USB: xhci: Stop debugging polling loop when HC dies.
[deliverable/linux.git] / drivers / usb / host / xhci-hcd.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/irq.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26
27 #include "xhci.h"
28
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 /* TODO: copied from ehci-hcd.c - can this be refactored? */
38 /*
39 * handshake - spin reading hc until handshake completes or fails
40 * @ptr: address of hc register to be read
41 * @mask: bits to look at in result of read
42 * @done: value of those bits when handshake succeeds
43 * @usec: timeout in microseconds
44 *
45 * Returns negative errno, or zero on success
46 *
47 * Success happens when the "mask" bits have the specified value (hardware
48 * handshake done). There are two failure modes: "usec" have passed (major
49 * hardware flakeout), or the register reads as all-ones (hardware removed).
50 */
51 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
52 u32 mask, u32 done, int usec)
53 {
54 u32 result;
55
56 do {
57 result = xhci_readl(xhci, ptr);
58 if (result == ~(u32)0) /* card removed */
59 return -ENODEV;
60 result &= mask;
61 if (result == done)
62 return 0;
63 udelay(1);
64 usec--;
65 } while (usec > 0);
66 return -ETIMEDOUT;
67 }
68
69 /*
70 * Force HC into halt state.
71 *
72 * Disable any IRQs and clear the run/stop bit.
73 * HC will complete any current and actively pipelined transactions, and
74 * should halt within 16 microframes of the run/stop bit being cleared.
75 * Read HC Halted bit in the status register to see when the HC is finished.
76 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
77 */
78 int xhci_halt(struct xhci_hcd *xhci)
79 {
80 u32 halted;
81 u32 cmd;
82 u32 mask;
83
84 xhci_dbg(xhci, "// Halt the HC\n");
85 /* Disable all interrupts from the host controller */
86 mask = ~(XHCI_IRQS);
87 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
88 if (!halted)
89 mask &= ~CMD_RUN;
90
91 cmd = xhci_readl(xhci, &xhci->op_regs->command);
92 cmd &= mask;
93 xhci_writel(xhci, cmd, &xhci->op_regs->command);
94
95 return handshake(xhci, &xhci->op_regs->status,
96 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
97 }
98
99 /*
100 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
101 *
102 * This resets pipelines, timers, counters, state machines, etc.
103 * Transactions will be terminated immediately, and operational registers
104 * will be set to their defaults.
105 */
106 int xhci_reset(struct xhci_hcd *xhci)
107 {
108 u32 command;
109 u32 state;
110
111 state = xhci_readl(xhci, &xhci->op_regs->status);
112 if ((state & STS_HALT) == 0) {
113 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
114 return 0;
115 }
116
117 xhci_dbg(xhci, "// Reset the HC\n");
118 command = xhci_readl(xhci, &xhci->op_regs->command);
119 command |= CMD_RESET;
120 xhci_writel(xhci, command, &xhci->op_regs->command);
121 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
122 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
123
124 return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000);
125 }
126
127 /*
128 * Stop the HC from processing the endpoint queues.
129 */
130 static void xhci_quiesce(struct xhci_hcd *xhci)
131 {
132 /*
133 * Queues are per endpoint, so we need to disable an endpoint or slot.
134 *
135 * To disable a slot, we need to insert a disable slot command on the
136 * command ring and ring the doorbell. This will also free any internal
137 * resources associated with the slot (which might not be what we want).
138 *
139 * A Release Endpoint command sounds better - doesn't free internal HC
140 * memory, but removes the endpoints from the schedule and releases the
141 * bandwidth, disables the doorbells, and clears the endpoint enable
142 * flag. Usually used prior to a set interface command.
143 *
144 * TODO: Implement after command ring code is done.
145 */
146 BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state));
147 xhci_dbg(xhci, "Finished quiescing -- code not written yet\n");
148 }
149
150 #if 0
151 /* Set up MSI-X table for entry 0 (may claim other entries later) */
152 static int xhci_setup_msix(struct xhci_hcd *xhci)
153 {
154 int ret;
155 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
156
157 xhci->msix_count = 0;
158 /* XXX: did I do this right? ixgbe does kcalloc for more than one */
159 xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
160 if (!xhci->msix_entries) {
161 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
162 return -ENOMEM;
163 }
164 xhci->msix_entries[0].entry = 0;
165
166 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
167 if (ret) {
168 xhci_err(xhci, "Failed to enable MSI-X\n");
169 goto free_entries;
170 }
171
172 /*
173 * Pass the xhci pointer value as the request_irq "cookie".
174 * If more irqs are added, this will need to be unique for each one.
175 */
176 ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
177 "xHCI", xhci_to_hcd(xhci));
178 if (ret) {
179 xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
180 goto disable_msix;
181 }
182 xhci_dbg(xhci, "Finished setting up MSI-X\n");
183 return 0;
184
185 disable_msix:
186 pci_disable_msix(pdev);
187 free_entries:
188 kfree(xhci->msix_entries);
189 xhci->msix_entries = NULL;
190 return ret;
191 }
192
193 /* XXX: code duplication; can xhci_setup_msix call this? */
194 /* Free any IRQs and disable MSI-X */
195 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
196 {
197 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
198 if (!xhci->msix_entries)
199 return;
200
201 free_irq(xhci->msix_entries[0].vector, xhci);
202 pci_disable_msix(pdev);
203 kfree(xhci->msix_entries);
204 xhci->msix_entries = NULL;
205 xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
206 }
207 #endif
208
209 /*
210 * Initialize memory for HCD and xHC (one-time init).
211 *
212 * Program the PAGESIZE register, initialize the device context array, create
213 * device contexts (?), set up a command ring segment (or two?), create event
214 * ring (one for now).
215 */
216 int xhci_init(struct usb_hcd *hcd)
217 {
218 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
219 int retval = 0;
220
221 xhci_dbg(xhci, "xhci_init\n");
222 spin_lock_init(&xhci->lock);
223 if (link_quirk) {
224 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
225 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
226 } else {
227 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
228 }
229 retval = xhci_mem_init(xhci, GFP_KERNEL);
230 xhci_dbg(xhci, "Finished xhci_init\n");
231
232 return retval;
233 }
234
235 /*
236 * Called in interrupt context when there might be work
237 * queued on the event ring
238 *
239 * xhci->lock must be held by caller.
240 */
241 static void xhci_work(struct xhci_hcd *xhci)
242 {
243 u32 temp;
244 u64 temp_64;
245
246 /*
247 * Clear the op reg interrupt status first,
248 * so we can receive interrupts from other MSI-X interrupters.
249 * Write 1 to clear the interrupt status.
250 */
251 temp = xhci_readl(xhci, &xhci->op_regs->status);
252 temp |= STS_EINT;
253 xhci_writel(xhci, temp, &xhci->op_regs->status);
254 /* FIXME when MSI-X is supported and there are multiple vectors */
255 /* Clear the MSI-X event interrupt status */
256
257 /* Acknowledge the interrupt */
258 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
259 temp |= 0x3;
260 xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
261 /* Flush posted writes */
262 xhci_readl(xhci, &xhci->ir_set->irq_pending);
263
264 /* FIXME this should be a delayed service routine that clears the EHB */
265 xhci_handle_event(xhci);
266
267 /* Clear the event handler busy flag (RW1C); the event ring should be empty. */
268 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
269 xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
270 /* Flush posted writes -- FIXME is this necessary? */
271 xhci_readl(xhci, &xhci->ir_set->irq_pending);
272 }
273
274 /*-------------------------------------------------------------------------*/
275
276 /*
277 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
278 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
279 * indicators of an event TRB error, but we check the status *first* to be safe.
280 */
281 irqreturn_t xhci_irq(struct usb_hcd *hcd)
282 {
283 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
284 u32 temp, temp2;
285 union xhci_trb *trb;
286
287 spin_lock(&xhci->lock);
288 trb = xhci->event_ring->dequeue;
289 /* Check if the xHC generated the interrupt, or the irq is shared */
290 temp = xhci_readl(xhci, &xhci->op_regs->status);
291 temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
292 if (temp == 0xffffffff && temp2 == 0xffffffff)
293 goto hw_died;
294
295 if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
296 spin_unlock(&xhci->lock);
297 return IRQ_NONE;
298 }
299 xhci_dbg(xhci, "op reg status = %08x\n", temp);
300 xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2);
301 xhci_dbg(xhci, "Event ring dequeue ptr:\n");
302 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
303 (unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
304 lower_32_bits(trb->link.segment_ptr),
305 upper_32_bits(trb->link.segment_ptr),
306 (unsigned int) trb->link.intr_target,
307 (unsigned int) trb->link.control);
308
309 if (temp & STS_FATAL) {
310 xhci_warn(xhci, "WARNING: Host System Error\n");
311 xhci_halt(xhci);
312 hw_died:
313 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
314 spin_unlock(&xhci->lock);
315 return -ESHUTDOWN;
316 }
317
318 xhci_work(xhci);
319 spin_unlock(&xhci->lock);
320
321 return IRQ_HANDLED;
322 }
323
324 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
325 void xhci_event_ring_work(unsigned long arg)
326 {
327 unsigned long flags;
328 int temp;
329 u64 temp_64;
330 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
331 int i, j;
332
333 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
334
335 spin_lock_irqsave(&xhci->lock, flags);
336 temp = xhci_readl(xhci, &xhci->op_regs->status);
337 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
338 if (temp == 0xffffffff) {
339 xhci_dbg(xhci, "HW died, polling stopped.\n");
340 spin_unlock_irqrestore(&xhci->lock, flags);
341 return;
342 }
343
344 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
345 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
346 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
347 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
348 xhci->error_bitmask = 0;
349 xhci_dbg(xhci, "Event ring:\n");
350 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
351 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
352 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
353 temp_64 &= ~ERST_PTR_MASK;
354 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
355 xhci_dbg(xhci, "Command ring:\n");
356 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
357 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
358 xhci_dbg_cmd_ptrs(xhci);
359 for (i = 0; i < MAX_HC_SLOTS; ++i) {
360 if (!xhci->devs[i])
361 continue;
362 for (j = 0; j < 31; ++j) {
363 struct xhci_ring *ring = xhci->devs[i]->eps[j].ring;
364 if (!ring)
365 continue;
366 xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
367 xhci_debug_segment(xhci, ring->deq_seg);
368 }
369 }
370
371 if (xhci->noops_submitted != NUM_TEST_NOOPS)
372 if (xhci_setup_one_noop(xhci))
373 xhci_ring_cmd_db(xhci);
374 spin_unlock_irqrestore(&xhci->lock, flags);
375
376 if (!xhci->zombie)
377 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
378 else
379 xhci_dbg(xhci, "Quit polling the event ring.\n");
380 }
381 #endif
382
383 /*
384 * Start the HC after it was halted.
385 *
386 * This function is called by the USB core when the HC driver is added.
387 * Its opposite is xhci_stop().
388 *
389 * xhci_init() must be called once before this function can be called.
390 * Reset the HC, enable device slot contexts, program DCBAAP, and
391 * set command ring pointer and event ring pointer.
392 *
393 * Setup MSI-X vectors and enable interrupts.
394 */
395 int xhci_run(struct usb_hcd *hcd)
396 {
397 u32 temp;
398 u64 temp_64;
399 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
400 void (*doorbell)(struct xhci_hcd *) = NULL;
401
402 hcd->uses_new_polling = 1;
403 hcd->poll_rh = 0;
404
405 xhci_dbg(xhci, "xhci_run\n");
406 #if 0 /* FIXME: MSI not setup yet */
407 /* Do this at the very last minute */
408 ret = xhci_setup_msix(xhci);
409 if (!ret)
410 return ret;
411
412 return -ENOSYS;
413 #endif
414 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
415 init_timer(&xhci->event_ring_timer);
416 xhci->event_ring_timer.data = (unsigned long) xhci;
417 xhci->event_ring_timer.function = xhci_event_ring_work;
418 /* Poll the event ring */
419 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
420 xhci->zombie = 0;
421 xhci_dbg(xhci, "Setting event ring polling timer\n");
422 add_timer(&xhci->event_ring_timer);
423 #endif
424
425 xhci_dbg(xhci, "Command ring memory map follows:\n");
426 xhci_debug_ring(xhci, xhci->cmd_ring);
427 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
428 xhci_dbg_cmd_ptrs(xhci);
429
430 xhci_dbg(xhci, "ERST memory map follows:\n");
431 xhci_dbg_erst(xhci, &xhci->erst);
432 xhci_dbg(xhci, "Event ring:\n");
433 xhci_debug_ring(xhci, xhci->event_ring);
434 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
435 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
436 temp_64 &= ~ERST_PTR_MASK;
437 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
438
439 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
440 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
441 temp &= ~ER_IRQ_INTERVAL_MASK;
442 temp |= (u32) 160;
443 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
444
445 /* Set the HCD state before we enable the irqs */
446 hcd->state = HC_STATE_RUNNING;
447 temp = xhci_readl(xhci, &xhci->op_regs->command);
448 temp |= (CMD_EIE);
449 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
450 temp);
451 xhci_writel(xhci, temp, &xhci->op_regs->command);
452
453 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
454 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
455 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
456 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
457 &xhci->ir_set->irq_pending);
458 xhci_print_ir_set(xhci, xhci->ir_set, 0);
459
460 if (NUM_TEST_NOOPS > 0)
461 doorbell = xhci_setup_one_noop(xhci);
462
463 temp = xhci_readl(xhci, &xhci->op_regs->command);
464 temp |= (CMD_RUN);
465 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
466 temp);
467 xhci_writel(xhci, temp, &xhci->op_regs->command);
468 /* Flush PCI posted writes */
469 temp = xhci_readl(xhci, &xhci->op_regs->command);
470 xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
471 if (doorbell)
472 (*doorbell)(xhci);
473
474 xhci_dbg(xhci, "Finished xhci_run\n");
475 return 0;
476 }
477
478 /*
479 * Stop xHCI driver.
480 *
481 * This function is called by the USB core when the HC driver is removed.
482 * Its opposite is xhci_run().
483 *
484 * Disable device contexts, disable IRQs, and quiesce the HC.
485 * Reset the HC, finish any completed transactions, and cleanup memory.
486 */
487 void xhci_stop(struct usb_hcd *hcd)
488 {
489 u32 temp;
490 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
491
492 spin_lock_irq(&xhci->lock);
493 if (HC_IS_RUNNING(hcd->state))
494 xhci_quiesce(xhci);
495 xhci_halt(xhci);
496 xhci_reset(xhci);
497 spin_unlock_irq(&xhci->lock);
498
499 #if 0 /* No MSI yet */
500 xhci_cleanup_msix(xhci);
501 #endif
502 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
503 /* Tell the event ring poll function not to reschedule */
504 xhci->zombie = 1;
505 del_timer_sync(&xhci->event_ring_timer);
506 #endif
507
508 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
509 temp = xhci_readl(xhci, &xhci->op_regs->status);
510 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
511 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
512 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
513 &xhci->ir_set->irq_pending);
514 xhci_print_ir_set(xhci, xhci->ir_set, 0);
515
516 xhci_dbg(xhci, "cleaning up memory\n");
517 xhci_mem_cleanup(xhci);
518 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
519 xhci_readl(xhci, &xhci->op_regs->status));
520 }
521
522 /*
523 * Shutdown HC (not bus-specific)
524 *
525 * This is called when the machine is rebooting or halting. We assume that the
526 * machine will be powered off, and the HC's internal state will be reset.
527 * Don't bother to free memory.
528 */
529 void xhci_shutdown(struct usb_hcd *hcd)
530 {
531 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
532
533 spin_lock_irq(&xhci->lock);
534 xhci_halt(xhci);
535 spin_unlock_irq(&xhci->lock);
536
537 #if 0
538 xhci_cleanup_msix(xhci);
539 #endif
540
541 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
542 xhci_readl(xhci, &xhci->op_regs->status));
543 }
544
545 /*-------------------------------------------------------------------------*/
546
547 /**
548 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
549 * HCDs. Find the index for an endpoint given its descriptor. Use the return
550 * value to right shift 1 for the bitmask.
551 *
552 * Index = (epnum * 2) + direction - 1,
553 * where direction = 0 for OUT, 1 for IN.
554 * For control endpoints, the IN index is used (OUT index is unused), so
555 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
556 */
557 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
558 {
559 unsigned int index;
560 if (usb_endpoint_xfer_control(desc))
561 index = (unsigned int) (usb_endpoint_num(desc)*2);
562 else
563 index = (unsigned int) (usb_endpoint_num(desc)*2) +
564 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
565 return index;
566 }
567
568 /* Find the flag for this endpoint (for use in the control context). Use the
569 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
570 * bit 1, etc.
571 */
572 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
573 {
574 return 1 << (xhci_get_endpoint_index(desc) + 1);
575 }
576
577 /* Find the flag for this endpoint (for use in the control context). Use the
578 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
579 * bit 1, etc.
580 */
581 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
582 {
583 return 1 << (ep_index + 1);
584 }
585
586 /* Compute the last valid endpoint context index. Basically, this is the
587 * endpoint index plus one. For slot contexts with more than valid endpoint,
588 * we find the most significant bit set in the added contexts flags.
589 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
590 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
591 */
592 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
593 {
594 return fls(added_ctxs) - 1;
595 }
596
597 /* Returns 1 if the arguments are OK;
598 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
599 */
600 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
601 struct usb_host_endpoint *ep, int check_ep, const char *func) {
602 if (!hcd || (check_ep && !ep) || !udev) {
603 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
604 func);
605 return -EINVAL;
606 }
607 if (!udev->parent) {
608 printk(KERN_DEBUG "xHCI %s called for root hub\n",
609 func);
610 return 0;
611 }
612 if (!udev->slot_id) {
613 printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
614 func);
615 return -EINVAL;
616 }
617 return 1;
618 }
619
620 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
621 struct usb_device *udev, struct xhci_command *command,
622 bool ctx_change, bool must_succeed);
623
624 /*
625 * Full speed devices may have a max packet size greater than 8 bytes, but the
626 * USB core doesn't know that until it reads the first 8 bytes of the
627 * descriptor. If the usb_device's max packet size changes after that point,
628 * we need to issue an evaluate context command and wait on it.
629 */
630 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
631 unsigned int ep_index, struct urb *urb)
632 {
633 struct xhci_container_ctx *in_ctx;
634 struct xhci_container_ctx *out_ctx;
635 struct xhci_input_control_ctx *ctrl_ctx;
636 struct xhci_ep_ctx *ep_ctx;
637 int max_packet_size;
638 int hw_max_packet_size;
639 int ret = 0;
640
641 out_ctx = xhci->devs[slot_id]->out_ctx;
642 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
643 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
644 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
645 if (hw_max_packet_size != max_packet_size) {
646 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
647 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
648 max_packet_size);
649 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
650 hw_max_packet_size);
651 xhci_dbg(xhci, "Issuing evaluate context command.\n");
652
653 /* Set up the modified control endpoint 0 */
654 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
655 xhci->devs[slot_id]->out_ctx, ep_index);
656 in_ctx = xhci->devs[slot_id]->in_ctx;
657 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
658 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
659 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
660
661 /* Set up the input context flags for the command */
662 /* FIXME: This won't work if a non-default control endpoint
663 * changes max packet sizes.
664 */
665 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
666 ctrl_ctx->add_flags = EP0_FLAG;
667 ctrl_ctx->drop_flags = 0;
668
669 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
670 xhci_dbg_ctx(xhci, in_ctx, ep_index);
671 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
672 xhci_dbg_ctx(xhci, out_ctx, ep_index);
673
674 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
675 true, false);
676
677 /* Clean up the input context for later use by bandwidth
678 * functions.
679 */
680 ctrl_ctx->add_flags = SLOT_FLAG;
681 }
682 return ret;
683 }
684
685 /*
686 * non-error returns are a promise to giveback() the urb later
687 * we drop ownership so next owner (or urb unlink) can get it
688 */
689 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
690 {
691 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
692 unsigned long flags;
693 int ret = 0;
694 unsigned int slot_id, ep_index;
695
696
697 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
698 return -EINVAL;
699
700 slot_id = urb->dev->slot_id;
701 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
702
703 if (!xhci->devs || !xhci->devs[slot_id]) {
704 if (!in_interrupt())
705 dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
706 ret = -EINVAL;
707 goto exit;
708 }
709 if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
710 if (!in_interrupt())
711 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
712 ret = -ESHUTDOWN;
713 goto exit;
714 }
715 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
716 /* Check to see if the max packet size for the default control
717 * endpoint changed during FS device enumeration
718 */
719 if (urb->dev->speed == USB_SPEED_FULL) {
720 ret = xhci_check_maxpacket(xhci, slot_id,
721 ep_index, urb);
722 if (ret < 0)
723 return ret;
724 }
725
726 /* We have a spinlock and interrupts disabled, so we must pass
727 * atomic context to this function, which may allocate memory.
728 */
729 spin_lock_irqsave(&xhci->lock, flags);
730 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
731 slot_id, ep_index);
732 spin_unlock_irqrestore(&xhci->lock, flags);
733 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
734 spin_lock_irqsave(&xhci->lock, flags);
735 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
736 slot_id, ep_index);
737 spin_unlock_irqrestore(&xhci->lock, flags);
738 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
739 spin_lock_irqsave(&xhci->lock, flags);
740 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
741 slot_id, ep_index);
742 spin_unlock_irqrestore(&xhci->lock, flags);
743 } else {
744 ret = -EINVAL;
745 }
746 exit:
747 return ret;
748 }
749
750 /*
751 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
752 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
753 * should pick up where it left off in the TD, unless a Set Transfer Ring
754 * Dequeue Pointer is issued.
755 *
756 * The TRBs that make up the buffers for the canceled URB will be "removed" from
757 * the ring. Since the ring is a contiguous structure, they can't be physically
758 * removed. Instead, there are two options:
759 *
760 * 1) If the HC is in the middle of processing the URB to be canceled, we
761 * simply move the ring's dequeue pointer past those TRBs using the Set
762 * Transfer Ring Dequeue Pointer command. This will be the common case,
763 * when drivers timeout on the last submitted URB and attempt to cancel.
764 *
765 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
766 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
767 * HC will need to invalidate the any TRBs it has cached after the stop
768 * endpoint command, as noted in the xHCI 0.95 errata.
769 *
770 * 3) The TD may have completed by the time the Stop Endpoint Command
771 * completes, so software needs to handle that case too.
772 *
773 * This function should protect against the TD enqueueing code ringing the
774 * doorbell while this code is waiting for a Stop Endpoint command to complete.
775 * It also needs to account for multiple cancellations on happening at the same
776 * time for the same endpoint.
777 *
778 * Note that this function can be called in any context, or so says
779 * usb_hcd_unlink_urb()
780 */
781 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
782 {
783 unsigned long flags;
784 int ret;
785 struct xhci_hcd *xhci;
786 struct xhci_td *td;
787 unsigned int ep_index;
788 struct xhci_ring *ep_ring;
789 struct xhci_virt_ep *ep;
790
791 xhci = hcd_to_xhci(hcd);
792 spin_lock_irqsave(&xhci->lock, flags);
793 /* Make sure the URB hasn't completed or been unlinked already */
794 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
795 if (ret || !urb->hcpriv)
796 goto done;
797
798 xhci_dbg(xhci, "Cancel URB %p\n", urb);
799 xhci_dbg(xhci, "Event ring:\n");
800 xhci_debug_ring(xhci, xhci->event_ring);
801 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
802 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
803 ep_ring = ep->ring;
804 xhci_dbg(xhci, "Endpoint ring:\n");
805 xhci_debug_ring(xhci, ep_ring);
806 td = (struct xhci_td *) urb->hcpriv;
807
808 ep->cancels_pending++;
809 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
810 /* Queue a stop endpoint command, but only if this is
811 * the first cancellation to be handled.
812 */
813 if (ep->cancels_pending == 1) {
814 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
815 xhci_ring_cmd_db(xhci);
816 }
817 done:
818 spin_unlock_irqrestore(&xhci->lock, flags);
819 return ret;
820 }
821
822 /* Drop an endpoint from a new bandwidth configuration for this device.
823 * Only one call to this function is allowed per endpoint before
824 * check_bandwidth() or reset_bandwidth() must be called.
825 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
826 * add the endpoint to the schedule with possibly new parameters denoted by a
827 * different endpoint descriptor in usb_host_endpoint.
828 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
829 * not allowed.
830 *
831 * The USB core will not allow URBs to be queued to an endpoint that is being
832 * disabled, so there's no need for mutual exclusion to protect
833 * the xhci->devs[slot_id] structure.
834 */
835 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
836 struct usb_host_endpoint *ep)
837 {
838 struct xhci_hcd *xhci;
839 struct xhci_container_ctx *in_ctx, *out_ctx;
840 struct xhci_input_control_ctx *ctrl_ctx;
841 struct xhci_slot_ctx *slot_ctx;
842 unsigned int last_ctx;
843 unsigned int ep_index;
844 struct xhci_ep_ctx *ep_ctx;
845 u32 drop_flag;
846 u32 new_add_flags, new_drop_flags, new_slot_info;
847 int ret;
848
849 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
850 if (ret <= 0)
851 return ret;
852 xhci = hcd_to_xhci(hcd);
853 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
854
855 drop_flag = xhci_get_endpoint_flag(&ep->desc);
856 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
857 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
858 __func__, drop_flag);
859 return 0;
860 }
861
862 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
863 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
864 __func__);
865 return -EINVAL;
866 }
867
868 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
869 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
870 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
871 ep_index = xhci_get_endpoint_index(&ep->desc);
872 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
873 /* If the HC already knows the endpoint is disabled,
874 * or the HCD has noted it is disabled, ignore this request
875 */
876 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
877 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
878 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
879 __func__, ep);
880 return 0;
881 }
882
883 ctrl_ctx->drop_flags |= drop_flag;
884 new_drop_flags = ctrl_ctx->drop_flags;
885
886 ctrl_ctx->add_flags = ~drop_flag;
887 new_add_flags = ctrl_ctx->add_flags;
888
889 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
890 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
891 /* Update the last valid endpoint context, if we deleted the last one */
892 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
893 slot_ctx->dev_info &= ~LAST_CTX_MASK;
894 slot_ctx->dev_info |= LAST_CTX(last_ctx);
895 }
896 new_slot_info = slot_ctx->dev_info;
897
898 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
899
900 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
901 (unsigned int) ep->desc.bEndpointAddress,
902 udev->slot_id,
903 (unsigned int) new_drop_flags,
904 (unsigned int) new_add_flags,
905 (unsigned int) new_slot_info);
906 return 0;
907 }
908
909 /* Add an endpoint to a new possible bandwidth configuration for this device.
910 * Only one call to this function is allowed per endpoint before
911 * check_bandwidth() or reset_bandwidth() must be called.
912 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
913 * add the endpoint to the schedule with possibly new parameters denoted by a
914 * different endpoint descriptor in usb_host_endpoint.
915 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
916 * not allowed.
917 *
918 * The USB core will not allow URBs to be queued to an endpoint until the
919 * configuration or alt setting is installed in the device, so there's no need
920 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
921 */
922 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
923 struct usb_host_endpoint *ep)
924 {
925 struct xhci_hcd *xhci;
926 struct xhci_container_ctx *in_ctx, *out_ctx;
927 unsigned int ep_index;
928 struct xhci_ep_ctx *ep_ctx;
929 struct xhci_slot_ctx *slot_ctx;
930 struct xhci_input_control_ctx *ctrl_ctx;
931 u32 added_ctxs;
932 unsigned int last_ctx;
933 u32 new_add_flags, new_drop_flags, new_slot_info;
934 int ret = 0;
935
936 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
937 if (ret <= 0) {
938 /* So we won't queue a reset ep command for a root hub */
939 ep->hcpriv = NULL;
940 return ret;
941 }
942 xhci = hcd_to_xhci(hcd);
943
944 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
945 last_ctx = xhci_last_valid_endpoint(added_ctxs);
946 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
947 /* FIXME when we have to issue an evaluate endpoint command to
948 * deal with ep0 max packet size changing once we get the
949 * descriptors
950 */
951 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
952 __func__, added_ctxs);
953 return 0;
954 }
955
956 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
957 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
958 __func__);
959 return -EINVAL;
960 }
961
962 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
963 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
964 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
965 ep_index = xhci_get_endpoint_index(&ep->desc);
966 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
967 /* If the HCD has already noted the endpoint is enabled,
968 * ignore this request.
969 */
970 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
971 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
972 __func__, ep);
973 return 0;
974 }
975
976 /*
977 * Configuration and alternate setting changes must be done in
978 * process context, not interrupt context (or so documenation
979 * for usb_set_interface() and usb_set_configuration() claim).
980 */
981 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
982 udev, ep, GFP_KERNEL) < 0) {
983 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
984 __func__, ep->desc.bEndpointAddress);
985 return -ENOMEM;
986 }
987
988 ctrl_ctx->add_flags |= added_ctxs;
989 new_add_flags = ctrl_ctx->add_flags;
990
991 /* If xhci_endpoint_disable() was called for this endpoint, but the
992 * xHC hasn't been notified yet through the check_bandwidth() call,
993 * this re-adds a new state for the endpoint from the new endpoint
994 * descriptors. We must drop and re-add this endpoint, so we leave the
995 * drop flags alone.
996 */
997 new_drop_flags = ctrl_ctx->drop_flags;
998
999 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1000 /* Update the last valid endpoint context, if we just added one past */
1001 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1002 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1003 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1004 }
1005 new_slot_info = slot_ctx->dev_info;
1006
1007 /* Store the usb_device pointer for later use */
1008 ep->hcpriv = udev;
1009
1010 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1011 (unsigned int) ep->desc.bEndpointAddress,
1012 udev->slot_id,
1013 (unsigned int) new_drop_flags,
1014 (unsigned int) new_add_flags,
1015 (unsigned int) new_slot_info);
1016 return 0;
1017 }
1018
1019 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1020 {
1021 struct xhci_input_control_ctx *ctrl_ctx;
1022 struct xhci_ep_ctx *ep_ctx;
1023 struct xhci_slot_ctx *slot_ctx;
1024 int i;
1025
1026 /* When a device's add flag and drop flag are zero, any subsequent
1027 * configure endpoint command will leave that endpoint's state
1028 * untouched. Make sure we don't leave any old state in the input
1029 * endpoint contexts.
1030 */
1031 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1032 ctrl_ctx->drop_flags = 0;
1033 ctrl_ctx->add_flags = 0;
1034 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1035 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1036 /* Endpoint 0 is always valid */
1037 slot_ctx->dev_info |= LAST_CTX(1);
1038 for (i = 1; i < 31; ++i) {
1039 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1040 ep_ctx->ep_info = 0;
1041 ep_ctx->ep_info2 = 0;
1042 ep_ctx->deq = 0;
1043 ep_ctx->tx_info = 0;
1044 }
1045 }
1046
1047 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1048 struct usb_device *udev, int *cmd_status)
1049 {
1050 int ret;
1051
1052 switch (*cmd_status) {
1053 case COMP_ENOMEM:
1054 dev_warn(&udev->dev, "Not enough host controller resources "
1055 "for new device state.\n");
1056 ret = -ENOMEM;
1057 /* FIXME: can we allocate more resources for the HC? */
1058 break;
1059 case COMP_BW_ERR:
1060 dev_warn(&udev->dev, "Not enough bandwidth "
1061 "for new device state.\n");
1062 ret = -ENOSPC;
1063 /* FIXME: can we go back to the old state? */
1064 break;
1065 case COMP_TRB_ERR:
1066 /* the HCD set up something wrong */
1067 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1068 "add flag = 1, "
1069 "and endpoint is not disabled.\n");
1070 ret = -EINVAL;
1071 break;
1072 case COMP_SUCCESS:
1073 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1074 ret = 0;
1075 break;
1076 default:
1077 xhci_err(xhci, "ERROR: unexpected command completion "
1078 "code 0x%x.\n", *cmd_status);
1079 ret = -EINVAL;
1080 break;
1081 }
1082 return ret;
1083 }
1084
1085 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1086 struct usb_device *udev, int *cmd_status)
1087 {
1088 int ret;
1089 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1090
1091 switch (*cmd_status) {
1092 case COMP_EINVAL:
1093 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1094 "context command.\n");
1095 ret = -EINVAL;
1096 break;
1097 case COMP_EBADSLT:
1098 dev_warn(&udev->dev, "WARN: slot not enabled for"
1099 "evaluate context command.\n");
1100 case COMP_CTX_STATE:
1101 dev_warn(&udev->dev, "WARN: invalid context state for "
1102 "evaluate context command.\n");
1103 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1104 ret = -EINVAL;
1105 break;
1106 case COMP_SUCCESS:
1107 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1108 ret = 0;
1109 break;
1110 default:
1111 xhci_err(xhci, "ERROR: unexpected command completion "
1112 "code 0x%x.\n", *cmd_status);
1113 ret = -EINVAL;
1114 break;
1115 }
1116 return ret;
1117 }
1118
1119 /* Issue a configure endpoint command or evaluate context command
1120 * and wait for it to finish.
1121 */
1122 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1123 struct usb_device *udev,
1124 struct xhci_command *command,
1125 bool ctx_change, bool must_succeed)
1126 {
1127 int ret;
1128 int timeleft;
1129 unsigned long flags;
1130 struct xhci_container_ctx *in_ctx;
1131 struct completion *cmd_completion;
1132 int *cmd_status;
1133 struct xhci_virt_device *virt_dev;
1134
1135 spin_lock_irqsave(&xhci->lock, flags);
1136 virt_dev = xhci->devs[udev->slot_id];
1137 if (command) {
1138 in_ctx = command->in_ctx;
1139 cmd_completion = command->completion;
1140 cmd_status = &command->status;
1141 command->command_trb = xhci->cmd_ring->enqueue;
1142 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1143 } else {
1144 in_ctx = virt_dev->in_ctx;
1145 cmd_completion = &virt_dev->cmd_completion;
1146 cmd_status = &virt_dev->cmd_status;
1147 }
1148
1149 if (!ctx_change)
1150 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1151 udev->slot_id, must_succeed);
1152 else
1153 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1154 udev->slot_id);
1155 if (ret < 0) {
1156 spin_unlock_irqrestore(&xhci->lock, flags);
1157 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1158 return -ENOMEM;
1159 }
1160 xhci_ring_cmd_db(xhci);
1161 spin_unlock_irqrestore(&xhci->lock, flags);
1162
1163 /* Wait for the configure endpoint command to complete */
1164 timeleft = wait_for_completion_interruptible_timeout(
1165 cmd_completion,
1166 USB_CTRL_SET_TIMEOUT);
1167 if (timeleft <= 0) {
1168 xhci_warn(xhci, "%s while waiting for %s command\n",
1169 timeleft == 0 ? "Timeout" : "Signal",
1170 ctx_change == 0 ?
1171 "configure endpoint" :
1172 "evaluate context");
1173 /* FIXME cancel the configure endpoint command */
1174 return -ETIME;
1175 }
1176
1177 if (!ctx_change)
1178 return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1179 return xhci_evaluate_context_result(xhci, udev, cmd_status);
1180 }
1181
1182 /* Called after one or more calls to xhci_add_endpoint() or
1183 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1184 * to call xhci_reset_bandwidth().
1185 *
1186 * Since we are in the middle of changing either configuration or
1187 * installing a new alt setting, the USB core won't allow URBs to be
1188 * enqueued for any endpoint on the old config or interface. Nothing
1189 * else should be touching the xhci->devs[slot_id] structure, so we
1190 * don't need to take the xhci->lock for manipulating that.
1191 */
1192 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1193 {
1194 int i;
1195 int ret = 0;
1196 struct xhci_hcd *xhci;
1197 struct xhci_virt_device *virt_dev;
1198 struct xhci_input_control_ctx *ctrl_ctx;
1199 struct xhci_slot_ctx *slot_ctx;
1200
1201 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1202 if (ret <= 0)
1203 return ret;
1204 xhci = hcd_to_xhci(hcd);
1205
1206 if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
1207 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1208 __func__);
1209 return -EINVAL;
1210 }
1211 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1212 virt_dev = xhci->devs[udev->slot_id];
1213
1214 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1215 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1216 ctrl_ctx->add_flags |= SLOT_FLAG;
1217 ctrl_ctx->add_flags &= ~EP0_FLAG;
1218 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1219 ctrl_ctx->drop_flags &= ~EP0_FLAG;
1220 xhci_dbg(xhci, "New Input Control Context:\n");
1221 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1222 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1223 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1224
1225 ret = xhci_configure_endpoint(xhci, udev, NULL,
1226 false, false);
1227 if (ret) {
1228 /* Callee should call reset_bandwidth() */
1229 return ret;
1230 }
1231
1232 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1233 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1234 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1235
1236 xhci_zero_in_ctx(xhci, virt_dev);
1237 /* Free any old rings */
1238 for (i = 1; i < 31; ++i) {
1239 if (virt_dev->eps[i].new_ring) {
1240 xhci_ring_free(xhci, virt_dev->eps[i].ring);
1241 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1242 virt_dev->eps[i].new_ring = NULL;
1243 }
1244 }
1245
1246 return ret;
1247 }
1248
1249 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1250 {
1251 struct xhci_hcd *xhci;
1252 struct xhci_virt_device *virt_dev;
1253 int i, ret;
1254
1255 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1256 if (ret <= 0)
1257 return;
1258 xhci = hcd_to_xhci(hcd);
1259
1260 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1261 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1262 __func__);
1263 return;
1264 }
1265 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1266 virt_dev = xhci->devs[udev->slot_id];
1267 /* Free any rings allocated for added endpoints */
1268 for (i = 0; i < 31; ++i) {
1269 if (virt_dev->eps[i].new_ring) {
1270 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1271 virt_dev->eps[i].new_ring = NULL;
1272 }
1273 }
1274 xhci_zero_in_ctx(xhci, virt_dev);
1275 }
1276
1277 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1278 struct xhci_container_ctx *in_ctx,
1279 struct xhci_container_ctx *out_ctx,
1280 u32 add_flags, u32 drop_flags)
1281 {
1282 struct xhci_input_control_ctx *ctrl_ctx;
1283 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1284 ctrl_ctx->add_flags = add_flags;
1285 ctrl_ctx->drop_flags = drop_flags;
1286 xhci_slot_copy(xhci, in_ctx, out_ctx);
1287 ctrl_ctx->add_flags |= SLOT_FLAG;
1288
1289 xhci_dbg(xhci, "Input Context:\n");
1290 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1291 }
1292
1293 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1294 unsigned int slot_id, unsigned int ep_index,
1295 struct xhci_dequeue_state *deq_state)
1296 {
1297 struct xhci_container_ctx *in_ctx;
1298 struct xhci_ep_ctx *ep_ctx;
1299 u32 added_ctxs;
1300 dma_addr_t addr;
1301
1302 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1303 xhci->devs[slot_id]->out_ctx, ep_index);
1304 in_ctx = xhci->devs[slot_id]->in_ctx;
1305 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1306 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1307 deq_state->new_deq_ptr);
1308 if (addr == 0) {
1309 xhci_warn(xhci, "WARN Cannot submit config ep after "
1310 "reset ep command\n");
1311 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1312 deq_state->new_deq_seg,
1313 deq_state->new_deq_ptr);
1314 return;
1315 }
1316 ep_ctx->deq = addr | deq_state->new_cycle_state;
1317
1318 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1319 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1320 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1321 }
1322
1323 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1324 struct usb_device *udev, unsigned int ep_index)
1325 {
1326 struct xhci_dequeue_state deq_state;
1327 struct xhci_virt_ep *ep;
1328
1329 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1330 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1331 /* We need to move the HW's dequeue pointer past this TD,
1332 * or it will attempt to resend it on the next doorbell ring.
1333 */
1334 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1335 ep_index, ep->stopped_td,
1336 &deq_state);
1337
1338 /* HW with the reset endpoint quirk will use the saved dequeue state to
1339 * issue a configure endpoint command later.
1340 */
1341 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1342 xhci_dbg(xhci, "Queueing new dequeue state\n");
1343 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1344 ep_index, &deq_state);
1345 } else {
1346 /* Better hope no one uses the input context between now and the
1347 * reset endpoint completion!
1348 */
1349 xhci_dbg(xhci, "Setting up input context for "
1350 "configure endpoint command\n");
1351 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1352 ep_index, &deq_state);
1353 }
1354 }
1355
1356 /* Deal with stalled endpoints. The core should have sent the control message
1357 * to clear the halt condition. However, we need to make the xHCI hardware
1358 * reset its sequence number, since a device will expect a sequence number of
1359 * zero after the halt condition is cleared.
1360 * Context: in_interrupt
1361 */
1362 void xhci_endpoint_reset(struct usb_hcd *hcd,
1363 struct usb_host_endpoint *ep)
1364 {
1365 struct xhci_hcd *xhci;
1366 struct usb_device *udev;
1367 unsigned int ep_index;
1368 unsigned long flags;
1369 int ret;
1370 struct xhci_virt_ep *virt_ep;
1371
1372 xhci = hcd_to_xhci(hcd);
1373 udev = (struct usb_device *) ep->hcpriv;
1374 /* Called with a root hub endpoint (or an endpoint that wasn't added
1375 * with xhci_add_endpoint()
1376 */
1377 if (!ep->hcpriv)
1378 return;
1379 ep_index = xhci_get_endpoint_index(&ep->desc);
1380 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1381 if (!virt_ep->stopped_td) {
1382 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1383 ep->desc.bEndpointAddress);
1384 return;
1385 }
1386 if (usb_endpoint_xfer_control(&ep->desc)) {
1387 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1388 return;
1389 }
1390
1391 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1392 spin_lock_irqsave(&xhci->lock, flags);
1393 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1394 /*
1395 * Can't change the ring dequeue pointer until it's transitioned to the
1396 * stopped state, which is only upon a successful reset endpoint
1397 * command. Better hope that last command worked!
1398 */
1399 if (!ret) {
1400 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1401 kfree(virt_ep->stopped_td);
1402 xhci_ring_cmd_db(xhci);
1403 }
1404 spin_unlock_irqrestore(&xhci->lock, flags);
1405
1406 if (ret)
1407 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1408 }
1409
1410 /*
1411 * At this point, the struct usb_device is about to go away, the device has
1412 * disconnected, and all traffic has been stopped and the endpoints have been
1413 * disabled. Free any HC data structures associated with that device.
1414 */
1415 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
1416 {
1417 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1418 unsigned long flags;
1419
1420 if (udev->slot_id == 0)
1421 return;
1422
1423 spin_lock_irqsave(&xhci->lock, flags);
1424 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
1425 spin_unlock_irqrestore(&xhci->lock, flags);
1426 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1427 return;
1428 }
1429 xhci_ring_cmd_db(xhci);
1430 spin_unlock_irqrestore(&xhci->lock, flags);
1431 /*
1432 * Event command completion handler will free any data structures
1433 * associated with the slot. XXX Can free sleep?
1434 */
1435 }
1436
1437 /*
1438 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
1439 * timed out, or allocating memory failed. Returns 1 on success.
1440 */
1441 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
1442 {
1443 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1444 unsigned long flags;
1445 int timeleft;
1446 int ret;
1447
1448 spin_lock_irqsave(&xhci->lock, flags);
1449 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
1450 if (ret) {
1451 spin_unlock_irqrestore(&xhci->lock, flags);
1452 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1453 return 0;
1454 }
1455 xhci_ring_cmd_db(xhci);
1456 spin_unlock_irqrestore(&xhci->lock, flags);
1457
1458 /* XXX: how much time for xHC slot assignment? */
1459 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1460 USB_CTRL_SET_TIMEOUT);
1461 if (timeleft <= 0) {
1462 xhci_warn(xhci, "%s while waiting for a slot\n",
1463 timeleft == 0 ? "Timeout" : "Signal");
1464 /* FIXME cancel the enable slot request */
1465 return 0;
1466 }
1467
1468 if (!xhci->slot_id) {
1469 xhci_err(xhci, "Error while assigning device slot ID\n");
1470 return 0;
1471 }
1472 /* xhci_alloc_virt_device() does not touch rings; no need to lock */
1473 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
1474 /* Disable slot, if we can do it without mem alloc */
1475 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
1476 spin_lock_irqsave(&xhci->lock, flags);
1477 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
1478 xhci_ring_cmd_db(xhci);
1479 spin_unlock_irqrestore(&xhci->lock, flags);
1480 return 0;
1481 }
1482 udev->slot_id = xhci->slot_id;
1483 /* Is this a LS or FS device under a HS hub? */
1484 /* Hub or peripherial? */
1485 return 1;
1486 }
1487
1488 /*
1489 * Issue an Address Device command (which will issue a SetAddress request to
1490 * the device).
1491 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
1492 * we should only issue and wait on one address command at the same time.
1493 *
1494 * We add one to the device address issued by the hardware because the USB core
1495 * uses address 1 for the root hubs (even though they're not really devices).
1496 */
1497 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
1498 {
1499 unsigned long flags;
1500 int timeleft;
1501 struct xhci_virt_device *virt_dev;
1502 int ret = 0;
1503 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1504 struct xhci_slot_ctx *slot_ctx;
1505 struct xhci_input_control_ctx *ctrl_ctx;
1506 u64 temp_64;
1507
1508 if (!udev->slot_id) {
1509 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
1510 return -EINVAL;
1511 }
1512
1513 virt_dev = xhci->devs[udev->slot_id];
1514
1515 /* If this is a Set Address to an unconfigured device, setup ep 0 */
1516 if (!udev->config)
1517 xhci_setup_addressable_virt_dev(xhci, udev);
1518 /* Otherwise, assume the core has the device configured how it wants */
1519 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1520 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1521
1522 spin_lock_irqsave(&xhci->lock, flags);
1523 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
1524 udev->slot_id);
1525 if (ret) {
1526 spin_unlock_irqrestore(&xhci->lock, flags);
1527 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1528 return ret;
1529 }
1530 xhci_ring_cmd_db(xhci);
1531 spin_unlock_irqrestore(&xhci->lock, flags);
1532
1533 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
1534 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1535 USB_CTRL_SET_TIMEOUT);
1536 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
1537 * the SetAddress() "recovery interval" required by USB and aborting the
1538 * command on a timeout.
1539 */
1540 if (timeleft <= 0) {
1541 xhci_warn(xhci, "%s while waiting for a slot\n",
1542 timeleft == 0 ? "Timeout" : "Signal");
1543 /* FIXME cancel the address device command */
1544 return -ETIME;
1545 }
1546
1547 switch (virt_dev->cmd_status) {
1548 case COMP_CTX_STATE:
1549 case COMP_EBADSLT:
1550 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
1551 udev->slot_id);
1552 ret = -EINVAL;
1553 break;
1554 case COMP_TX_ERR:
1555 dev_warn(&udev->dev, "Device not responding to set address.\n");
1556 ret = -EPROTO;
1557 break;
1558 case COMP_SUCCESS:
1559 xhci_dbg(xhci, "Successful Address Device command\n");
1560 break;
1561 default:
1562 xhci_err(xhci, "ERROR: unexpected command completion "
1563 "code 0x%x.\n", virt_dev->cmd_status);
1564 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1565 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1566 ret = -EINVAL;
1567 break;
1568 }
1569 if (ret) {
1570 return ret;
1571 }
1572 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
1573 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
1574 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
1575 udev->slot_id,
1576 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
1577 (unsigned long long)
1578 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
1579 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
1580 (unsigned long long)virt_dev->out_ctx->dma);
1581 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1582 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1583 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1584 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1585 /*
1586 * USB core uses address 1 for the roothubs, so we add one to the
1587 * address given back to us by the HC.
1588 */
1589 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1590 udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
1591 /* Zero the input context control for later use */
1592 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1593 ctrl_ctx->add_flags = 0;
1594 ctrl_ctx->drop_flags = 0;
1595
1596 xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
1597 /* XXX Meh, not sure if anyone else but choose_address uses this. */
1598 set_bit(udev->devnum, udev->bus->devmap.devicemap);
1599
1600 return 0;
1601 }
1602
1603 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
1604 * internal data structures for the device.
1605 */
1606 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
1607 struct usb_tt *tt, gfp_t mem_flags)
1608 {
1609 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1610 struct xhci_virt_device *vdev;
1611 struct xhci_command *config_cmd;
1612 struct xhci_input_control_ctx *ctrl_ctx;
1613 struct xhci_slot_ctx *slot_ctx;
1614 unsigned long flags;
1615 unsigned think_time;
1616 int ret;
1617
1618 /* Ignore root hubs */
1619 if (!hdev->parent)
1620 return 0;
1621
1622 vdev = xhci->devs[hdev->slot_id];
1623 if (!vdev) {
1624 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
1625 return -EINVAL;
1626 }
1627 config_cmd = xhci_alloc_command(xhci, true, mem_flags);
1628 if (!config_cmd) {
1629 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
1630 return -ENOMEM;
1631 }
1632
1633 spin_lock_irqsave(&xhci->lock, flags);
1634 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
1635 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
1636 ctrl_ctx->add_flags |= SLOT_FLAG;
1637 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
1638 slot_ctx->dev_info |= DEV_HUB;
1639 if (tt->multi)
1640 slot_ctx->dev_info |= DEV_MTT;
1641 if (xhci->hci_version > 0x95) {
1642 xhci_dbg(xhci, "xHCI version %x needs hub "
1643 "TT think time and number of ports\n",
1644 (unsigned int) xhci->hci_version);
1645 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
1646 /* Set TT think time - convert from ns to FS bit times.
1647 * 0 = 8 FS bit times, 1 = 16 FS bit times,
1648 * 2 = 24 FS bit times, 3 = 32 FS bit times.
1649 */
1650 think_time = tt->think_time;
1651 if (think_time != 0)
1652 think_time = (think_time / 666) - 1;
1653 slot_ctx->tt_info |= TT_THINK_TIME(think_time);
1654 } else {
1655 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
1656 "TT think time or number of ports\n",
1657 (unsigned int) xhci->hci_version);
1658 }
1659 slot_ctx->dev_state = 0;
1660 spin_unlock_irqrestore(&xhci->lock, flags);
1661
1662 xhci_dbg(xhci, "Set up %s for hub device.\n",
1663 (xhci->hci_version > 0x95) ?
1664 "configure endpoint" : "evaluate context");
1665 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
1666 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
1667
1668 /* Issue and wait for the configure endpoint or
1669 * evaluate context command.
1670 */
1671 if (xhci->hci_version > 0x95)
1672 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
1673 false, false);
1674 else
1675 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
1676 true, false);
1677
1678 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
1679 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
1680
1681 xhci_free_command(xhci, config_cmd);
1682 return ret;
1683 }
1684
1685 int xhci_get_frame(struct usb_hcd *hcd)
1686 {
1687 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1688 /* EHCI mods by the periodic size. Why? */
1689 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
1690 }
1691
1692 MODULE_DESCRIPTION(DRIVER_DESC);
1693 MODULE_AUTHOR(DRIVER_AUTHOR);
1694 MODULE_LICENSE("GPL");
1695
1696 static int __init xhci_hcd_init(void)
1697 {
1698 #ifdef CONFIG_PCI
1699 int retval = 0;
1700
1701 retval = xhci_register_pci();
1702
1703 if (retval < 0) {
1704 printk(KERN_DEBUG "Problem registering PCI driver.");
1705 return retval;
1706 }
1707 #endif
1708 /*
1709 * Check the compiler generated sizes of structures that must be laid
1710 * out in specific ways for hardware access.
1711 */
1712 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1713 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
1714 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
1715 /* xhci_device_control has eight fields, and also
1716 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
1717 */
1718 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
1719 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
1720 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
1721 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
1722 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
1723 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
1724 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
1725 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1726 return 0;
1727 }
1728 module_init(xhci_hcd_init);
1729
1730 static void __exit xhci_hcd_cleanup(void)
1731 {
1732 #ifdef CONFIG_PCI
1733 xhci_unregister_pci();
1734 #endif
1735 }
1736 module_exit(xhci_hcd_cleanup);
This page took 0.069113 seconds and 5 git commands to generate.