and Intel PCI-based controllers, don't (work around for
1404 * Intel ICH9 bug).
1405 */
1406 if (!stream->highspeed && ehci->fs_i_thresh)
1407 next = now + ehci->i_thresh;
1408 else
1409 next = now;
1410
1411 /* Fell behind (by up to twice the slop amount)?
1412 * We decide based on the time of the last currently-scheduled
1413 * slot, not the time of the next available slot.
1414 */
1415 excess = (stream->next_uframe - period - next) & (mod - 1);
1416 if (excess >= mod - 2 * SCHEDULE_SLOP)
1417 start = next + excess - mod + period *
1418 DIV_ROUND_UP(mod - excess, period);
1419 else
1420 start = next + excess + period;
1421 if (start - now >= mod) {
1422 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1423 urb, start - now - period, period,
1424 mod);
1425 status = -EFBIG;
1426 goto fail;
1427 }
1428 }
1429
1430 /* need to schedule; when's the next (u)frame we could start?
1431 * this is bigger than ehci->i_thresh allows; scheduling itself
1432 * isn't free, the slop should handle reasonably slow cpus. it
1433 * can also help high bandwidth if the dma and irq loads don't
1434 * jump until after the queue is primed.
1435 */
1436 else {
1437 int done = 0;
1438 start = SCHEDULE_SLOP + (now & ~0x07);
1439
1440 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
1441
1442 /* find a uframe slot with enough bandwidth.
1443 * Early uframes are more precious because full-speed
1444 * iso IN transfers can't use late uframes,
1445 * and therefore they should be allocated last.
1446 */
1447 next = start;
1448 start += period;
1449 do {
1450 start--;
1451 /* check schedule: enough space? */
1452 if (stream->highspeed) {
1453 if (itd_slot_ok(ehci, mod, start,
1454 stream->usecs, period))
1455 done = 1;
1456 } else {
1457 if ((start % 8) >= 6)
1458 continue;
1459 if (sitd_slot_ok(ehci, mod, stream,
1460 start, sched, period))
1461 done = 1;
1462 }
1463 } while (start > next && !done);
1464
1465 /* no room in the schedule */
1466 if (!done) {
1467 ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1468 urb, now, now + mod);
1469 status = -ENOSPC;
1470 goto fail;
1471 }
1472 }
1473
1474 /* Tried to schedule too far into the future? */
1475 if (unlikely(start - now + span - period
1476 >= mod - 2 * SCHEDULE_SLOP)) {
1477 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1478 urb, start - now, span - period,
1479 mod - 2 * SCHEDULE_SLOP);
1480 status = -EFBIG;
1481 goto fail;
1482 }
1483
1484 stream->next_uframe = start & (mod - 1);
1485
1486 /* report high speed start in uframes; full speed, in frames */
1487 urb->start_frame = stream->next_uframe;
1488 if (!stream->highspeed)
1489 urb->start_frame >>= 3;
1490
1491 /* Make sure scan_isoc() sees these */
1492 if (ehci->isoc_count == 0)
1493 ehci->next_frame = now >> 3;
1494 return 0;
1495
1496 fail:
1497 iso_sched_free(stream, sched);
1498 urb->hcpriv = NULL;
1499 return status;
1500 }
1501
1502 /*-------------------------------------------------------------------------*/
1503
1504 static inline void
1505 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1506 struct ehci_itd *itd)
1507 {
1508 int i;
1509
1510 /* it's been recently zeroed */
1511 itd->hw_next = EHCI_LIST_END(ehci);
1512 itd->hw_bufp [0] = stream->buf0;
1513 itd->hw_bufp [1] = stream->buf1;
1514 itd->hw_bufp [2] = stream->buf2;
1515
1516 for (i = 0; i < 8; i++)
1517 itd->index[i] = -1;
1518
1519 /* All other fields are filled when scheduling */
1520 }
1521
1522 static inline void
1523 itd_patch(
1524 struct ehci_hcd *ehci,
1525 struct ehci_itd *itd,
1526 struct ehci_iso_sched *iso_sched,
1527 unsigned index,
1528 u16 uframe
1529 )
1530 {
1531 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1532 unsigned pg = itd->pg;
1533
1534 // BUG_ON (pg == 6 && uf->cross);
1535
1536 uframe &= 0x07;
1537 itd->index [uframe] = index;
1538
1539 itd->hw_transaction[uframe] = uf->transaction;
1540 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1541 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1542 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1543
1544 /* iso_frame_desc[].offset must be strictly increasing */
1545 if (unlikely (uf->cross)) {
1546 u64 bufp = uf->bufp + 4096;
1547
1548 itd->pg = ++pg;
1549 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1550 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1551 }
1552 }
1553
1554 static inline void
1555 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1556 {
1557 union ehci_shadow *prev = &ehci->pshadow[frame];
1558 __hc32 *hw_p = &ehci->periodic[frame];
1559 union ehci_shadow here = *prev;
1560 __hc32 type = 0;
1561
1562 /* skip any iso nodes which might belong to previous microframes */
1563 while (here.ptr) {
1564 type = Q_NEXT_TYPE(ehci, *hw_p);
1565 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1566 break;
1567 prev = periodic_next_shadow(ehci, prev, type);
1568 hw_p = shadow_next_periodic(ehci, &here, type);
1569 here = *prev;
1570 }
1571
1572 itd->itd_next = here;
1573 itd->hw_next = *hw_p;
1574 prev->itd = itd;
1575 itd->frame = frame;
1576 wmb ();
1577 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1578 }
1579
1580 /* fit urb's itds into the selected schedule slot; activate as needed */
1581 static void itd_link_urb(
1582 struct ehci_hcd *ehci,
1583 struct urb *urb,
1584 unsigned mod,
1585 struct ehci_iso_stream *stream
1586 )
1587 {
1588 int packet;
1589 unsigned next_uframe, uframe, frame;
1590 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1591 struct ehci_itd *itd;
1592
1593 next_uframe = stream->next_uframe & (mod - 1);
1594
1595 if (unlikely (list_empty(&stream->td_list))) {
1596 ehci_to_hcd(ehci)->self.bandwidth_allocated
1597 += stream->bandwidth;
1598 ehci_vdbg (ehci,
1599 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1600 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1601 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1602 urb->interval,
1603 next_uframe >> 3, next_uframe & 0x7);
1604 }
1605
1606 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1607 if (ehci->amd_pll_fix == 1)
1608 usb_amd_quirk_pll_disable();
1609 }
1610
1611 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1612
1613 /* fill iTDs uframe by uframe */
1614 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1615 if (itd == NULL) {
1616 /* ASSERT: we have all necessary itds */
1617 // BUG_ON (list_empty (&iso_sched->td_list));
1618
1619 /* ASSERT: no itds for this endpoint in this uframe */
1620
1621 itd = list_entry (iso_sched->td_list.next,
1622 struct ehci_itd, itd_list);
1623 list_move_tail (&itd->itd_list, &stream->td_list);
1624 itd->stream = stream;
1625 itd->urb = urb;
1626 itd_init (ehci, stream, itd);
1627 }
1628
1629 uframe = next_uframe & 0x07;
1630 frame = next_uframe >> 3;
1631
1632 itd_patch(ehci, itd, iso_sched, packet, uframe);
1633
1634 next_uframe += stream->interval;
1635 next_uframe &= mod - 1;
1636 packet++;
1637
1638 /* link completed itds into the schedule */
1639 if (((next_uframe >> 3) != frame)
1640 || packet == urb->number_of_packets) {
1641 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1642 itd = NULL;
1643 }
1644 }
1645 stream->next_uframe = next_uframe;
1646
1647 /* don't need that schedule data any more */
1648 iso_sched_free (stream, iso_sched);
1649 urb->hcpriv = NULL;
1650
1651 ++ehci->isoc_count;
1652 enable_periodic(ehci);
1653 }
1654
1655 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1656
1657 /* Process and recycle a completed ITD. Return true iff its urb completed,
1658 * and hence its completion callback probably added things to the hardware
1659 * schedule.
1660 *
1661 * Note that we carefully avoid recycling this descriptor until after any
1662 * completion callback runs, so that it won't be reused quickly. That is,
1663 * assuming (a) no more than two urbs per frame on this endpoint, and also
1664 * (b) only this endpoint's completions submit URBs. It seems some silicon
1665 * corrupts things if you reuse completed descriptors very quickly...
1666 */
1667 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1668 {
1669 struct urb *urb = itd->urb;
1670 struct usb_iso_packet_descriptor *desc;
1671 u32 t;
1672 unsigned uframe;
1673 int urb_index = -1;
1674 struct ehci_iso_stream *stream = itd->stream;
1675 struct usb_device *dev;
1676 bool retval = false;
1677
1678 /* for each uframe with a packet */
1679 for (uframe = 0; uframe < 8; uframe++) {
1680 if (likely (itd->index[uframe] == -1))
1681 continue;
1682 urb_index = itd->index[uframe];
1683 desc = &urb->iso_frame_desc [urb_index];
1684
1685 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1686 itd->hw_transaction [uframe] = 0;
1687
1688 /* report transfer status */
1689 if (unlikely (t & ISO_ERRS)) {
1690 urb->error_count++;
1691 if (t & EHCI_ISOC_BUF_ERR)
1692 desc->status = usb_pipein (urb->pipe)
1693 ? -ENOSR /* hc couldn't read */
1694 : -ECOMM; /* hc couldn't write */
1695 else if (t & EHCI_ISOC_BABBLE)
1696 desc->status = -EOVERFLOW;
1697 else /* (t & EHCI_ISOC_XACTERR) */
1698 desc->status = -EPROTO;
1699
1700 /* HC need not update length with this error */
1701 if (!(t & EHCI_ISOC_BABBLE)) {
1702 desc->actual_length = EHCI_ITD_LENGTH(t);
1703 urb->actual_length += desc->actual_length;
1704 }
1705 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1706 desc->status = 0;
1707 desc->actual_length = EHCI_ITD_LENGTH(t);
1708 urb->actual_length += desc->actual_length;
1709 } else {
1710 /* URB was too late */
1711 desc->status = -EXDEV;
1712 }
1713 }
1714
1715 /* handle completion now? */
1716 if (likely ((urb_index + 1) != urb->number_of_packets))
1717 goto done;
1718
1719 /* ASSERT: it's really the last itd for this urb
1720 list_for_each_entry (itd, &stream->td_list, itd_list)
1721 BUG_ON (itd->urb == urb);
1722 */
1723
1724 /* give urb back to the driver; completion often (re)submits */
1725 dev = urb->dev;
1726 ehci_urb_done(ehci, urb, 0);
1727 retval = true;
1728 urb = NULL;
1729
1730 --ehci->isoc_count;
1731 disable_periodic(ehci);
1732
1733 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1734 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1735 if (ehci->amd_pll_fix == 1)
1736 usb_amd_quirk_pll_enable();
1737 }
1738
1739 if (unlikely(list_is_singular(&stream->td_list))) {
1740 ehci_to_hcd(ehci)->self.bandwidth_allocated
1741 -= stream->bandwidth;
1742 ehci_vdbg (ehci,
1743 "deschedule devp %s ep%d%s-iso\n",
1744 dev->devpath, stream->bEndpointAddress & 0x0f,
1745 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1746 }
1747
1748 done:
1749 itd->urb = NULL;
1750
1751 /* Add to the end of the free list for later reuse */
1752 list_move_tail(&itd->itd_list, &stream->free_list);
1753
1754 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1755 if (list_empty(&stream->td_list)) {
1756 list_splice_tail_init(&stream->free_list,
1757 &ehci->cached_itd_list);
1758 start_free_itds(ehci);
1759 }
1760
1761 return retval;
1762 }
1763
1764 /*-------------------------------------------------------------------------*/
1765
1766 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1767 gfp_t mem_flags)
1768 {
1769 int status = -EINVAL;
1770 unsigned long flags;
1771 struct ehci_iso_stream *stream;
1772
1773 /* Get iso_stream head */
1774 stream = iso_stream_find (ehci, urb);
1775 if (unlikely (stream == NULL)) {
1776 ehci_dbg (ehci, "can't get iso stream\n");
1777 return -ENOMEM;
1778 }
1779 if (unlikely (urb->interval != stream->interval)) {
1780 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1781 stream->interval, urb->interval);
1782 goto done;
1783 }
1784
1785 #ifdef EHCI_URB_TRACE
1786 ehci_dbg (ehci,
1787 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1788 __func__, urb->dev->devpath, urb,
1789 usb_pipeendpoint (urb->pipe),
1790 usb_pipein (urb->pipe) ? "in" : "out",
1791 urb->transfer_buffer_length,
1792 urb->number_of_packets, urb->interval,
1793 stream);
1794 #endif
1795
1796 /* allocate ITDs w/o locking anything */
1797 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1798 if (unlikely (status < 0)) {
1799 ehci_dbg (ehci, "can't init itds\n");
1800 goto done;
1801 }
1802
1803 /* schedule ... need to lock */
1804 spin_lock_irqsave (&ehci->lock, flags);
1805 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1806 status = -ESHUTDOWN;
1807 goto done_not_linked;
1808 }
1809 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1810 if (unlikely(status))
1811 goto done_not_linked;
1812 status = iso_stream_schedule(ehci, urb, stream);
1813 if (likely (status == 0))
1814 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1815 else
1816 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1817 done_not_linked:
1818 spin_unlock_irqrestore (&ehci->lock, flags);
1819 done:
1820 return status;
1821 }
1822
1823 /*-------------------------------------------------------------------------*/
1824
1825 /*
1826 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1827 * TTs in USB 2.0 hubs. These need microframe scheduling.
1828 */
1829
1830 static inline void
1831 sitd_sched_init(
1832 struct ehci_hcd *ehci,
1833 struct ehci_iso_sched *iso_sched,
1834 struct ehci_iso_stream *stream,
1835 struct urb *urb
1836 )
1837 {
1838 unsigned i;
1839 dma_addr_t dma = urb->transfer_dma;
1840
1841 /* how many frames are needed for these transfers */
1842 iso_sched->span = urb->number_of_packets * stream->interval;
1843
1844 /* figure out per-frame sitd fields that we'll need later
1845 * when we fit new sitds into the schedule.
1846 */
1847 for (i = 0; i < urb->number_of_packets; i++) {
1848 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1849 unsigned length;
1850 dma_addr_t buf;
1851 u32 trans;
1852
1853 length = urb->iso_frame_desc [i].length & 0x03ff;
1854 buf = dma + urb->iso_frame_desc [i].offset;
1855
1856 trans = SITD_STS_ACTIVE;
1857 if (((i + 1) == urb->number_of_packets)
1858 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1859 trans |= SITD_IOC;
1860 trans |= length << 16;
1861 packet->transaction = cpu_to_hc32(ehci, trans);
1862
1863 /* might need to cross a buffer page within a td */
1864 packet->bufp = buf;
1865 packet->buf1 = (buf + length) & ~0x0fff;
1866 if (packet->buf1 != (buf & ~(u64)0x0fff))
1867 packet->cross = 1;
1868
1869 /* OUT uses multiple start-splits */
1870 if (stream->bEndpointAddress & USB_DIR_IN)
1871 continue;
1872 length = (length + 187) / 188;
1873 if (length > 1) /* BEGIN vs ALL */
1874 length |= 1 << 3;
1875 packet->buf1 |= length;
1876 }
1877 }
1878
1879 static int
1880 sitd_urb_transaction (
1881 struct ehci_iso_stream *stream,
1882 struct ehci_hcd *ehci,
1883 struct urb *urb,
1884 gfp_t mem_flags
1885 )
1886 {
1887 struct ehci_sitd *sitd;
1888 dma_addr_t sitd_dma;
1889 int i;
1890 struct ehci_iso_sched *iso_sched;
1891 unsigned long flags;
1892
1893 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1894 if (iso_sched == NULL)
1895 return -ENOMEM;
1896
1897 sitd_sched_init(ehci, iso_sched, stream, urb);
1898
1899 /* allocate/init sITDs */
1900 spin_lock_irqsave (&ehci->lock, flags);
1901 for (i = 0; i < urb->number_of_packets; i++) {
1902
1903 /* NOTE: for now, we don't try to handle wraparound cases
1904 * for IN (using sitd->hw_backpointer, like a FSTN), which
1905 * means we never need two sitds for full speed packets.
1906 */
1907
1908 /*
1909 * Use siTDs from the free list, but not siTDs that may
1910 * still be in use by the hardware.
1911 */
1912 if (likely(!list_empty(&stream->free_list))) {
1913 sitd = list_first_entry(&stream->free_list,
1914 struct ehci_sitd, sitd_list);
1915 if (sitd->frame == ehci->now_frame)
1916 goto alloc_sitd;
1917 list_del (&sitd->sitd_list);
1918 sitd_dma = sitd->sitd_dma;
1919 } else {
1920 alloc_sitd:
1921 spin_unlock_irqrestore (&ehci->lock, flags);
1922 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1923 &sitd_dma);
1924 spin_lock_irqsave (&ehci->lock, flags);
1925 if (!sitd) {
1926 iso_sched_free(stream, iso_sched);
1927 spin_unlock_irqrestore(&ehci->lock, flags);
1928 return -ENOMEM;
1929 }
1930 }
1931
1932 memset (sitd, 0, sizeof *sitd);
1933 sitd->sitd_dma = sitd_dma;
1934 list_add (&sitd->sitd_list, &iso_sched->td_list);
1935 }
1936
1937 /* temporarily store schedule info in hcpriv */
1938 urb->hcpriv = iso_sched;
1939 urb->error_count = 0;
1940
1941 spin_unlock_irqrestore (&ehci->lock, flags);
1942 return 0;
1943 }
1944
1945 /*-------------------------------------------------------------------------*/
1946
1947 static inline void
1948 sitd_patch(
1949 struct ehci_hcd *ehci,
1950 struct ehci_iso_stream *stream,
1951 struct ehci_sitd *sitd,
1952 struct ehci_iso_sched *iso_sched,
1953 unsigned index
1954 )
1955 {
1956 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1957 u64 bufp = uf->bufp;
1958
1959 sitd->hw_next = EHCI_LIST_END(ehci);
1960 sitd->hw_fullspeed_ep = stream->address;
1961 sitd->hw_uframe = stream->splits;
1962 sitd->hw_results = uf->transaction;
1963 sitd->hw_backpointer = EHCI_LIST_END(ehci);
1964
1965 bufp = uf->bufp;
1966 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1967 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1968
1969 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1970 if (uf->cross)
1971 bufp += 4096;
1972 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1973 sitd->index = index;
1974 }
1975
1976 static inline void
1977 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1978 {
1979 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1980 sitd->sitd_next = ehci->pshadow [frame];
1981 sitd->hw_next = ehci->periodic [frame];
1982 ehci->pshadow [frame].sitd = sitd;
1983 sitd->frame = frame;
1984 wmb ();
1985 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1986 }
1987
1988 /* fit urb's sitds into the selected schedule slot; activate as needed */
1989 static void sitd_link_urb(
1990 struct ehci_hcd *ehci,
1991 struct urb *urb,
1992 unsigned mod,
1993 struct ehci_iso_stream *stream
1994 )
1995 {
1996 int packet;
1997 unsigned next_uframe;
1998 struct ehci_iso_sched *sched = urb->hcpriv;
1999 struct ehci_sitd *sitd;
2000
2001 next_uframe = stream->next_uframe;
2002
2003 if (list_empty(&stream->td_list)) {
2004 /* usbfs ignores TT bandwidth */
2005 ehci_to_hcd(ehci)->self.bandwidth_allocated
2006 += stream->bandwidth;
2007 ehci_vdbg (ehci,
2008 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2009 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2010 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2011 (next_uframe >> 3) & (ehci->periodic_size - 1),
2012 stream->interval, hc32_to_cpu(ehci, stream->splits));
2013 }
2014
2015 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2016 if (ehci->amd_pll_fix == 1)
2017 usb_amd_quirk_pll_disable();
2018 }
2019
2020 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2021
2022 /* fill sITDs frame by frame */
2023 for (packet = 0, sitd = NULL;
2024 packet < urb->number_of_packets;
2025 packet++) {
2026
2027 /* ASSERT: we have all necessary sitds */
2028 BUG_ON (list_empty (&sched->td_list));
2029
2030 /* ASSERT: no itds for this endpoint in this frame */
2031
2032 sitd = list_entry (sched->td_list.next,
2033 struct ehci_sitd, sitd_list);
2034 list_move_tail (&sitd->sitd_list, &stream->td_list);
2035 sitd->stream = stream;
2036 sitd->urb = urb;
2037
2038 sitd_patch(ehci, stream, sitd, sched, packet);
2039 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2040 sitd);
2041
2042 next_uframe += stream->interval << 3;
2043 }
2044 stream->next_uframe = next_uframe & (mod - 1);
2045
2046 /* don't need that schedule data any more */
2047 iso_sched_free (stream, sched);
2048 urb->hcpriv = NULL;
2049
2050 ++ehci->isoc_count;
2051 enable_periodic(ehci);
2052 }
2053
2054 /*-------------------------------------------------------------------------*/
2055
2056 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2057 | SITD_STS_XACT | SITD_STS_MMF)
2058
2059 /* Process and recycle a completed SITD. Return true iff its urb completed,
2060 * and hence its completion callback probably added things to the hardware
2061 * schedule.
2062 *
2063 * Note that we carefully avoid recycling this descriptor until after any
2064 * completion callback runs, so that it won't be reused quickly. That is,
2065 * assuming (a) no more than two urbs per frame on this endpoint, and also
2066 * (b) only this endpoint's completions submit URBs. It seems some silicon
2067 * corrupts things if you reuse completed descriptors very quickly...
2068 */
2069 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2070 {
2071 struct urb *urb = sitd->urb;
2072 struct usb_iso_packet_descriptor *desc;
2073 u32 t;
2074 int urb_index = -1;
2075 struct ehci_iso_stream *stream = sitd->stream;
2076 struct usb_device *dev;
2077 bool retval = false;
2078
2079 urb_index = sitd->index;
2080 desc = &urb->iso_frame_desc [urb_index];
2081 t = hc32_to_cpup(ehci, &sitd->hw_results);
2082
2083 /* report transfer status */
2084 if (t & SITD_ERRS) {
2085 urb->error_count++;
2086 if (t & SITD_STS_DBE)
2087 desc->status = usb_pipein (urb->pipe)
2088 ? -ENOSR /* hc couldn't read */
2089 : -ECOMM; /* hc couldn't write */
2090 else if (t & SITD_STS_BABBLE)
2091 desc->status = -EOVERFLOW;
2092 else /* XACT, MMF, etc */
2093 desc->status = -EPROTO;
2094 } else {
2095 desc->status = 0;
2096 desc->actual_length = desc->length - SITD_LENGTH(t);
2097 urb->actual_length += desc->actual_length;
2098 }
2099
2100 /* handle completion now? */
2101 if ((urb_index + 1) != urb->number_of_packets)
2102 goto done;
2103
2104 /* ASSERT: it's really the last sitd for this urb
2105 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2106 BUG_ON (sitd->urb == urb);
2107 */
2108
2109 /* give urb back to the driver; completion often (re)submits */
2110 dev = urb->dev;
2111 ehci_urb_done(ehci, urb, 0);
2112 retval = true;
2113 urb = NULL;
2114
2115 --ehci->isoc_count;
2116 disable_periodic(ehci);
2117
2118 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2119 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2120 if (ehci->amd_pll_fix == 1)
2121 usb_amd_quirk_pll_enable();
2122 }
2123
2124 if (list_is_singular(&stream->td_list)) {
2125 ehci_to_hcd(ehci)->self.bandwidth_allocated
2126 -= stream->bandwidth;
2127 ehci_vdbg (ehci,
2128 "deschedule devp %s ep%d%s-iso\n",
2129 dev->devpath, stream->bEndpointAddress & 0x0f,
2130 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2131 }
2132
2133 done:
2134 sitd->urb = NULL;
2135
2136 /* Add to the end of the free list for later reuse */
2137 list_move_tail(&sitd->sitd_list, &stream->free_list);
2138
2139 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2140 if (list_empty(&stream->td_list)) {
2141 list_splice_tail_init(&stream->free_list,
2142 &ehci->cached_sitd_list);
2143 start_free_itds(ehci);
2144 }
2145
2146 return retval;
2147 }
2148
2149
2150 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2151 gfp_t mem_flags)
2152 {
2153 int status = -EINVAL;
2154 unsigned long flags;
2155 struct ehci_iso_stream *stream;
2156
2157 /* Get iso_stream head */
2158 stream = iso_stream_find (ehci, urb);
2159 if (stream == NULL) {
2160 ehci_dbg (ehci, "can't get iso stream\n");
2161 return -ENOMEM;
2162 }
2163 if (urb->interval != stream->interval) {
2164 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2165 stream->interval, urb->interval);
2166 goto done;
2167 }
2168
2169 #ifdef EHCI_URB_TRACE
2170 ehci_dbg (ehci,
2171 "submit %p dev%s ep%d%s-iso len %d\n",
2172 urb, urb->dev->devpath,
2173 usb_pipeendpoint (urb->pipe),
2174 usb_pipein (urb->pipe) ? "in" : "out",
2175 urb->transfer_buffer_length);
2176 #endif
2177
2178 /* allocate SITDs */
2179 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2180 if (status < 0) {
2181 ehci_dbg (ehci, "can't init sitds\n");
2182 goto done;
2183 }
2184
2185 /* schedule ... need to lock */
2186 spin_lock_irqsave (&ehci->lock, flags);
2187 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2188 status = -ESHUTDOWN;
2189 goto done_not_linked;
2190 }
2191 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2192 if (unlikely(status))
2193 goto done_not_linked;
2194 status = iso_stream_schedule(ehci, urb, stream);
2195 if (status == 0)
2196 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2197 else
2198 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2199 done_not_linked:
2200 spin_unlock_irqrestore (&ehci->lock, flags);
2201 done:
2202 return status;
2203 }
2204
2205 /*-------------------------------------------------------------------------*/
2206
2207 static void scan_isoc(struct ehci_hcd *ehci)
2208 {
2209 unsigned uf, now_frame, frame;
2210 unsigned fmask = ehci->periodic_size - 1;
2211 bool modified, live;
2212
2213 /*
2214 * When running, scan from last scan point up to "now"
2215 * else clean up by scanning everything that's left.
2216 * Touches as few pages as possible: cache-friendly.
2217 */
2218 if (ehci->rh_state >= EHCI_RH_RUNNING) {
2219 uf = ehci_read_frame_index(ehci);
2220 now_frame = (uf >> 3) & fmask;
2221 live = true;
2222 } else {
2223 now_frame = (ehci->next_frame - 1) & fmask;
2224 live = false;
2225 }
2226 ehci->now_frame = now_frame;
2227
2228 frame = ehci->next_frame;
2229 for (;;) {
2230 union ehci_shadow q, *q_p;
2231 __hc32 type, *hw_p;
2232
2233 restart:
2234 /* scan each element in frame's queue for completions */
2235 q_p = &ehci->pshadow [frame];
2236 hw_p = &ehci->periodic [frame];
2237 q.ptr = q_p->ptr;
2238 type = Q_NEXT_TYPE(ehci, *hw_p);
2239 modified = false;
2240
2241 while (q.ptr != NULL) {
2242 switch (hc32_to_cpu(ehci, type)) {
2243 case Q_TYPE_ITD:
2244 /* If this ITD is still active, leave it for
2245 * later processing ... check the next entry.
2246 * No need to check for activity unless the
2247 * frame is current.
2248 */
2249 if (frame == now_frame && live) {
2250 rmb();
2251 for (uf = 0; uf < 8; uf++) {
2252 if (q.itd->hw_transaction[uf] &
2253 ITD_ACTIVE(ehci))
2254 break;
2255 }
2256 if (uf < 8) {
2257 q_p = &q.itd->itd_next;
2258 hw_p = &q.itd->hw_next;
2259 type = Q_NEXT_TYPE(ehci,
2260 q.itd->hw_next);
2261 q = *q_p;
2262 break;
2263 }
2264 }
2265
2266 /* Take finished ITDs out of the schedule
2267 * and process them: recycle, maybe report
2268 * URB completion. HC won't cache the
2269 * pointer for much longer, if at all.
2270 */
2271 *q_p = q.itd->itd_next;
2272 if (!ehci->use_dummy_qh ||
2273 q.itd->hw_next != EHCI_LIST_END(ehci))
2274 *hw_p = q.itd->hw_next;
2275 else
2276 *hw_p = ehci->dummy->qh_dma;
2277 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2278 wmb();
2279 modified = itd_complete (ehci, q.itd);
2280 q = *q_p;
2281 break;
2282 case Q_TYPE_SITD:
2283 /* If this SITD is still active, leave it for
2284 * later processing ... check the next entry.
2285 * No need to check for activity unless the
2286 * frame is current.
2287 */
2288 if (((frame == now_frame) ||
2289 (((frame + 1) & fmask) == now_frame))
2290 && live
2291 && (q.sitd->hw_results &
2292 SITD_ACTIVE(ehci))) {
2293
2294 q_p = &q.sitd->sitd_next;
2295 hw_p = &q.sitd->hw_next;
2296 type = Q_NEXT_TYPE(ehci,
2297 q.sitd->hw_next);
2298 q = *q_p;
2299 break;
2300 }
2301
2302 /* Take finished SITDs out of the schedule
2303 * and process them: recycle, maybe report
2304 * URB completion.
2305 */
2306 *q_p = q.sitd->sitd_next;
2307 if (!ehci->use_dummy_qh ||
2308 q.sitd->hw_next != EHCI_LIST_END(ehci))
2309 *hw_p = q.sitd->hw_next;
2310 else
2311 *hw_p = ehci->dummy->qh_dma;
2312 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2313 wmb();
2314 modified = sitd_complete (ehci, q.sitd);
2315 q = *q_p;
2316 break;
2317 default:
2318 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2319 type, frame, q.ptr);
2320 // BUG ();
2321 /* FALL THROUGH */
2322 case Q_TYPE_QH:
2323 case Q_TYPE_FSTN:
2324 /* End of the iTDs and siTDs */
2325 q.ptr = NULL;
2326 break;
2327 }
2328
2329 /* assume completion callbacks modify the queue */
2330 if (unlikely(modified && ehci->isoc_count > 0))
2331 goto restart;
2332 }
2333
2334 /* Stop when we have reached the current frame */
2335 if (frame == now_frame)
2336 break;
2337 frame = (frame + 1) & fmask;
2338 }
2339 ehci->next_frame = now_frame;
2340 }
This page took 0.082587 seconds and 5 git commands to generate.